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Abstract—Next generation wireless networks are expected to be
highly heterogeneous, multi-layered, with embedded intelligence
at both the core and edge of the network. In such a context,
system-level performance evaluation will be very important to
formulate relevant insights into tradeoffs that govern such a
complex system. Over the past decade, stochastic geometry (SG)
has emerged as a powerful analytical tool to evaluate system-level
performance of wireless networks and capture their tendency
towards heterogeneity. However, with the imminent onset of this
crucial new decade, where global commercialization of fifth-
generation (5G) is expected to emerge and essential research
questions related to beyond fifth-generation (B5G) are intended
to be identified, we are wondering about the role that a powerful
tool like SG should play. In this paper, we first aim to track
and summarize the novel SG models and techniques developed
during the last decade in the evaluation of wireless networks.
Next, we will outline how SG has been used to capture the
properties of emerging radio access networks (RANs) for 5G/B5G
and quantify the benefits of key enabling technologies. Finally,
we will discuss new horizons that will breathe new life into
the use of SG in the foreseeable future. For instance, using
SG to evaluate performance metrics in the visionary paradigm
of molecular communications. Also, we will review how SG is
envisioned to cooperate with machine learning seen as a crucial
component in the race towards ubiquitous wireless intelligence.
Another important insight is Grothendieck toposes considered
as a powerful mathematical concept that can help to solve long-
standing problems formulated in SG.

Index Terms—Fifth-generation (5G) and beyond fifth-
generation (B5G) networks, point process theory, signal-to-
interference-and-noise-ratio, stochastic geometry.

I. INTRODUCTION

Stochastic geometry (SG) is a field of applied probabil-

ity that aims to provide tractable mathematical models and

appropriate statistical methods to study and analyze random

phenomena on the plane R2 or in larger dimensions [1]. Its

development was driven by applications in several scientific

areas such as forestry, image analysis, geophysics, neurophys-

iology, cardiology, finance, and economics. In the context
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GLOSSARY

µWave microwave
3GPP 3rd generation partnership project
AF Amplify-and-forward
AoI Age of information
ASE Area spectral efficiency
AtG Air-to-ground
AWGN Additive white Gaussian noise
B5G Beyond 5G
BBU Baseband unit
BPM Bounded path loss model
BPP Binomial point process
CAPEX Capital expenditure
CoMP Coordinated multipoint
C-plane Control plane
CR Cognitive radio
C-RAN Cloud radio access network
CRE Cell range expansion
D2D Device-to-device
DAS Distributed antenna system
dcx Directionally convex
DF Decode-and-forward
DPP Determinantal point process
DUDA Decoupled uplink-downlink access
EE Energy effeciency
EM Electromagnetic
eMBB enhanced mobile broadband
F-RAN Fog radio access network
FSO Free space optical
GPP Ginibre point process
GSPP Geyer saturation point process
HD Half duplex
HetNet Heterogeneous network
HPPP Homogeneous Poisson point process
IBFD In-band full-duplex
ICIC Intercell interference coordination
IDT Inhomogeneous double thinning
IoT Internet of things
IPPP Inhomogeneous Poisson point process
LED Light-emitting diode
LGCP Log-Gaussian Cox process
LOS Line-of-sight
MAC Medium access control
MC Molecular communication
MCMC Markov chain Monte Carlo
MCP Matérn cluster process
MGF Moment generating function
MHPP Matérn hard-core point process
MIMO Multiple-input and multiple-output
ML Machine learning
mmWave Millimeter wave
NLOS Non-line-of-sight
NOMA Non-orthogonal multiple access
OPEX Operational expenditure
PCP Poisson cluster process
PDF Probability density function
PGFL Probability generating functional
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PHCP Poisson hard-core process
PHP Poisson hole process
PL Perturbed lattice
PLP Poisson line process
PMF Probability mass function
PP Point process
PPP Poisson point process
RAN Radio access network
RIS Reconfigurable intelligent surface
RN Relay node
ROI Return on investment
RRH Remote radio head
RWP Random waypoint
SDN Software-defined networking
SG Stochastic geometry
SI Self interference
SIC Successive interference cancellation
SINR Signal-to-interference-plus-noise ratio
SPP Strauss point process
SSI Simple sequential inhibition
SWIPT Simultaneous wireless information and power transfer
TCP Thomas cluster process
UAV Unmanned aerial vehicles
UDN Ultra-dense network
UE User equipment
U-plane User plane
UPM Unbounded path loss model
URLLC Ultra-reliable and low latency communications
VAD Voronoi area distribution
VANET Vehicular ad hoc network
VLC Visible light communications

of communication networks, the location of user equipment

(UE) and base stations (BSs) are scattered randomly over an

enormous number of possibilities, where designing the system

for every network realization would be time-consuming and

resource-intensive [2], [3]. Instead, using tools from SG [1]–

[8], the location of nodes (i.e., UEs and/or BSs) is assessed

statistically in order to study the interaction between them,

which inherently considers all possible network realizations

and generally capture the main dependencies of the network

performance connectivity (capacity/throughput and reliability).

This is broadly understood if we see the concept of using

a statistical distribution to abstract the variety of potential

network topologies as actually similar to the approach of

considering a statistical distribution to model the infinite

possibilities of multipath fading and shadowing.

A. A Brief History of Stochastic Geometry

SG as a concept of geometric probability is a field that

can be stretched back at least 300 years. Indeed, the bond

between probability theory and geometry reverts back to the

18th century when several challenging problems and imagined

experiments raised by prominent mathematicians, pondering

about the impact of varying randomly geometric forms on

the probability of specific events. We quote particularly the

Buffon’s needle problem1 (1733), and afterwards questions re-

lated to Sylvester’s four-point problem2 (1864) and Bertrand’s

1Buffon’s needle problem asks to find the probability that a needle of
a given length will land on a line, given a window with equally spaced
parallel lines far apart by a given distance. It provides a theoretical scheme
to statistically determine the number π.

2Sylvester’s four-point problem asks for the probability that four points
scattered randomly in a given window region have a convex hull, i.e., it will
be possible to connect any two points within the shape constructed by the
four points with a straight line that does not leave the shape.

paradox3 (1889). A short historical outline of these early days

of geometric probability may be found in [9].

Since the 1950s, the framework of geometric probability

broadened substantially and framed as an academic area. In

particular, the focus mainly switched to models involving a

typical number of randomly selected geometric objects. As a

consequence, the four distinguishable mathematical strands of

integral geometry theory [10], random set theory [11], random

measures theory [12], and point process (PP) theory [4]–[8]

started to play a prominent role in the geometric probability,

which since then was called stochastic geometry. Integral

geometry gives a unified approach for defining integrands over

curves, surfaces, volumes, and higher-dimensional manifolds

by using tools from probability theory, group theory, and

projective geometry. Random sets generalizes the concept of

random vectors, by addressing random entities whose number

of components is unknown. Random measures theory is fo-

cused on studying the properties of measures established on

random elements. In the special case where these measures

are integer-valued, random measures reduce to PPs considered

as an important subclass of random measures. Discussions on

how early problems on geometrical probability have led to the

construction of primary results on these pillar theories of SG,

can be found in [13]. Moreover, for the sake of exploratory

data analysis, parameter estimation, and model fitting, SG

has been endowed with a statistical theory in similarity with

the traditional probability theory. More statistical analysis and

parameters estimation can be found in [14].

In the context of communication networks, the paper [15]

is the first to consider tools from SG to evaluate connectivity

in a network of stations represented by a Poisson point

process (PPP). In particular, it was only by the late 1990s

that important ideas from SG found their way to modeling

and analysis of communication networks [2], [3], where tools

based on Poisson Voronoi tessellations and Delaunay trian-

gulation were proposed to derive geometric characteristics of

hierarchical links between stations. To the best of the authors’

knowledge, key results were reported a decade later, where

the baseline mathematical framework was characterized in the

case of a generative single-tier wireless network [16]–[18].

Since then, generalizations to more advanced SG models have

been gradually adopted in subsequent works. For example,

extensions to finite wireless networks are studied in [19], to

multi-tier networks are reported in [20], [21], and to the uplink

direction are analyzed in [22]. More discussions about such

early extensions can be found in [23]–[26].

B. The Importance of Stochastic Geometry in 5G/B5G Wire-

less Networks

With exponential digitalization of modern society, 5G/B5G

networks are envisioned to play a major role in the pro-

cess of achieving higher data rates, hyper-connectivity, and

ultra-low latency [27], [28]. To achieve such requirements,

future 5G/B5G wireless networks are expected to be more

heterogeneous due to various targeted verticals with specific

3The Bertrand paradox asks for the probability that the chord of a circle
will be longer than the side of an equilateral triangle inscribed in this circle.
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demand, in addition to the use of higher-frequency bands

(e.g., mmWave [29], terahertz (THz) communications [30],

and visible light communications (VLC) [31]) enabling to

build high-speed short-range networks. Also, environmental

objects will be coated with intelligent metasurfaces, com-

monly known as reconfigurable intelligent surfaces (RIS),

which can reflect incident signals in a customized way to

optimise/recycle signal propagation in future networks [32],

[33]. The use of unmanned aerial vehicles (UAVs) will be a

common and mature technology, where they can be used as

flying-BSs to support terrestrial coverage in isolated regions,

enhance capacity in traffic overloaded user hotspots, and even

used as flying-UEs for delivery or supervision purposes [34].

Interestingly, end terminals will be gradually equipped with

computing and/or storage capabilities, in a fog radio access

architecture (F-RAN) fashion [35], enabling to emerge from

the paradigm of ubiquitous connectivity to that of ubiquitous

wireless intelligence.

Consequently, as the complexity and heterogeneity of mod-

ern wireless networks is continuously increasing, tools from

artificial intelligence and machine learning (ML) will be

crucial to learn static and dynamic components of the wireless

environment and then help to make optimal control deci-

sions for system-level performance. Also, SG adopted as a

powerful model-driven tool for the evaluation of wireless

networks during the last decade, is expected to remain an

effervescent area of research in the foreseeable future, due

typically to the following reasons: First, spatial arrangement

of transmitters and receivers will continue to play a major

role in the prediction of performance metrics in 5G/B5G

wireless networks, e.g., performance scaling laws in ultra-

dense networks (UDNs) [36], [37], impact of coupling UE

and BS locations on system-level performance (see Table IV).

Second, a cross-fertilization between SG and ML can be made

to achieve better results in terms of accuracy and flexibility

[38], [39]. For instance, SG can be integrated as a hypothesis

class in the learning process of ML to evaluate the family of

subset selection problems [40], [41]. Third, despite the ability

to build a programmable and controlled wireless environment

in 5G/B5G networks, thanks to F-RAN and massive adoption

of metasurfaces, it is actually impossible to control all facets of

the environment, e.g., building sway generated by winds and

thermal expansion of materials [42] or beams misalignment

in higher-frequency communications [43]. Hence, the need

to model such uncontrolled network aspects with random

processes, and then the ubiquitous need for SG.

C. Relevant Surveys on Stochastic Geometry for Wireless

Networks

Given its mathematical flexibility and rich theoretical back-

ground, on the one hand, and massive proliferation of new

communication concepts and technologies, on the other hand,

several interesting survey and magazine papers have been

developed on applications of SG in wireless networks [23]–

[26], [44]–[49].

For instance, the work in [23] is the first paper to survey the

main SG models and tools used in the evaluation of commu-

nication networks. A particular focus of the paper is given to

earlier references up to 2008, where tools from SG have been

particularly leveraged in: i) fixed line networks to derive the

main statistical properties of cables connecting subscribers and

concentration points. Such properties are next used to evaluate

infrastructure costs as a function of nodes density, ii) cellular

networks to evaluate the impact of network geometry on key

performance metrics based on the signal-to-interference-plus-

noise ratio (SINR) levels, e.g., service coverage, handover,

and paging, and iii) ad hoc networks to study connectivity

properties of the random graphs based on the SINR. The

paper in [24] is a tutorial investigating how analytical tools

from SG, percolation theory, and random geometric graphs

can be applied to evaluate interference in large-scale ad hoc

networks and hence derive the related performance metrics.

The work in [25] is a comprehensive survey of the literature up

to 2013 on modeling and analysis of cellular networks based

on SG. The work focuses on multi-tier and cognitive cellular

networks given their increased importance in future networks.

However, since the publication of [25] quite a number of

other radio access network (RAN) technologies have emerged,

such as UAV-aided communication networks [34], cloud RAN

(C-RAN) [50], [51], and F-RAN [35]. Also, other 5G/B5G

technology enablers have flourished, such as non-orthogonal

multiple access (NOMA) scheme [52], in-band full-duplex

(IBFD) communications [53], and physical layer security [54].

The tutorial paper in [26] presented generative analytical

techniques extensively used in the literature to derive the SINR

distribution with an emphasis on Rayleigh fading and PPP

distributed nodes. In [44], [45], the authors highlighted the

rapid trend of modern wireless networks towards heterogeneity

and complexity, where new modeling paradigm from SG will

be crucial to capture the implications of such heterogeneity,

e.g., cell association, uplink-downlink relationship, and nodes’

mobility. Furthermore, since connectivity in wireless networks

is tightly related to the distribution distance between the

receiver and the serving node/s, together with the distribution

of the interference power, the survey paper in [46] discussed

key techniques used to derive the distance distribution when

assuming two generative cases: i) Nodes scattered in the

2-dimensional plane R2 according to a PPP, and ii) nodes

independently and uniformly distributed inside a bounded

region of R2. Also, papers in [47], [48] reviewed the literature

results on how SG models have been explored to capture the

interference effect in ad hoc networks, while the work in [49]

is a tutorial paper on how SG has been judiciously used to

characterize interference in cellular networks.

D. Our Contributions and Paper Organization

This paper differs typically from prior papers in the follow-

ing ways. First, we review the largely fragmented literature, up

to 20204, in wireless communication applications leveraging

PP models, and provide for the first time a comprehensive tax-

onomy of them. While all the previous works focused on stan-

dard PP models, namely the PPP, the binomial point process

4All previous papers suggest over 200 citations, while this paper considers
424 representative references given the wide time frame and diversity of this
paper scope.
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TABLE I
MAIN DIFFERENCES WITH PREVIOUS WORKS

References
Year of

publication
No. of
examined PPs

Statistical analysis
and PPs comparaison

No. of surveyed
performance metrics

No. of analytical
techniques

No. of examined access
architectures

No. of reviewed 5G/B5G
enabling technologies

New avenues
to revitalize SG

[23] 2009 (2) PPP and PLP
(3) Coverage probability,
paging, handover

1
(3) Fix, ad hoc, and celluar
networks

[25] 2013
(3) PPP, BPP,
and PCP

(1) Coverage probability 5
(3) Ad hoc, single, and multi-tier
cellular networks

(1) CR networks

[26] 2016 (1) PPP (1) Coverage probability 3
(2) Single and multi-tier cellular
networks

This work 2021 (23) see Fig. 7 (Yes) Section III∼IV (13) see Fig. 10 11 (6) Section VI (10) Section VII (4) Section VIII

TABLE II
A PROPOSED READING PATH TO GET STARTED WITH SG IN WIRELESS NETWORKS

References Main topics
Suitability to researchers

A concept primer A technical primer Intermediate reader Advanced reader

[44], [45]
On the importance of using SG to grasp the implications of modern
networks tendency towards heterogeneity.

•

[26]
Generative analytical techniques to derive coverage probability under
the assumptions of Rayleigh fading and PPP distributed nodes.

•

[46]
Generative techniques used to derive the transmit-receive distance
distribution.

•

[23] SG models, up to 2008, in the study of communication networks. • •

[24]
Applications of SG, percolation theory, and random geometry in
interference characterization of ad hoc networks.

• • •

[25]
SG models, up to 2013, in the study of heterogeneous and cognitive
networks.

• •

[47], [48] Stochastic interference characterization in ad hoc networks. •

[49] Stochastic interference characterization in cellular networks. •

[1], [4]–[8], [10]–[12]
SG theory in conjunction with related mathematical strands, e.g.,
integral geometry theory, random set theory, and PP theory.

• •

This work SG models, up to 2020, in the study of wireless networks. • • • •

(BPP), and the Matérn hard-core point process (MHPP), this

paper also addresses other powerful PPs given their inherent

properties and system modeling implications (see Fig. 7). This

paper additionally reviews the key statistical methods used to

compare between PPs and fit some empirical data. Second,

we examine the key choices taken in the work of SG system

models. For instance, configurations used in the literature

to capture coupling between nodes (see Table IV), various

cell association strategies, and generative models to capture

propagation effects. Also, novel performance metrics intro-

duced after the publication of previous works, are discussed

in this paper such as the meta-distribution and the update of

coverage probability to account for signal strength/quality and

handoff event (see Fig. 10). Next, we present in a refined

tutorial fashion for non-specialists, the analytical techniques

developed to date in the literature of SG-based modeling and

analysis of wireless networks, where we delve into their key

mathematical sequence steps. Third, we outline key modeling

properties of new 5G/B5G technologies that have been exten-

sively studied in the SG-based literature since the publication

of the previous papers, including emerging RAN architectures

such as multi-tier networks, infrastructure densification, UAV-

aided networks, C-RAN, virtualized RAN, and F-RAN, and

other enabling technologies such as NOMA, higher-frequency

bands, and IBFD. Finally, we usher in new avenues that will

stimulate growth into the use of SG over this new decade.

Table I summarizes the key differences between our work

and previous ones. To the best of the authors’ knowledge,

Table II suggests some key references to help a non-specialist

reader familiarize with the field of using SG in wireless

networks and keep the subsequently discussed concepts less

arcane. Fig. 1 summarizes the content of this paper and for

convenience, all abbreviations are listed in the Glossary.

Notation: P (.) and E (.) stand for probability and expecta-

tion measures. LX(s) = E
(
e−sX

)
is the Laplace transform of

a random variable X evaluated at s, sometimes referred to as

the moment generating function (MGF). ΦX(ω) = LX(−jω)
is the characteristic function (CF) of the random variable

X such as
√
j = −1. We define for any reals m,x ∈ R,

Fm(x) = 2F1(1,−m;1 − m;−x) where 2F1(., .; .; z) is the

Gauss hypergeometric function for z ∈ C. For a, x ∈ R,

Γ(a, x) =
∫∞
x
ta−1e−tdt is the upper incomplete Gamma

function. We denote by ψ−1(.) the inverse function of a

function ψ(.) and 1 (.) is the indicator function.

II. STOCHASTIC GEOMETRY PRELIMINARIES

In this section, we will discuss some core concepts of the PP

theory that plays an important role in SG, since i) the building

blocks of many important SG models are based on PPs as

points are the most elementary types of geometrical objects; ii)

it is common to parameterize geometric objects and map them

with PPs in suitable state spaces, e.g., a line process in R2

can be seen as a PP on a cylinder [10]. Next, we will address

the key properties of the PPP considered as the baseline and
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Section I:

Introduction

Section II:

Stochastic geometry

Classification of PPs

Section III:
Section IV:

preliminaries

Stochastic geometry
statistical analysis

Comparison between PPs

Section V:

Stochastic geometry for modeling
and analysis of wireless networks

Section VI:

Stochastic geometry and promising
RAN architectures for 5G/B5G

Section VII:Section VII:
Stochastic geometry and key
5G/B5G emerging technologies

Section VIII:

Towards new horizons
for stochastic geometry

Section IX:

Conclusion

Spatial point process paradigm

PPP essentials

PPs beyond PPP

Modeling real BS deploymentsThe superiority of the PPP

Modeling network elements

Modeling propagation effects

Various association schemes

Transmission direction

Modeling mobility

Key performance metrics

Analytical techniques

Terrestrial heterogeneous networks

UDNs via Infrastructure densification

Non-terrestrial networks

Cloud RAN

Virtualized RAN

Fog RAN

Higher-frequency bands

Cognitive radio

MIMO systems

Software-driven metasurfaces

Modeling spatio-temporal traffic

IBFD communications

NOMA access scheme

Physical layer security

Molecular communications

The era of machine learning

Multi-objective analysis

Grothendieck toposes as

mathematical bridges

Fig. 1. Paper organization.

widely used PP, due to its practical mathematical attributes,

where some key results can produce surprising consequences

[2]–[4], [4]–[8].

A. Spatial Point Process Paradigm

In the context of communication networks, spatial PPs have

become a burgeoning strand of SG models to evaluate the

following aspects [4]–[8]

• The statistical properties of a given set of points.

• The possibility of having a point at a specific location.

• How to build a model of points with minimal error

assumptions based on an empirical set of points.

• Describing more general random geometric objects made

up of unit random elements.

1) The concept of point process: In contrast to earlier

applications in queuing theory, where time has a natural order

in one-dimensional PPs, the concept is quite different in higher

dimensions (d ≥ 2), where there is no natural order of points.

Instead, the most common way is to consider the cumulative

counting process of a spatial PP Ψ, defined for each bounded

set B ⊂ Rd as the number of points xi falling into B,

Ψ(B) =
∑

xi∈Ψ(B)

1B(xi). (1)

In a more general way, we consider the nth factorial moment

measure given by

M
(n)(A1, · · · , An) = E

(
Ψ(n)(A1 × · · · ×An)

)

= E




6=∑

x1,··· ,xn∈Ψ

1A1×···×An
(x1, · · · , xn)




=

∫

A1

· · ·
∫

An

̺(n)(x1, · · · , xn)dx1 · · · dxn, (2)

where 6= indicates the sum over pairwise distinct n-tuples and

̺(n)(.) : A1 × · · · ×An → R+ is the product density function

w.r.t. the Lebesgue measure. Without loss of generality and

for notation simplicity, we consider that when xi ∈ Ψ, xi
will refer to a random variable that captures the potential

location of the point xi in Rd. However, when xi is used as

a parameter of a PDF (or more generally of a product density

function) inside a given integral for example, xi will refer to

the integration variable over a bounded set covered by the PP

Ψ.

2) The nearest neighbor distance and the contact dis-

tribution function: One important metric related to the

cumulative counting process in (1), is the probability mass

function (PMF) of N(·) defined as the probability that there

will be exactly n points inside B, i.e., P(N(B) = n). A

particular type is the void probability defined as void(B) =
P(N(B) = 0). When B = b(y, r) is the ball5 of radius

r and centered at the typical6 point y, void(b(y, r)) can be

interestingly interpreted as the probability that the distance

5A different shape may be taken instead of a ball depending on the
dimension d of the Euclidean plane and the isotropy of Ψ.

6In PP theory, the typical point of a PP Ψ is often considered. In wireless
networks analysis, it is termed as the typical UE for the downlink analysis
and the typical BS for the uplink analysis. Formally, it is a point that has
been chosen by a selection procedure in which each point in the process has
the same chance of being selected [4], [6].
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between y and the closest point of Ψ is larger than r. In

this way, when y ∈ Ψ, we talk about the nearest neighbor

distance distribution Gy(.) defined as the distribution of the

distance between y and the nearest point of Ψ\{y}. In simple

probability terms,

Gy(r) = P(d(y,Ψ \ {y}) ≤ r|y ∈ Ψ) (3)

= P(N(b(y, r) \ {y}) > 0|y ∈ Ψ) (4)

= 1− P(N(b(y, r)) = 1|y ∈ Ψ), (5)

where d(y,Ψ \ {y}) is the distance between the fixed location

y and the nearest point of Ψ except y.

When y /∈ Ψ, we consider the contact distribution function

Fy(.) that represents the smallest radius necessary for the ball

centered at y to contact a point in Ψ. Formally,

Fy(r) = P(d(y,Ψ) ≤ r) = 1− P(N(b(y, r)) = 0). (6)

Gy(.) and Fy(.) are important first order summary charac-

teristics of a given PP [14] enabling to capture clustering or

regularity in PPs. Typically, they are equal for the case of a

totally random PP like the PPP, while G > F for clustered PPs

(Cox, Nymann-Scott, etc.), and G < F for regular PPs (shifted

regular lattices, hard-core, and soft-core repulsive PPs, etc.), as

illustrated in Fig. 2. More discussions about PPs comparison

and classification will be brought in the sequel.

3) The reduced Palm probability: We consider the typical

point y from a stationary PP Ψ and we shift Ψ such as y lies

at the typical fixed location o (the origin). For a given set

B ⊂ R
d, Gy(.) can be seen as the ratio between the mean

number of points except y in the ball of radius r and centered

at o, and the mean number of points inside B. Formally, it is

the ratio between the reduced Campbell measure expressed as

E!
o (Ψ(B)) = E

(∑
y∈Ψ∩B 1A(Ψ−y \ {y})

)
, and the average

number of points inside B expressed as λ ν(B), where A is

the event N(b(y, r) \ {y}) > 0, Ψ−y is the shifted PP Ψ
such as y lies at o, and ν(B) is the Lebesgue measure or the

d-dimensional volume of the subset B.

The previous interpretation of the nearest neighbor distance

Gy(.) is called the reduced Palm probability measure denoted

by P!
o as [1], [4], [6]–[8]

P
!
o(Ψ ∈ A) =

1

λ ν(B)
E



∑

y∈Ψ∩B

1A(Ψ−y \ {y})


 , (7)

where the index o is to mention the shifting of Ψ towards o,

the superscript ! is to refer that the typical point in the origin

o is not counted, i.e., Po(Ψ \ {y} ∈ A) = P!
o(Ψ ∈ A), and

Ψ ∈ A mentioning that Ψ has the property A.

4) The marked point process: A generalization of the PP

Ψ is the concept of marked PP where each point xi ∈ Ψ is

assigned a further quantity mxi
, called marks, that provides

extra information on the object represented by xi. For exam-

ple, when considering a PP incorporating BSs, marks can be

the coverage area of each BS xi [4], the fading gain between

a BS xi and the typical UE [55], [56], or the BS tier in a

multi-tier network [57].

