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We numerically investigate the modulation instability generated in a dispersion oscillating fiber pumped
by a chirped pulse with a broad bandwidth. We highlight that the side bands are wide, not symmetric in
frequency about the pump and several instantaneous side bands can spectrally overlap with each other
in one side while they are well located in the other side. We also show that the spectral distribution can
be intuitively explained with an analogy in which the fiber is pumped by a tuneable continuous wave.
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1. Introduction

Modulation instability (MI) has been widely investigated in optical fibers and is often interpreted
in the spectral domain as a four wave mixing (FWM) process or optical parametric amplification
[1, 2]. This process is originated from a weak perturbation of a steady state in a medium with an
equilibrium between dispersion and nonlinear effects. When an intense continuous wave (CW) or
quasi-CW propagates in a fiber, side bands can growth from noise if all the involved waves are
phase matched. The spectral features of the generated bands depend on the nonlinear coefficient
and the dispersion profile of the fiber. The spectrum is usually symmetric in frequency about the
pump due to the linear phase matching factor that depends only on the even order dispersion terms
though asymmetry can arise from the stimulated Raman scattering [2] or from the high-order
FWM in a saturated regime [3]. The emergence of these side bands has been demonstrated in
various configurations in fibers with anomalous [4] and normal dispersion regimes with negative
high order terms [5], or in birefringence fiber [6]... More complex dispersion properties have also
been designed to tailor the spectral bands. For example, MI has been generated when a CW pumps
a dispersion oscillating fiber (DOF) in which the dispersion evolves periodically along the fiber.
In this case, multiple discrete side bands are generated in the THz range due to a quasi-phase
matching condition [7–10] but the bandwidth is relatively narrow. Recently, other complex
longitudinal evolutions of the dispersion have been employed to engineer the band properties, for
example to broaden the spectral width of the side bands [11, 12]. In this manuscript, we prefer
to vary the pumping scheme instead of designing a fiber with a specific dispersion landscape. We
consider a DOF with a single period pumped by a chirped pump pulse with large bandwidth to
enhance the spectral broadening of the bands.
Parametric amplification has been recently investigated in a homogeneous fiber pumped by a
chirped pulse with a broad bandwidth [13, 14] and the broad band pulse allows the amplification
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to reach very large gain bandwidth, up to 36 THz [14]. In fact, the spectral gain has a temporal
distribution since it is induced by the pump instantaneous frequencies. An analytical model
has been developed by describing the chirped pulse as an ensemble of independent CW [14]
propagating in a fiber owning a constant dispersion profile. Excellent agreements with numerical
simulations have been obtained confirming that this analytical tool can be used to interpret
the parametric spectrum. When a chirped pulse propagates in a DOF, the instantaneous pump
frequency is varied with time while the dispersion profile changes with propagation in the fiber.
In this manuscript, we numerically and analytically investigate the generation of MI in this
configuration. We also highlight that the side pair is not symmetric in frequency about the pump
which is a significant difference from the usual pumping configuration where the fiber is pumped
by a CW. The successive instantaneous side band peaks generated by the pump frequencies can
even overlap in one side while the spectral locations of instantaneous side bands are relatively well
defined in the other side. We believe that this effect can be used to generate tuneable stretched
pulse with a wide bandwidth and to amplify ultra-short pulse [15, 16].

2. Methods and description of the investigated cases

2.1. General numerical simulations

In order to deeply investigate the MI when a CW or a chirped pulse is injected in the DOF, realistic
numerical simulations have been conducted by integrating the nonlinear Schrödinger equation
(NLSE) along the propagation z

i
∂ψ

∂z
−
β2(z)

