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Abstract

We seek to understand the behavior of a pendulum under parametric excitation coupled
with a nonlinear absorber. First, the reference system without any coupled absorber, i.e., a
simple pendulum, is analyzed with a multiple scale method thanks to supposed assumptions
about the excitation. The equilibrium points of the system are calculated, and their stability
is determined. The phase portraits are introduced in order to better predict the behavior
of the system. Then the same analysis is performed on the pendulum coupled with the
nonlinear absorber leading to detection of the slow invariant manifold and its dynamic
characteristic points. Both systems are compared to estimate the effects of the absorber on
the vibratory behaviors of the pendulum.

1 Introduction

Due to a variety of source of excitation such as nature (wind, earthquakes), equipment (in
machines), structural interactions (cables and cabin), mechanical structures are subject to vi-
brations. If these vibrations are not controlled, they can lead the structure to malfunction. In
the case of transportation, before the abnormal behavior and possible destruction of the struc-
ture, the vibration can induce discomfort for passengers. Many solutions have been proposed for
passive control of vibration. Among the passive devices, the widely used one is the tuned mass
damper [1, 2], a spring mass system able to reduce the energy of one mode of the structure.
Some of these devices have been applied on passive control problem of a pendulum [3–5].
Roberson [6] showed that via introducing a nonlinearity to the restoring forcing function (cubic
in this study), the absorption width of the controller would increase. Since then, many nonlinear
devices have been designed [7–18]. In the nonlinear energy sink (NES) [19–24], the restoring
force function is purely nonlinear, i.e. there is no linear term. This allows to broaden the range
of frequency where the device is efficient as the absorber can enter to resonance with any fre-
quency.
The passive control of the pendulum under a generalized external excitation is already stud-
ied [25, 26]. Our paper is interested in nonlinear passive control of pendular movements of a
system under base excitation. Parametrically- or based-excited pendulums can behave in differ-
ent manners according to the characteristics of excitations and the pendulum: Leven and Koch
spotted chaotic behaviors on a damped base excited pendulum [27]. The behavior of a double
pendulum under a base excitation experiences parametric excitation is studied by Sartorelli and
Lacarbonara [28]. Miles [29] investigated on two nonlinear coupled pendulums presenting inter-
nal resonances under parametric excitation. Manevitch et al. [30] and Kovaleva et al [31] used
the concept of limiting phase trajectories [32] for detecting behaviors of a pendulum. Mean-
while, the multiple scale methods [33] is exploited as well to study behaviors of a base-excited
spring pendulums (e.g. see [34–37]). There are some works which are investigated on behav-
iors of double pendulums with different applications, such as biomechanics. As an example,
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we can mention, modeling locomotion of human arm [38] and its passive control due to some
diseases [39]. Some works are devoted to study triple pendulums which can have applications in
lots to mechanical components and systems such as piston-connecting rod system[40–42]. Fur-
thermore, there have been some works which used pendulum systems for the aim passive control:
for instance, Sevin [7] studied vibrations of a undamped pendulum type vibration absorber. The
behavior of a parametrically excited pendulum used as an absorber has been considered and
studied with a harmonic balance method by Song et al [17]. Ikeda investigates on the passive
control of a single-dof system by two pendulum tuned mass dampers [43].
In this article, we consider a pendulum with vertical and horizontal base excitations. We study
the reference system in Sect. 2. Then, in Sect. 3, the pendulum is coupled to a NES. We compare
both system in Sect. 4 to determine the benefit of the presence of the absorber. Finally, the
paper is concluded in Sect. 5.

2 The reference system: the pendulum

2.1 Mechanical system

A planar pendulum of mass M stands in a gravitational field ~g. It rotates around its center P
with an angle θ as shown in Fig. 1. Its inertia is given by J , and its center of mass G is located
at distance L from the point P . The damping coefficient of the cylindrical joint is Cθ.

~ex

~ey

G

P

θ

~F

0

L

~g = −g~ey

Figure 1: The pendulum in a gravity field ~g excited by a force ~F and the displacement at its
base point P .

2.2 The excitation

The pendulum is subjected to a base excitation: the point P follows a imposed displacement
which can be projected on directions ~ex and ~ey to give , respectively, XP (t) and YP (t). We
consider also a horizontal force proportional to the apparent surface of the pendulum and rep-
resenting by an equivalent force F applied to the center of mass G.