Increasing Gy

Increasing Fy
Gy = Fy

Repulsion and regularity Clustering

Regular lattices:
square, triangular. . .

Repulsive PPs:
hard and soft-core. . .

Zero interaction:
The PPP

Aggregative PPs:
Cox, Nymann-Scott..

Fig. 2. The tendency towards regularity or clustering of PPs. Typically,
increasing regularity reduces Gy and increases Fy simultaneously, while
increasing clustering have a dual impact on Gy and Fy .

B. Poisson Point Process Essentials

The PPP is considered as the most popular PP given its

tractability and analytical flexibility [4]–[8]. In the following,

we will discuss key properties underlying such tractability.

In general, a PPP Ψ of density λ(.) and intensity measure

Λ(.) such as for a given B ⊂ R
d, Λ(B) =

∫
B λ(x)dx, is

characterized by a PMF as

P {Ψ(B) = n} =
Λ(B)n

n!
e−Λ(B). (8)

1) Slivnyak-Mecke theorem: For a homogeneous PPP

(HPPP) Ψ ⊂ R2 with density λ, the number of points falling in

disjoint Borel sets are independent. Hence, the points modeled

by a HPPP are totally independent, that is why the HPPP

is sometimes referred to as a zero-interaction PP [6]. In a

more general way, the nearest neighbor distance distribution

Gy and the contact distance distribution Fy are equivalent in

the case of HPPP. Interestingly, this similarity can be seen as

the equivalence between the reduced Palm probability of Ψ
in the typical point y located at the origin o and its original

distribution counting y. In other words, the spatial averages

observed at o /∈ Ψ, are equivalent in distribution to those

observed at o of Ψ∪{o}, which means that conditioning on the

typical point does not affect the distribution of the PPP. This

is the well-known Slivnyak-Mecke theorem [4]–[8], formally

expressed as

P
!
y(Ψ ∈ .) = P(Ψ ∈ .). (9)

This theorem is extensively used in the literature. For instance,

in a wireless network where the typical UE is located at the

origin o, the Slivnyak-Mecke theorem can be used to derive

the mean interference at o, conceiving that the serving BS

x0 belongs to the PP of interferers, but however, it does not

contribute towards the interference [17], [18], [20], [21], [58].

Another valuable application is the transmit-receive distance

distribution derived as in [4, Example 1.4.7] [16], [46], [59]–

[61].

2) Finite Poisson point process: For a fixed number n
of nodes inside a given network area W , if k ≤ n nodes

are located in a certain subset B ⊂ W , the remaining area

W \ B contains necessarily n − k nodes, which introduces

dependence between points of W , and hence the PPP is not so

accurate to model such finite networks. Alternatively, the BPP
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is considered as the most relevant PP for such scenarios [19],

[46], [62]–[64]. It is worth mentioning that according to (7),

the probability that a point x ∈ W belongs to B is proportional

to the number of points falling inside B. Equivalently,

P (x ∈ B) =
Λ(B)

Λ(W )
. (10)

In a more formal way, the conditional multivariate PDF

f(x1, . . . , xn|Ψ(W ) = n) defined w.r.t. the Lebesgue measure

on (Rd)n is expressed as

f(x1, . . . , xn|Ψ(W ) = n) =

∏n
i=1 λ(xi)

Λ(W )k
. (11)

Interestingly, the concept of (11) is explored to capture the

structure of point patterns exhibiting inter-point interactions.

That is, it is used in a more refined structure called the Papan-

gelou conditional intensity to construct the family of Gibbs

PPs [14], [65]–[67] and fitting statistical models to specific

spatial point patterns via pseudo-likelihood maximization [68].

More generally, (11) is the building block in the definition of

the reduced Palm distribution [8].

3) Simulation of Poisson point process: The equiva-

lence property between a conditional PPP and a binomial

distribution in a bounded window W , is typically used in

simulation studies to generate a stationary PPP of density λ
[14], [65]. Practically, we first generate a Poisson variate N
with parameter λ ν(W ) and next we generate N independent

and uniformly distributed (iud) points inside W . The resulted

PP inside W is equivalent to a PPP with density λ. Besides,

(11) is considered as the key to generate an inhomogeneous

PPP (IPPP). For example, we consider the realization of a 2-

dimensional IPPP with density λ(x, y) = 240(6x5 + 4y3) on

the window W = [0, 1] × [0, 1]. The PDF of a given point

located in (x, y) is f(x, y) = λ(x, y)/480 bounded by 5.

Using the accept-reject method N times, where N is generated

by a Poisson variate with parameter λ̃ = 480, we draw

uniformly g on [0, 1] and accept (x, y) such as f(x, y)/5 ≤ g.

Fig. 3 describes the realization of the previous process in W .

A valuable application of such technique in cellular networks

modeling and analysis can be found in [69, Section VI].

4) Campbell and probability generating functional the-

orems: In the previous analysis, the PPP were constructed

based on the PMF in (8). In the following, a PPP Ψ can be

constructed through probability densities on bounded subsets

and generalizing the construction to the whole plane.

In fact, for any real positive function f defined over Rd, the

probability generating functional (PGFL) of a PPP Ψ, named

equivalently the Laplace functional, is expressed as [4]–[7]

LΨ(f) = E

(
exp

(
−
∑

xi∈Ψ

f(xi)

))
(12)

= E

(
exp

(
−
∫

Rd

f(x)Ψ(dx)

))
(13)

(a)
= exp

(
−
∫

Rd

(1− e−f(x))Λ(dx)

)
, (14)

where (a) follows by using the conditional PDF expression in

(11) as in [4].

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Realization of a non homogeneous PPP on the window W = [0, 1]×
[0, 1] with density λ(x, y) = 240(6x5 + 4y3). Voronoi tessellation shows
cells boundaries based on the spatially nearest points.

The expression (14) is considered to derive two fundamental

results widely explored in SG-based modeling and analysis of

wireless networks, namely the Campbell and PGFL theorems.

In fact, by considering tf(x) → f(x) in (14) with t ≥ 0
and differentiating w.r.t. t at t = 0, we obtain the Campbell

theorem, as

E

(
∑

xi∈Ψ

f(xi)

)
=

∫

Rd

f(x)Λ(dx). (15)

While by replacing e−f(x) → f(x) in (14), we obtain the

PGFL theorem for the PPP Ψ, as

E

(
∏

xi∈Ψ

f(xi)

)
= exp

(
−
∫

Rd

(1− f(x)) Λ(x)

)
. (16)

5) Preserving the Poisson law: Sometimes, it is necessary

to consider some transformations on the PPP used to model

node locations in order to obtain more insightful and tractable

results. In the following, we consider popular operations

preserving the Poisson law and extensively explored in the

literature [4]–[8].

• Superposition: The union of independent PPPs (Ψk) with

intensities (Λk) is a PPP Ψ =
⋃

k Ψk with intensity

measure Λ =
∑

k Λk. As an illustration, the superposition

of independent K-tier networks is investigated in [20],

[21], [44], [58], [61], [70]. The superposition of two

independent layers of line-of-sight (LOS) and non-line-

of-sight (NLOS) BSs are considered in [71]–[73]. The

superposition of independent PPPs to abstract the network

of several competitive operators is considered in the

context of infrastructure sharing [74], spectrum sharing

[75]–[78], or both [79]–[81].

• Independent thinning: is a selection process Ψp of spe-

cific points from the primary PPP Ψ such that each

point x is randomly and independently selected with

a probability p(x). Accordingly, Ψp yields a PPP of

intensity measure equals to
∫
Rd p(x)Λ(dx) [4, Proposi-

tion 1.3.5.]. Typically, independent thinning is used to

generate the family of Cox PP (e.g., Neymann-Scott,
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log-Gaussian) considered as a generalization of the PPP

and used to capture clustered point patterns [1], [6],

[82]. Also, the nodes of a given network can be thinned

independently given their ability to be in LOS or NLOS

transmissions with the typical UE [71]–[73], to operate in

half-duplex (HD) or IBFD mode [83], or to use device-to-

device (D2D) channels as in [84]. ALOHA, the popular

algorithm used in the medium access control (MAC)

layer to track simultaneous packet transmissions in the

network, is considered in [4], [85] as an independent

thinning of nodes willing to transmit data.

• Displacement: is a random transformation of points of Ψ
from R

d to some new location in Ψp from R
d′

according

to a probability p. The new PP inherits the Poisson law

and its intensity measure is Λ
′

(A) =
∫
Rd p(x ∈ A)Λ(dx),

A ⊂ R
d′

, as given by the displacement theorem [4,

Theorem 1.3.9]. Valuable applications can be found in

[4], [55], [86], [87]. In some settings, a given point x ∈ Ψ
may be moved deterministically with probability 1 into a

function f(x) ∈ Ψf [16], [61], and hence the new PP re-

mains a PPP with intensity measure Λ
′

(A) = Λ(f−1(.)).
This property is also known as the mapping theorem [6].

A typical application is studied in [88], [89], where the

authors considered an arbitrary path loss model and a

generalized fading model, and next derived a sequence

of equivalence relations between the so-called shotgun

cellular system and a stochastically equivalent system,

namely the canonical model.

III. POINT PROCESSES BEYOND THE PPP

Although the PPP model provides tractable results and

many useful closed-form expressions, it cannot capture the

geometry of real networks7 [67], [69], [90], [91], where

nodes are negatively correlated, i.e., spatial inhibition and

repulsion, or positively correlated, i.e., spatial aggregation

and clustering. In fact, radio planning engineers are generally

interested to deploy BSs on theoretical points where there

will be a sufficient traffic demand and then an adequate

return on investment (ROI). Hence, realistic deployments have

commonly an increasing tendency towards clustering in user

hotspots (e.g., events, urban area) and a tendency towards

repulsion and regularity when users are equally likely scattered

[92]–[94]. In this way, since the received SINR is sensitive to

the interaction degree between nodes location, capturing the

geometry of such nodes through an appropriate PP will directly

impact the accuracy of network performance evaluation [45],

[69], [92]–[96].

In the following, we will review the alternative PPs used

in the literature to model the location of nodes exhibiting

interaction and outline the key methods used to infer them.

Also, we will discuss the relevant studies applying them in a

variety of communication scenarios. Finally, we will develop a

comprehensive classification of these PPs according to several

7By the end of this Section, we will discuss some recent research strands
that endorse the ability of the PPP to capture the structure of real networks
under some special setups (e.g., sufficiently strong log-normal shadowing,
interference-limited regime, tendency of users towards clustering).

attributes such as the degree of interaction between points,

the PP family, the ability to characterize interference at an

arbitrary point when transmitters are scattered according to

this PP, and the analytical tractability of such interference

characterization.

A. Classification of Point Processes

A more universal way to classify PPs is by considering

the interaction degree between points. In fact, point locations

can interact negatively with each other to build a well-

crafted and regular structure or even an intermediate repulsive

structure that can be either hard-core or soft-core. Conversely,

a decrease in repulsion may be equivalent to an increase in

randomness and then a tendency towards the paradigm of zero

interaction PP, i.e., the PPP. Afterwards, a positive interaction

between points will induce clustered points (see Fig. 2).

1) Stationary deterministic lattices: Traditionally, deter-

ministic lattices, e.g., regular hexagonal lattice, or perfect

square lattice, are often considered as a ubiquitous assumption

in academia and research to model the location of nodes

in a wireless network [47], [91]. Formally, a 2-dimensional

stationary regular lattice can be expressed under the form

Λgrid =
{
cG+ U : c ∈ Z

2
}
, (17)

where G is the generator matrix of the grid and U is a

uniformly distributed random vector over the Voronoi cell of

the origin to ensure the stationarity of lattices.

However, despite the main advantage of regular lattices,

where it is generally more efficient to design good channel

access schemes as compared to networks where node locations

are perceived as random or in motion, tractable network

performance evaluation is only possible for specific user

locations in the cell (cell edges, etc.), and a generalization over

the entire cell requires complex and time-consuming Monte

Carlo simulations [17], [18]. Also, with the proliferation of

heterogeneous networks (HetNets8) where cells radii vary con-

siderably with differences in transmission power, grid models

are seen as very idealized, yielding very optimistic results of

performance evaluation [17], [18]. Typically, when comparing

the results obtained from the PPP and lattice models with real

deployments, we observe that the PPP model provides a lower

bound of reality, while perfect lattices give an upper bound. An

accurate PP lies then somewhere between the two extremes.

It is neither perfectly periodic, nor completely independent.

2) Hard-core point processes: In such a family of PPs,

there are no points at a distance smaller than a specific

minimum threshold δ, also known as the hard-core distance.

In the following, we will discuss the key variants of hard-core

PPs.

• Matérn hard-core point process (MHPP): There are gen-

erally two popular variants of MHPP used in the literature

of wireless networks modeling and analysis, namely

MHPP type I and MHPP type II [97]. MHPP I deletes all

pairs of points with pairwise distance less than δ such that

the density of the resulting PP is λ = λp exp(−πλpδ
2),

8There is a slight abuse of meaning with the term of non homogeneous
networks modeled by a PP with location-dependent density.
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where λp is the density of the parent PPP. In MHPP II,

the process MHPP I is changed into a dynamic scheme

by considering the parent PPP as marked by the uniform

speed arrival times t ∈ [0, 1], which results on a density

λ =
[
1− exp(−λpπδ

2)
]
/πδ2. For λp → ∞, we note

that MHPP I suggests that no point could survive after

the dependent thinning process, while MHPP II predicts

that the remaining points are correlated with 1/πδ2.

Performance analytical evaluation of networks modeled

by the MHPP is generally challenging given the reduced

tractability of the contact and nearest neighbor functions,

which enables to only derive approximations for the mean

and the MGF of the interference. For instance, tight

bounds of the mean interference in MHPP I and MHPP II

wireless networks are investigated in [98], [99] and the

contact distribution is evaluated in [100]. Interestingly,

MHPP II is exploited in the literature to capture the

minimum safe distance between vehicles in vehicular ad

hoc networks (VANETs) [101]. More theoretical analysis

of the MHPP can be found in [1], [97].

• Simple sequential inhibition (SSI): Another fashion to

capture point patterns that exhibit inhibition, is by ex-

ploring sequential PPs, in which points are added one

by one based on a given sequence. The most popular

sequential process is the simple sequential inhibition

(SSI) process, where each point is generated uniformly

in a given window and independently from the previous

points. The added point is rejected if it lies closer than the

hard-core distance from the previous accepted points, and

retained otherwise. Next, another point is generated and

the process is ended if and only if we achieve the desired

number of points inside the window or no other point can

be added. A representative example is the work in [102],

where the amount of regularity in MHPP I, MHPP II,

and SSI is evaluated through some regularity metrics.

• The family of Gibbs point process–Poisson hard-core

process (PHCP): An alternative way to capture point

patterns that exhibit repulsion, is to proceed through the

multivariate PDF in (2), which renders the construction

and interpretation of the PP simpler, in addition to flexible

simulations. Typically, the simulation of the multivariate

PDF can be approximated for example by considering the

equilibrium distribution of a Markov chain, also known

as Markov Chain Monte Carlo (MCMC) algorithms,

e.g., Métropolis-Hastings algorithms [14, Page 149]. A

representative family of PPs based on this approach is the

class of Gibbs PPs, also known as Markov PPs [103].

Formally, for a given finite spatial point pattern u ={
x1, . . . , xn(u)

}
, the multivariate PDF of a finite Gibbs

PP Ψ is expressed as

̺
(n)(u) = exp



V0 +

n(u)
∑

i=1

V1(xi) +
∑

i<j≤n(u)

V2(xi, xj) + . . .



 ,

(18)

where exp(V0) is a normalizing factor ensuring that

̺(n)(.) is a PDF, and for k ≥ 1, Vk is a function reflecting

the interaction order between points.

It is worth mentioning that the exponential form in (18)

is not arbitrary but driven by the formulation of a max-

imization problem of the entropy in physics, expressed

generally on the basis of logarithmic functions. Typically,

statistical analysis has shown that the pairwise interaction

is generally sufficient to model inter-points interaction

[14]. In this way, the Gibbs PP is commonly known

as pairwise interaction PP. The multivariate PDF of a

stationary Gibbs PP Ψ, i.e., V1(x) = log(β), ∀x ∈ u, is

simplified as

̺(n)(u) = κβn(u)
∏

i<j≤n(u)

h(‖xi − xj‖), (19)

where ‖xi − xj‖ = d(xi, xj), κ = exp(V0), and h(.)
is a function dependent on the mutual distance between

points.

The Poisson hard-core process (PHCP) is established as

a special case of the Gibbs PP, such that ∀ xi, xj ∈ u,

h(‖xi, xj‖) =
{
1 if ‖xi − xj‖ > δ
0 if ‖xi − xj‖ ≤ δ.

(20)

In wireless networks modeling and analysis, the PHCP

was initially investigated via simulations in pattern recog-

nition of deployed nodes that exhibit repulsion [67]. Some

analytical investigations of the PHCP are next considered,

to approximate for example performance metrics of a

two-tier HetNet as in [104].

• Poisson hole process (PHP): Another way to conceptu-

alize hard-core repulsion between points is to consider

independent realizations of two HPPPs Ψ1 and Ψ2,

with respective densities λ1 and λ2. Next, a PHP Ψ is

conceived by considering Ψ2 as a parent PP depriving it

of points located in holes (exclusion regions) of radius

δ around the points of Ψ1. The density of Ψ is then

expressed as [6], λ = λ2 exp (−πλ1δ). PHP belongs to

the family of Cox PPs, i.e., doubly stochastic PPPs, where

it is roughly considered as capturing clustering rather than

inhibition, this is well understood since creating holes in

one region forces nodes to cluster in other regions.

Several valuable applications of the PHP are reported in

the literature. For instance, in cognitive networks [105],

the holes are interpreted as the guard regions around

primary users, where the PHP models secondary users

allowed to transmit as long as they are located outside

the holes, which reduces the detrimental effect of inter-

ference. In HetNets [104], [106], the PHP is explored to

capture dependence between tiers, where small cells are

not allowed to be deployed very close to macro cells. In

[107], the authors proposed the use of the PHP to model

a multi-cell D2D underlaid cellular network. Generally,

despite the flexible construction of the PHP as compared

to previous hard-core PPs, a complete characterization of

interference and then SINR distribution is unfeasible. To

overcome such limitation, two approaches are considered

in the literature: i) Derive relatively tight bounds and

approximations of the MGF of the interference [105],

[107], [108], or ii) approximate the PHP realization with

either a PPP or a tractable clustering PP [6], [106].
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3) Soft-core repulsive point processes: A smooth way to

generate inhibition between points is to increase the tendency

towards repulsion and regularity without setting a deterministic

restriction via hard-core distances. In the following, we will

outline the key soft-core PPs used in the literature of wireless

networks modeling and analysis.

• The family of Gibbs point process–Strauss point process

(SPP): It is a special case of Gibbs PPs by defining for

a constant 0 < γ < 1, the function h in (19), as

h(‖xi, xj‖) =
{
1 if ‖xi − xj‖ > δ
γ if ‖xi − xj‖ ≤ δ.

(21)

The multivariate PDF in (19) is then simplified as

̺(n)(u) = κβn(u)γsδ(u), (22)

where sδ(u) counts the number of unordered pairs of

distinct points in u spaced apart by less than δ.

When s(u) increases, the PDF in (22) is integrable and

goes towards 0, which decreases the tendency towards

clustering. γ helps then to softly adjust the repulsiveness

intensity, where the SPP is typically reduced to a PPP

when γ = 1 and to a PHCP when γ = 0. Practically,

it is revealed in [66], [67] that the SPP is an optimal

candidate for point patterns that exhibit a tendency to-

wards repulsion. However, despite its easy interpretation

and construction, the finite SPP is geared towards time-

consuming simulations and does not have closed-form

expressions for the moments, while generalizations to

infinite Gibbs PP renders the analysis even more com-

plicated.

• Determinantal point processes (DPPs): To overcome the

previous limitations of SPP, a DPP Ψ acting over a given

Borel B ⊆ Cd is constructed in such a way that it

preserves the smart structure of Gibbs PPs in (19), but

with a closed-form multivariate PDF w.r.t. the Lebesgue

measure on (C,B(C)) [109]–[115]. In this way, for two

functions h : Bn → R+ and C : B2 → C, we have

E




6=∑

x1,...,xn∈Ψ

h(x1, . . . , xn)


 =

∫

B

· · ·
∫

B

̺(n)(x1, . . . , xn)h(x1, . . . , xn)dx1 · · · dxn,

and ̺(n)(x1, . . . , xn) = det (C(xi, xj))1≤i,j≤n , (23)

where 6= denotes that the finite points are pair-wise

distinct, det(.) denotes the determinant function, and the

matrix C is called the kernel of the DPP.

The repulsiveness of the DPP Ψ stems from the ob-

servation that the determinant of a complex covariance

matrix cannot be greater than the product of its eigenval-

ues [115], and then ̺(n)(x1, · · · , xn) ≤ ∏n
i=1 ̺

(1)(xi),
where equality holds in a PPP. Furthermore, motion-

invariance of Ψ implies that the kernel C0 is real de-

pending only on the distance between pairs of points.
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Fig. 4. Two realizations of the square lattice with uniform perturbation on
the disk b(0,R). The dotted lines reflect borders of the Voronoi tessellation of
the square lattice without perturbation (red triangles) and the solid lines that
of the Voronoi tessellation of the perturbed lattice (circles).

That is, its Fourier transform, i.e., spectral density, exists

and is defined as

ϕ(x) = F(C0)(x) =

∫

B

C0(y)e
−2πjxydy, (24)

where the existence of the associated DPP Ψ to C0 is

constrained by checking |ϕ| ≤ 1 [113, Proposition 5.1].

Depending then on the formulation of the covariance

function C0 or the spectral density ϕ, several versions

of motion-invariant DPPs are constructed with differ-

ent levels of repulsiveness and tractability [109], [110],

[115]. For instance, Ψ is a Gauss DPP if for every

u ∈ R
2, C0(u) = λ exp (−‖u/γ‖2), where λ is the

spatial intensity of the Gauss DPP and γ is a param-

eter to adjust the repulsiveness of the DPP, such as

πλγ2 ≤ 1 for the existence condition. The Cauchy

DPP is obtained when C0(u) = λ/
(
1 + ‖u/γ‖2

)m+1

and an existence condition such that πλγ2 ≤ m, where

λ is the intensity of the process and α and m, are

shape parameters to tune repulsiveness. The general-

ized Gamma DPP is defined with a spectral density

ϕ(u) = λ
(
mγ2/ (2πΓ(2/m))

)
exp (−‖uγ‖m), where

the existence condition is λmγ2 ≤ 2πΓ(2/m).
For more tractability and mathematical convenience,

another form of motion-invariant DPPs is introduced,

namely the scaled Ginibre PP (β−GPP), by considering

a kernel as C(x, y) = cπ−1e−
c
2β (|x|

2+|y|2)e
c
β
xy , where

the resulting density λ is scaling with c as λ = c/π
[111]–[114] and β to seamlessly adjust the repulsion

intensity. It is worth mentioning that in addition to the

availability of closed-form moments of DPPs, a scaled

β−GPP Ψ = (Xi)i∈N
enhances mathematical tractability

due to the fundamental property in which
(
X2

i

)
i∈N

are

mutually independent and follow a Γ(i, β/c), ∀i ∈ N

[113, Proposition 1].

Relevant applications of the DPP have been reported in

the literature. For instance, the authors of [109] investi-

gated the goodness-of-fit of a real deployment scenario

of nodes with three motion-invariant DPPs: the Gauss

model, the Cauchy model, and the Generalized Gamma

model, where it is revealed that the latter provides the

best fit accuracy at the expense of reduced tractability due

to the spectral density based construction of the model.

Analytical investigation of the scaled β−GPP is explored
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in [111]–[114], where tractable expressions of the contact

distribution function and the Ripley’s K−function (see

next paragraphs) are derived; however, the distribution of

SINR is yet of intractable formulation.

• Perturbed lattice (PL): At this stage, the above-discussed

repulsive PPs differ in terms of their construction ap-

proaches, tractability, and capability to fit real deployment

scenarios. However, one common shortcoming is their

inability to softly capture point patterns that exhibit

perfect regularity. Accordingly, the perturbed lattice (PL)

is adopted in the literature of wireless networks modeling

and analysis, such that the degree of perturbation allows

to tune softly the process from a deterministic lattice (no

perturbation) to highly random deployments (i.e., PPP)

[55], [66], [67], [116]–[120]. Formally, the construction

of a perturbed lattice Λpert is based on (17), as

Λpert = Λgrid +Xc =
{
cG+ U +Xc : c ∈ Z

2
}
, (25)

where Xc, c ∈ Z2, is a family of i.i.d. random vari-

ables, uniformly distributed on a disk of radius R. In

other words, R is a control knob to tune the degree

of perturbation (see Fig. 4). R needs generally to be

upper-bounded to avoid collision between nodes after

perturbation, e.g., in the case of triangular lattice, R needs

to verify 0 ≤ R < rs
√
3/2 where rs is the radius of the

circumscribed circle of the perfect lattice.

Given its ability to capture wide range of point pat-

terns between the PPP and deterministic lattices, the PL

is extensively investigated in the literature of wireless

networks modeling and analysis. For instance, analyt-

ical bounds of the average interference and signal-to-

interference ratio (SIR) distribution are studied in [116],

[117]. In [66], [67], [117], [118], the PL is used to

model realistic node deployments that exhibit repulsion.

Interestingly and given the observation that the best SINR

distribution is achievable under perfect lattices [18], the

authors of [119], [120], proposed to proceed on the basis

of a novel algorithm, namely the triangular lattice fit, to

deactivate some empty BSs, i.e., BSs serving no UE, in

such a way to render the structure of activated BSs as

regular as possible, which will enable to maximize the

overall performance.