2

∂2ψ

∂t2
− i

β30
6

∂3ψ

∂t3
+ γ |ψ|2 ψ = 0 (1)

describing the evolution of the slowly varying total electric field ψ in an optical fiber. Eq. 1 has
been solved with the standard split-step Fourier including a weak random initial condition that
mimics quantum fluctuations. The temporal resolution is 25 fs and the number of points is 216.
Simulated spectra have been averaged over 50 shots and the spectral location of the maximum
gain are compared to the analytic derivation presented in the following. The pump pulse has a 10th

order super-Gaussian profile with a pulse duration equals to 400 ps at full width half maximum
(FWHM). The spectrum is either quasi-monochromatic or broad band. The lossless fiber has a
nonlinear coefficient γ=7.5 W−1.km−1 and the pump power P is 20 W in all cases.
For the simulation with the chirped pump pulse, the bandwidth ∆Ωp (FWHM) is changed up to
(1)x2π THz. The chirp is assumed to be linear and is adjusted to keep the same pulse duration,
equals to 400 ps. Thus, the chirp is (2.5)x2π GHz/ps for the maximum bandwidth.

2.2. MI in a fiber with a constant dispersion pumped by a quasi-continuous wave

For comparison to known MI spectrum, we firstly consider a fiber that owns a constant second order
dispersion coefficient β20=-0.9x10−3 ps2/m and a third order dispersion coefficient β30=+6.8x10−5

ps3/m. Figure 1.a displays the MI gain profile obtained from the NLSE simulations when the fiber
is pumped by a quasi-CW. The fiber length is L=25 m. The side lobes are relatively broad and
the angular frequency Ω0 at maximum are located at ± 2 π×2.9 THz in good agreement with the
analytical prediction (vertical dashed lines) given by [2] :
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Ω0 = ±

√

−2γP

β20
(2)

The two lobes are symmetric about the pump frequency and their positions can vary with the
β20 value. However, no MI can be obtained for a positive value within the assumption. Higher
order dispersion term should be included [5], for example a negative value of the fourth order of
dispersion would allow the appearance of narrow side band.

2.3. MI in a DOF pumped by a quasi-continuous wave

MI has been investigated in several kinds of DOFs [7–12] and we focus this work on a dispersion
profile that follows a sinusoidal evolution with the fiber along z with a single period Λ. The total
fiber length is L=50 m. The second order dispersion at the pump frequency, β20 term can be written
as :

β20 = β20av + β20amp · sin(2πz/Λ) (3)

with β20av the average dispersion and β20amp the amplitude of the variation. When the fiber is
pumped by a quasi-CW, it has been shown that non equally spaced sidebands are generated due
to a quasi-phase matching condition and the angular frequency shift from the pump Ωk of the kth

band peak can be predicted by [7, 17]:

Ωk = ±

√

2π
Λ k − 2γP

β20av
(4)

with k an integer.
In the following example, the fiber has a sinusoidal profile (Eq. 3) with an average value β20av=

+0.9x10−3 ps2/m, a modulation amplitude β20amp =+1.6x10−3 ps2/m and a period Λ=10 m. The
average third order dispersion coefficient is β3=6.8 x10−5 ps3/m. These parameters are chosen
to close matched experimental feasibility and this fiber can be performed in a spectral region
around 1 µm [9] or 1.5 µm [18]. In this configuration, the output spectrum exhibits side lobes
symmetrically separated about the pump frequency (Figure 1.b). For sake of clarity, we limit the
figure to 4 side lobes but the discussion can be done for all k resonant peaks. The frequency of
the maximum gain predicted by Eq. 4 is shown with red dashed lines. Good qualitative agreement
is obtained although marginal shifts between the simulation and the analyical predictions can be
attributed to the approximation in the model [17].