~F = F cos(θ)~ex (1)
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2.3 Governing system equations

The coordinates of the center of mass G of the pendulum read:{
xG = XP + L sin(θ)

yG = YP − L cos(θ)
(2)

The kinetic Kr and potential Ur energies of the reference system read:

Kr =
1

2
Jθ̇2 +

1

2
M
(
ẋ2G + ẏ2G

)
(3)

Ur = MgyG (4)

where ˙ refers to the derivation with respect to time t. The nonconservative forces of the system
are the damping and the external forces, which read:

Fθ = −Cθ θ̇ + FL cos(θ) (5)

Thanks to the Lagrange equations, we can write the equation of the system:

d2θ

dτ2
+ cθ

dθ

dτ
+ sin(θ) + cos(θ)

d2xP
dτ2

+ sin(θ)
d2yP
dτ2

= f cos(θ) (6)

where τ = Ω0t, Ω0 =

√
g

L+ j
, j =

J

ML
, cθ =

Cθ
Ω0ML(L+ j)

, xP =
XP

L+ j
, yP =

YP
L+ j

and f =
F

Ω2
0M(L+ j)

.

2.4 Treatment of system equations

In order to perform a multiple scale analysis we define the small parameter 0 < ε� 1 to order
the terms of the equation 6. We assume that the angle θ, the excitation and the damping are
small:

θ =
√
εθ (7)

cθ = εcθ (8)

xP = ε3/2xP (9)

yP = εy
P

(10)

f = ε3/2f (11)

Furthermore, we assume that the excitation has a periodic nature. We can decompose it in the
form of the Fourier series as:

xP (t) =

∞∑
n=−∞

xneinΩt (12)

y
P

(t) =

∞∑
n=−∞

yneinΩt (13)

f(t) =

∞∑
n=−∞

fneinΩt (14)

where Ω is the fundamental frequency and i2 = −1. In the following developments, we assume
that Ω is very close to Ω0 formulated as:

ω = 1 + σε (15)
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where ω =
Ω

Ω0
. We can rewrite Eq. 6:

θ′′ + εcθθ
′ +

sin(
√
εθ)√
ε

+ ε cos(
√
εθ)x′′P +

√
ε sin(

√
εθ)y′′

P
= ε cos(

√
εθ)f (16)

where ′ designates the derivation with respect to dimensionless time τ . In the multiple scale
method, we split the time in several scales thanks to the small parameter ε:

τn = εnτ, n ∈ N (17)

Thus, we redefine the derivative operator:

d

dτ
=
∑
n∈N

εn
∂

∂τn
(18)

Then, we introduce the complex variable of Manevitch [44]:

Θeiωτ = θ′ + iωθ (19)

In our analysis, we are interesting only in the first harmonic of the response of the system. For
an arbitrary function of the system h(τ0, τ1, τ2, ...), this is performed by:

H =
ω

2π

∫ 2π
ω

0

h(τ0, τ1, τ2, ...)e
−iωτ0dτ0 (20)

2.4.1 System behavior at different timescales

At fast timescale τ0, i.e. at order ε0 the analysis gives:

∂Θ

∂τ0
= 0 (21)

which means that the system does not vary at fast timescale. At slow timescale τ1, i.e. at
order ε1 the equation reads:

∂Θ

∂τ1
+
(cθ

2
+ iσ

)
Θ +

i

16
Θ |Θ|2 − h1 − 2iy2Θ

∗ = 0 (22)

where h1 = x1+f1 and ∗ stands for the complex conjugate of the argument. We can make several
remarks. First we note that the horizontal component of the base and the external excitations,
respectively, xP and F have the same effect on the pendulum. Then, only the fundamental
harmonic of the horizontal excitation affects the dynamic of the pendulum, whereas only the
second harmonic of the parametric excitation (vertical) influences the pendulum behavior. Fi-
nally, thanks to the rescaling of θ with

√
ε (Eq. 7) the first nonlinear term of the expansion

of sin(θ) in form of series enters to system equation at this timescale. So, in this case, a part of
nonlinear behavior of the pendulum is taken into account.