Evaluating the amount of regularity in the location of

transmitters and/or receivers is typically an important

metric to predict the performance of a given wireless

network. A review of the sparse literature shows that

there are generally two judicious tools to evaluate the

amount of regularity in a point pattern. i) The coefficient

of variation (CoV) metrics, introduced for the first time

in [121]. They are constructed based on specific geomet-

rical characteristics of point patterns, such as the area

of Voronoi cells, the length of Delaunay triangulation

edges, and the nearest neighbor function. CoV metrics

are typically normalized by a given constant [122] such

that their value in the context of the PPP equals 1.

Valuable applications can be found in [102], [118]–

[120]. ii) The average deployment gain introduced in [67,

Equation (11)] to measure the minimum horizontal gap
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Fig. 5. Two realizations of the proposed PP constructed as a superposition
of a stationary perfect lattice (red triangles) and a PPP (black circles).

in terms of the mean square deviation between the two

curves of the SIR distribution under the PPP and the point

pattern under investigation.

• Combination of PPP and stationary grid: Due to the

observation that all the nodes of a PL are subject to

random perturbation, the authors of [66] confirmed via

experiments on realistic deployments that PLs cannot

accurately capture spatial dependence between nodes. Al-

ternatively, the authors of [123] proposed a new approach

to capture soft repulsion between nodes as a combination

of two extreme sub-structures, namely a totally random

PP (i.e., PPP) and a stationary deterministic lattice. That

is, the repulsiveness of the outcome PP is softly tuned

based on the ratio between the densities of the PPP and

the stationary grid (see Fig. 5).

4) Aggregative point processes: There are several as-

pects exhibiting clustering in realistic wireless networks. For

instance, there will be a tendency towards clustering for

indoor transmitters covering building’s interior, or transmitters

serving clustered users around hotspots, or even vehicles

clustered due to traffic and intersections. Also, UEs of a

D2D communication network need to lie in close proximity

of each other, and sometimes, the clustering of nodes may

be logically induced by some MAC protocols [124]–[129].

In such circumstances of geometrically and logically induced

clustering, aggregative PPs are required for an accurate evalu-

ation of networks performance. A common way to capture the

clustering of nodes is by considering a further generalization

of the PPP via the IPPP, where the distance-dependent density

of the IPPP increases in regions of interest. However, one

main shortcoming of the IPPP is its non-stationarity, which

limits the use of tractable simplifications considered in the case

of stationary PPs and also ceases the concept of the typical

user where the performance evaluation becomes dependent on

the location of the user under investigation. In the following,

we review the key aggregative PPs used in the literature to

overcome such limitation.

• Cox cluster point process: A further generalization of

the finite9 IPPP is the stationary finite Cox process

constructed by randomizing the parameters of the IPPP

model. Typically, the intensity of the IPPP becomes a

random variable mapped with realizations of a stationary

9Stationarity or homogeneity of a PP implies implicitly infinite point
patterns. In other words, it is realistic to consider large inhomogeneous point
patterns as part of a stationary PP while IPPP is generally a finite PP [14].
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random field with positive values (i.e., the intensity field).

The Cox PP is also known as a doubly stochastic PP

since its construction is tracked on two steps: i) Generate

realizations of the random field {Λ(y)}, i.e., parent

points; and next, ii) conditioned on a realization Λ(y)
of the random field, point pattern is generated with an

IPPP of density λ(y) = Λ(y), i.e., daughter points, where

parent points are not observable and do not form part of

the resulted point pattern. Depending on the construction

method of the random field {Λ(y)}, several flexible fam-

ilies of the Cox PP may be established. For instance, the

log-Gaussian Cox process (LGCP) is considered when the

logarithm of the random field is a real-valued Gaussian

process. In other words, the clustering of point patterns in

LGCP may be smoothly adjusted by acting on the mean

and variance of the distribution, where a zero variance

is equivalent to the PPP case, and an increasing vari-

ance (with constant mean) is equivalent to an increasing

tendency towards clustering. Another interesting doubly

stochastic PP is the α-stable Cox PP [130], [131], in

which the random field follows the α-stable distribution.

The shot-noise Cox PP [132] is obtained by generating

the random field by a general PP Ψp, where at each parent

point x ∈ Ψp, the daughter points Ψd are generated by an

IPPP with density mxψ(y−x), where mx is the average

number of points clustered around x, and ψ(.) is the

PDF of the distance between a daughter point y of the

cluster and x. The density of the outcome Cox PP is then

expressed as

λ(y) =
∑

x∈Ψp

mxψ(y − x), ∀y ∈ Ψd. (26)

The Cox PP is typically investigated in VANETs [82],

[133], [134], where a doubly stochastic process is useful

to capture the randomness of roads (modeled by a Poisson

line process (PLP)) as well as that of nodes location

(modeled by a 1D PPP) (see Fig. 6). Alternatively, and

based on empirical data of realistic networks, the authors

of [131] observed that user-centric capacity-driven behav-

ior of modern BS deployments is accurately captured by

heavy-tailed distributions of the BS density, particularly

the α-stable distribution. In [130], analytical investiga-

tion in addition to empirical data fitting is obtained

by considering a generalized PPP setup with α-stable

distributed BS density. In [135], the spatial clustering

degree of users (i.e., level of heterogeneity) is captured

via the LGCP, where it is observed that the network

performance decreases when users are clustered without

being correlated to BSs location.

• Poisson cluster process (PCP): In Cox cluster PP, the

number of parent points follows a general PP while that

of daughter points follows a PPP. The PCP, however,

is based on a reciprocal approach where the number

of parent points follows a PPP while that of daughter

points follows a general PP. A representative family is the

Gauss-Poisson PP, in which daughter points are either no

points, one, or two points, with respective probabilities

p0, p1, and p2 = 1 − p0 − p1 [6]. Another special case

(a) (b)

Fig. 6. Two realizations of roads (solid lines) modeled by a Poisson line
process (a) and by a deterministic set of lines (b). Vehicles (dots) are modeled
by a 1D PPP with similar densities in (a) and (b). Voronoi tessellation (dotted
lines) reflects the association region of each vehicle.

of the PCP is when daughter points are scattered i.i.d.

around the origin and their number is Poisson distributed,

which yields the family of the Neyman-Scott PP, also

considered as a special case of the shot-noise Cox PP. In

this way, considering the parent PP as HPPP and based on

the expression of ψ(.) in (26), two important models of

the Neyman-Scott PP are commonly constructed, namely

the Matérn cluster processes (MCP), where daughter

points are i.u.d in a ball b(x, δ) centered at each parent

point x ∈ R
d, and Thomas cluster processes (TCP),

where daughter points are symmetric normal distributed.

Based on simulations and model fitting, relevant works in

the literature compared empirical data of existing shared

networks [136] and vehicular networks [137] with the

accurate PP from MCP, TCP, and LGCP. Results showed

that the LGCP is the most suitable PP to characterize

point patterns that exhibit strong tendency towards clus-

tering, while analytical flexibility is in favor of the others,

as performed in [124]–[129] for MCP and TCP, and in

[138], [139] for the Gauss-Poisson PP.

• The conditional thinning approach: A tractable genera-

tive approach to capture the tendency of nodes towards

clustering (i.e., reduced homogeneity) is by considering

a specific independent thinning. Typically, the authors of

[140], [141] introduced a specific thinning of retention

probability p conditioned on the serving BS and comple-

mentarily dependent on the empty probability of other

BSs [142] (i.e., the probability that a BS does not serve

any user). A value of p = 1 is equivalent to a uniform

distribution of users, while a decreasing value of p is

equivalent to clustering of users around the serving BS.

5) Wide versatile point processes: Despite diversity of

the previous discussed PPs, they are restricted to capture point

patterns that exhibit either repulsion or clustering. However,

in realistic deployments, we usually find a combination of

repulsion and aggregation at different levels, and hence a

compelling need for more general PPs. In the following, we

consider a third type of PPs, namely the wide versatile PPs,

that with regard to their typical construction may capture both

repulsion and clustering.

• Geyer saturation point process (GSPP): The first PP

is the GSPP seen as a natural generalization of the
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Fig. 7. Taxonomy of PPs and frameworks used to model nodes in wireless communication networks.

SPP. Actually, when γ in (22) is below 1, the GSPP

is equivalent to an SPP and then captures repulsiveness.

However, in the case of clustering (i.e., γ > 1), the

multivariate PDF in (22) is not integrable for s(u) → ∞.

To overcome this, the GSPP is then saturated as

̺(n)(u) = κβn(u)γmin(s(u),t), (27)

where t is a constant to bound the trend of s(u). If t is

large enough, the GSPP can capture both repulsion and

clustering depending on the fluctuation of γ. Moreover,

if t = 0 or γ = 1, the GSPP is equivalent to a PPP.

• The inhomogeneous double thinning (IDT) approach:

The second PP is an analytical framework, namely the

inhomogeneous double thinning (IDT) approach, intro-

duced in [69] in such a way to capture the interaction

degree between points based on the superposition of two

conditionally independent IPPPs. In fact, by conditioning

on the serving BS, the first IPPP captures the fluctuation

degree of the distance between the typical user and the

serving BS (via the F -function), while the second IPPP

captures the fluctuation degree of the distance between

the typical user and interfering BSs (via Ripley’s K-

function). Interestingly, based on two triplets of param-

eters (i.e., one triplet for the F -function and the other

triplet for the K-function), it is observed that the IDT

model can accurately fit the structure of a wide range

of wireless networks, where nodes location can exhibit

spatial repulsion and/or clustering.

Fig. 7 illustrates a comprehensive taxonomy of the PPs used

in the literature of wireless networks modeling and analysis.

Typically, the gray bar reflects the range of variation in the

degree of interaction of each PP family. For instance, hard-core

PPs can only reflect structures with hard-core repulsion dis-

tance, without being able to capture totally random structures

(PPP or BPP) or perfect lattices. DPPs which are part of soft-

core PPs, can capture structures ranging from the PPP to some

repulsive structures below perfect lattices. However, other soft-

core PPs such as perturbed lattice and the combination of

a PPP and a stationary grid can model more point patterns

ranging from PPP to perfect lattices. Interestingly, the IDT

approach can model structures ranging from the two extremes.

Table III classifies the PPs, used in the SG literature for

modeling and analysis of wireless networks, by modeling use

cases and various degrees of tractability. An important key

measure of interest is the ability of the PP to permit the

derivation of the PGFL of the interference at a given arbitrary

point, which in turn allows to derive various performance

metrics (e.g. coverage probability, ergodic rate). Three classes

of PPs are identified; those enabling to derive the interference’s

PGFL, those failing to derive it so that an approximation of

the PGFL or the mean value of the interference is made, and

those with unknown PGFL and mean value of the interference.

B. The Superiority of the Poisson Point Process

With a comprehensive exploration of all the above-

mentioned references related to proposals for modeling wire-

less networks with PPs beyond the PPP, it is almost straight-

forward to infer that such PPs are more accurate than the

PPP for modeling emerging wireless architectures. However,

they are mathematically less tractable to derive the contact

distance function, the nearest neighbor function, and hence

we can only approximate the interference and performance

behavior. Also, modeling node locations with the previous

PPs does not provide a significant change to system design

insights as compared to the PPP case [6], [26], [47], [69].



14

TABLE III
TAXONOMY OF PPS IN TERMS OF THE ABILITY TO CHARACTERIZE THE INTERFERENCE AND ANALYTICAL TRACTABILITY

Modeling use cases

Point process Regularity Repulsion Clustering Independence Interference characterisation References Analytical tractability Comments

Stationary regular lattice • Exact mean [47], [91] High

- More efficient to design good channel access schemes
as compared to networks where node locations are perceived
as random or in motion.
- System-level performance evaluation requires complex and
time-consuming Monte Carlo simulations.
- Do not capture the geometry of Hetnets.

PPP • Exact PGFL [18] High

- Enhanced tractability and mathematical convenience, more
simplifications compared to other PPs, captures randomness
of network geometry.
- Cannot capture the geometry of realistic scenarios, where
nodes are highly correlated (repulsion or clustering).

BPP • Exact PGFL [63] Medium
- The PPP version to model finite networks.
- Reduced tractability as compared to the PPP.

MHCPP • Approximate mean [98], [99] Low

- Capture the mutual repulsion between nodes.
- Underestimates the density of transmitters in high density
of the parent PPP points, which affects the interference
estimation.

SSI Unknown [102] Unknown

Overcomes the limitations of MHCPP in terms of
underestimating the density of transmitters in high
density of the parent PPP points.

PHCP • Exact PGFL [104] Low - Easy interpretation of the model and flexible simulations.
- GSPP: Suitable for a wide range of PPs ranging from the
aggregative family to the repulsion one.
- No closed form expressions for the moments.
- Can resort to time consuming simulations.

SPP • Unknown [66], [67] Unknown

GSPP • • • Unknown [66] Unknown

PHP • Approximate PGFL [105], [106], [108] Medium
Enables to conceptualize hard-core repulsion between points
based on the tractability of two independent HPPPs.

DPP • Exact PGFL, Exact mean [109]–[114] Low

- The moments are known as they are described by certain
determinants of matrices
- Involving analysis of the contact distribution function and
the SINR’s distribution

Perturbed lattice • • • Approximate mean [116], [117] Medium

- Enables to softly capture point patterns that exhibit perfect
regularity.
- All nodes of a PL are subject to random perturbation, which
reduces the accuracy to capture spatial dependence between
nodes in realistic deployments.

Superposition of PPP
and Shifted lattice

• • • Approximate PGFL [123] Medium
- Overcomes the limitations of the perturbed PL.
- Involving analysis of the SINR’s distribution.

Alpha-stable Cox • Exact PGFL [130] Low

- Superior accuracy to statistically model the varying BS
density in different areas.
- Involving analysis of the SINR’s distribution inducing
reduced computational efficiency.

LGCP • • Unknown [135]–[137] Unknown

- Its construction is based on elegant simplicity as the random
field is a real-valued Gaussian process.
- Can serve as a universal model to fit realistic multi-network
empirical data

PCP • Exact PGFL [125]–[128], [138], [139] Medium
Enables to capture spatial coupling between user and BS
locations, which is in line with the 3GPP simulation models.

Conditional thinning
approach

• • Exact PGFL [140], [141] High
Captures the tendency of users towards clustering
(i.e., reduced homogeneity) around the serving BS.

IDT approach • • • • Exact PGFL [69] Medium
Captures the interaction degree between points based on the
superposition of two conditionally independent IPPPs

Accordingly, in some analytical contexts, it is generally more

appropriate to favor mathematical tractability with physically

meaningful insights on system design, rather than increasing

modeling accuracy but with a huge loss on tractability and

mathematical flexibility. In other words, the tractability of the

PPP sometimes justifies its possible inaccuracy. Subsequently,

we consider four recent results that endorse even the accuracy

of the PPP relatively to other beyond-PPPs:

• In [55, Theorem 3], the authors support analytically the

assumption that modeling node locations through PPP is

a realistic hypothesis since a given general model for

a large structure of node locations can be seen under

the effect of sufficiently strong log-normal shadowing,

i.e., greater than approximately 10 dB, as equivalent to

the PPP model. In other words, instead of modeling

node locations with a given general PP under log-normal

shadowing, we can equivalently consider a perturbation

of node locations, which may lead to a totally random

structure depending on the intensity of shadowing.

• In [143]–[145], the authors showed that the slope of

the SIR distribution is the same for almost all motion-

invariant PPs, i.e., the SIR distribution of a given network

model is a shifted version of the other network models.

For example, the horizontal gap between the PPP and the

triangular lattice is approximately a constant of 3.4 dB

for a wide range of SIR regimes. Interestingly, instead

of modeling point patterns of a given network by a less-

tractable but more accurate PP, one can use the PPP, i.e.,

the reference network model, endowed with its enhanced

tractability and add some weight to the outcome network

performance being evaluated under the PPP assumption.

• In [140], [141], the authors explored the PPP under a

tractable generative model, namely the conditional thin-

ning approach, which allows capturing smoothly a wide

range of clustered UEs ordered from a totally random

structure to a very clustered one. Consequently, the PPP

can be harnessed in a meaningful way to create new PPs

that are endowed with similar tractability as the PPP but

can also capture inter-points interactions.

• In [69], and since the IPPP is the most tractable alterna-

tive to the PPP, the authors introduced the IDT approach

that can be used as the most tractable version of the PPP,

and fully able to capture a wide range of network models
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Fig. 8. Typical shape of pair correlation function for the three classes of PPs.

from clustered PPs to stationary deterministic lattices.

Since SG is also endowed with an important statistical theory

[14], the PPP is typically leveraged as a reference PP to

build statistical tools that enable to characterize the class of a

given PP (totally random, clustered, or repulsive) or even to

compare between PPs. Subsequently, we will review the key

statistical methods used in the literature of wireless networks

modeling and analysis to characterize PPs or fit them to

realistic empirical data.

IV. SG STATISTICAL ANALYSIS

Several tools are used in the theory of PPs and spatial

statistics to detect deviations from the PPP and characterize

the interaction between points, particularly in terms of type,

strength, and range [1], [6], [14]. These tools are also used as

fitting methodologies to identify an appropriate PP model for

some empirical data, [66], [67], [90], [113].

A. Comparison between Point Processes

Using the observation that the contact function and the

nearest neighbor function are identical in the PPP, the J-

function is introduced in spatial statistics for r > 0 as

Jy(r) =
1−Gy(r)

1− Fy(r)
. (28)

That is, J(r) = 1 in the case of a PPP. In clustered PPs,

an arbitrary point of the plane is likely to be farther away

from a given point of the PP rather than in the context of the

PPP, whereas in the other direction, clustered points tend to

lie closer to their nearest neighbors, hence Fy(r) < Gy(r) and

then Jy(r) < 1. Similarly, Jy(r) is greater than 1 in the case of

repulsive PPs. However, it is possible to construct sometimes

a non-Poisson PP that checks J(r) = 1, which reduces the

accuracy of the J-function in characterizing PPs [14].

An alternative approach is by considering second order

summary characteristics such as the pair correlation function

[123], defined for a PP Ψ ⊂ R
d, ∀x, y ∈ Ψ as

g(x, y) =
̺(2)(x, y)

̺(1)(x)̺(1)(y)
, (29)

where ̺(1)(.) and ̺(2)(.) are, respectively, the first and second

moment densities of Ψ.

When Ψ is isotropic, g(x, y) is only dependent on the

distance r between points x and y but not on their locations.

That is, for a completely random PP (i.e., the PPP), x and y
are totally independent and then g(r) = 1. In clustered PPs,

̺(2)(x, y) is likely to overcome ̺(1)(x)̺(1)(y), then g(r) > 1
for small r and converges to 1 as r increases. For hard-core

repulsive PPs, where inter-points distance is almost greater

than a certain barrier distance δ, the pair correlation function

equals to 0 when r < δ. As r becomes greater than δ, g(r)
can exceed 1 and fluctuates around it with increasing r.

Fig. 8 describes the overall trend of g(r) as a function of

the PP class. Typically, rcorr is the distance describing the

approximate size of clusters. r1 is the distance to the closest

neighbors with most frequent short inter-point distance. r2 is

the distance at which g(r) contacts its first minimum after

r1, and can be interpreted as the distance to regions with a

small number of points beyond the nearest neighbors. r3 is

the second maximum of g(r), interpreted as the distance to

the regions with further neighbors [14].

Other popular second order summary statistics used to

capture inter-points correlation are Ripley’s K and L-functions

defined for a stationary PP of density λ and r ≥ 0 as

K(r) =
E!

o (Ψ(b(o, r)))

λ
and L(r) =

√
K(r)

π
. (30)

We note that K(r) = πr2 and L(r) = r in the case of a

PPP. Repulsive and clustered PPs are however, respectively,

characterized by smaller and larger K and L-functions as

compared to the PPP. More discussions about PPs statistics

and nodes real deployment characterization can be found in

[14], [45], [66], [67], [69], [90], [95], [96], [113].

Characterizing PPs based on their summary statistics is

generally not sufficient to study the impact of inter-point inter-

action on macroscopic properties [14], [66], [67]. Interestingly,

the authors of [146], [147] developed PP ordering based on

the directionally convex (dcx) order, where for two given real-

valued PPs Ψ and Φ of the same dimension, Ψ is said to be

less than Φ in dcx, if and only if for all directionally convex10

function f on Rd, E (f(Ψ)) ≤ E (f(Φ)) < ∞ and we

denote Ψ(.) ≤dcx Φ(.). Typically, it has been shown in [146,

Proposition 3.4 and Corollary 3.1] that the dcx order cover PPs

comparison based on the pair-correlation and K−functions,

where the largest PP in terms of dcx order is generally the one

with the greatest pair-correlation and K−function, assuming

the same mean number of points in the observation window.

That is, the PPP is also taken as the reference PP on dcx-

based comparison, where repulsive and clustered PPs are,

respectively, smaller and larger in dcx order as compared to

the PPP. They are then referred to as sub and super-Poisson,

respectively.

In general, sub- and super-poissonianity can occur simul-

taneously but at different spatial scales, e.g., clustering at

large scales and regularity at small scales. As an illustra-

tion, using the spatstat package in the R language, Fig. 9

shows the estimation of summary statistics J(r), g(r), and

K(r) from a homogeneous PPP generated in the window

W = [0, 10]× [0, 10]. We can see in particular the fluctuation

of summary statistics with the range of observation.

10For any x, y, z and u ∈ Rd, such as x ≤ y, z ≤ u and y+ z = x+ u,
we have f(y) + f(z) ≤ f(x) + f(u).
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HPPP in W = [0, 10] × [0, 10]. The red bold line is for HPPP density
λ = 0.3, the green thin line is for λ = 0.7, and the dotted lines are the
theoretical values of the summary statistics assuming an infinite expansion of
the window W .

B. Modeling Real Nodes Deployment

In the following, we will review the statistical methods used

to fit several PP candidates to empirical data of realistic net-

works. Next, we will investigate the various metrics explored

in the literature to select the best fitted PP model, i.e., the

goodness-of-fit.

1) Fitting the structure of nodes: In classical statistics,

the likelihood function describes the probability of observing

data samples given some model parameter θ [14], [68]. Simi-

larly, in the context of SG, the parameters of the PP model are

approximated from existing point pattern x = {x1, . . . , xn},

where the likelihood function is maximized, yielding to param-

eter estimation that best fits the data samples, e.g., the ratio

between the number of point patterns and the window area

is a natural estimator for the parameter density of an HPPP,

the hard-core distance in inhibitive PPs is simply estimated by

the minimum inter-point distance in the empirical data, etc..

The general formulation for the likelihood function of three

classes of representative PPs, namely the HPPP, the IPPP, and

finite Gibbs PP, can be found in [68]. However, due to the

lack of closed-form expressions for the normalizing function

rendering the likelihood function a PDF, the maximization

problem for the likelihood function when considering several

PPs beyond the PPP, is generally intractable [14], [68]. To

overcome such limitation, the pseudo-likelihood function of a

given PP is defined in terms of the conditional intensity at a

given point of the sample pattern [68, Equations (6), (7)]. Also,

when the conditional intensity is not available or parameter

estimators are of reduced accuracy, which is typically the case

for aggregative PPs, the minimum contrast method is proposed.

In this way, the key idea is to define PP parameters that

minimize the gap between the summary statistic of this PP

and the estimated one from empirical data. This gap, as a

function of the PP model parameters θ, is typically expressed

as

∆(θ) =

∫ s2

s1

|Ŝm(r) − Sm
θ (r)|ndr, (31)

where Ŝ(r) is the estimated summary statistic from empirical

data over a range radius s1 ≤ r ≤ s2 and m,n > 0 are

parameters in the method.

2) Metrics for the goodness-of-fit: After the fitting pro-

cedure of several PP candidate models to the empirical data,

comes the goodness-of-fit phase where the best fitted PP to

empirical data is selected. In the following, we outline the

key techniques used in the literature for the goodness-of-fit

procedure:

• Summary statistics simulated envelope test (3SET): The

most common approach for hypothesis testing is by

evaluating the gap between summary statistics curves

of the empirical data and the fitted PP model. In fact,

by simulating the summary statistics of the fitted PP

model, we end up getting the lower and upper envelopes

that reflect the confidence interval. Next, the fitted PP

model is considered as a good model if the curve of the

estimated summary statistic of the empirical data, falls

into the envelope with increased probability. Otherwise,

the PP model may be rejected based on the 3SET method.

Typically, the K and L-functions are the most popular

summary statistics considered for the 3SET method [66],

[67], [110], [113]. However, other summary statistics

such as G, F , and J-functions are investigated in [110],

[113], [148]. Besides, if the curve of the estimated

summary statistic of the empirical data lies within the

envelope of several fitted PP models, a specific quantity

may be considered to select the most suitable PP model,

namely the root mean square deviation (RMSD), defined
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from (31) as

RMSD =

√√√√ 1

N

N∑

k=1

(
Ŝ(ri)− Sθ(ri)

)2
, (32)

where N is the number of samples.

• SINR distribution: Since the SINR distribution is tightly

related to the network geometry (i.e., inter-points inter-

action), it is used as an evaluation metric to select the

most suitable PP model for empirical data. Assuming that

the reference user y is located at the origin of the point

pattern Ψ and connected to the nearest point x0 ∈ Ψ, the

downlink SINR is defined as

SINR(x0; y) =
Ptx hx0

ℓ(‖x0‖)
σ2 +

∑
xi∈Φ\{x0} Ptx hxi

ℓ(‖xi‖)
, (33)

where Ptx is the BS transmit power, ℓ(.) is the path loss

function, hx is a random variable that captures multipath

fading and/or shadowing between user y and BS x, and

σ2 is the variance of noise power.