2.4. MI in a DOF pumped by a broad band pulses

When a chirped pump pulse is injected in the same DOF, the dispersion profile varies for each
angular pump frequency over the full bandwidth ∆Ωp. To analyse the impact of the pump band-
width, we describe the spectrum as an ensemble of CWs whose angular frequencies are tuned from
-∆Ωp/2 to +∆Ωp/2. The ultra-short pulse is stretched to 400 ps in order to decrease

the peak power and thus to generate efficiently the MI with a long pulse without

any high-order non linearity. Therefore, we can assume that each pump angular frequency Ωp
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Figure 1. Modulation instability spectrum when (a) a CW pumps a fiber in the anomalous dispersion regime (β20=-0.9x10−3

ps2/m, P=20 W, L= 25 m), (b) a CW pumps the dispersive oscillating fiber (β20av= +0.9x10−3 ps2/m, β20amp =+1.6x10−3

ps3/m, Λ=10 m, P=20 W, L= 50 m), (c)a linear chirped pulse pumps (T=400 ps, ∆ωp=2π x 0.8 THz) the dispersion oscillating
fiber.

independently generates the MI since they are temporally separated. This analogy has allow to
obtain excellent results in the case of a fiber with a constant dispersion profile along the fiber [14]
and provides intuitive explanation of the generated spectral components.
In this description, the derivation is achieved with respect to the central pump angular frequency

Ωp0 as in [14]. Accordingly, the second order dispersion term depends on Wp = Ωp − Ωp0 :

β2(Wp) = β20 + β30 ·Wp = β2av(Wp) + β20amp · sin(2πz/Λ) (5)
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with

β2av(Wp) = β20av + β30 ·Wp (6)

assuming that the third order dispersion term is constant along the axial variation and neglecting
high order dispersion terms.
From Eq. 4 and Eq. 5, the resonant peaks are obtained for each pump frequency detuning at :

Ωk± = ±

√

2π
Λ k − 2γP

β2av(Wp)
+Wp = ± |Ωk0| ·

√

1

1 + β30·Wp

β20av

+Wp (7)

with Ωk0=Ωk(Wp=0). The first term takes into account the change of the β2av value when Ωp

is tuned while the second term is used to shift the frame to the central pump frequency (Ωp0=0).

For β30·Wp

β20av

< 1 , this expression can be expanded up to the second order as

Ωk± ≈ ± |Ωk0|+Wp(1∓
1

2
B |Ωk0| ±

3

8
B2Wp |Ωk0|) (8)

with B= β30

β2av0

. When Ωp is tuned away from the central angular frequency Ωp0 (Wp 6=0), the resonant
peaks are shifted by the second term in Eq. 8. In this frequency frame, the side bands are not
shifted by the same amounts in the Stokes and anti-Stokes sides and it depends on B.Wp and Ωk0.
Accordingly, we label the kth peak as k+ and k− for the positive and negative frequency shifts,
respectively.
Figure 1.c shows an example of a MI spectrum simulated with NLSE when the 400 ps pulse injected
in the DOF has a bandwidth equals to (0.8)×2π THz. The spectrum is not symmetric about the
pump and is broad in the Stokes side while the anti-Stokes sides seems similar to the case when the
CW pumps the DOF (Figure 1.b). In the following, we aim to explain and discuss this observation
with the previous analytical derivations and the simulations.
To numerically interpretate the spectrum, we performed simulations with spectrally shifted CWs.
All the output spectra are shifted to the center of the pump bandwidth, Ωp0 (Wp=0 THz) and
compared to the bands generated with the chirped pulse. We assume that all instantaneous MI
are independently generated from each other. In our analysis, the chirp pulse is sampled by N
spectrally shifted CWs over the bandwidth with the same spectral profile as the chirped pulse.
As the pulse is linearly chirped, the spectrum has also a super-Gaussian profile with a bandwidth
∆Ωp(FWHM). All the MI bands has been centered to Ωp0 and the output integrated spectrum

S(Ω) is obtained by taking the square of the sum of all the electric field ψ̃ in the frequency domain
:

S(Ω) ∝

∣

∣

∣

∣

∣

∣

+∆Ωp/2
∑

Wp=−∆Ωp/2

ψ̃(Ω−Wp,Wp)

∣

∣

∣

∣

∣

∣

2

(9)
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3. Impact of the pump bandwidth on the modulation instability