2.4.2 Equilibrium points

We seek for the asymptotic state of the system when τ1 → ∞, so
∂Θ

∂τ1
= 0 corresponding to

the equilibrium points of the system. The complex variables can be written in the polar form
as: Θ = Nθe

iδθ , h1 = |h1| eiδh and y2 = |y2| eiδy . The Eq. 22 becomes:(cθ
2

+ iσ
)
Nθ +

i

16
N3
θ − |h1| ei(δh−δθ) − 2i |y2|Nθei(δy−2δθ) = 0 (23)

The real and imaginary parts of the equation 23 read:

cθ
2
Nθ = |h1| cos(δh − δθ) + 2 |y2|Nθ sin(δy − 2δθ) (24)

σNθ +
1

16
N3
θ = |h1| sin(δh − δθ) + 2 |y2|Nθ cos(δy − 2δθ) (25)
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Equations 24 and 25 lead to the following polynomial equation in Nθ:

1

256
N6
θ +

σ

8
N4
θ +

(
σ2 +

c2θ
4
− 4 |y2|2

)
N2
θ − 4 |h1| |y2| sin(δθ + δh − δy)Nθ − |h1|2 = 0 (26)

To determine the stability of each equilibrium point, we linearly perturb variables of Eq. 22 as:

Nθ → Nθ + ∆Nθ (27)

δθ → δθ + ∆δθ (28)

After linearization, we obtain the following equation:
∂∆Nθ
∂τ1

Nθ
∂∆δθ
∂τ1

 = D

(
∆Nθ
∆δθ

)
(29)

� If h1 = 0

D =

2 |y2| sin(2δθ − δy)− cθ
2

4Nθ |y2| cos(2δθ − δy)

−N
2
θ

8
−4Nθ |y2| sin(2δθ − δy)

 (30)

� If h1 6= 0 then Nθ 6= 0 and

D =

 2 |y2| sin(2δθ − δy)− cθ
2

4Nθ |y2| cos(2δθ − δy)− |h1| sin(δθ − δh)

−N
2
θ

8
− |h1|
Nθ

sin(δθ − δh) −4Nθ |y2| sin(2δθ − δy)− |h1| cos(δθ − δh)

 (31)

If the real part of eigenvalues of the matrix D is both negative, the equilibrium point is stable,
otherwise, it is unstable.

2.4.3 Phase portrait

By taking the real and imaginary parts of Eq. 22, we can write after linearization the following
equation:

M


∂Nθ
∂τ1

∂δθ
∂τ1

 =

(
f1(Nθ, δθ)

f2(Nθ, δθ)

)
(32)

For any state of the system described by (δθ, Nθ), we can determine the direction of the flow in
the (δθ, Nθ) plan by inverting the matrix M.
For all the following examples, we take cθ = 0.25 and ε = 10−2.

2.5 Effects of the horizontal component of the base excitation

First we consider only a horizontal excitation of the pendulum (y2 = 0). The amplitudes of
equilibrium points Nθ are solutions of a polynomial of degree 6 given by Eq. 26. They are
traced in Fig. 2 for several values of |h1|. The value of the resonance frequency decreases
when |h1| increases. This is a softening effect of the pendulum system [45] .

We can describe the skeleton curve traced on the Fig. 2 by the the following system of
equations: 

σ = −
(
|h1|
2cθ

)2

Nθ =
2 |h1|
cθ

(33)

For particular excitation of amplitude h1 and frequency σ, we can trace a phase portrait. Figure 3
shows an example with h1 = 0.5 and σ = −0.7. In this state, the system presents two stables
equilibrium points and one unstable equilibrium point.
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Figure 2: Equilibrium points of the reference system as a function of σ and horizontal excita-
tion h1. Stable and unstable zones are identified.
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Figure 3: Equilibrium points (3a) and phase portrait (3b) of the system for h1 = 0.5 and
σ = −0.7.

2.6 Effects of the parametric excitation (vertical component of the
base excitation)

Here we consider only vertical excitation, i.e., h1 = 0. The equation 26 becomes:[
1

256
N4
θ +

σ

8
N2
θ +

(
σ2 +

c2θ
4
− 4 |y2|2

)]
N2
θ = 0 (34)

We deduct that Nθ = 0 is always an equilibrium point. Other solutions exist if cθ < 4 |y2|:

Nθ = 2

√
2

(
±
√

16 |y2|2 − c2θ − 2σ

)
(35)

In the plan (σ,Nθ), Eq. 35 describes two branches represented in Fig. 4. It is seen that stable
branches of the system can correspond to high amplitude levels of Nθ. The unstable branch and
the stable branch cut the axis Nθ = 0 at the respective coordinate:

σu = −1

2

√
16 |y2|2 − c2θ σs =

1

2

√
16 |y2|2 − c2θ (36)
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Figure 4: Equilibrium points of the reference system as a function of σ and vertical excitation y2.
Stable and unstable zones are identified. The stability is not determined when it depends on
the phase difference.