Based on simulations, the SINR distribution of the em-

pirical data and the fitted PP models are evaluated w.r.t. a

threshold in dB, then the suitable PP model is selected us-

ing envelope matching and eventually the RMSD method

[66], [67], [117], [149].

• Geometry-based evaluation metrics (GBEM): Two main

geometry characteristics are considered in the literature

as higher-order properties in PP model selection, namely

the Voronoi area distribution (VAD) [2], [66], [122], [150]

and the Delaunay triangulation edges length distribution

(DTELD) [102], [118]–[120]. The use of VAD and its

dual DTELD is actually justified given the observation

that coverage regions of BSs in a cellular network gen-

erally converge to Voronoi cells [4, Proposition 5.5.11],

where the VAD is commonly approximated in the case

of a PPP by a generalized gamma function [122].

V. STOCHASTIC GEOMETRY FOR MODELING AND

ANALYSIS OF WIRELESS NETWORKS

Modeling wireless networks is commonly considered as a

set of conceptual choices to study a real or an imaginary

communication scenario. Such model preferences are typi-

cally related to i) network elements, e.g., location model

(deterministic, random, or mobile), node type (transmitter,

receiver, or both), ii) their attributes, e.g, transmit power and

antenna types, iii) the environment characteristics in which

they operate, e.g, propagation effects, and iv) the interplay

properties between nodes, e.g., association policy, coordina-

tion, and spatial interaction. In some cases, we can also include

analytical and experimental tools used in the study, in addition

to the considered key performance metrics. In the following,

we will review the plethora of modeling choices made in the

literature of SG-based modeling and analysis.

A. Modeling Network Elements

Based on the SG approach, elements of a wireless network

are deemed to be hierarchically modeled in such a way

that subscribers are 0-level stations, BSs are 1-level stations

directly connected to 0-level stations, switching centers are 2-

level stations directly connected to BSs, and so on [2], [142].

Besides, depending on the system model being considered,

network elements can be partially or entirely distributed ac-

cording to particular PPs and receiver/transmitter locations can

be correlated11 or not, e.g., coupling of users and BSs location

in a user-centric capacity-driven cell deployment. Table IV

summarizes the state-of-the-art main configurations used for

modeling the location of users and BSs.

B. Modeling Propagation Effects

In a wireless network composed of many spatially dispersed

nodes, communication is typically impaired by various defi-

ciencies like wireless propagation effects introduced by i) the

attenuation of radiated signals with blockages (shadowing),

ii) receiving multiple copies of the same transmitted signal

(multipath fading), and iii) signal losses with distance (path

loss). In general, the received power at the typical receiver

located at a distance r from the transmitter, is expressed as

Prx = Ptx ℓ(r)
∏

k

Zk, (34)

where Ptx is the reference transmitted power, ℓ(.) is the path

loss function, and {Zk} are independent random variables

accounting for propagation effects.

It is worth mentioning that the effect of shadowing is

generally captured via log-normal distributed random variables

where key parameters are fitted from field measurements.

However, in view of the analytical intractability of such distri-

bution PDF, a common approach in SG-based frameworks is to

absorb shadowing model into the intensity function of a new

PPP by means of the displacement theorem. Representative

examples can be found in [16], [26], [55], [58], [86], [88],

[89], [164], [165]. Also, modeling shadowing via random

variables fails to reflect the distance-dependence of block-

age effects given that shadowing intensity needs to naturally

grow with increased transmit-receive distance, particularly in

higher-frequency bands where signals are more vulnerable to

blockages. That is, the authors of [166] proposed to capture

blockages effect via the product
∏M

i=1 γi, where 0 ≤ γi ≤ 1
is the ratio of power loss due to the ith blockage, and M
is the random number of blockages intersecting the transmit-

receive link. Using tools from random shape theory [166],

M is shown to follow a Poisson distribution with parameter

dependent on the blockages density, the link distance, and the

average dimensions of blockages.

Regarding path loss functions, Table V summarizes the

key models used in the literature of SG-based modeling and

analysis. Typically, the great majority of works consider the

simplistic single slope unbounded path loss model (UPM)

(model #1 in Table V) given its ability to derive reliable and

tractable results especially for sparse networks wherein the

11This term should not be confused with temporal and spatial correlation in
BS activity factors where the former is induced by the mobility of receivers
across neighboring transmitters, while the latter is induced by correlation
through interference and load traffic between neighboring transmitters [151].
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TABLE IV
TYPICAL CONFIGURATION OF BSS AND USERS IN A STOCHASTIC GEOMETRY BASED MODELING

Configuration of BSs Configuration of UEs UE-BS coupling?
Adopted PP

Comments

For BSs For UEs

Uniformly random Uniformly random No PPP PPP
Total independence between UEs and BSs
[18], [20], [21].

Uniformly random Uniformly random Yes PPP PPP

UE-BS coupling can be captured through
i) a specific dependent thinning as in [140]
[141], or via ii) a power control scheme

in uplink networks as in [22], [152]–[159].

Uniformly random Uniformly random Yes BPP BPP

Correlation between UEs and BSs is
introduced via the finite number of BSs
and UEs in a given area [19], [62]–[64].

Uniformly random Clustered Yes PPP MCP, TCP
UEs are clustered around transmitters,
seen as the parent points [126]–[128].

Uniformly random Clustered No PPP MCP, TCP
The analysis is focused on the clustering
aspect of UEs [160]–[162].

Clustered Uniformly random No
MCP, TCP,

Gauss-Poisson PP.
PPP

The analysis is focused on the clustering
aspect of BSs [124], [125], [138], [139].

Clustered Clustered Yes TCP TCP
UEs and BSs are clustered around the
same hotspots [129].

Uniformly random Repulsive Yes PPP PHP

A typical application is when some UEs
are allowed to transmit only if they are
outside exclusion regions around specific
UEs or BSs [105], [107].

Repulsive Uniformly random No

Regular lattice,
Soft- and hard-core

PPs.
PPP

Typical configuration in rural areas where
repulsion is required between BSs without
necessarily coupling with UE locations
[91], [98], [113], [123], [163].

average separation distance between nodes is greater enough

to ignore the effect of singularity at the model (when r = 0).

However, this effect cannot be ignored in environments with

higher path loss exponent [167] or networks with very high

infrastructure density [36], [168], [169], where the single slope

UPM is deemed as inaccurate. In fact, the SINR-invariance

property obtained under the single slope UPM [18], such that

the overall SINR is independent from infrastructure density in

the interference-limited regime, has reopened the discussion

on the reliability of UPM since it is not conceivable that

splitting cells indefinitely through the addition of new BSs,

will maintain the same SINR distribution. A key aspect to

overcome this limitation is to revisit the single slope UPM. The

authors of [36], [168] introduced the multi-slope UPM (model

#2.1 in Table V) enabling to ascertain that the SINR-invariance

property is no longer valid when the near-field path loss

exponent is surprisingly under the dimension of the network,

which turns out to near-universal outage as network density

increases. A similar effect is assessed when considering the

bounded path loss model (BPM) in [170], the single slope

UPM accounting for BSs antenna elevation in [73], and the

stretched exponential path loss model in [171].

Furthermore, based on extensive field measurements, it

has been reported in [172] and the references therein that

mmWave signals are very sensitive to blockages as compared

to sub-6 GHz. Hence, considering LOS and NLOS paths in

such environment is of great importance. That is, the authors

of [71], [164] considered a revisited path loss model that

incorporates LOS and NLOS transmissions, as

ℓ(r) =

{
ℓlos(r) with probability plos
ℓnlos(r) with probability pnlos = 1− plos.

(35)

In [86], [165], the authors included an outage state in addition

to LOS and NLOS states to accurately capture the sensitivity

of mmWave communications to blockages. Generally, the

model in (35) is a building block for other sophisticated mod-

els depending on the approximation of the LOS probability

plos and the preferences for ℓlos and ℓnlos. For instance, the

authors of [72] introduced a composite model of (35) and

the multi-slope UPM wherein the LOS probability is mapped

with representative models adopted by the 3rd generation

partnership project (3GPP). The LOS probability in [173] is

approximated with a modified sigmoid function to characterize

the air-to-ground (AtG) channel in UAV-aided communication

networks. A comprehensive survey of channel modeling for

UAV communications can be found in [174].

C. Various Cell Association Strategies

In microwave (µWave, i.e., sub-6GHz) multi-tier wireless

networks, various layers of BSs are deployed, where BSs of the

ith tier Ψi (i = 1, . . . ,K) transmit data with a given transmit

power pi. In such a context, shadowing is a slowly varying

effect and the typical UE located at y commonly selects the
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TABLE V
KEY PATH LOSS MODELS USED IN STOCHASTIC GEOMETRY ABSTRACTION

# Path loss function Parameters Comments References

1 ℓ(r) = Kr−α
K = ℓ(1) =

(

λ
4π

)2
, where λ is the

wavelength, α needs to be greater than
2 to bound the interference.

Popular model in the literature given its
tractability. However, it is innacurate in some
situations due to its singularity.

[18], [20], [21]

2
For n ∈ N,

ℓ(r)=











ℓ0(r), R0 ≤ r < R1

ℓ1(r), R1 ≤ r < R2

· · ·
ℓn−1(r),Rn−1 ≤ r < Rn

∀ 0 ≤ i ≤ n− 1, ℓi(r) = Kir
−αi ,

αi ≤ αi+1, αn−1 > 2, K0 = 1,

and Ki =
∏i

k=1 R
αk−αk−1

k

Generalization of model #1 when αi = αi+1

∀ 0 ≤ i ≤ n− 1 and of model #3.3 when
α0 = 0.

[36], [168]

ℓi(r) = Ki (1 + rαi )−1,
αi ≤ αi+1, αn−1 > 2, K0 = 1,

and Ki=
∏i

k=1

(

1+R
αk
k

/

1+R
αk−1

k

)

Generalization of model #3.2 when αi = αi+1

∀ 0 ≤ i ≤ n− 1.
[175]

3

ℓ(r) = K (1 + r)−α,

ℓ(r) = K (1 + rα)−1,

ℓ(r) = Kmin
(

1, r−α
)

K = ℓ(0) > 0, α > 2
Non-singular path loss models adopted especially
for dense urban scenarios.

[47], [170]

4 ℓ(r) = K
(

r2 + h2
)−α/2

K = ℓ(1) > 0, α > 2, h > 0 Near-universal outage in high network density. [73]

5 ℓ(r) = Ke−αr
β

K = ℓ(0) > 0, α, β > 0
Accurate model for short to moderate distances,
i.e., 5m-300m, in UDNs.

[171]

6

mmWave communications:
plos(r) = 1r≤Rc

(r), where Rc is a fixed radius

and pnlos(r) = 1− plos(r).
[71], [164]

mmWave communications:
pnlos(r) = 1− plos(r)− pout(r),
pout(r) = max(0, 1−Aoute−aoutr)
plos(r) = (1− pout(r)) e−alosr

where Aout, aout , and alos are fitting parameters.

[86], [165]

ℓ(r) = plosℓlos(r) + pnlosℓnlos(r) ℓlos(r) = Klosr
−αlos , and

ℓnlos(r) = Knlosr
−αnlos

where Klos and Knlos are, resp.,
intercepts of the LOS and NLOS
paths, while αlos and αnlos are, resp.,
LOS and NLOS path loss exponents.

Lower frequency bands (sub-6 GHz):

plos(r) = e−ar2 , where a is a parameter
to fit 3GPP models and pnlos(r) = 1− plos(r).

[176]

Lower frequency bands (sub-6 GHz):
3GPP case1:

plos(r) =

{

1− r
R1

, r ≤ R1,

0 , r > R1

3GPP case2:

plos(r) = 0.5−min
{

0.5, 5 exp
(

−R1

r

)}

+min
{

0.5, 5 exp
(

− r
R2

)}

.

[72]

UAV-aided communication networks:
plos(θ) = 1/ [1 + a exp (−b [θ − a])], where a
and b are fitting parameters and θ is the
elevation angle.

[173]

ℓlos(r) = Klos(r
2 + h2)−

α
los

2 , and

ℓnlos(r) = Knlos(r
2 + h2)−

α
nlos

2

Lower frequency bands (sub-6 GHz):
the same probability models as [72].

[177]

ℓlos(r) = Klos(1 + rαlos)−1, and

ℓnlos(r) = Knlos(1 + rαnlos)−1

Lower frequency bands (sub-6 GHz):

plos(r) = min
(

18
r
, 1

)

(

1− e−
r
36

)

+ e−
r
36 .

[178]

serving BS x0 based on the strongest average received power

strategy (without fading) [26], [61], as

x0 = arg max
x∈Ψi, ∀i=1,...,K

piℓ(‖x− y‖), (36)

where ℓ(.) is the path loss function (see Table V).

Expression (36) induces then an exclusion region of radius

δ0 around y wherein no interfering BS to x0 exists. That is,

δ0 is expressed as

δ0 = min
x0∈Ψi, ∀j=1,...,K

{
ℓ−1

(
pi
pj
ℓ (‖x0 − y‖)

)}
. (37)

However, the association criterion in (36) may sometimes

lead to heavily loaded BSs especially those transmitting with

the highest power, i.e., macro BSs, which reduces the average

achievable rate and the efficiency of deploying small cells. An

alternative way is then to associate users with BSs providing

the highest data rate [44], [179], which can be captured via

a measure of BSs load. Accordingly, the authors of [21]

endowed BSs of each tier i by some adjustable bias Bi, where

the typical UE y selects the serving BS as that providing the

maximum average power weighted by its bias, namely the
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biased cell association. (36) becomes

x0 = arg max
x∈Ψi, ∀i=1,...,K

piBiℓ(‖x− y‖). (38)

Bias Bi can then improve the capacity of HetNets by

offloading users from overloaded cells to lighter ones, namely,

load balancing, which is similar to cell breathing through cell

range expansion (CRE) [180], [181].

In the single-tier case where BSs send data with the same

transmit power, using the association strategy in (36) turns

into associating users with their spatially closest BS, which

is equivalently named the nearest-neighbor cell association

[18], [61], [73], [140], or extended to the nth nearest serving

BS policy as [16], [19], [46], [59]–[61], [63]. Furthermore,

considering system models incorporating various propagation

groups, with various path loss exponents (model #6 in Ta-

ble V), the association policy in (36) is equivalently referred

to as the smallest path loss cell association [71], [72], [165].

Last but not least, in environments where shadowing is ex-

pected to be less slowly-varying, e.g., sensitive transmissions

to blockages, interferers may be closer to the typical UE than

the serving BS and then no exclusion region in (37) is consid-

ered. That is, we need to consider the shadowing effect Zx,

which renders that the typical UE connects to the strongest BS

instantaneously, namely the maximum instantaneous power-

based cell selection, or equivalently the max-SINR association

policy [20], [26], [58], [141], such that

x0 = arg max
x∈Ψi, ∀i=1,...,K

piZxℓ(‖x− y‖). (39)

It is worth mentioning that SG-based modeling and analysis

of wireless networks under the previous association policy has

taken two directions: i) the first by resorting to the Campbell

theorem (15) as in [20], [26], [58], [88], [89], [141], ii) the

second by absorbing the shadowing effect into the intensity of

a new PPP as in [55], [58], [86], [88], [164], [165], and hence

(39) will be consistent with (36).

D. Transmitter-Receiver Direction of Analysis

In downlink wireless networks, the analysis is generally

focused on the received SINR at the level of the typical UE

served by one or more BSs [18], [20], [21], [58]. However,

with the growing interest in symmetric traffic applications,

e.g., cloud-storage, the uplink performance analysis is becom-

ing increasingly crucial [22], [152]–[159]. Typically, analytical

evaluation of uplink wireless networks is generally involved as

compared to the downlink, due to the following fundamental

changes in the system model: First, the use of location-

dependent power control, where each UE smoothly adjusts

its transmit power to partially/totally invert the effect of path

loss [22], [152]–[154] and/or log-normal shadowing [155],

which mitigates the uplink interference and reduces the UE

battery consumption. Second, the dependency in the location

of concurrent uplink UEs. These uplink modeling aspects

render the approximation of the users PP less accurate.

Interestingly, the authors of [156]–[158], considered the

paradigm of decoupled uplink-downlink access (DUDA),

where different association policies are considered for uplink

and downlink inducing that the typical UE will not necessarily

be prompted to access the same BS for both directions. The

DUDA capability is particularly relevant in the scenario of

emerging HetNets [20], [21], [26], [44], [58], wherein users

quality of experience (QoE) is affected by non-uniformity in

transmit powers and traffic loads in both downlink and uplink.

In such a context, DUDA enables to reduce the transmit power

of edge users, which obviously helps to reduce the average

uplink interference by about 2−3 dB (see [158] and references

therein).

Last but not least, the works in [53], [182] considered

the IBFD capability enabling to transmit and receive data

simultaneously over the same frequency band, which offers

the opportunity to double the spectral efficiency at the expense

of extra self interference. More discussions about the use of

SG for modeling and analysis of IBFD approach as a potential

enabler for 5G/B5G networks will be presented in Section V.

E. Modeling Nodes’ Mobility

The mobility of transmitters and receivers is a crucial com-

ponent in the design and performance evaluation of modern

wireless networks since it can impinge on traffic load per

cell, signaling protocols, handoff algorithms, and location

update mechanisms. However, modeling human mobility is

generally challenging given its very complex temporal and

spatial correlation [183]. A comprehensive survey of user

mobility models can be found in [184].

SG as a powerful mathematical tool has been explored

in user mobility-aware performance analysis of wireless net-

works. Based on the formalization of the handoff rate, there are

typically two directions of analysis adopted in the literature:

i) the trajectory-based handoff, in which the handoff event

occurs as well as the mobile UE crosses a cell border, and then

the handoff rate is defined as the average number of crossing

cell boundaries of different cells by a moving UE. Hence,

the accuracy of such a concept is biased by the efficiency of

quantifying the statistical distribution of cells boundary, which

is generally consistent with the Buffon’s needle problem (see

Section I). The work in [3] is the first to consider this approach

in an SG-based framework, where BSs are modeled as a 2D

PPP, the road system as a PLP, and the location of users as a

1D PPP on the road layout (see Fig. 6). In [185], the authors

considered a tractable model for user’s mobility, namely the

random waypoint (RWP), where a detailed description can

be found in [184]. Next, the authors derived the distribution

of UE location during one movement period, the handover

rate, and the average time of being served by a given BS,

also known as the sojourn time. Other representative works

using the same approach in the context of HetNets can be

found in [186]–[189]. ii) The second direction is based on

the association-based handoff where the handoff event occurs

as long as another BS verifies the association criterion better

than the current serving BS. In this way, the handoff rate is

defined as the probability of inducing a handoff for a UE

served by a given BS and moving a random distance in a

unit time [190]–[192]. A comprehensive tutorial of mobility-

aware performance analysis considering spatially random and

deterministic grid-based topologies is given in [193].



21

In future wireless networks, BSs can also be enabled to

move seamlessly in order to provide enhanced service to UEs.

In this way, two important applications are identified in the

literature. First, given their agility and flexible deployment,

UAVs can be designed as airborne BSs to support coverage

and capacity for various UEs. In particular, it has been demon-

strated by aerodynamic theory that there is an operational UAV

speed that provides the optimal energy consumption [194].

Thus, a network of moving aerial BSs can outperform a static

hovering one in terms of energy consumption. Also, mobile

aerial BSs have the potential to reduce the average time that

the typical UE experiences blockages, namely the average fade

duration. However, uniformly distributed static aerial BSs can

provide fairly uniform coverage over the entire service area.

In this way, the authors of [194] considered tools from SG to

develop a family of trajectory processes (i.e., spiral and oval)

for mobile aerial BSs to remain BPP-distributed, thus ensuring

uniform coverage over the service area as in the static case

[195]. In [196], the ergodic rate received by the typical UE is

evaluated under a setup where four canonical mobility models

are adopted for interfering aerial BSs and two service models

for the serving aerial BS. Using the displacement theorem to

capture the new PP resulting after running each service and

mobility model, the results showed that the tractable straight-

line mobility model inspired from the 3GPP simulation models

can serve as a lower bound for system-level performance

evaluation with more sophisticated mobility models.

Second, given the growing number of users using wireless

connectivity when moving via public transportation vehi-

cles (i.e. buses, tramways, or high-speed trains), a dedicated

moving relay node (RN) is envisioned to ensure seamless

connectivity of UEs in public transport. In particular, mobile

RNs can create their own cell inside a vehicle, thus eliminating

a high vehicular penetration loss (which can reach 25 dB at

2.4 GHz) for onboard UE service [197]. This improves the

power consumption of such UEs and reduces the handoff

signalling between them (i.e, grouped handoff). In addition,

multiple backhaul antennas can be installed on the outer side

of the mobile RN, allowing to establish a cooperative system

with multiple static backhaul-enabled BSs, which improves

propagation conditions and backhaul reliability for moving

RNs. Using SG, the authors of [198] conceived a system

model in which outdoor antennas of moving RNs can assist

the coverage of static UEs located outside vehicles. Based

on the correlation between the received power at the typical

UE when the power is transmitted by the nearest BS or the

nearest moving RN, a bias-based CoMP association criterion is

considered to improve the coverage of UEs served by moving

RNs. Considering the effect of blockages and handoffs is,

however, an important extension of this analysis.

From previous discussions, it is clear that the statistical

characteristics of the wireless cell boundaries are crucial in

the design of handover schemes. Typically, the wireless cell

boundaries resulting from the Delaunay triangulation method

or from the received power at edge UEs, divide the service area

into several irregular polygons representing different wireless

cellular coverage areas. Hence, for simplicity, the received

power is assumed to be identical at all points with equal

distances to the BS, which leads to a smooth wireless cellular

boundary at small scales. This assumption does not take into

account the anisotropy of path loss fading in real urban wire-

less propagation environments due to the irregular distribution

of blockages and the effect of interference and load in different

directions from the BS. Importantly, field measurements have

shown that wireless coverage boundaries are not smooth at

small scales and exhibit statistical fractal characteristics at

angular scales [199]. An alpha-stable distribution with the

heavy tail feature is thus used to fit the PDF of the wireless

cell coverage boundary. Based on SG, the authors of [200]

proposed a multi-directional path loss model for fractal small

cell networks, where the path loss exponent is modeled by

i.i.d. random variables depending on the direction of signal

propagation. Also, the association-based handoff abstraction

is considered to derive the handoff rate under anisotropic path

loss, which confirmed the importance of accurate wireless cell

boundaries in the design of handoff parameters.

F. Spatio-temporal Traffic Modeling

Emerging new data-intensive applications, such as multi-

party video conferencing or multiplayer online games, along

with latency-critical applications such as smart manufacturing

or autonomous driving, suggest that the integration of spatio-

temporal traffic dynamics in the analysis of 5G/B5G wireless

networks will play an increasingly crucial role in their design

and deployment. Previous efforts have typically considered

one aspect of traffic: i) abstraction based on queuing theory,

which primarily evaluates scheduling algorithms and ignores

the interaction of traffic with SINR statistics and hence with

network geometry; ii) SG-based analysis, which usually does

not consider the temporal arrival process of packets and

focuses on reliability or throughput in fully buffered networks,

i.e. each link always has a packet to send. Interestingly, traffic

has recently been abstracted by spatio-temporal modeling that

combines tools from SG and queuing theories. In particular,

the spatial domain of traffic is captured by modeling nodes

via an appropriate PP, while the temporal variation of traffic

is captured by the temporal arrival of packets grasped tractably

by independent Bernoulli processes [201], [202].

A review of the literature shows that spatio-temporal traffic

modeling has been particularly exploited to evaluate two

important metrics of interest. First, delay that refers to the

end-to-end duration from packet initiation at the transmitter

to successful decoding at the receiver [203]. This includes the

delay in generating a packet, the delay in queuing it, and then

the time it takes for the packet to be successfully transmitted

within the wireless access network and backhaul links (in-

cluding the delay incurred in the retransmission mechanism).

Delay analysis through spatio-temporal modeling is generally

challenging due to the following major issues: i) The delay

is dependent on the system throughput determined by the

SINR, which in turn relies on the network geometry and the

complex channel fluctuations in large-scale networks. ii) The

delay is a long-term measure in which the topology of nodes

remains static but random for a fairly long time, which induces

a coupling of interference across various time slots. iii) As
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part of the MAC, a scheduling policy is performed on many

queuing nodes in a distributed manner. So, if a queue is idle,

the related transmitter does not interfere with the other links;

as a result, the service throughput of those links increases

allowing their queues to drain faster. Such coupling between

each queue and the state of all the other queues renders

delay analysis less tractable. To make the analysis feasible,

most of the literature focuses on the queuing delay based on

the scheduling scheme, and the transmission delay related to

the number of transmission trials required until a packet is

successfully decoded, while the delay in backhaul links is

generally omitted. A comprehensive example of backhaul link

delay analysis can be found in [204]. Next, the mean delay is

evaluated conditioning on a given realization of the PP, which

resorts to a formulation based on the meta-distribution metric

that can be derived by applying the Gil-Pelaez theorem or

the k-moment inversion. More discussions about the meta-

distribution and the Gil-Pelaez technique are brought in the

sequel.

Second, the emerging metric of age of information (AoI)

that measures freshness (timely updating) of the sensed data

measurements of the IoT devices at the destination nodes. It

is typically defined as the time expired since the previous

successfully received update packet at the destination was

generated at the source [205]. In this way, the requirement

for timely updating actually reflects a small average age of

status update, i.e., minimizing time-average AoI, which can

help in the efficient design of freshness-aware IoT systems.

It is worth mentioning that minimizing AoI does not really

correspond to maximizing the system throughput, nor guar-

anteeing a minimum delay in receiving IoT measurements.