3.1. Spectral evolution with the pump frequency and bandwidth

In order to discuss the asymmetry of the MI spectrum, we investigated the evolution of

the MI with the pump frequency. Figure 2 shows the angular frequency shift of the lobes in the
Stokes (Ωk−) and Anti-Stokes (Ωk+) sides as a function of Wp tuned from (-0.8)x2π to (+0.8)x2π
THz obtained with Eq. 7 (solid line) and its expansion (Eq. 8-dash line). The two curves are in
good agreement for this pump scan. For the three first side lobes, the frequency variation of Ωk−

is more important than the one of Ωk+. For example, Ω2− varies by nearly (4)x2π THz while Ω2+

changes only by ∼ (0.5)x2π THz. With opposite value of β3, we checked that the spectral extension
is more important in the Anti-Stokes side (not shown), as expected from the analytical expression
(Eq. 8). With this large spectral shift, two subsequent resonant peaks can be generated at the
same angular frequency but from different pump frequency, i.e Ωk(Wp1)=Ωk+1(Wp2). To illustrate
this comment, Ωk(Wp = 0) and Ωk+1(Wp = 0) are also plotted in Figure 2. In this case, Ω2− and
Ω3− expands up to Ω3(Wp=0) and Ω4(Wp=0) at Wp∼-(0.59)x2π THz and Wp∼-(0.4)x2π THz,
respectively. This means that several bands generated by a chirped pulse cannot be distinguished
in the spectral domain since they overlap.
Figure 3.a displays the simulated spectrum when the frequency of the CW pump is tuned and

selected spectral profiles are shown for Wp equals to (-0.4)x2π, (0)x2π or (+0.4)x2π THz (Figure
3.b). The bands in the Stokes side clearly shift away from the pump while the band centers in
the Anti-Stokes side are relatively unchanged when the pump is tuned. We remind the reader that
the spectra are shifted to the center of the pump frequency scan. In the usual representation, the
bands are symmetric about the pump frequency. The green lines are given by Eq. 7 and are in good
agreement with the maximum obtained by the simulation. The quantitative disagreements between
the simulations and the analytical predictions have also been observed in Figure 1.b. As already
observed in Figure 2, subsequent bands can be generated at the same angular frequency but from
different pump frequencies. In addition, the maximum gain varies with the pump frequency. For
example, the gain changes by only 6 dB and 2 dB for k=1 and 2, when the pump frequency is
changed from -0.4 to 0.4 THz (Figure 3.b). The change is more important for k=3, it changes by
∼ 12 dB.
When the chirped pulse is injected in the same fiber, the spectral width of each band in the

Anti-stokes side is narrow (∼ 0.35 THz at FWHM) as in the previous case with the CW excitation
and is relatively constant when the pump bandwidth (∆Ωp) is tuned (Figure 3.d). Alternatively,
the bands broaden in the Stokes side and for large pump bandwidth, successive side bands tend to
overlap leading to a large spectrum (Figure 3.c). The k−=3 and 4 bands shift to lower frequency
shift when the pump bandwidth increases (Figure 3.c). This is due to the change of the maximum
gain with pump frequency as observed in the CW mode. For example, for ∆Ωp=(+0.8)x2π THz
(black line), all the frequency components lying in the pulse are between (±0.4)x2π THz in Figure
3.a. Therefore, the bands overlap and cannot be distinguished. The separation between the two
first lobes at ∼ -4.5 THz still exists even for ∆Ωp=(0.8)x2π at FWHM (Figure 3.b black line and
Figure 3.d) because the band at k−=1 shifts less with the pump frequency than the other bands
(Figure 3.a). In addition, the MI generated at the edge of the pump bandwidth (at ± 0.4x2π THz)
is generated with a power twice smaller (i.e 10 W) leading to a drop of the gain by more than 10
dB. The shape of the bands excited by a chirped pulse can also be more precisely inferred from
the band obtained with CWs. For the Super-Gaussian pump profile with ∆Ωp=(0.8)x2π, the pulse
has been sampled in N=60 spectrally shifted CWs over the bandwidth with the same spectral
profile as the chirped pulse. All the MI bands has been centered to Ωp0 and the output spectrum
is obtained from Eq. 9. This analogy with independent CW waves (Figure 3 d-grey curve) is in
excellent agreement with the MI bands obtained directly with the chirped pulse confirming the
correct interpretation of the generated MI.
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Figure 2. Evolution of Ωk+/(2π) (red line) and Ωk−/(2π) (blue line) as a function of the pump frequency detuning for k=1
(a), k=2 (b) and k=3 (c). Solid lines are calculated from Eq. 7 and the dashed lines correspond to the expansion (Eq.8).