When the amplitude of an equilibrium point is zero (Nθ = 0), its phase δθ is unknown. However,
in the perturbation method (Eq. 28), δθ = ∆δθ. In this case, the eigenvalues µk of the matrix D
are:

µ1 = 0 (37)

µ2 = 2 |y2| sin(2δθ − δy)− cθ
2

(38)

When |y2| > cθ/4, the stability depends on 2δθ − δy. The Fig. 4 shows the equilibrium point
as a function of amplitude Nθ and |y2|. On this representation, the stability remains undefined.
The response curve of the system for an excitation y2 = 0.4 and σ = −1 (Fig. 5a) shows three

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

Stable

Unstable

Undefined

Equilibrium point

(a)

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

7

(b)

Figure 5: Equilibrium points (5a) and phase portrait (5b) of the system for y2 = 0.4 and σ = −1.

equilibrium points: one is stable, one is unstable, whereas the stability of the last one remains
unknown. On the phase portrait (Fig. 5b), the nonzero equilibrium points appear twice because
of the periodicity of π in δθ visible in Eq. 23. The phase portrait shows also the dependence
of the stability of the equilibrium point with zero amplitude to the phase of the perturbation
introduced in the equation of the system.
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2.7 The general case

The system of Eqs. 25 and 24 can be solved numerically to find the equilibrium points of the
system when h1 6= 0 and y2 6= 0. Figure 6 shows the results for given values of h1 and y2. There
is no more solution with zero amplitude. Each branch of the curve with vertical excitation is
split in two branches. The equilibrium points of the new branches have a difference of phase
close to π as seen on the phase portrait (Fig. 6b).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

Stable

Unstable

x
1
=0.5, y

2
=0.25

x
1
=0.5, y

2
=0

x
1
=0   , y

2
=0.25

(a) (b)

Figure 6: Equilibrium points (6a) and phase portrait (6b) of the reference system for h1 = 0.5,
y2 = 0.25 and σ = −1.

3 Pendulum and a coupled nonlinear absorber

3.1 The mechanical system

Here, a nonlinear absorber is attached to the pendulum on the point A located at a distance l
from P as seen in Fig. 7. The mass m of the absorber is very small compared to the mass of the
pendulum M . In the multiple scale method, we take the small parameter ε equal to the ratio
of mass:

ε =
m

M
� 1 (39)

A nonlinear restoring force function s which is purely nonlinear links this mass to the pendulum:

s(u) = Ku3 (40)

where u is the relative distance between the absorber and the pendulum. The damping coefficient
of the absorber is Cu.

3.2 Governing system equations

The coordinates of the mass of the absorber m read:{
xm = XP + l sin(θ) + u cos(θ)

ym = YP − l cos(θ) + u sin(θ)
(41)

The kinetic K and potential U energies of the system became:

K =
1

2
Jθ̇2 +

1

2
M
(
ẋ2G + ẏ2G

)
+

1

2
m
(
ẋ2m + ẏ2m

)
(42)

U = MgyG +mgym +
1

4
Ku4 (43)

8



~ex

~ey

~g = −g~ey

G

P

mθ
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0
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l

Figure 7: Pendulum coupled with an nonlinear absorber in a gravity field ~g excited by a force ~F
and the displacement of its center P .

The nonconservative internal forces of the system are:

Fθ = −Cθ θ̇ + FL cos(θ) (44)

Fu = −Cuu̇ (45)

We deduct from Eqs. 41-45 with the Lagrange equations, the dynamic equations of the system:

[
1 +

ε

γ
(λ2 + ν2)

]
θ′′ + cθθ

′ + (1 + ελ) sin(θ) + ε
λ

γ
ν′′ + 2

ε

γ
θ′ν′ν + ε cos(θ)ν

+ [cos(θ) + ε (λ cos(θ)− ν sin(θ))]x′′P + [sin(θ) + ε (λ sin(θ) + ν cos(θ))] y′′P

= f cos(θ)

ε
[
λθ′′ + ν′′ − θ′2ν + cuν

′ + γ (sin(θ) + cos(θ)x′′P + sin(θ)y′′P )
]

+ kν3 = 0

(46)

where γ =
j

L
+ 1 =

J

ML2
+ 1, λ =

l

L
, ν =

u

L
, cu =

Cu
mΩ0

and k =
K

ML2Ω2
0

.