Intuitively, throughput can be maximized by making sensors

send updates as quickly as possible, which can result in higher

AoI because the status messages will be pending/backlogged

in the communication system. In such a context, reducing

the system throughput may improve the AoI. It is worth

mentioning that the optimal loading usually requires a perfect

balance between overloading the queue and keeping it idle.

Since characterizing the distribution of AoI based on spatio-

temporal traffic modeling is known to be notoriously difficult,

efforts are mainly devoted to studying some of its easy-

constructed variants. For instance, i) work with a lower bound

on the average AoI obtained by ignoring the processing

time at the source, which mean that a new update packet

is instantaneously generated by the source node [206], or ii)

consider the peak AoI that quantifies the maximum value of

the AoI immediately before an update packet is delivered to

the destination node, thus yielding insights into the pessimistic

values of the AoI [207], [208]. A comprehensive tutorial

about SG analysis of spatio-temporal performance in wireless

networks can be found in [209].

G. Key Performance Metrics

Since Shannon’s work [210], the received SINR has been

considered as the first-order predictor of link reliability and

users QoE, where almost all performance metrics conceived to

date are closely related to the SINR. For instance, the bit error

SINR

1

1

P (X ≥ .)

P (X ≥ .) X

U

log (1 +X)

∫∫

Potential throughput [168].

Conventional coverage

probability [18].

Meta-distribution [212].

Average ergodic rate

[18].

Finite blocklength ergodic

rate [215].

Area spectral efficiency

[216].

Paired coverage probability

[218]. U: signal strength.

Mobility-aware coverage

[190]. U: Handover event.

Joint uplink/downlink rate

[156]. U: Uplink/downlink.

Joint information and power

[220]. U: total received power.

Spectral efficiency [216].

Energy efficiency [55].

Mean rate utility [182].

U: Uplink/downlink.

Fig. 10. Main performance metrics used in the SG abstraction.

rate depends on Q(a
√
SINR) [5, Claim 24.3.4] and the data

rate follows log(1 + SINR) [5, Definition 16.2.5], where Q(.)
is the Q-function and a is a constant depending on modulation

and detection.

A review of the largely fragmented literature of SG-based

studies for modeling and analysis of wireless networks reveals

that almost all the adopted performance metrics are typically

based on six key operations of SINR, as illustrated in Fig. 10.

In the following, we will consider the definition of key

representative performance metrics.

1) Spectral efficiency: The spectral efficiency Se is con-

ceived as the maximum information rate that can be transmit-

ted over a given bandwidth B. In the simplest case of AWGN

and optimal theoretical link performance, the Shannon-Hartley

theorem defines Se in units of [nats/s] as

Se , B log (1 + SINR) . (40)

2) Energy efficiency (EE): The EE E evaluates the number

of bits that can be successfully transmitted with unit energy.

It is generally expressed under the form [55], [142], [211]

E =
Se

̟Ptx + α
, (41)

where Ptx is the BS transmit power and ̟, α are some positive

constants depending on the power consumption model.

3) Mean rate utility: It is particularly defined in the

context of a generic IBFD link [182], as

Ru(TDL,TUL) = P
(
S

DL
e ≥ TDL

)
S

DL
e + P

(
S

UL
e ≥ TUL

)
S

UL
e ,
(42)

where TDL and TUL are, respectively, the required spectral

efficiency thresholds in the downlink and the uplink.
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4) Conventional coverage probability: The coverage

probability Pc, as opposed to outage probability Po, is defined

as the probability that the typical user can reach a target SINR,

T [18]. It is expressed as

Pc(T) = 1− Po(T) = P(SINR ≥ T), (43)

which also can be interpreted as the success probability of the

typical transmission/link averaged over all spatial links [7],

[47], [109]. Formally, we first condition on the BS process

and the typical UE located at the origin x0 of the PP Ψ, and

next average over all the spatial links, as

Pc(T) = E

(
P
o(SINR ≥ T|Ψ)

)
. (44)

5) Meta-distribution: Expression (44) can be rephrased as

the reduced Palm expectation over the PP realization, which

does not provide insights about how concentrated are the well

covered areas or what are the link success probabilities. The

meta-distribution concept is introduced in [212] to obtain fine-

grained information about the performance, as

F (T, u) = P

(
P
o(SINR ≥ T|Ψ) > u

)
, u ∈ [0, 1] . (45)

The coverage probability in (44) becomes then

Pc(T) =

∫ 1

0

F (T, u)du = lim
u→1

∫ u

0

F (T, x) dx

︸ ︷︷ ︸
Pc(T,u)

. (46)

Hence, the meta distribution concept can be seen as based on

some philosophy of derivation from the distribution of SINR,

i.e., F (T, u) = ∂Pc (T, u) /∂u. The derivation construct actu-

ally aims to capture variability at particular points on a curve

or any other geometric shape. Similarly, meta-distribution aims

to evaluate fine-grained information on the distribution of the

SINR.

6) Average ergodic rate: Another quantity of interest

is the average ergodic rate τ , also known as the Shannon

throughput, accounting for the mean data rate achievable over

a cell. It is obtained in units of [nats/s/Hz] as [18], [20], [21]

τ , E

(
log (1 + SINR)

)
. (47)

The average ergodic rate in (47) may actually require the

preliminary calculation of Pc [17], [18], [70], since

τ =

∫

t>0

P

(
log (1 + SINR) > t

)
dt

=

∫

t>0

P
(
SINR > et − 1

)
dt

=

∫

x>0

Pc (x)

x+ 1
dx. (48)

7) Finite blocklength ergodic rate: From an information-

theoretic angle, (47) is a reasonable performance metric for

modern wireless networks supporting enhanced mobile broad-

band (eMBB) services where codewords length is sufficiently

large to maximize throughput and induce very small packet

error probability. However, in the context of ultra-reliable and

low latency communications (URLLC), the throughput is not

a key requirement of the system, and the tradeoff between low

latency and ultra-high reliability requires generally the use of

short packets [213] [214]. In such a context, the ergodic rate

of communication is approximated as [215, Equation 296]

τ∗(n, ǫ) ≈ E

(
C−

√
V

n
Q−1(ǫ) +

1

2n
log(n)

)
, (49)

where n is the blocklength, ǫ is the error probability, C =
log(1 + SINR) is the capacity of an AWGN channel, and V
is the channel dispersion approximated as a function of SINR

in [215, Equation 293].

8) Area spectral efficiency: The concept of area spectral

efficiency (ASE) has been introduced for the first time in [216,

Equation (65)] to measure, for a partially loaded system, the

maximum average data rate per unit area per unit bandwidth

supported by a cell. Formally,

ASE =
1

|A|

Ns∑

k=1

E

(
log(1 + SINRk)

)
, (50)

where |A| is the area of interest, Ns is the total number of

active UEs inside |A|, and E [ln(1 + SINRk)] is the ergodic

rate of the kth UE.

Under the SG abstraction, ASE in (50) can be simplified as

ASE = λE

(
log(1 + SINR)

)
, (51)

where the expectation averages over different network and

fading realizations, and λ is the density of active BSs [217].

In realistic scenarios, a minimum SINR constraint γ0 is

required for the system operational regime [72], which induces

a constrained variant of the area spectral efficiency as

ASEc = λE

(
log(1 + SINR)1(SINR ≥ γ0)

)
. (52)

9) Potential throughput: The potential throughput con-

sidered in [86], [168], [171], is another variant of the area

spectral efficiency. It is defined in units of
[
bps/Hz/m2

]
as

Pth(T) = λ log (1 + T)P {SINR ≥ T} . (53)

Interestingly, it has been demonstrated in [37] that (51), (52),

and (53), are ordered as follows

Pth ≤ ASEc ≤ ASE.

10) Paired coverage probability: A new definition of

coverage probability is considered in [218], [219], such that

the typical UE is in coverage if, i) it receives a sufficiently

good signal strength, i.e., the short-term average signal-to-

noise ratio SNR is greater than a certain threshold Ts, and

ii) it receives a good signal quality, i.e., the SIR is greater

than another threshold Tq. Formally,

Pc(Ts,Tq) = P
(
SNR ≥ Ts, SIR ≥ Tq

)
. (54)

(54) is shown to capture more system-level parameters than

(43), and enables deriving tractable closed-form expressions.
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11) Mobility-aware coverage probability: In [190],

[191], the authors introduced a mobility-aware coverage prob-

ability, where handoffs may cost service delays or drops. (43)

is updated as

Pc(T) = P(SINR ≥ T,H) + (1− β)P(SINR ≥ T,H), (55)

where H is the handoff event, and β ∈ [0, 1] reflects system

sensitivity to QoS impairment when handoff occurs.

12) Joint uplink and downlink rate coverage: It is de-

fined as the fraction of users with sufficient spectral efficiency

(or SINR) in the uplink and downlink simultaneously [156].

It is expressed as

R(TDL,TUL) = P
(
S

DL
e ≥ TDL, S

UL
e ≥ TUL

)
. (56)

13) Joint information and power coverage: The joint

information and power coverage P , is introduced in [220],

[221] to evaluate the performance of simultaneous wireless

information and power transfer (SWIPT). It is is expressed as

P (Ti,Te) = P (Se ≥ Ti,E ≥ Te) , (57)

where E is the total received power at the energy harvester.

H. Analytical Techniques

As discussed before, using non-PPPs helps to accurately

capture the system behavior but reduces tractability and mathe-

matical flexibility, which requires resorting to efficient numer-

ical integration (e.g., quasi Monte-Carlo integration method

[110]), or even intractable approximations with limited impact

on design insights [110, Equation (25)], [113, Equation (42)],

[123, Equation (22)]. Subsequently, we will focus on key

approaches considered under the PPP seen as the reference

PP. We will also consider its finite version, the BPP. To the

best of authors knowledge, eleven techniques are reported in

the literature, offering varying degrees of tractability, accuracy,

and mathematical flexibility.

To illustrate the key generative sequence steps of each

technique, we consider the general common definition of the

received SINR at the level of the typical user located in y ∈ Rd

from a serving BS x0, as

SINR(x0; y) =
h/L(R0)

I +W
, (58)

where ℓ(.) = 1/L(.) is the path loss function (see Table V). I
is the power of the other-cell interference normalized by the

BS transmit power Ptx, and can be expressed as

I =
∑

k∈Ψ\{x0}
gk/L(Rk), (59)

where (xk) are BSs location modeled by a HPPP Ψ of density

λ, x0 is the serving BS under a given association strategy,

Rk = ‖xk − y‖ is the Euclidean distance between the BS xk
and the typical user y, h and {gk}k are, respectively, fading

coefficients of the serving BS and interferers, and W is the

noise power normalized by Ptx.

1) The baseline two-step approach: This is the most

popular technique used in the literature to derive coverage

probability in (43). In fact, assuming Rayleigh12 fading for

the desired link, the approach consists on first computing the

coverage probability by conditioning on R0 and next averaging

w.r.t it. Accordingly, for h ∼ exp(1), the coverage probability

in (43) is simplified as

Pc(T) = P
(
h ≥ TL(R0)(I +W )

)
(60)

= ER0

(
P
(
h ≥ TL(R0)(I +W )

∣∣R0

))
(61)

(a)
= ER0

(
LW (TL(R0))LI(TL(R0))

)
, (62)

where (a) follows from the Laplace transform definition and

the independence between W and I .

The expectation in (62) is generally expressed under the

form ER0
(ϕ(R0)) =

∫∞
0 ϕ(x)fR0

(x)dx, where the function

fR0
(.) reflects a unified framework of the BS association

scheme [73]. Typically, when considering the nearest-neighbor

cell association [18], [21], [61], [73], [140], fR0
(.) is the PDF

of the random variable R0, as fR0
(ξ) = 2πξe−πλξ2 . However,

if the max-SINR association is considered [20], [26], [58],

[141], fR0
(ξ) = 2πλξ. Besides, the Laplace transform of the

interference can be expressed via the PGFL theorem (16) as

[18], [73]

LI(TL(R0)) =

exp

(
−πλEg

(∫ ∞

ϑ(R0)

(
1− exp

(
−gTL(R0)

L(u)

))
udu

))
,

(63)

where ϑ(.) captures the exclusion region of interferers. Typ-

ically, ϑ(x) = x in the nearest-neighbor cell association,

where interferers cannot be closer to the typical UE than the

serving BS. In the max-SINR association, no exclusion region

is considered for interferers and ϑ(x) = 0.

Interestingly, (63) can be further simplified using variable

changes as in [70, Equation (34)]. If interference signals are

also experiencing Rayleigh fading, (63) will be simplified as

LI(TL(R0)) = exp


−πλ

∫ ∞

ϑ(R2

0
)

dx

1 + L(
√
x)

TL(R0)


 . (64)

Despite the Rayleigh assumption on the intended signal and

interferers, coverage probability in (62) is generally expressed

under an improper integral requiring a two-fold numerical

integration [18, Theorem 1]. Some efforts are made in the

literature to derive closed-form expressions or approximations

of the coverage probability. For instance, tractable expressions

are obtained in [18] by assuming the interference-limited

regime or a path loss exponent equals to 4. In [87], a more

generalized closed-form expression is proposed assuming an

integer value of the path loss exponent. In [222], four ap-

proximation techniques are proposed based on the network

12The Rayleigh assumption is generally supported by i) its better tractability
and mathematical flexibility incorporated into analysis [18], [20], [21], [58],
and ii) its ability to give a pessimistic version of the SINR distribution as
compared to more realistic fading models, e.g., Nakagami fading [147].
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operational regime. It has particularly shown that the optimal

approximation is achieved by combining the four techniques

in accordance with their convergence properties.

2) Coverage probability new abstraction: To develop a

closed-form expression of the coverage probability in (62), it

has been proposed in [218], [219] to bound the upper endpoint

of the integral in (62) by introducing the concept of the paired

coverage probability as in (54). That is, (54) is simplified as

Pc(Ts,Tq) = P

(
h1 {L(R0) ≤ 1/(WTs)}

IL(R0)
≥ Tq

)

=

∫
L
−1(1/(WTs))

0

LI(TqL(ξ))fR0
(ξ)dξ, (65)

which can be further simplified by considering common com-

binations of i) the standard path loss function of path loss

exponent α, ii) additive and constant thermal noise, and iii)

the nearest-neighbor cell association, as

Pc(Ts,Tq) =

1− exp

(
−πλ

(
W
Ts

) 2

α

F− 2

α
(Tq)

)

F− 2

α
(Tq)

. (66)

In [223], this technique has been considered to benchmark the

performance of UDNs under three representative scheduling

schemes in terms of fairness and implementation complexity.

Assuming elevated BSs, closed-form expressions are obtained

allowing to assess the network performance in a more tractable

and meaningful fashion as compared to the conventional

definition of coverage probability in (43).

3) The relative distance process (RDP) based approach:

Based on the assumptions of: i) the standard path loss model

with path loss exponent α, ii) Rayleigh fading, iii) the nearest

BS association policy, and iv) the interference-limited regime,

a new way is considered to derive the coverage probability in

(60) via the RDP ΨR of the PPP Ψ, defined as [212]

ΨR =

{
R0

Rk

∣∣∣∣xk ∈ Ψ \ {x0}
}

⊂ [0, 1] , (67)

where its intensity measure is derived based on (11), as [145]

Λ(dr) = 2r−3dr. (68)

When ΨR is an IPPP, the PGFL can be expressed as

GIPPP
ΨR {f} = exp

(
−2

∫ 1

0

1− f(r)

r3
dr

)
. (69)

In the general case, ΨR is not an IPPP, and then (60) is derived

based on GIPPP
ΨR , as [145, Lemma 1]

Pc(T) = E

(
P

(
SIR > T

∣∣∣∣Ψ
))

(70)

= E

( ∏

y∈ΨR

f(y)

)
=

1

1− log
(
GIPPP
ΨR {f}

) , (71)

where f(y) = 1/(1 + Tyα) due to the assumptions i)-iv)

considered in this technique.

(70) is actually a special case of the k-th moment, since

Mk(T) = E

((
P
(
SIR > T

∣∣Ψ
))k
)

(72)

(a)
=

∫ 1

0

kuk−1F (T, u)du, (73)

where (a) comes from the meta-distribution expression in (45).

It is worth mentioning that M1(T) is the coverage proba-

bility defined in (43). Moreover, using similar steps from (70)

to (71), the expression of the k-th moment Mk(T) in (73) can

generally be expressed in a closed-form expression. However,

reshaping the meta-distribution from Mk(T), is an instance of

the Hausdorff moment problem, which is to derive the inverse

k-moment. For instance, two techniques have been considered

in [212]. The first one is by inverting the jω-moment via the

Gil-Pelaez theorem [247], which resulted in less tractable ex-

pressions of the meta-distribution requiring efficient numerical

integration. The second technique is based on approximating

the meta-distribution with a beta distribution, where the design

parameters are fitted from the first and second moments. This

approach has showed an impressive accuracy, but remains

relevant only for the measurements considered in study and

may diverge for more general setups. In [224], the authors

proposed to reconstruct the PDF of the entire meta-distribution

defined over the interval [0, 1], by means of shifted Jacobi

polynomials via Fourier-Jacobi expansion. The obtained series

expansion is infinite, where the coefficients are mapped with

the moments of P
(
SIR > T

∣∣Ψ
)

via the binomial expansion.

The approach is promising, but needs more investigation on

the convergence conditions. In [225], the authors explored

binomial mixtures properties to obtain an approximation of

the meta-distribution as a function of a finite double sum of

the moment sequence. That is, the accuracy of the approach

increases with the length of the moment sequence, which

requires however efficient numerical computation.

In [226], the meta-distribution analysis is generalized to PPs

beyond the PPP, where the k-th moment of the conditional

success probability for a stationary PP can be inferred from

that of the PPP by using the same horizontal shift technique

introduced in [143]–[145]. Further extensions of the meta-

distribution to other system setups may be found in [202],

[227]–[233].

4) Finite networks assumption: Following a review of

the existing state-of-the-art works on modeling and analysis

of finite wireless networks, we can generally identify three

streams of thoughts ordered in decreasing tractability and

mathematical flexibility. The first, considers a typical setup

where the reference receiver is located randomly in a compact

C ⊂ R2, while BSs are uniformly randomly distributed in a

disc [19] or a L-sided polygon [62] centered at the reference

receiver. The second, extends the first model by considering an

arbitrarily-located reference receiver in the disc [195], [234]

or L-sided polygon of BSs [63]. The third setup considers an

arbitrarily-located reference receiver in an arbitrarily-shaped

area that contains finite BSs [64].

As an illustration of the generative analytical background,

we consider a typical scenario, in which the reference receiver

is arbitrarily located in a disk-shaped finite wireless network,
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rout + d ≤ ξ d = 0

ξ < rin + d rin + d ≤ ξ < rout + d

Fig. 11. The typical realizations of Cξ and A where the square red points
are interferers.

wherein N transmitting BSs are uniformly randomly dis-

tributed in a disc Cξ of radius ξ, i.e., Ψ is a BPP. The reference

receiver is located at a distance 0 ≤ d ≤ ξ from the origin of

Cξ and interfering BSs are assumed to be exclusively located

in an annular region A of inner radius rin and outer radius

rout from the reference receiver, such as 0 ≤ rin < rout < ξ.

Fig. 11 illustrates the typical realizations of Cξ and A.

The density of the BPP is λ = N/πξ2, while the probability

of having k ≤ N interferers inside A is

P (Ψ(A) = k) =

(
N

k

)
pk (1− p)

N−k
, where p =

|A ∩ Cξ|
πξ2

.

Given Rayleigh fading on the desired link, the coverage

probability under such setup is expressed as in (62), where R0

can be selected uniformly at random from the transmitting BSs

[19], [235] (blue points in Fig. 11), or based on the nth nearest

serving BS policy [19], [63]. The MGF of the interference can

be expressed using similar sequence steps in [4, Page 9], as

LI(s)=

(
1− p+ p

∫ rout

rin

fR(u)Eg

(
e−sg/L(u)

)
du

)N

, (74)

where s = TL(R0) and fR(.) is the PDF of the distance from

the reference receiver to interferers, expressed as [235]

fR(u) =





2πu
|A∩Cξ| , rin ≤ u ≤ rmax

2u
|A∩Cξ| cos

−1
(

u2+d2−ξ2

2du

)
, rmax ≤ u ≤ rout,

where rmax = max (rin, ξ − d).
5) Nakagami fading on the desired signal: Capturing

small-scale fading with Rayleigh distribution is particularly

justified in NLOS propagation environments. However, in

the context of UDNs, where the transmitter-receiver distance

is reduced, the likelihood of specular LOS paths increases,

and the Rayleigh assumption is no longer realistic. Similar

observation is considered in the context of higher-frequency

bands where signal propagation is generally sensitive to LOS

and NLOS paths [165], [172]. In such scenarios, Rician fading

is commonly accepted to capture fading in LOS propagation

[236], [237], where it can be well approximated by means of a

more tractable Nakagami-m distribution. Also, the Nakagami

assumption can actually be seen as a gamma distribution since

X2 is gamma distributed when X is Nakagami distributed,

which improves analytical convenience.

We now assume that the desired link h follows a gamma

distribution with shape parameter m and scale parameter θ,

(60) simplifies then as

Pc(T) = ER0,I,W

(
Γ
(
m, Tθ L(R0)(I +W )

)

Γ(m)

)
(75)

(a)
= ER0

(
m−1∑

k=0

(−1)k

k!

[
sk

dkLI+W (s)

dsk

]

s= T

θ
L(R0)

)
, (76)

where (a) follows from the expansion of the upper incomplete

gamma function as Γ(m,x) = Γ(m)e−x
∑m−1

k=0
xk

k! .

The computation of coverage probability in (76) requires

then a prior evaluation of the kth derivative of LI+W (s).
Assuming the interference-limited regime, i.e., LI+W (s) ≃
LI(s), several frameworks have been proposed in the literature

to derive or approximate the kth derivative of the Laplace

transform of the interference. For instance, an approximation

via Taylor expansions is considered in [238]. In [239]–[241],

The authors proposed the use of the Faà di Bruno’s formula

[242], where an alternative formulation under the Bell polyno-

mials is used in [73]. Also, a recursive-technique is proposed

in [241], [243], where the expression of the kth derivative is

transformed to a lower triangular Toeplitz matrix with positive

entries. However, reducing analysis to the interference-limited

regime can be seen as less efficient in scenarios where thermal

noise is a key player in the network performance, e.g., higher-

frequency bands. Interestingly, an alternative framework based

on the Alzer’s lemma is suggested in [71], [162], which

enables to derive a relatively tight approximation of coverage

probability, as

Pc(T) ≈ ER0

(
m∑

k=1

(−1)k+1

(
m

k

)
LI (ks)LW (ks)

)
,

where s = βT
θ L(R0) and β = Γ(1 +m)

−1

m .

It should be noted that this framework is generally

suitable whenever the desired link is experiencing a fad-

ing model of the form [238, Theorem 1], P (h > u) =∑
n∈N

e−nu
∑

k∈N
anku

k.

6) The factorial moment based approach: Considering

the max-SINR association policy, the authors of [56], [244]–

[246], conceived the coverage probability experienced by the

typical UE y w.r.t. all BSs x ∈ Ψ, as the probability that the

kth smallest BS in terms of SINR meets the required target

T. In other words, the typical user is in coverage if at least k
BSs meet the required SINR target. Formally,

P
(k)
c (T) = P

([
∑

x∈Ψ

1

(
SINR(x; y) > T

)]
≥ k

)
. (77)

Let’s denote by n ≥ 1, the number of BSs with SINR greater

than the required threshold. Next, the authors introduced a
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key quantity of interest, namely the factorial moment measure

Sn(T) of the SINR process, defined as the average number of

ways that the typical UE can be associated to n different BSs.

Formally, it can be expressed as

Sn(T) = E




6=∑

x1,...,xn∈Ψ

1

[
n⋂

i=1

SINR(xi; y) > T

∣∣∣∣xi ∈ Ψ

]
 .

(78)

Interestingly, (77) can be simplified via the famous inclusion-

exclusion principle [56], [244]–[246], as

P
(k)
c (T) =

∞∑

n=k

(−1)n−k

(
n− 1

k − 1

)
Sn(T). (79)

The sum in (79) is actually finite since nT/(1 + T) needs to

be lowered by 1 as demonstrated in [4, Proposition 6.2]. That

is, (79) is simplified as

P
(k)
c (T) =

⌈1/T⌉∑

n=k

(−1)n−k

(
n− 1

k − 1

)
Sn(T). (80)

The computation of the k-coverage probability in (80)

requires then a prior evaluation of Sn(T) for n ≥ k, which

can be derived via higher order Campbell’s theorem as in

[56, Theorem 6] [246, Theorem 7]. It is worth mentioning

that despite the analytical relevance of technique #6 and

its ability to reflect several connectivity scenarios of the

typical UE, it provides however less-tractable expressions of

coverage probability and requires generally a thorough in-

depth knowledge of the factorial moment measure and its

higher order Campbell’s theorem.
7) The Plancherel-Parseval approach: For the sake of

further generalization, so that the performance evaluation

would not be limited to a particular fading distribution that

is only valid in some operational regimes, the authors of [4],

[5], [17], [18] considered the Plancherel-Parseval theorem [4,

Lemma 12.2.1] to derive an exact expression of coverage

probability regardless of the fading model. That is, assuming

a generalized fading distribution on both the desired link and

interferers, the coverage probability in (61) becomes,

Pc(T) = ER0

(∫ ∞

−∞
LI(2jπL(R0)Ts)LW (2jπL(R0)Ts)

× Lh(−2jπs)− 1

2jπs
ds

)
. (81)

8) The Gil-Pelaez inversion approach: An alternative

way to incorporate generalized fading, is by using the Gil-

Pelaez inversion theorem [247], in which the cumulative

distribution function (CDF) FX of a random variable X can

be expressed based on the characteristic function ΦX(ω), as

FX(x) =
1

2
− 1

π

∫ ∞

0

Im(e−jωxΦX(ω))

ω
dω. (82)

Relevant applications can be found in [86], [165], [212], [248],

where the coverage probability in (60) is reformulated as

Pc(T) = ER0,h,W

(
PI

(
I ≤ h

TL(R0)
−W

∣∣∣∣R0, h,W

))
(83)

=
1

2
− 1

π
ER0

(∫ ∞

0

Im

(
Φh(

−ω
TL(R0)

)ΦW (ω)ΦI(ω)

)
dω

ω

)
,

where the characteristic function is obtained as

ΦI(ω) = exp

(
−2πλ

∫ ∞

ϑ(R0)

[
1− Eg

(
exp

(
jωg

L(u)

))]
udu

)
,

such that ϑ(.) is the function considered in technique #1.