Ωk/(2π) and Ωk+1/(2π) at Wp= 0 THz are also displayed.

3.2. Temporal distribution and parametric amplification

In addition to the asymmetry in the MI spectrum, the difference in the Stokes and

anti-Stokes sides also occurs in the temporal domain. Indeed, the MI spectrum generated
by the broadband pulse has a spectro-temporal distribution since it is generated by a chirped
pulse. The instantaneous angular frequency shift can be written in the time domain; α · τ . An
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Figure 3. (a) Evolution of the MI spectrum simulated with the NLSE as a function of the pump frequency shift of CWs (P=20

W). Green lines are the frequency at maximum gain for each k band predicted by Eq. 5 (b) Selected profiles for ∆Ωp/(2π)=-0.4
THz (green line) , 0 THz (blue line) and 0.4 THz (red line). (c) Evolution of the MI spectrum as a function of the pump
bandwidth for a chirped pulse.(d) Selected profiles for ∆Ωp/(2π)=0.4 THz (blue line), 0.6 THz (red line) and 0.8 THz (black
line). Spectrum of the sum of CW waves over 0.8 THz (grey curve) with the same spectral profile as the chirped pulse.

interferogram is shown in Figure 4 for a bandwidth equals to (0.8)x2π THz (FWHM). Dash green
lines are obtained from Eq. 7. As excepted from Section 3.1, the bandwidth in the Anti-Stokes side
is narrow and relatively unchanged over the full temporal profile, i.e ∼ 400 ps. In the Stokes side,
the induced chirp is higher leading to a larger bandwdith. For example, for k−=1 the chirp is ∼
(3.4)x2π GHz/ps while it is ∼(0.6)x2π GHz/ps for k+=1. If β3 has an opposite sign, the chirp is
higher in the Anti-Stokes side (not shown) as expected from Eq. 8.
The spectro-temporal distribution has a direct impact on the parametric amplification when a

CW is injected at maximum gain of the band since the spectral gain is temporally shifted. Figure
5 shows the spectrum in the unsaturated regime when a CW signal is injected at the maximum of
each side lobes at Ω=± 3.4, 5.3 or 6.7 THz. During propagation, the CW signal is instantaneously
amplified when the gain exists and an idler pulse is generated. From photon energy conservation
in a four wave mixing process, the maximum bandwidth of the signal can be twice the pump
bandwidth (2x0.8 THz) if all the waves are phase matched [19]. However, the CW signal interacts
with the instantaneous spectral gain in a temporal window shorter than the full pump pulse. The
CW interacts during a longer temporal width when it is injected in the Stokes side rather than in
the anti-Stokes side. Accordingly, the bandwidth (FWHM) is broader for k−=1-3 (0.89 THz, 1.18
THz, 0.75 THz) while it is much narrower (0.54 THz, 0.33 THz, 0.21 THz) when the CW signal is
injected in the Stokes side.

4. Conclusion

We have numerically investigated the spectral properties of MI generated in a DOF pumped by a
broad band pulse. We addressed that the spectrum can be large and is not symmetric as respect to
the pump spectrum. The spectral distribution can be intuitively understood with an analogy with
MI generated with CW waves. Each instantaneous frequency generates their own spectrally shifted
MI with a different chirp in the Stokes or Anti-Stokes sides leading to a spectral broadening in only
one band. This method is promising to generate tuneable stretched pulses with a wide bandwidth
by selecting the idler when a CW signal is injected in the fiber.
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