3.3 System behavior at fast timescale: ε0 order of system equations.

To analyze the equation of the system with the multiple scale method we assume that the
displacement of the absorber is small:

ν =
√
εν (47)

We introduce another variable of Manevitch [44]:

Ueiωt = ν′ + iων (48)

By keeping only the first harmonics, we find at fast time τ0:

∂Θ

∂τ0
= 0 (49)

∂U

∂τ0
= −c+ i

2
U − i (λ− γ)

2
Θ + i

3k

8
|U |2 U = H (50)
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We seek for the asymptotic state of the system when τ0 → ∞ or
∂U

∂τ0
= H = 0. Equation 50

gives the equation of the slow invariant manifold (SIM):

(λ− γ)
2
N2
θ =

(
3k

4
N3
u −Nu

)2

+ c2uN
2
u (51)

Figure 8 shows the curve of the SIM for k = 1, cu = 0.25, λ = 0.8 and γ = 0.25. In all the
following examples, the parameters of the nonlinear absorber do not change. We check the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Stable fix point

Unstable fix point

Singular point

Figure 8: The SIM of coupled system.

stability of the SIM with a perturbation method. We introduce in Eq. 50 a small perturbation
of U :

U → U + ∆U, ∆U � U (52)

After linearization, we get the following equation:
∂∆U

∂τ0

∂∆U∗

∂τ0

 =
1

2

[
M1 M2

M∗2 M∗1

](
∆U
∆U∗

)
(53)

with

M1 =
3ik

2
|U |2 − i− cu (54)

M2 =
3ikU2

4
(55)

In order to know the stability of the SIM, we check the sign of the eigenvalues µ of the matrix M.
Its characteristic equation reads:

µ2 − (M1 +M∗1 )µ+ |M1|2 − |M2|2 = 0 (56)

The sum and the product of the roots of this polynomial µ1,2 are equal to M1 +M∗1 and |M1|2−
|M2|2 respectively:

µ1 + µ2 = −2cu < 0 (57)

µ1µ2 =
27k2

16
N4
u − 3kN2

u + c2u + 1 (58)

We conclude the SIM is unstable if µ1µ2 < 0. If cu ≥
1

3
, the SIM is entirely stable. Otherwise,

the SIM is unstable if:
8− 4

√
1− 3c2u

9k
< N2

u <
8 + 4

√
1− 3c2u

9k
(59)

The stable and unstable zones of the SIM are identified in Fig. 8.
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3.4 System behavior at slow timescale: ε1 order of system equations.

At the next order ε1, the first equation of the system 46 gives:

∂Θ

∂τ1
+

(
iσ +

cθ − iλ
2

+
iλ2

2γ

)
Θ +

i

16
|Θ|2Θ +

i

2

(
λ

γ
− 1

)
U − h1 − 2iy2Θ

∗ (60)

The equilibrium points are also fix points, so they are the solution of the system composed of
Eqs. 60 and 50.

3.4.1 Stability of equilibrium points

Equation 50 gives the expression of Θ as a function of U :

Θ =
1

λ− γ

(
i
3k

4
|U |2 + ic− 1

)
U (61)

We replace Eq. 61 in Eq. 60 to obtain an expression of the variation of Θ as a function of δu
and Nu:

∂Θ

∂τ1
=

eiδu

λ− γ

[(
i
3k

4
N2
u − i− c

)
Nu

∂δu
∂τ1

+

(
9k

4
N2
u + ic− 1

)
∂Nu
∂τ1

]
= F(δu, Nu) (62)

By taking real and imaginary parts of Eq. 62, we can write the following matrix equation:

A


∂δu
∂τ1

∂Nu
∂τ1

 =

(
F1(δu, Nu)
F2(δu, Nu)

)
(63)

By introducing small perturbations ∆δu and ∆Nu in corresponding variables and after lineariza-
tion we can write:

A


∂∆δu
∂τ1

∂∆Nu
∂τ1

 = B

(
∆δu
∆Nu

)
(64)

We can deduce the stability with the signs of the eigenvalues of the matrix A−1B. Equilibrium
points can coincide with singular points of the system (so forming fold singularities), if they
verify the following equation [46]:

det(∇(U,U∗)H) = −
∣∣∣∣M1 M2

M∗2 M∗1

∣∣∣∣ = 0 (65)

where ∇(U,U∗)H stands for the Jacobian matrix of H versus variables U and U∗. We conclude
that the fold singular equilibrium points are located at the borders between stable and unstable
zones visible in Fig. 8.