Interestingly, the Gil-Pelaez technique can also be leveraged

to invert the jw-moment of the conditional success probability

in order to derive important metrics of interest under the

spatio-temporal modeling of traffic such as mean delay and

peak AoI [201], [202], [208].
9) The Laplace transform inversion approach: Another

inversion technique to derive the PDF of a random variable X ,

is by considering the Fourier inversion theorem, also known

as the Laplace transform inversion [19], [55], [250], [288], the

characteristic function inversion [89], [251], or even the MGF

inversion [237]. Generally, the PDF fX(.) of X is obtained

via the Bromwich contour inversion integral, as

fX(y) = L−1 {LX(s)} =
1

2πj

∫ γ+j∞

γ−j∞
LX(s) eysds, (84)

where γ is a real constant such as the contour of integration

runs from γ− j∞ to γ + j∞ along a straight line and lies to

the right of all the singularities of LX(.).
As for the CDF of X , it can be derived equivalently as

FX(x) =

∫ x

0

fX(y)dy = L−1

{LX(s)

s

}
(x). (85)

That is , the coverage probability in (83), simplifies then as

Pc(T) = ER0,h,W

(
L−1

{LI(s)

s

}(
h

TL(R0)
−W

))
. (86)

Similarly to previous inversion techniques, this approach de-

rives exact expressions of coverage probability under gener-

alized fading distribution, but requires involved analysis with

limited design insights [246]. A more flexible version is to

resort to the characteristic function inversion enabling to avoid

contour integration as illustrated in [89], [251].

10) The interference approximation approach: An al-

ternative way to derive the PDF of the interference without

resorting to previous less tractable inversion techniques, is

to approximate the interference behavior [25]. Two main

approaches are considered in the literature. The first one,

is by considering the interference contribution from only

some specific transmitters based on the adopted association

policy. For example, the k dominant interferers in terms of

the received power are considered when assuming max-SINR

association criterion [48], while the k-nearest interferers are

considered in the case of the nearest [178] or the nth nearest

neighbor association policy [195]. This approach enables ac-

tually to derive an upper bound of coverage probability, where

bound accuracy increases with increasing path loss exponent

to justify ignoring the contribution of distant interferers [25].

The second approach is by approximating the distribution of

the other-cell interference via well-known distributions with

parameters fitting the essential physical parameters that affect

interference. Typically, the authors of [252] showed that the

interference behavior can be captured by the family of α-

stable distributions, while in [253], interference distribution

is approximated via gamma distribution.
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TABLE VI
KEY ANALYTICAL TECHNIQUES USED IN WIRELESS NETWORKS PERFORMANCE EVALUATION UNDER THE PPP/BPP ABSTRACTION

Analytical

techniques

Analytical

accuracy

Analytical

complexity

Distribution

of fading power on
Cell association policies

Desired
link

Interferers

Strongest
average
received power

Nearest-
neighbor
association

Biased
cell
association

Max-SINR
cell association

The nth nearest-
neighbor
association

Smallest
path loss cell
association

Technique #1 Approximation Low Rayleigh Generalized [26], [61]
[18], [61]
[73], [140]

[21], [180]
[181]

[20], [26], [58]
[141]

[60], [61]
[71], [72]

[165]

Technique #2 Approximation Low Rayleigh Generalized -
[218], [219]

[223]
- - - -

Technique #3 Approximation Medium Rayleigh Generalized - [145], [212] - - - -

Technique #4 Approximation Medium
Rayleigh Generalized - - - - [19], [63] -

Nakagami Nakagami - [195] - - - [234]

Technique #5

Taylor: Approx.
Faà di Bruno: Exact
Bell polynomial: Exact
Toeplitz matrix: Exact
Alzer’s lemma: Approx.

Medium Nakagami Generalized [241]
[73], [162]

[243]
[239], [240]

[241]
- - [162]

Technique #6 Exact High
Rayleigh Generalized - - - [244], [245] - -

Generalized Generalized - - - [56], [246] - -

Technique #7 Exact High Generalized Generalized - [18] - - - -

Technique #8 Exact Medium Generalized Generalized - [212], [248] - [86], [165] - [165]

Technique #9 Exact High Generalized Generalized - [237] - [89], [250] - [251]

Technique #10 Approximation Low
Nakagami Nakagami - [178], [253] - - [195] -

Generalized Generalized - - - [252] - -

Technique #11 Exact Medium Generalized Generalized - [255] [70] - [256] -

11) MGF-based average rate: As has been discussed in

(48), average ergodic rate is commonly mapped to coverage

probability via integration over the positive real axis (Fig. 10).

Such an approach reduces the use of time-consuming simu-

lations, but requires however the computation of multi-fold

numerical integral. An alternative approach is proposed in

[254] to derive the average ergodic rate by considering general

fading distributions and without necessarily going through the

coverage probability expression. A qualitative and quantitative

comparisons of the MGF-based framework with the coverage-

based conventional approach can be found in [70]. Typically,

using [254, Lemma 1], the average ergodic rate in (47) can be

simplified as

τ = ER0,W

(
E

(
log

(
1 +

h
WL(R0)

1 + I
W

)∣∣∣∣R0,W

))

= ER0



∫ ∞

0

LW (s)
LI(s)

(
1− Lh

(
s

L(R0)

))

s
ds


 . (87)

Next, the framework was widely adopted in the literature.

For instance, the work in [255] evaluated the uplink av-

erage ergodic rate when considering representative schedul-

ing schemes in terms of performance and implementation

complexity. In [256], the downlink average ergodic rate is

investigated under the scenario of multiple cell association in

UDNs environment.

Table VI summarizes the eleven techniques commonly used

in the literature to evaluate main performance metrics of

wireless networks under the PPP/BPP abstraction. Also, we

examined their mapping with various association schemes

considered in the SG literature, as well as illustrated the

required fading model for each technique.

VI. STOCHASTIC GEOMETRY AND PROMISING RAN

ARCHITECTURES FOR 5G/B5G

In this section, we will review key aspects and challenges

of emerging RAN architectures for 5G/B5G, and subsequently

outline major state-of-the-art contributions which, based on

SG, can evaluate the key properties of these promising RAN

architectures.

A. Terrestrial Heterogeneous Networks

Adding new macro BSs in a homogeneous and regular fash-

ion is typically constrained by increased deployment costs, in

addition to heterogeneity in site location availability and users

demand. An alternative strategy is to consider the deployment

of HetNets, where several classes of low-power and low-cost

nodes are deployed in poorly covered small areas or traffic

hotspots, overlaid within macro BSs.

The key aspects of a generative SG model consist ofK over-

laid tiers of BSs, where the BSs of each tier are characterized

by some distinctive marks (e.g., transmit power, connectivity

threshold, BS density, backhaul type) and the locations of each

tier nodes are modeled with a specific PP. Typically, a regular

or repulsive PP for macro BSs and clustering PPs for low-

power cells [66], [67]. For instance, the downlink SINR of

HetNets is evaluated under various BS association policies and

fading models in [20], [21], [26], [58], [245], [256]. The uplink

analysis of HetNets is studied in [152]–[154]. Also, given the

heterogeneous attributes of BS transmit power in HetNets,

the typical UE may be associated to different BSs in uplink

and downlink, i.e., DUDA. Further analysis of DUDA in the

context of HD HetNets can be found in [156]–[158], while

DUDA in the context of IBFD HetNets is given in [182] and

the references therein. One important use case of small cells
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in HetNets is to support overloaded macro cells. That is, the

impact of CRE on the performance of HetNets is assessed in

[141], [180], [181]. Last but not least, the question of mobility

is also crucial in HetNets where it is generally governed by

several tradeoffs. For example, a mobile UE in HetNets will

suffer from frequent handovers, which may increase call drop

rate and service delays. However, adding more low-power cells

increases the average number of lightly loaded BSs and then

reduces interference [257], which can reduce handover failure

rate. In all cases, incorporating mobility is very challenging

given the complex behavior of users movement [183], [184],

[193]. Further analysis of mobility-aware HetNets can be

found in [186], [187], [189]–[191].

B. Non-Terrestrial Networks

A promising frontier for terrestrial HetNets is by extending

their deployment to the sky via UAVs as aerial BSs [34],

[258]. In fact, given their distinctive features, UAVs can be

quickly deployed to support coverage in isolated regions and

capacity of terrestrial HetNets during flash crowded events.

However, despite the benefits of UAVs as flying nodes, sev-

eral new challenges are introduced. Among them, the AtG

propagation model, which is no longer similar to popular

terrestrial models due to UAVs operational altitude and 3D

mobility. Typically, the widely used AtG model is the one

proposed in [173] based on a modified sigmoid function.

A comprehensive survey about channel modeling for UAV-

assisted communications can be found in [174]. Also, given

their technical constraints combined with ground UEs QoS re-

quirements, optimal placement of UAVs is another challenging

task, which may include UAVs trajectory optimization [259],

altitude optimization [173], [260], flight time optimization

[259], [261], and UAVs density optimization [262].

With the introduction of a new research area based on SG,

spatial locations of nodes in UAV-aided wireless networks are

totally or partially modeled as randomly distributed according

to a PP. This approach is followed in [259], where a UAV

flies sequentially over several finite fields of PPP terrestrial

sensors to collect IoT big data. The results indicate that the

mean square error of the mission duration can be minimized

by carefully adjusting the number of sensor fields, the area

of each field, the hover locations, the hover time at each

location, and the flight path between hover locations. In [262],

the authors investigated the performance of a vertical HetNet

composed of two PPP layers of ground and aerial BSs, where

the rationale is to capture the impact of UAVs altitude and

density on coverage enhancement and on-demand capacity

boost of ground UEs. The authors of [263] evaluate how the

altitude of a single UAV operating as BS, can impact the

coverage and rate of two types of ground UEs: downlink

UEs and D2D UEs. Next, it has been found that in order

to provide coverage for all downlink UEs, UAV need to

move around the overall area of interest in such a way that

the number of stopping points increases monotonically with

the density of downlink UEs. In such a context, handover

needs actually to be taken into careful consideration since

UAV mobility can improve the coverage of one UE but it

is likely to affect the coverage of another. In [195], a finite

network of aerial BSs whose locations are modeled as a

uniform BPP is considered to support coverage at a reference

ground UE. Assuming independent Nakagami-m fading for all

wireless links, a general expression of the downlink coverage

probability is derived by using the analytical techniques #4 and

#5 and approximations were next made using the dominant

interferer-based approach in technique #10.

In [264], UAVs are aimed to assist public safety networks,

where the location of ground BSs surviving after a natural

disaster are modeled as an independent thinned PPP, while

UAVs form a PCP around the locations of destroyed BSs to

replace them. A Key outcome suggest that efficient coverage

by the emergency network can be achieved by adjusting

the number of UAVs per cluster, the flight altitude, and the

transmission power ratio between aerial and ground BSs.

Sometimes and due to their limited storage and processing

capabilities, UAVs are required to operate as mobile aerial RNs

for ground nodes. In particular, the authors of [265] considered

a setup where a thinned part from PPP distributed UAVs are

used as airborne DF relays to support mmWave communica-

tion of a terrestrial legitimate UE, and the other part of the

UAVs are used to jam the channel quality of PPP distributed

terrestrial malicious eavesdroppers. In particular, it has been

shown that more secure communications can be achieved by

making a convenient tradeoff between system-level parameters

of relaying and jamming UAVs, which actually corresponds to

tuning the thinning probability.

In [261], the authors adopted a similar abstraction of vertical

HetNet, as in [262], to address the question of the limited

energy resources when using UAVs as a BS, as this leads to

restricted flight times, and therefore forces UAVs to regularly

interrupt their operations to recharge or swap their batteries.

One key outcome is that battery quality (quantified by the

charging speed) and the density of charging stations play

a supplementary role in minimizing UAV interruption time

and then in achieving the required QoS for terrestrial UEs.

Alternatively, the authors of [266] considered tethered UAVs

to alleviate the limitations of conventional untethered UAVs

in terms of battery autonomy and backhaul capacity between

aerial and ground BSs. Accordingly, since untethered UAVs

are limited by the need to remain sufficiently close to their

backhaul-BS, which limits their ability to serve larger areas,

the study’s results show that tethered UAVs can outperform

their untethered counterparts in terms of the end-to-end cov-

erage probability, defined as the joint probability that the

SNR of out-of-band backhaul and access link are greater

than a predefined threshold. However, in realistic scenarios,

tethered UAVs are also limited by the length of the tether and

the likelihood that the ground backhaul-BS will be located

away from UEs hotspot, which can significantly reduce the

performance of tethered UAVs.

In [267], UAVs are abstracted as aerial UEs. The authors

have derived the uplink EE coverage under a setup where

two classes of PPP terrestrial and aerial UEs are served by

ground BSs. It has been shown that an aggregation of system-

level parameters of aerial UEs (through the aerial priority

bias) needs to meet some transcendental constraint, based on
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TABLE VII
KEY MODELING CHOICES IN SG-BASED MODELING AND ANALYSIS OF UAV-ASSISTED WIRELESS NETWORKS

Reference Terrestrial nodes Aerial nodes UAV function Performance metrics Association policy Analytical techniques Optimization task

[259] BPP One single UAV Data aggregator Success probability Smallest path loss Techniques #4 and #5 UAV trajectory and hovering time

[262] PPP PPP Airborne BS
Coverage probability,
ergodic rate

Smallest path loss Technique #5 UAV density and altitude

[263] BPP, PPP One single UAV Airborne BS Coverage probability Smallest path loss Technique #4 UAV trajectory and altitude

[195] One single UE BPP Airborne BS Coverage probability Smallest path loss Techniques #4, #5, and #10 UAV density and altitude

[264] PPP PCP
Emergency
Airborne BS

Coverage probability Smallest path loss Technique #1 UAV density and altitude

[265] One single BS PPP
Airborne
DF Relay

Secrecy outage Smallest path loss Technique #5 UAV density and altitude

[261] PPP, PCP PPP Airborne BS Coverage probability Smallest path loss Technique #5 UAV hovering time

[266] BPP One single UAV
Tethered
airborne BS

Coverage probability Smallest path loss Technique #4
UAV location (tether length and
(x, y) coordinates)

[267] PPP PPP Airborne UE Uplink energy efficiency Biased cell association Technique #1
An aggregation of UAV system-level
parameters

the principal branch of the Lambert W function, to mitigate

interference from aerial UEs and enhance the uplink EE

coverage of ground UEs. It is worth highlighting that despite

the expected advantages of UAVs when exploited as aerial

UEs in communication networks. They can however adversely

affect the performance of terrestrial UEs, which are usually

assigned more mission-critical roles than UAVs (e.g. monetary

transactions, health care services). As an illustration, we plot

in Fig. 12 the fluctuations of the uplink terrestrial coverage

EE, i.e., the probability that the uplink EE of terrestrial UEs

is greater than a predefined threshold, as a function of aerial

UEs parameters [267].

Table VII summarizes the key modeling choices made in

previous relevant research papers on the applications of SG in

the modeling and analysis of UAV-assisted wireless networks.

In particular, it can be observed that since UAVs can offer

an extremely agile deployment allowing LOS transmissions to

be established with ground stations (e.g. UEs, BS, sensors),

Nakagami-m fading is considered to capture such AtG links

and then the association policy based on the smallest path loss

and the analytical technique #5 are generally the most widely

adopted modeling choices in the SG-based literature.

C. UDNs via Infrastructure Densification

Infrastructure densification is envisioned as the workhorse

for ubiquitous coverage and capacity improvement in 5G/B5G

networks [268]–[270]. It can generally be realized by adding

new transmitters in the area of interest, which may be in the

form of new BSs or distributed antennas from the existing

ones. Many experts also consider some spatial diversity tech-

nologies such as relays, and D2D communications, as a form

of densification since they allow decentralized opportunistic

short-range communication [268]. In the following, we will

discuss the main technologies competing in terms of infras-

tructure densification in HetNets, as well as the key state-of-

the-art contributions based on SG.

1) Small cells: Adding small cells is a common way

to emerge from HetNets to UDNs. Several challenges are,

however, brought into analysis. For instance, the question of

association policy is a key concern, where UEs can access
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Fig. 12. Mean load approximation of the uplink terrestrial EE coverage
for the threshold 10 bps/W as a function of aerial UEs altitude, the power
control coefficient ǫ, and the average density of terrestrial/aerial UEs per BS.
Numerical parameters: frequency 2.1 GHz, path loss exponent 4, and the total
effective uplink bandwidth 5 MHz.

small cells without any logical restriction, namely open ac-

cess, and hence the need to judiciously adjust cells load via

CRE [180], [181] and interference via intercell interference

coordination (ICIC) [271]. Also, access to small cells can

exclusively be given to some specific UEs belonging to a

closed subscriber group (CSG), namly closed access, or con-

sider an hybrid access scheme, in which some additional UEs

not registered in the CSG can also access the cell along with

registered UEs [274]. Typical challenges may also include,

the scaling law of network performance with infrastructure

density [36], [72], [73], [168], [170], [171], [177], [269] and

qualitative and quantitative comparison between adding new

cells, using multi-antenna transmissions, or increasing macro

cells storage capacity [272], [273]. More discussions about

other representative challenges are given in [268]–[270].

2) Infrastructure sharing: A new viable business model

for infrastructure densification is by allowing concurrent op-

erators share their mutual infrastructure [275]. This paradigm

is expected to lower the time to market of each operator and

reduce costs by an average of up to 40% and 15% in terms

of capital expenditure (CAPEX) and operational expenditure
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(OPEX) costs, respectively [276]. Questions related to the

optimal sharing strategy between operators, are actually the

main concern of research studies. Typically, two extreme vari-

ants of infrastructure sharing are considered: Passive sharing,

wherein operators can only share site location and common

operation costs, while each operator installs and maintains its

own equipment, and active sharing wherein operators share

their network physical infrastructure and have access to it on

the basis of an agreed resource allocation strategy.

Based on the tractability of SG, several mathematical frame-

works and PP models have been investigated to quantify the

benefits of infrastructure sharing. For instance, the authors of

[136] evaluated the goodness-of-fit of some realistic shared-

infrastructure networks with various aggregative PP models,

where they revealed that LGCP can serve as a universal

model to fit realistic multi-network empirical data. In [74],

infrastructure sharing is evaluated under a setup of one buyer

operator and multiple seller operators, where the aim of the

study is to define an optimal buying strategy to meet a target

QoS requirement with reduced costs. In [75], the authors

derived the potential SE required per tenant and formulated an

optimization problem to identify the optimal transmit power

and spectrum to guarantee the minimum potential SE required

by each tenant. In [76]–[78], spectrum sharing between sev-

eral operators is studied, particularly at mmWave frequen-

cies where antenna beamforming, transmissions sensitivity to

blockages, and operators cooperation, can help to mitigate

inter-operator interference [277]. In [79]–[81] both spectrum

and infrastructure sharing are investigated.

3) Multi-hop relays: One practical limitation of densifying

HetNets via fully-functioning new cells is the complexity of

provisioning all new cells with a dedicated wired backhaul

connection. One proposed solution is to consider the deploy-

ment of RNs between BSs and cell-edge UEs [283]. That

is, several relaying protocols have been investigated by the

research community. For instance, amplify-and-forward (AF)

RN, decode-and-forward (DF) RN, also known as L2 relay,

and L3 RN, envisioned to support almost similar capabilities

as small cells but without the need of a wired backhaul con-

nection. Several use cases of RNs are assessed in the literature.

For instance, RN with IBFD capability is surveyed in [284].

Cooperative RNs to create spatial diversity are investigated

in [285]. In [286], cooperative RNs can be equipped with

buffers to store received packets and resend them when optimal

connectivity conditions are met.

Using methods from SG, several research works have

considered analytical performance evaluation of relay-aided

wireless networks. For instance, a novel analytical framework

for the analysis of outage probability in the regime of high

SNR and low BS density is proposed in [287]. The paradigm

of SWIPT with cooperative relaying is investigated in [288],

[289]. Quantifying the performance gain achieved when using

RNs in HetNets is studied in [290]. In [291], a flexible cell

association scheme is proposed, where some bias coefficients

are introduced to prioritize the association of the typical UE

with single- or multi-hop links, and then optimize the overall

end-to-end coverage and rate. Interestingly, the performance

of IBFD relay-aided cellular networks where BSs and RNs

are equipped with MIMO antennas, is investigated in [292].
4) Device-to-device communications: Cooperative com-

munications via fixed terminal relaying can bring substantial

improvements in wireless networks [285]. However, with the

drastic growth in UE’s density and their unpredictable complex

movement [183], the paradigm of cooperative communica-

tions via D2D communications is considered. Comprehensive

surveys about D2D communications underlaying cellular net-

works can be found in [293], [294].

SG has been extensively explored in modeling and analysis

of D2D communications. For instance, the crucial question

of spectrum sharing in D2D communications is investigated

in [295], [296]. Also, since neighbor D2D UEs are more

likely to be in prominent LOS transmissions, the authors of

[297] evaluated network performance under Rician small-scale

fading. Due to many technical challenges when deploying

D2D communications in licensed bands, traffic offloading via

D2D in unlicensed bands is considered in [298]. The tendency

of D2D UEs towards clustering is captured via PCP in [160],

[161], where coverage probability and ASE are next derived

under several content availability scenarios. Last but not least,

uplink analysis of D2D communications is provided in [299],

the benefits of combining IBFD with the merit of underlaid

D2D communications are evaluated in [300], the impact of

massive MIMO on reducing D2D-to-cellular interference is

studied in [282], and the performance of D2D communications

when considering aerial access points is available in [263].

D. Cloud Radio Access Networks

Albeit the expected benefits of infrastructure densification,

there are still many notable limitations. Among them, the

increasing CAPEX and OPEX costs with densification [50].

Also, interference is expected to be more critical, which de-

mands an aggressive frequency reuse. The question of mobility

is also crucial due to reduced cells size and heterogeneity in

neighboring cells, which requires proper load balancing and

smooth handover schemes. An innovative paradigm to address

such challenges, is to consider C-RAN architecture, in which

the baseband units (BBUs), responsible of scheduling and data

processing, are separated from radio units, and pooled farther

away in a centralized data center equipped with the potential of

cloud computing. Remote radio heads (RRHs) are connected

to BBUs via a dedicated high-speed and low-latency links,

e.g., radio over fiber, namely the fronthaul link. C-RAN can

therefore manage simultaneously the BBU processing of a

large geographical zone, which reduces costs (e.g., about 15%

in CAPEX and 50% in OPEX [50]), facilitates load balancing,

and enables the use of ICIC techniques and coordinated

multipoint (CoMP) transmission and reception, considered as

potential solutions in C-RAN [51]. One important variant of

C-RAN is distributed antenna system (DAS), in which BS

antennas and inherent radio frequency (RF) components are

deployed far away from the BS to form a distributed antenna

array, while the central intelligence is kept at the BS level.

A typical application of DAS is the reinforcement of indoor

coverage as aimed by the baseline work in [278].

Using tools from SG, the dynamics on the location of nodes

in a C-RAN architecture, are captured for analytical evaluation
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of network performance. For instance, a model of 4-layers

of nodes (UEs, RRHs, backhaul nodes, and data centers),

modeled by independent PPPs is considered in [301], where

by assuming various representative costs (cost of nodes, pro-

cessing, and backhaul technology), the authors demonstrated

that C-RAN based architectures can reduce costs by at least

10%. In [302], the performance of a C-RAN with multiple

antenna RRHs is evaluated when assuming three degrees of

collaboration between RRHs and their associated BS. In [303],

the authors considered MHPP II to capture the repulsion

behavior in RRHs location. Interestingly, the contributions of

some emerging techniques in the context of C-RAN is also

studied. Representative works can be found in [304] for C-

RAN with ICIC techniques, in [305] for C-RAN as an enabler

for CoMP protocols, in [306] for IBFD transmissions, and

in [307] for NOMA-based communications. As for the DAS

variant of C-RAN, outage probability is investigated in [279],

while spectral efficiency is studied in [280], [281].

E. Virtualized Radio Access Networks

Increased network densification, as well as the use of CoMP

and ICIC techniques in a C-RAN architecture, are expected

to boost the overall network performance. However, they

can amplify the signaling and control overhead, which is

expected to generate a critical burden at the fronthaul level.

One promising approach to alleviate the fronthaul bottleneck is

by splitting the control plane (C-plane) and the user plane (U-

plane) of the radio link via RAN virtualization. This capability

is particularly supported by the software-defined networking

(SDN) [308] where U-plane (message forwarding) is deployed

in a decentralized fashion, while C-plane (control and radio

resource management) is centralized in a controller. Typically,

the C-plane can be provided by high-power nodes operating

at sub-6 GHz bands to guarantee large coverage and efficient

mobility schemes, while the U-plane can be provided by

low-power nodes, namely phantom cells, operating at higher-

frequency bands [309], [310]. Such low/high-frequency bands

operation helps actually to pave the way for joint URLLC and

eMBB communications [311], which generally requires a prior

combining of the C-RAN paradigm with HetNets, also known

as H-CRAN [312].

Based on the tractability of SG, several recent works have

investigated the performance gain under the setup of C-

plane/U-plane split architecture. For instance, the authors of

[313] evaluated EE improvements under the phantom cell

paradigm as compared to a macro-only deployment. In [314],

the authors studied offloading of the macrocellular layer

through small cells CoMP transmissions in a virtualized RAN

architecture. In [315], a tractable mobility-aware model is

considered to quantify the expected performance gain with

C-plane/U-plane split. Further extensions of the analysis are

considered in [316] by taking into account mmWave sensitivity

to LOS and NLOS transmissions, and in [317] by considering

UAV-aided cellular networks.

F. Fog Radio Access Networks

Another promising paradigm to alleviate the fronthaul bur-

den in H-CRAN is F-RAN architecture, in which a consider-

able fraction of the cloud is deployed in close proximity to

UEs, which can be done through endowing edge terminals

or third-party entities (e.g., parks, shopping centers) with

computing and storage capabilities [318]. There are generally

two typical applications of such promising paradigm. i) Storing

and computing capabilities, wherein computation-intensive

tasks are processed at the level of nearby fog servers and the

result will be forwarded back to end UEs, which enables using

the released memory space at UEs to process other services,

and then enhance users QoE. ii) Content delivery and caching,

wherein close fog servers, also known in this context as helper

nodes, are endowed with high capacity caches in order to

proactively cache popular internet content requested by end

UEs [35].

Using tools from SG, most literature works on the analysis

of F-RAN architectures, are typically focused on quantifying

the benefits of the caching capability of helper nodes when

assuming a network with limited backhaul [273] or fronthaul

link capacity [319]. Typically, the SG generative setup is to

consider the location of helper nodes as modeled according to

some PP (e.g., PPP [273], β-GPP [319], MHPP II [320], PCP

[161]), each node has a finite cache capacity, wherein files are

placed according to some popularity distribution function (e.g.,

Zipf), and each cached file requires a minimum bitrate to meet

the requirements of users QoE. That is, the performance of a

cache-enabled network is quantified by the average delivery

rate, defined as the probability that the typical UE can receive

a downlink rate greater than the file bitrate threshold, and also

the requested file can be found in the local cache of the tagged

helper node. Otherwise, the file will be requested from the

core network, and the average delivery rate of files will be

constrained by the backhaul/fronthaul link capacity.

Accordingly, two lines of research are adopted in the

literature. The first, is related to the content placement strategy,

in which the problem can be stated as, how should we place

the files in the helper caches to optimize some performance

metrics (e.g., the hit probability defined as the probability that

the typical UE may find the requested file at the tagged helper

node)? Representative works can be found in [321] for single-

tier cellular networks, in [320] for D2D communications, and

in [322] for content placement policy in large-scale HetNets.

The second direction of research is related to the optimal

delivery strategy, wherein the analysis is focused on how to

deliver the cache content at the user request in order to boost

some performance metrics (e.g., the average delivery rate).

For instance, the average delivery rate is considered in [273]

to evaluate the question of adding more BSs or increasing

the caching capability of already deployed BSs. In [323],

the content delivery protocol is studied in a HetNet scenario

where the typical UE can request content from the nearest BS,

RN, or cache-enabled UE. Interestingly, the joint analysis of

placement and delivery techniques is brought in [324], [325].

VII. STOCHASTIC GEOMETRY AND KEY 5G/B5G

EMERGING TECHNOLOGIES

In this section, we will review modeling challenges to

capture the properties of 5G/B5G key emerging technologies,
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and highlight the penetration degree of SG in modeling and

analysis of their fundamental attributes.

A. Stochastic Geometry for Communications in Higher Fre-

quency Bands

With the severe spectrum scarcity in commercial wireless

networks running generally at sub-6GHz frequency bands,

researchers are steering new opportunities in higher frequency

bands to conceive a sufficiently higher bandwidth and hence

meet the increased data rate requirements for eMBB services

[269]. In the following, we will outline the key aspects and

challenges of using SG to evaluate communications in some

key higher frequency bands.

1) mmWave communications: With wavelengths from 1

to 10 mm and frequency range from 30 to 300 GHz, mmWave

combined with advances in integrated circuit technologies

enable to concentrate tens of miniaturized and high gain an-

tennas in small areas, which permits directional beamforming

alignment and enables to compensate for the excessively high

propagation loss in higher frequencies [29], [71], [172]. In this

way, several changes need to be considered w.r.t. conventional

mathematical SG frameworks available for modeling and

analysis of µWave wireless networks. Typically, i) nodes are

equipped with directional antennas such that the antenna gain

is maximized when the steering angle is inside a given main

lobe width [164], [165], ii) the vulnerability of mmWaves

to blockages is captured by considering LOS and NLOS

transmissions in addition eventually to an outage state, in

which the path loss is approximately infinite [86], [165], [326],

and iii) the primacy of the thermal noise w.r.t. the interference

in mmWave communications [326], is captured by assuming

the noise-limited regime, i.e., SINR ≃ SNR. This could, for

example, be omitted in the case of UDNs where the high

density of transmitters is likely to justify the prevalence of

interference over thermal noise [71].

In addition to the previous considerations to be taken into

account in the analysis of mmWave wireless networks, most

of the existing literature based on SG and its inherent PP

theory requires the inclusion of specific assumptions to ensure

tractability. For instance, i) the distribution of random shapes

incorporating blockages is assumed to be motion-invariant.

This is well captured by the Boolean blockages scheme in

which the planar centers of the blockages are distributed

according to the PPP, while the measures of length, width,

height, and orientation are i. i. d. according to a given PDF

[166]. ii) mmWave is very sensitive to blockages such that

large-scale reflections are generally ignored for mathematical

convenience. iii) Another key assumption is that the blockages

occur on each transmit-receive link independently, implying

that the number of blockages on different transmit-receive

links is independent. This assumption enables estimating that

a particular area around the typical UE contains only LOS

BSs with a decreasing exponential probability such that its

parameters are fitted from the propagation environment, e.g.,

frequency, density, and blockages dimensions [71], [166],

[172].

Based on SG, several representative research works are con-

sidered in the literature. For instance, a generative analytical

framework is suggested in [71] to derive SIR distribution and

average rate in a single-tier mmWave UDN (that justifies the

SIR regime). The analysis is next simplified by capturing

blockages effect via an approximate LOS step function (see

Table V), which enhances the computation speed but at

the cost of SINR distribution errors. In [165], the previous

framework is further generalized by considering an outage

state of the blockage model, with emphasis on the noise-

limited regime. Based on the displacement theorem to absorb

the shadowing effect, results reveal that expanding the outage

state can reduce coverage, but at the same time it will reduce

interference from outage cells. On the other hand, it has been

shown that if the average cell radius is no more than 50 m,

the probability of LOS will be greater than 80%, which will

not only improve the throughput of mmWave over µWave,

but also the coverage. The obtained theoretical results are also

extended by taking into account beamforming alignment errors

[43] and a multi-tier mmWave cellular deployment.

As noted in the previous works, densification with small

cells is essential for mmWave networks to achieve acceptable

coverage and throughput. However, this presents a major

challenge for the backhaul network, given the complexity of

bringing the backhaul to every new cell in urban areas and also

given the enormous rates resulting from mmWave bandwidths

of the order of GHz. In this way, the authors of [164],

[327] propose to exploit the interference isolation provided

by the narrow directional mmWave beams so that a wired link

can provide the backhaul for some new cells via mmWave

beams. In particular, [164] evaluated self-backhauling concept

wherein BSs are PPP-distributed into three classes: µWave

BSs, mmWave BSs with wired backhaul, and mmWave BSs

with wireless backhaul to those BSs with wired backhaul.

The displacement theorem and Laplace inversion technique

are next leveraged to derive the SNR/SINR and rate cover-

age assuming association in access and backhaul links. For

mathematical convenience, an approximate blockage model is

adopted such that all adjacent BSs to a given UE were treated

as LOS and BSs beyond a given distance were neglected.

In [327], the authors considered a C-RAN abstraction and

examined the feasibility of bringing wireless fronthaul to

distributed aerial units by means of mmWave beams. The

outage probability is next derived using technique #5 that

allows an upper bound based on Alzer’s lemma. Results

show that UAVs need to tune their altitude according to

the considered frequency (mmWave or µWave) to ensure an

acceptable coverage.

Furthermore, low-power mmWave small cells can be cou-

pled with high-power BSs at sub-6 GHz such that the former

provide increased data throughput, while the latter ensure

wide coverage and efficient mobility systems. In such a

context, [328] approximated the average spectral efficiency

for a DUDA scheme under UDN configuration such that

µWave macrocells are superimposed by mmWave small cells.

In particular, power control is ignored and Rayleigh fading

is adopted for enhanced tractability. Also, blockages are

supposed to be impenetrable so that the receiver (in uplink

or downlink) must be in LOS with transmitters to detect

any signal. A key outcome of this work is an optimization
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TABLE VIII
KEY MODELING CHOICES OF SG-BASED MODELING AND ANALYSIS OF MMWAVE WIRELESS NETWORKS

References Technologies Small-scale fading Shadowing Blockages model Association policy Analytical technique Performance Metrics

[71] mmWave, UDNs Nakagami Ignored
Decreasing exponential function,
estimated by a step function

The smallest path loss Technique #5 SIR distribution and ergodic rate

[165]
mmWave, single-tier, and multi-tier
networks

Ignored Log-Normal
Decreasing exponential function,
estimated by a step function

The smallest path loss
& the maximum
instantaneous power

Technique #1 after recurrent
use of the displacement theorem

SNR/SINR distribution and ergodic
rate

[164] µWave, mmWave, and backhauling Ignored Log-Normal
LOS ball under the setup
of impenetrable blockages

The smallest path loss
Technique #1 and #9 after recurrent
use of the displacement theorem

SNR/SINR and rate distribution

[327] mmWave, fronthauling, and UAV Nakagami Ignored Decreasing exponential function The smallest path loss Technique #5 SINR distribution

[328] µWave, mmWave, UDNs, and DUDA Rayleigh Ignored
LOS ball under the setup
of impenetrable blockages

The Strongest average
received power

Technique #1 Average spectral efficiency

[329] µWave, mmWave, and DUDA Rayleigh Ignored
LOS ball under the setup
of impenetrable blockages

The Biased cell
association

Technique #1 after recurrent
use of the displacement theorem

SNR/SINR and rate distribution

problem enabling to maximize the downlink spectral efficiency

under the constraint of a minimum required uplink data rate

as a function of the µWave/mmWave bandwidth and BS/UE

transmit power and density. In [329], a similar system model

is adopted under the biased cell association scheme. With the

diverse propagation patterns between µWave and mmWave

and the wide imbalance in their bandwidths, the primary

challenge of the study was to identify the optimal association

bias allowing to maximize coverage and rate for the DUDA

scheme.

Table VIII summarizes the key modeling choices of

some relevant studies in SG-based modeling and analysis of

mmWave cellular networks.

2) Terahertz communications: Compared to mmWaves,

directional beamforming alignment in terahertz frequencies

(from 300 GHz to 3 THz and wavelengths from 100 µm to 1

mm) is considerably more feasible due to shorter wavelength,

which suggests roughly the same system model changes as

those previously discussed in mmWave. However, additional

key changes to the system model need to be considered in

the case of THz communications [30]: First, since THz has

narrower beams as well as being more sensitive to blockages

(objects, human bodies), fast fading is generally not as pro-

nounced as for µWave and mmWave, and hence, it is assumed

that any effect of fast fading is essentially ignored in the

analysis of THz transmissions. Second, THz frequencies incur

high propagation loss due to severe sensitivity to rain and

resonant absorption in water molecules. Accordingly, the path

loss function in the case of a THz propagation is generally

revisited by frequency-dependent molecular absorption effect

with an emphasis on the LOS link as [330],

ℓ(r) =

(
c

4πf

)2

r−αLOSe−k(f)r, (88)

where k(f) is the medium absorption coefficient at frequency

f , αLOS is the path loss exponent in the LOS region, and c
is the speed of light. Third, besides its effect on path loss,

molecular absorption from THz EM rays in the medium is re-

emitted out of phase at the same frequencies it was initially

absorbed, resulting in a source of noise dependent on operating

frequencies, also known as molecular noise.

Using tools from SG, couple of works are developed in the

literature for modeling and analysis of systems operating in

THz frequencies [331]–[335]. In particular, due to the pre-

vious distinctive features of THz bands, deriving the Laplace

functional of interference is not feasible and evaluating system

performance is quite challenging. In this way, some simplify-

ing assumptions are usually included to enhance mathematical

convenience. These include treating only the effect of thermal

noise, while molecular noise is assumed to be very weak and

ignored. Also, instead of resorting to the Laplace functional

of the interference, the authors of [331] propose to use the

Campbell theorem to infer the mean of the interference in a

PPP distributed THz-only network. Furthermore, Taylor ex-

pansions were adopted to approximate the mean and variance

of SIR/SINR. In [332], the SIR distribution is derived for a

dense Poisson THz-only network where the interference is

approximated by a logistic distribution in which the parameters

are fitted from the theoretical moments obtained from the

Campbell’s and PGFL’s theorems.

In [333], coverage probability and ergodic rate are ap-

proximated for a network setup where BSs are expected to

provide µWave or THz links to their intended UEs based

on the transmission distance and the ability to establish a

LOS link. In this way, when the typical UE is attached to

a THz BS, interference is ignored, as well as path loss and

noise generated by molecular absorption, which enable to

derive performance metrics based on the PPP void probability,

offering then increased computational efficiency. In [334],

downlink coverage probability has been derived in a two-

tier cellular network composed of PPP distributed µWave and

THz BSs such that the typical UE can select the serving BS

based on the biased cell association policy. Interestingly, the

lack of fading in THz transmissions preventing the use of the

flexible Laplace transform for interference evaluation, has been

tackled by judiciously using the Gil-Pelaez inversion theorem

(i.e., technique #8). The analysis provides accurate results for

coverage probability but may be extremely tedious to compute

given the use of several infinite sums and products.

SG is used in [335] as a powerful analytical tool to quantify

the connection uncertainty when using the potential of THz

frequencies to meet high-rate and high-reliability low latency

communications requirements for wireless virtual reality users.

In particular, the probability of a LOS link is first abstracted

from a combination of self-blockage in which the user’s body

blocks a fraction of BSs due to its uniform orientation in

[0, 2π], and dynamic blockers moving in a random direction

with a given velocity where the distribution of the blocked

interval is obtained as the busy period distribution of a

queuing system. Next, the instantaneous rate is quantified by
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TABLE IX
KEY MODELING CHOICES OF SG-BASED MODELING AND ANALYSIS OF THZ WIRELESS NETWORKS

References Technologies Fading Molecular noise PP of nodes Blockages model Association policy Analytical techniques Performance Metrics Analytical accuracy Analytical complexity

[331] THz-only networks Ignored Adopted PPP Decreasing exponential function
The desired receiver is located
at a fixed location

The Campbell theorem to estimate
the mean interference and Taylor
expansion to estimate mean and
variance of SIR/SINR

SIR/SINR mean and variance. Approx. Low

[332] Dense THz-only networks Ignored Ignored PPP Ignored
The desired receiver is located at
a fixed location

Interference is estimated by a logistic
distribution in which the parameters
are fitted from the theoretical moments
obtained from the Campbell’s and
PGFL’s theorems.

Success probability Approx. Medium

[333] Hybrid µWave/THz networks Ignored Ignored PPP Decreasing exponential function The nearest neighbor association Poisson void probability
SIR distribution and ergodic
rate

Approx. Low

[334] Hybrid µWave/THz networks Ignored Ignored PPP Ignored The Biased cell association
The Gil-Pelaez inversion
theorem (Technique #8)

Rate distribution Exact Medium

[335]
Dense THz networks for wireless
virtual reality

Ignored Adopted MHPP

Decreasing exponential function based
on a combination of self-blockage and
dynamic blockers

The desired receiver is located
at a fixed location

Estimating interference by
a normal distribution

Mean delay Approx. Medium

approximating the interference by a normal distribution with

mean and variance parameters obtained from the Campbell

theorem. Finally, the mean delay is derived assuming a spatio-

temporal modeling of the traffic as a function of the mean rate,

the LOS probability, and the required traffic size.

Table IX outlines some of the key studies developed in

the literature for the modeling and analysis of SG-based THz

wireless networks, ordered in terms of their analytical accuracy

and complexity.

3) Visible light communication: Using light-emitting

diodes (LEDs) in license-free visible light spectrum from 400

to 800 THz and wavelengths from 375 to 780 nm, VLC

can offer simultaneous high brightness illumination and high

indoor data rate [31]. That is, information bits are modulated

onto the intensity of the emitted light, where the path loss

function is expressed under the form #4 in Table V, such that

the path loss exponent is mapped to the Lambertian emission

order of the LED light [336, Equation 11]. Also, given

the reduced VLC wavelength combined with the vicinity of

receivers detection area, multipath fading is generally ignored

in VLC networks.

Based on SG frameworks, we can discern three typical

lines of research in the literature. i) Performance evaluation

of multiuser VLC networks where the SINR statistics are

evaluated under the setup of a VLC-only system. For instance,

the authors of [336] evaluated the downlink performance of

a VLC network under two extreme deployments of LED APs

in the ceiling, namely PPP and regular lattice. The analytical

framework is promising but remains intractable since the SINR

distribution is expressed as a function of the Gram-Charlier

series and Laguerre polynomials requiring efficient numerical

computation. In [337], a novel SG framework is developed

by considering a 3D model and idle mode capability at VLC

APs. Coverage probability is next derived based on successive

statistical equivalences of SINR, but the approach requires

fundamental revisions in the way to address the lack of a

fading term in VLC networks. ii) Optimizing hybrid VLC/RF

networks such that a joint operation of both technologies is

evaluated. For instance, the authors of [338] considered a setup

of several configurations of coexisting RF/VLC networks to

derive coverage probability based on techniques #5 and #8

in Tab VI. In [339], the outage probability is first derived

in a VLC/RF system by approximating the interference as a

sum of gamma distributions (technique #10 in Tab VI), and

an optimization problem is next formulated to optimize the

density of VLC/RF nodes enabling higher EE under an outage

probability constraint. Furthermore, due to the inherent broad-

cast nature of VLC networks, data transfer may be subject

to fraudulent eavesdropping. Several papers have considered

iii) secrecy enhancement in VLC networks, where the physical

layer (PHY) is exploited to prevent the information-theoretic

security from interception [340]–[342].

4) Free-space optical communications: Using signals

with wavelength range in 785-1550 nm, free-space optical

(FSO) communication is a laser beam for high data rate

transmissions in a point-to-point free space setup, where it

can serve as a promising backhaul solution to avoid expensive

or not feasible deployments of wired connections [42], [343].

Despite the potential benefits of FSO communications, SG

as a powerful analytical tool has not been sufficiently used

in the evaluation of FSO networks due to several major

modeling challenges. To the authors’ knowledge, it is only

recently that the first PPP abstraction model has been leveraged

in performance evaluation of FSO networks [344], where a

scenario of SWIPT through laser beams emitted from the

ground to UAV-mounted BSs is considered. In fact, the use of

SG in modeling FSO communications is generally challenging

due to the following aspects: i) FSO narrow beams require a

perfect alignment of the LOS path, which can be problematic

due to building sway generated by some environmental factors.

Such feature needs to be captured by a random process to be

introduced into performance analysis [42]. ii) Urban FSO is

very sensitive to weather conditions13, which can be typically

captured by an attenuation function dependent on distance,

rain, and snowfall rate [345], [346]. iii) The FSO signal is

also attenuated by atmosphere molecular absorption dependent

on the wavelength of the transmitted signal. iv) Such signal

can also be constrained by fluctuations in temperature and

humidity gradients over time, also known as scintillation or

turbulence-induced fading. The universal model to capture

such turbulence conditions is to consider doubly stochastic

fading models [42], [343], [347]. Last but not least v) the

FSO link is also subject to undesirable ambient noise caused

by photons radiations of sunlight [348].

13Several techniques are considered to overcome such impairements, for
example using a mmWave backup link to supplement the FSO main link
during adverse weather conditions [345], or using relay-assisted transmissions
where the overall FSO path is splitted into small paths with reduced losses
[346].
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B. Stochastic Geometry for Cognitive Wireless Networks

Cognitive radio (CR) is a promising technology to address

the scarcity of the licensed spectrum. CR techniques ensure

actually an opportunistic allocation of the available spectrum

where secondary users, also known as cognitive users, can

scan and access the unused spectrum portions at specific time

or place without impairing existing primary users [349]. The

literature is rich in contributions dealing with the use of SG

to evaluate the benefits of various spectrum sharing schemes.

The fundamental challenge actually is how to use SG tools to

capture the availability of unused licensed spectrum portions.

One key approach is to consider geographical regions where

cognitive users are less likely to impair the performance of

primary users.

The analysis of the literature shows that there are generally

three generative ways to capture such event: i) The guard

zone approach [105], [350], in which the secondary user is

allowed to transmit as long as it is outside an exclusion

region around primary users. The locations of active cognitive

users can be modeled for example by a PHP [105], or a

MHP [350]. Such coupling in the locations of active cognitive

and primary users via exclusion regions renders the analysis

of interference very challenging as no tractable expression

of the PGFL is available, and then only some estimates of

the aggregate interference are obtained. ii) The max-received

power approach [351], in which the process of active cognitive

users is derived as an independent thinning based on the

probability that the maximum instantaneous signal power at

the level of a random secondary user and sent by active

primary users is below a certain threshold. iii) The outage

probability approach [352], in which the location of active

cognitive users follow a PPP with a specific density in such a

way to guarantee that the induced outage probability at the

level of the primary network will not exceed a predefined

threshold.

Furthermore, CR capability can be used beyond the conven-

tional primary/secondary users setup, typically as a promising

technique for distributed interference mitigation in co-channel

deployments of HetNets [353]. That is, Femto BSs equipped

with CR abilities, can sense the spectrum usage in intra-tier

and cross-tier layers and hence select the appropriate spectrum

sharing policy to avoid severe interference.

C. Multiple-Input Multiple-Output Systems

In conjunction with adding new cells and using higher

frequency bands, MIMO technology is considered as a key

component in the race towards higher data rates in 5G/B5G

networks [268]–[270]. MIMO is usually used to increase

spatial diversity and combat channel fading, which enhances

the reliability of the reception. Alternatively, fading can be

seen as a source of increasing the degrees of freedom in MIMO

systems. That is, the receiving antenna array can retrieve inde-

pendent information streams with sufficiently different spatial

signatures, which helps improve data rate. This technique is

referred to as spatial multiplexing. The third popular use case

of MIMO is precoding or multi-flow beamforming, wherein the

same information symbol is sent by each of the transmitting

antennas with appropriate phase and gain weighting, so that

the signal power is maximized at the receiver by constructively

adding signals emitted by different antennas. Accordingly,

channel estimation and symbol detection is a key challenge

in MIMO systems.

Most research works evaluating the performance of MIMO

systems has considered the one cell scenario where interfer-

ence from other cells is neglected. The performance analysis of

a multi-cell network is however much more challenging due to

geometrical properties between cells and the resulting intercell

interference. In such a context, SG provides a set of powerful

tools for performance modeling and analysis of several MIMO

techniques. A first premise that worth be considered in SG-

based models for MIMO systems is that a mapping between

the number of user antennas and the number of BS antennas

under Rayleigh fading channels, i.e. exponentially distributed

channel power gains, can tractably define the implemented

MIMO technique. It is then possible to formulate the SINR

within a SISO setup in such a way that the channel power gain

for the desired and interference signals are gamma distributed

with a scale of 1 and a shape defined as a function of the

number of user’s and BS’s antennas [354, Table I] [355, Table

II]. In this way, the gamma distribution is widely adopted in

the performance analysis of SG-based MIMO systems, where

the key task is to compute the n-th derivatives of the Laplace

transform, which resorts to the approximations discussed in

technique #5 of Table V.

MIMO can be leveraged as a multi-user system (MU-

MIMO) where several antennas at the BS can serve simul-

taneously a number of users. To decode the data transmitted

simultaneously by multiple users, each BS needs the channel

knowledge of its associated users, which is estimated by a set

of orthogonal uplink pilot sequences, while channel reciprocity

is exploited at the BS to pre-encode data in the downlink. Due

to the limited size of the coherence block and also the limited

number of orthogonal pilot sequences available for channel

estimation, pilot sequences are reused in different cells, giving

rise to coherent interference between UEs sharing the same

pilots, also known as pilot contamination (PC).

There are mainly three key approaches used in the SG-

based literature to address the issue of PC. i) The regular pilot

(RP) transmission approach in which the transmission of pilot

and data symbols is done separately in the coherence block

to minimize interference in the channel estimation process

[356]. ii) The superimposed pilot (SP) approach consisting of

simultaneous transmission of pilot and data signals [357]. SP

allows the use of longer pilot sequences, as compared to RP,

which reduces pilot contamination at the expense of increased

estimation overhead, which in turn, reduces the amount of data

symbols transmitted per coherence block. Also, simultaneous

transmission of pilot and data signals in SP will introduce

interference into the channel estimation process from data

symbols. The previous approaches consider the use of fully

orthogonal pilots between cells, while the spectral efficiency

can be further improved by using a more dynamic pilot reuse

scheme. iii) The third approach thus considers fractional pilot

reuse (FPR), where the users of one cell are split into two

groups, i.e. center of cell (CC) and edge of cell (EC) users
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[358]. While all pilots for CC users are reused in each cell,

pilots for EC users are reused in specific cells according to

the reuse factor. For tractability, CC region is captured by the

Johnson-Mehl cell of its BS while the remainder of the Poisson

Voronoi cell is assumed to be the EC region.