3.4.2 Phase portraits

We use Eq. 63 to calculate the direction of the flow of the system in every point and trace the
phase portrait in (δu, Nu). The Eq. 51 gives the expression of N2

u as a solution of a polynomial
of degree 3. The three positive solutions correspond to the three zones of the SIM separated by
fold singularities (see Fig. 8). In order to verify the efficiency of the nonlinear absorber, we plot
phase portraits of the system. To represent the path of the system, we need to consider only
the two solutions corresponding to the stable zones Nu1(N2

θ ) and Nu2(N2
θ ). We can express the

value of δu as a function of Nu and Θ from Eq. 50:

eiδu =
λ− γ

Nu(1,2)

(
3k

4
N2
u(1,2) + ic− 1

)Θ (66)
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These solutions U1,2 =
(
Nueiδu

)
1,2

are replaced in Eq. 60:

∂Θ

∂τ1
=

(
∂Nθ
∂τ1

+ iNθ
∂δθ
∂τ1

)
eiδθ = G(δθ, Nθ) (67)

By taking the real and the imaginary parts of Eq. 67 we can calculate the direction of the system
for each point (δθ, Nθ) and trace the phase portrait.

3.5 Effects of the horizontal component of the base excitation

Let us consider horizontal components of external and base excitations. From Eq. 62, we find
N2
u as a solution of a polynomial of degree 9. Figure 9 shows the amplitudes Nu and Nθ of the

equilibrium points of the system as a function of σ and |h1|. Two unstable zones are visible.
One was already present in the reference system (Fig. 2), whereas the other one corresponds
to the unstable zone of the SIM (0.70 < Nu < 1.14). By comparing Fig. 9b with Fig. 2, we
can appreciate the efficiency of the nonlinear absorber: for |h1| < 0.3 the value of Nθ stays
below 0.5. Figure 10 shows an example of a phase portrait for a given value of σ. On the phase

(a) Nu (b) Nθ

Figure 9: Amplitude Nu and Nθ of the equilibrium points of the pendulum coupled with the
nonlinear absorber as a function of σ and |h1|.

portrait in (δu, Nu) (Fig. 10b), the three zones of the SIM are separated by horizontal bold
lines corresponding to singular points. The zone between the singular points is unstable. The
singular points are also visible on the phase portrait in (δθ, Nθ) (Fig. 10d). Here, for the sake
of clarity, only stable zones are represented. They are superposed between singular points.
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Figure 10: Amplitude Nu and Nθ of the equilibrium points of the pendulum coupled with the
nonlinear absorber as a function of σ for h1 = 0.5 and corresponding phase portraits for σ =
−0.6.

3.6 Effects of the vertical component of the base excitation

Now, the same system is subjected to a vertical parametric excitation. From Eq. 62, the squared
amplitudes N2

u of the equilibrium points are still a solution of a polynomial of degree 9. As in
the reference model, the state Nu = Nθ = 0 is an equilibrium point for any σ and y2. For
some values of |y2|, the stability of these equilibrium points is undefined if we do not know the
phase δu as shown in Fig. 11. The curves are split in two curves showing new equilibrium points.
The amplitudes of equilibrium points with high value of Nθ are similar to the amplitudes of the
equilibrium points of the reference system. The coordinates σs and σu of the intersection of the
stable and unstable branches with the plan Nu = 0 are solution of a polynomial of degree 2, so
we can know their analytic expressions as a function of |y2| (Fig. 12).

3.7 The general case

Equations 50 and 60 are solved numerically to trace the amplitudes Nu and Nθ of the equilibrium
points in Fig. 13. As for the case without absorber, there is no solution with zero amplitude.
The stable and unstable branches are split into two branches each. The equilibrium points of
the new branches have similar amplitude but a difference of phase close to π.
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(a) Nu (b) Nθ

Figure 11: Amplitude Nu and Nθ of the equilibrium points of the pendulum coupled with the
nonlinear absorber as a function of σ and y2.
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Figure 12: Amplitude Nu and Nθ of the equilibrium points of the pendulum coupled with the
nonlinear absorber as a function of σ for y2 = 0.25 and corresponding phase portraits for σ = 0.1.
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Figure 13: Amplitude Nu and Nθ of the equilibrium points of the pendulum coupled with the
nonlinear absorber as a function of σ for h1 = 0.5, y2 = 0.25 and corresponding phase portraits
for σ = −1.
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4 The effect of the nonlinear absorber on the system

In this section all numerical results are obtained by integrating of Eq. 46 with ode45 algorithm
of MATLAB with absolute error tolerance at 10−15 and relative error tolerance at 3× 10−14.

4.1 Horizontal excitations

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Without NES

Whith NES

Figure 14: Comparison with and without nonlinear absorber of maximum amplitude of equilib-
rium point for all σ as a function of |h1|.

In case of pure horizontal excitation, Fig. 14 compares the maximum value of the amplitude
of the equilibrium point for any σ. The curve with nonlinear absorber is always under the
curve of the reference system, but the efficiency is maximal for |h1| = 0.3. We can see is a
plateau Nθs = 0.5 corresponding to the value of the first singular point of the SIM (Fig. 8). The
amplitude Nθ is thresholded by a phenomenon called strongly modulated response (SMR) [47].
As illustrated in Fig. 15, the system jumps from singular point to oscillate between both stable
zones of the SIM .

When designing the nonlinear absorber, we consider the vibration of the pendulum is ac-
ceptable if Nθ < Nθs. We consider also that the horizontal excitation |h1| can reach values that
remain below 0.3. In the case of Fig. 16, the SMR oscillations appear and remain for a duration
before the system goes to an equilibrium point. We define the Poincaré map:

P (n) =
(
θ(nT ), θ̇(nT )

)
(68)

with T =
2π

ω
. The Fig. 16b shows a Poincaré map corresponding to a numerical integration of

the equations of the system. In this case, the system stays in a non-periodic state for a while
(τ < 4000) and then it goes to the stable equilibrium point. All initial points of coordinates
(θ, θ̇) from which the system goes to this equilibrium point are in the basin of attraction of this
point. This basin is represented on the Fig. 17a.

For all initial points of the maps of Fig. 17a, a Poincaré section is traced in Fig. 17b. The
points with high number of period are located in two different zones. First, the vicinity of
the stable equilibrium point (θ = −0.036, θ̇ = 0) represents a periodic state of the system. It
corresponds to the equilibrium point visible in Fig. 17a. The second zone is the ring around the
previous point representing a quasi-periodic state. An example is given in Fig. 15 where SMR
oscillations happen.

For the points that are not in the basin, the system stays in a SMR state for an infinite
duration. For all the points of the basin, the system goes to the equilibrium point but not with
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(c) Phase portrait (δθ, Nθ).
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Figure 15: Numerical integration illustrating SMR phenomenon. Excitation: h1 = 0.25, initial
conditions: σ = 0.5, Θ(0) = 0, U(0) = 0.
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(b) Poincaré map of the evolution of the system.

Figure 16: Example of numerical integration with two phases: first SMR oscillations, then
convergence to an equilibrium point. Color scale represents the number of periods n.

the same kinetic. To analyze this dynamic, we introduce a convergence criterion at r:

r(n) = |P (n)− P (n− 1)| (69)
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Figure 17: Asymptotic behavior of the system versus its initial point for h1 = 1 and σ = 3.371.

This criterion is represented in Fig. 18 for several values of n. In figures b and c, we can identify
a zone around the equilibrium point for which the system converges rapidly to it. From the
other points, the system is in a quasi-periodic state corresponding to the SMR oscillations. In
Fig. 18d, after a very long time, the system converged for all points of its basin of attraction.
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(a) n = 50 (b) n = 250

(c) n = 500 (d) n = 1000

Figure 18: Maps of convergence criterion r for different numbers of period (n). Colors represent
the convergence criterion r.
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4.2 Vertical excitation

Here the comparison of the maximum amplitude of the equilibrium point for a given excitation y2
is not relevant because the amplitude Nθ tends to infinity when σ decreases. Of course, the model
is no more valid for very low value of σ since we assumed the frequency of excitation is closed
to the natural frequency of the pendulum. Moreover, for a given σ, the value of maximum
amplitude of this stable equilibrium point is very similar as seen in Fig. 19.
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Figure 19: Comparison with and without nonlinear absorber of the amplitude of equilibrium
point for y2 = 0.25 as a function of σ.

On this figure, we can distinguish several domains:

� σ < −0.8: even though, coupling the system causes the main system experience higher
amplitude compared with the system without absorber, the response of the system can be
considered similar in both cases. In both cases, the presence of a stable equilibrium point
with high amplitude is dangerous. The phase portrait of Fig. 20, shows that the system can
reach the stable equilibrium point with high amplitude only for initial condition with Nθ >
1.5. To confirm this conclusion, the basin of attraction of each stable equilibrium point is
calculated numerically. For each numerical integration, we color the initial condition as a
function of the final state of the system.

Figure 20: Basin of attraction of the equilibrium points of the system without nonlinear absorber
for y2 = 0.25 and σ = −1. For initial conditions corresponding to light squares �, the system
goes to the equilibrium point with high amplitude, for initial conditions corresponding to dark
squares �, the system goes to equilibrium point with zero amplitude.
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� −0.8 < σ < 0.1, the maximum amplitude of stable equilibrium points are similar, but
other equilibrium points with low amplitudes exist for coupled oscillators. The difference
of behavior is visible on the phase portrait with basins of attraction traced in Fig. 21
for σ = 0. In the reference case, the system can reach a high amplitude equilibrium point,
with an initial condition with an amplitude near to 0. With nonlinear absorber, the system
cannot reach the high amplitude stable equilibrium point from an initial condition with
an acceptable amplitude (Nθ(0) < 0.5).
The presence of an unstable equilibrium point with low amplitude creates a kind of barrier
to the system. It is interesting to see in Fig. 11b that this zone is wider and wider, but the
amplitude of this barrier do not vary when the excitation |y2| increases. This barrier is
efficient for any value of the vertical excitation, whereas the nonlinear absorber is efficient
until a maximum value of the horizontal excitation.

(a) Without nonlinear absorber
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(b) With nonlinear absorber

Figure 21: Comparison of basin of attraction of the equilibrium points of the system without and
with nonlinear absorber for σ = 0 and y2 = 0.25. For initial conditions corresponding to light
squares �, the system goes to the equilibrium point with high amplitude, for initial conditions
corresponding to dark squares �, the system goes to equilibrium point with zero amplitude.

� 0.1 < σ < 1, the equilibrium points with the nonlinear absorber have an acceptable
amplitude (Nθ < 0.5). This amplitude is below the threshold defined by the first singular
point of the SIM (Nθs = 0.5). The SMR phenomenon can occur as seen in Fig. 22.

� σ > 1: all equilibrium points are zero.

To conclude, for low and high values of σ, the nonlinear absorber is not so efficient. When σ
is near 0, either the nonlinear absorber prevents the pendulum to reach high amplitude of
oscillation, or it allows the pendulum to vibrate with acceptable amplitude. However, this
is function of the parameters of the absorber. This behavior could be improved with other
parameters.

4.3 The general case

In the general case, as in the vertical excitation case, it is impossible to see the maximum
amplitude of equilibrium points of the system. There are some equilibrium points that are
on the stable branch with high amplitudes that is split into two branches. As in the previous
section, for low and high values of frequency, the behavior of the system with nonlinear absorber
is similar to the behavior of the reference system. For σ near 0, the same barrier avoids the
system to reach high amplitude equilibrium points from low amplitude initial conditions.

21



0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Amplitude vs. time

-3 -2 -1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Phase portrait (δθ, Nθ).

Figure 22: Numerical integration illustrating SMR phenomenon (excitation: y2 = 0.25, σ = 0.5,
initial conditions: Θ(0) = 0.1, U(0) = 0).

5 Conclusion

The nonlinear passive control problem of a single-degree-of-freedom pendulum subjected to base
and external excitations is studied. It is assumed that the excitations are periodic which their
frequencies vary in vicinity of the pendulum frequency. The nondimensionalised form of system
equations are complexified and are treated by a time multiple scale method. All characteristic
points of the system and their stabilities for the pendulum without and with coupled nonlinear
absorber are revealed.
It is seen that lateral base excitation (horizontal) has the same effects as of horizontal external
excitation. The system can present periodic or strongly modulated responses which by proper
design can keep amplitude of variations of the pendulum in a given threshold.The latter can last
for a while before the system gets attracted by a periodic response. Poincaré maps of the system
are traced and detected numerical equilibrium points are compared with analytically predicted
ones. It is shown that the duration of the strongly modulated responses depends on the initial
conditions.
The system (without coupled nonlinear absorber) under parametric excitation (vertical) can
possess stable equilibrium points with very high amplitudes. We showed that the absorber
can create a barrier preventing the system to reach these equilibrium points. The case with
combination of horizontal and vertical base excitation is more complex, but the phenomenon of
barrier also exists.
Developed techniques provide design tools for tuning parameters of the nonlinear absorber to
control the pendulum vibrations due to external and base excitations.
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