D. The Promising Approach of Metasurfaces

Despite relatively lower costs and easy deployment of RNs

as compared to macro and small cells, extensive deployment

of RNs in UDNs can increase costs in view of their inherent

power consumption and OPEX costs. Recently, a radically

new wireless communication paradigm has been proposed

[32], [33], [359], wherein some software-controlled metallic

reflectors made of low-cost passive elements, i.e., metasur-

faces, are judiciously placed in environmental objects and/or

aerial platforms to support communication of edge terrestrial

and/or aerial users [360]. As elaborated in [359], an RIS is

usually made of tiny scattering elements that are controlled

by low-cost and low-power electronic circuits that enable

their configurability over time. In general, an RIS requires

many tunable elements in order to get similar performance

as other transmission technologies, e.g., relays [361]. Broadly

speaking, RISs make a tradeoff between the low complexity

of their electronic circuits, the absence of power amplifiers

and multiple RF chains with a large number of the available

scattering elements.

Quantifying the performance of RIS-assisted wireless net-

works, especially in large-scale deployments, require new an-

alytical tools along two main directions: i) the development of

link-level models for RISs that allow us to quantify the power

scattered by an RIS as a function of its configuration; and ii)

the amalgamation of the resulting link-level models with SG

in order to quantify network-level performance metrics [362],

[363].

As far as the analysis of the power scattered by an RIS is

concerned, this is an open research issue and some attempts

have recently been made [364]–[373]. In [365], in particular,

it is shown that the electromagnetic field scattered by an RIS

depends on several factors, which include the electrical size of

the RIS and transmission distances between the transmitter, the

RIS, and the receiver. In general, the scattered electromagnetic

field is formulated in terms of an integral (or a finite sum),

which can be formulated in a closed-form expression only

in some asymptotic regimes, e.g., when the size of the RIS

is very large or is very small. In these operating regimes, the

scaling laws of the propagation distances may be different. The

surface gain offered by an RIS also depends on the specific

function that it needs to realize. The study conducted in [365]

is applicable to homogenized (or virtually continuous) RISs. In

[369], the authors have recently introduced a communication

model for discrete-type RISs, which resembles a MIMO

communication link. The communication model in [369] has

recently been used in [373] for system optimization. A major

limitation of the available link-level models to quantify the

electromagnetic field scattered by an RIS is that they usually

apply to free-space channels.

As far as the amalgamation of link-level models for RISs

with SG is concerned, the resulting problem is non-trivial

and open [362], [363]. This is due to two main reasons. i)

Existing link-level models for RISs are applicable to free-space

channels and are, in general, formulated in terms of integrals

or summations. This makes their integration in conventional

SG frameworks difficult. The analytical frameworks available

for some asymptotic regimes, e.g., in [365], are only in part

applicable in a SG framework since they are accurate only

for some specific transmission distances. Since in SG-based

analysis the transmission distance is a random variable and the

users may be very close to the RIS, accurate path-loss models

need to be used. This implies that, for application to SG-based

studies, link-level models for RISs need to account for the

near-field regime. This is briefly elaborated in [365]. ii) RISs

are expected to be deployed on environmental objects, such

as the walls of buildings. In typical SG-based analysis, the

environmental objects are usually modeled as blocking objects,

while the impact of reflections and how they affect the SINR

is usually ignored due to the associated analytical complexity

[362], [363]. Likewise, the large size of RISs may not be

compatible with the typical assumption that the links scattered

by the same RISs are statistically independent of each other.

This requires the development of new analytical methods for

modeling RIS-coated objects in large-scale wireless networks.

Overall, the modeling, analysis, and optimization of large-

scale RIS-assisted wireless networks is a major open research

issue, which requires the development of new tools for the

link-level modeling of RIS, which needs to account for the

scattering (e.g., reflections) introduced by RIS-coated objects,

and which needs to consider appropriate association strategies

between the users and the RIS so as to best use the available

RISs [374], [375]. Finally, the development of tools that

combine ML and SG for optimizing large-scale networks is

another major research venue [38], [39].

E. Stochastic Geometry for NOMA Networks

Compared to conventional orthogonal multiple access tech-

niques where UEs are served in orthogonal resource blocks,

NOMA is introduced as an emerging technology enabling

multiple UEs to share the same time-frequency resource block

[376]. One key variant is actually power-domain NOMA [52],

in which multiple UEs can use the same resource block but at

different power levels. That is, UEs are first ordered according

to a measure of link quality. Next, the BS superposes the UEs

in the same resource block by allocating a fraction of the BS

transmit power to each UE so that the worst UE in terms of

link quality is assigned the highest power coefficient. In down-

link14 NOMA reception, successive interference cancellation

(SIC) is implemented at each UE in such a way that signals of

weaker UEs are decoded and canceled from the observation,

while signals of stronger UEs are treated as noise.

Based on such key components of power-domain NOMA,

several research works have leveraged SG for performance

analysis of NOMA wireless networks. The key modeling

choices are: i) how to capture the cluster of UEs to be

14In uplink NOMA, SIC is implemented at the level of the serving BS,
where signals from strong UEs are decoded and cancelled successively, while
signals from weak UEs are considered as noise [52], [377].
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simultaneously served in the same resource block. Several

setups are considered in the literature, for example, consider

only the case of two UEs, typically two random UEs in the

Voronoi tessellation of the serving BS, i.e., random pairing

[378], [379], [381], [384], or selective pairing of a cell-center

and a cell-edge UE [378]–[380], [385]. Some works assume

a more general setup where the cluster is a constant number

of UEs (> 2) [387], [388], a bounded random number of

UEs modeled as PPP [382] or as PCP [377], [386], or even

two layers of user group in a NOMA-based multicast setup

[383]. ii) Which measure of link quality to use in served

UEs ordering. Due to its tractability, the common metric is to

classify UEs based on their distance to the serving transmitter

[377], [378], [382], [387], [388]. Other metrics is to consider

the fading gain [379], [385], the instantaneous signal power

based on fading and the path loss function [386], or the

instantaneous signal power normalized by noise and inter-cell

interference power [386]. Also, iii) how to introduce the effect

of SIC in the SINR formulation. The generative approach is

to introduce a fraction parameter (∈ [0, 1]) that reflects the

accuracy of SIC [386].

F. Stochastic Geometry for IBFD Technology

IBFD wireless nodes can transmit and receive data simulta-

neously at the same time/frequency channel. Such capability

is expected to double the spectrum efficiency at the expense

of increased residual self-interference (SI) between uplink and

downlink [53]. SG has been extensively used in the literature

to quantify the performance gains achieved by IBFD capability

[389]–[396]. The key model change is actually to account

for the SI power after performing cancellation, which can be

perfect, imperfect, or without prior knowledge of its effect.

Several models have been considered in the literature to

capture such residual SI power gain. The common practice

is to consider a constant value dependent on the transmit

power, which is a typical scenario in digital cancellation

techniques, where the SI intensity after cancellation can be

estimated [389]–[391], [396]. However, in the context of other

cancellation techniques where an estimation of the risidual

SI is not feasible, e.g., analog-domain or propagation-domain

schemes as pointed out in [389], the residual SI channel

is generally modeled by a random variable, e.g., Rician

fading [394], [395], Nakagami-m fading [393]. For instance,

modeling and analysis of a wireless network with random

combination of HD and IBFD nodes is studied in [390], where

it has been shown an enhanced success probability in HD-

only networks, even under perfect SI cancellation. However,

IBFD-only networks, can outperform their HD peers in terms

of throughput due to higher resource utilization.

It is worth noting that the benefits of dense HetNets in

terms of capacity improvements are generally limited by

the spectrum scarcity. Typically, IBFD as a frequency reuse

technique has been investigated in HetNets setup, where it

has been reported that network throughput can be maximized

under HD-only or IBFD-only HetNets rather than using a

combination of them [389]. The problem of optimizing user

association policy in IBFD HetNets with DUDA scheme is

evaluated in [393]. Also, due to less viable wired backhaul

for small cells, IBFD is investigated in [391], [395] as a

promising solution for wireless backhaul of small cells. Last

but not least, the potential of MIMO antennas to mitigate the

extra interference introduced by IBFD is analyzed in [394],

[396], while the impact of equipping MIMO RNs with IBFD

capability in a cellular network with MIMO BSs is quantified

in [392]. A common result is that BSs and IBFD RNs need

to be equipped with sufficiently large number of antennas to

achieve the expected benefits of IBFD capability.

G. Stochastic Geometry for Physical Layer Security

The usual bit-level cryptographic protocols, requiring heavy

overheads and intense coordination, can be generally compro-

mised if eavesdroppers are equipped with convenient com-

puting capabilities. An alternative promising approach is to

consider physical layer security besides the conventional error

correction mechanisms in such a way to impair the channel

capacity of eavesdroppers with limited impact on the QoS of

legitimate users [54]. In fact, based on the Wyner’s encoding

scheme, a transmitter selects two rates, namely, the rate of

codewords Rt and the rate of confidential messages Rs, i.e., the

secrecy rate. Reliable connection is actually achieved when the

instantaneous capacity at the intended receivers is greater than

Rt, while a secrecy failure event occurs when the instantaneous

capacity at eavesdroppers is above Rt − Rs [397].

SG is typically harnessed to evaluate the impact of key

system parameters on the physical layer security of large-

scale wireless networks. That is, the interplay between cell

association policy and the secrecy capability is investigated

in [398]–[400]. Physical layer security in the context of large-

scale networks with NOMA is studied in [401], with MIMO in

[402], and with D2D communications in [403]. The sensitivity

of mmWave communications to blockages is explored in [404]

to establish a tradeoff between higher data rates and enhanced

secrecy. The question of secure communications in the context

of a multiuser VLC network deployed in public areas under

a broadcast topology is investigated in [340]–[342]. There are

generally four popular techniques considered in the literature

to enhance physical layer security. For instance, i) the artificial

noise approach in which some artificial noise is added to secret

messages in order to make decoding harder to eavesdroppers

[402], [405]. ii) The secrecy guard zone approach in which

confidential messages are transmitted only if eavesdroppers

are outside an exclusion region around legitimate nodes [341],

[397], [401]. iii) The friendly interference approach in which

a friendly interference is generated to jam the channel ca-

pacity of eavesdroppers with controlled impact on the QoS

of legitimate users, e.g., exploit the generated interference by

D2D communications [403] or by a set of friendly jammers

[406], [407]. iv) The selective transmission approach where

confidential messages are transmitted selectively to users in

such a way to reduce the likelihood of being intercepted by

eavesdroppers, e.g., using directional antennas [397], or the

transmit antenna selection technique [408].
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VIII. TOWARDS NEW HORIZONS FOR STOCHASTIC

GEOMETRY

After intensive use of SG in modeling and analysis of

communication networks, notably during the last decade of

the seminal results [16]–[18], the research community begins

to experience some congestion on applications of SG and

some degree of duplication in the literature. This is in par-

ticular due to the following reasons: i) SG is very rich in

theory but only few results are used practically in modeling

and analysis of wireless networks, including Campbell’s and

PGFL theorems, as well as constructing properties that may

preserve the Poisson law (e.g., superposition, displacement,

mapping, independent thinning). ii) Given some modeling

and design challenges, SG has not been sufficiently explored

in the analysis of promising research areas (e.g., networks

with metasurfaces, molecular communication (MC), ML, FSO

for backhaul or satellites communications). iii) No bridges

of interaction are created between SG and other emerging

mathematical theories, which can give rise to new practical

results of SG. In this section, we will outline some emerging

research avenues that can revitalize the use of SG during this

decade.

A. Stochastic Geometry for Modeling and Analysis of Molec-

ular Communications

One promising frontier of conventional EM communication

systems is the ability to share, manipulate and control informa-

tion on a very small scale in such a way to connect swarms of

intelligent autonomous nano-devices, i.e., devices in a scale

ranging from 1 to 100 nanometers, e.g., nano-robots, nano-

processors, nano-clocks. Based on biological communication

in nature where molecules are the basic carriers of information,

MC is expected to be one of the next big15 ideas of communi-

cation due to its inherent biocompatibility and enhanced EE at

the cost of slow propagation speed as compared to EM wave

based communications [409], [410].

The vision of molecular nanonetworks is actually fraught

with many challenges, among them, how information can be

encoded in molecules and how such molecules are supposed

to propagate from a transmitter to a receiver. Several MC

propagation schemes are considered in the literature such

as diffusion-based propagation, flow assisted propagation and

bacteria chemotaxis. The most common approach is the free

diffusion of particles where molecules can propagate from one

point to another in a random Brownian motion via inherent

thermal energy, which does not require any external source of

energy and may induce confusion in molecules detection at

the receiver, also known as inter-symbol-interference. Several

ways are considered to encode information in such diffusing

particles, for example encoding information according to the

time of arrival of molecules at the receiver, according to

molecular composition or to the variations on molecules

concentration in the space.

15As was first pointed out conceptually by the 1965 nobel laureate physicist
Richard Feynman in his famous speech entitled “There’s Plenty of Room at
the Bottom” in Dec. 1959.

Another major constraint in MC systems is the laborious and

expensive nature of laboratory experimentation which justifies

the wide use of simulation environments for MC analysis

[411]. Interestingly, the authors of [412] presented a first

attempt to provide some appropriate analytical tools via SG in

such context of miniaturization in MC. The work proposed a

mathematical framework for performance evaluation of a 3D

diffusion-based large-scale MC system. The average number

of sensed particles and the bit error probability at a receiver

located at the origin are next characterized over many spatial

realizations of a swarm of point transmitters scattered in

space according to some PPP and emitting the same bit

sequence (the same type of molecule) simultaneously, i.e., co-

channel transmitters. Analytical evaluation of MC as a serious

alternative to EM wave based systems, particularly in strong

attenuation regimes of EM waves, is relatively new and several

fundamental questions need actually years and years to be

answered and agreed about [413]. However, many advances

are expected in the near future due especially to recent

development in inexpensive testbed for MC systems capable

of transmitting short text messages via chemical signals [411].

B. Stochastic Geometry in the Era of Machine Learning

SG and ML have recently been considered as the most

popular methods with renewed and widespread interest in

the design and analysis of wireless networks. The former is

actually a powerful model-driven approach aimed to enhance

the tractability and accuracy of conventional probabilistic

models, e.g., channel, interference, scheduling, by considering

the randomness on the locations of the transmitters and/or

the receivers, so that one can evaluate performance metrics of

wireless networks upon several realizations of network geom-

etry [2], [18]. The latter is however, a data-driven simulation-

based approach, which by collecting sufficient amount of

realistic data, i.e., the training set, can feed a supervised

and/or unsupervised learning process deployed at the cloud

components of the network, to enable the prediction of the

desired result, e.g., performance metrics [414], [415].

To the best of the authors’ knowledge, there are funda-

mentally two lines of thought in the literature regarding the

mode of interaction that should prevail between ML and SG.

The first vision is based on an evolutionary interaction [414]–

[416], in which ML is conceived as a separate evolved alterna-

tive to SG enabling to overcome the shortcomings of the latter

and provide more accurate representation of reality. In fact,

SG model-driven approach is generally governed by a tradeoff

between tractability and accuracy, where tractable models are

simply less accurate to reflect realistic scenarios, while precise

models are hard to derive and their resulting algorithms are

too complex to implement. However, with the unprecedented

availability of data, inducing the need for software-controlled

and optimized operations, in addition to recent developments

in smart radio environments via the use of metasurfaces

[32], [362], it is difficult to develop accurate SG models

that can capture such complex scenarios of analysis due to

the unlimited degrees of freedom and system constraints.

The second vision is based on a collaborative interaction
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[38]–[41]; in which a common ground and potential cross-

fertilization between SG and ML is created such that the

strength of both approaches will be jointly harnessed to tackle

the same issue. For instance, SG models can be integrated

as a hypothesis class in the learning process of ML. One

representative example is the class of problems known as the

subset selection problems, where an optimal subset needs to be

selected from a ground set. In such context, SG probabilistic

models constructed by finite DPPs are used to feed ML data-

driven supervised learning frameworks.

C. Stochastic Geometry as a Multi-objective Analytical Tool

From the previous discussions, it is evident that future

5G/B5G wireless networks are going to be highly heteroge-

neous, multi-layered, with embedded intelligence at both the

core and the edge of the network, where ML is expected

to play a crucial role in link and system-level decisions.

In such a context, future performance metrics need to be

carefully tailored to ensure the joint evaluation of throughput,

latency, and reliability, which ultimately leads to the joint

optimization of communication, control, localization, sens-

ing, energy consumption, and many other parameters and

resources. Interestingly, SG can be envisioned as a potential

analytical candidate in this way.

For instance, Fig. 10 presents some scenarios where the

SINR can be combined with useful utility functions to en-

able the joint analysis of communication and other related

attributes, e.g., DUDA, SWIPT [417], [418]. Also, SG is

increasingly adopted in studying the joint localization and

communication of users in a given propagation environment.

In particular, the authors of [419], [420] use tools from SG

and its inherent PP theory to evaluate the statistics of the

number of BSs/anchors (i.e., nodes with known positions) that

can participate in the localization procedure of users/agents

(i.e., nodes with unknown positions) as a function of system-

level parameters and channel impairments. Typically, there is

a tradeoff, known as the hearability problem, that needs to

be considered between communication requirements that ask

for a strong signal from the desired BS and a poor one from

interferers, versus localization that requires a good signal from

most BSs.

Furthermore, SG and its inherent random set theory are

becoming widely adopted for the analysis of combined recog-

nition, data manipulation, and movement in real-world envi-

ronments. Typically, SG is used to study uncertainty in geo-

metric objects in order to build models from IoT measurements

[421], [422]. The physical environment landmarks are actually

abstracted into parametric representations such as points, lines,

and edges. These features are next handled as realizations of

random variables modeled as a finite random set, which based

on the Bayesian estimation paradigm, can allow to jointly

estimate the number of objects and their states. This is relevant

for example to detect and locate objects from surveillance

images [421]. Besides, random set theory is gaining increased

importance for providing a theoretical estimation for the

famous simultaneous localization and map building (SLAM)

problem that asks for the ability to place an autonomous robot

at an undefined location in an undefined environment and

construct a map based only on relative ambient observations,

and subsequently use this map for spatial mobility of this robot

[422]. Using random finite set theory, SLAM is then presented

as a Bayesian filtering problem in which the joint recursive

estimation of the robot route and set-valued map are spatially

distributed over time as measurements are acquired.

Future research efforts are therefore expected to identify

attractive applications of SG in multi-objective optimization.

D. Grothendieck Toposes as Mathematical Bridges for

Stochastic Geometry

One effective way to deal with the embarrassing tradeoff

between tractability and accuracy that governs SG models, is

to investigate how to build more advanced and accurate SG

models from tractable and easy-to-interpret models conceived

by other mathematical fields. Our vision therefore is to create

some abstract bridges of interaction between SG and other

mathematical fields where we have reached some remarkable

degree of specialization and proficiency. The rationale is to

create meaningful and powerful analogies that may illuminate

concepts and suggest new practical results in SG. A promising

approach to meet such aims is through the concept of topos

introduced by Alexandre Grothendieck during his Seminar on

Algebraic Geometry in the early sixties.

“It is the notion of topos that is this “bed” where come to

be married geometry and algebra, topology and arithmetic,

mathematical logic and category theory, the world of the

continuous and that of discontinuous or discrete structures. It

is the most vast thing I have conceived, to grasp with finesse,

through the same language rich in geometric resonances, an

“essence” common to situations most distant from each other,

coming from one region or another of the vast universe of

mathematical things.”—Alexandre Grothendieck commented

in his famous text of autobiographical reflections “Récoltes et

Semailles” [423].

Recently, new perspectives on the notion of topos have

emerged. According to Olivia Caramello [424], Grothendieck

toposes can be used as unifying spaces that can serve as

bridges for transferring properties, ideas, and results between

distinct mathematical theories. In our case, between SG and

other mathematical fields, so that long-standing problems for-

mulated in SG can be solved using techniques from a different

field, and results in a well known area can be appropriately

transferred to results in SG.

IX. CONCLUSION

In this paper, we surveyed and investigated PP models,

statistical tools, SG system model preferences, and the major

analytical techniques extracted from the rich legacy of SG-

based research works, conducted over the past decade in

modeling and analysis of wireless networks. We also outlined

how SG has been considered to capture the properties of new

RANs and quantified the benefits of a number of 5G/B5G en-

abling technologies. The main goal is to review the milestones

established in the past decade in the usage of SG for wireless
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networks and to predict the challenges in the upcoming decade

in the light of 5G/B5G emerging paradigms.

The insights presented in this paper illustrate the flexibility

of SG and its ability to capture the analysis of the rather

unconventional scenarios; these features of SG will likely en-

able it to remain as an essential tool in modeling and analysis

of future wireless networks, especially given its potential of

cross-fertilization with ML and its expected role in the analysis

of emerging wireless communication systems and network

architectures. Also, the Grothendick’s toposes is a powerful

mathematical concept that can illuminate novel seminal results

into SG and hence pave the way for the next generation use

cases of SG in wireless networks.
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cellular networks using stationary and nonstationary point processes,”
IEEE Access, vol. 6, pp. 47144-47162, 2018.

[150] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams, 2nd Ed..Chichester,
West Sussex, England: John Wiley & Sons, 1999.

[151] S. Krishnan and H. S. Dhillon, “Spatio-temporal interference corre-
lation and joint coverage in cellular networks,” IEEE Trans. Wireless

Commun., vol. 16, no. 9, pp. 5659-5672, Sep. 2017.

[152] H. ElSawy and E. Hossain, “On stochastic geometry modeling of
cellular uplink transmission with truncated channel inversion power
control,” IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4454-
4469, Aug. 2014.

[153] M. Di Renzo and P. Guan, “Stochastic geometry modeling and system-
level analysis of uplink heterogeneous cellular networks with multi-
antenna base stations,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2453-
2476, Jun. 2016.

[154] F. J. Martin-Vega, G. Gomez, M. C. Aguayo-Torres, and M. Di Renzo,
”Analytical modeling of interference aware power control for the uplink
of heterogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 15, no. 10, pp. 6742-6757, Oct. 2016.

[155] P. Herath, C. Tellambura, and W. A. Krzymien, “Stochastic geometry
modeling of cellular uplink power control under composite Rayleigh-
Lognormal fading,” in Proc. IEEE 82nd Veh. Technol. Conf. (VTC2015-

Fall), pp. 1-5, Boston, MA, 2015.

[156] S. Singh, X. Zhang, and J. G. Andrews, “Joint rate and SINR coverage
analysis for decoupled uplink-downlink biased cell associations in
HetNets,” IEEE Trans. Wireless Commun., vol. 14, no. 10, pp. 5360-
5373, Oct. 2015.

[157] L. Zhang, W. Nie, G. Feng, F. Zheng, and S. Qin, “Uplink performance
improvement by decoupling uplink/downlink access in HetNets,” IEEE

Trans. Veh. Technol., vol. 66, no. 8, pp. 6862-6876, Aug. 2017.

[158] F. Boccardi et al., “Why to decouple the uplink and downlink in cellular
networks and how to do it,” IEEE Commun. Mag., vol. 54, no. 3, pp.
110-117, Mar. 2016.

[159] M. Haenggi, “User point processes in cellular networks,” IEEE Wireless
Commun. Lett., vol. 6, no. 2, pp. 258-261, Apr. 2017.

[160] M. Afshang, H. S. Dhillon, and P. H. Joo Chong, “Modeling and
performance analysis of clustered device-to-device networks,” IEEE

Trans. Wireless Commun., vol. 15, no. 7, pp. 4957-4972, Jul. 2016.

[161] M. Afshang, H. S. Dhillon, and P. H. J. Chong, “Fundamentals of
cluster-centric content placement in cache-enabled device-to-device
networks,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2511-2526, Jun.
2016.

[162] W. Yi, Y. Liu, and A. Nallanathan, “Modeling and analysis of D2D
millimeter-wave networks with Poisson cluster processes,” IEEE Trans.

Commun., vol. 65, no. 12, pp. 5574-5588, Dec. 2017.

[163] X. Lin, J. G. Andrews, and A. Ghosh, “Spectrum sharing for device-
to-device communication in cellular networks,” IEEE Trans. Wireless

Commun., vol. 13, no. 12, pp. 6727-6740, Dec. 2014.

[164] S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Tractable
model for rate in self-backhauled millimeter wave cellular networks,”
IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2196-2211, Oct.
2015.

[165] M. Di Renzo, “Stochastic geometry modeling and analysis of multi-tier
millimeter wave cellular networks,” IEEE Trans. Wireless Commun.,
vol. 14, no. 9, pp. 5038-5057, Sep. 2015.

[166] T. Bai, R. Vaze, and R. W. Heath, ”Analysis of blockage effects on
urban cellular networks,” IEEE Trans. Wireless Commun., vol. 13, no.
9, pp. 5070-5083, Sep. 2014.

[167] H. Inaltekin, M. Chiang, H. V. Poor, and S. B. Wicker, “On unbounded
path-loss models: effects of singularity on wireless network perfor-
mance,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1078-1092,
Sep. 2009.

[168] X. Zhang and J. G. Andrews, “Downlink cellular network analysis with
multi-slope path loss models,” IEEE Trans. Commun., vol. 63, no. 5,
pp. 1881-1894, May 2015.

[169] J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta, “Are we
approaching the fundamental limits of wireless network densification?,”
IEEE Commun. Mag., vol. 54, no. 10, pp. 184-190, Oct. 2016.

[170] J. Liu, M. Sheng, L. Liu, and J. Li, “Effect of densification on cellular
network performance with bounded pathloss model,” IEEE Commun.

Lett., vol. 21, no. 2, pp. 346-349, Feb. 2017.

[171] A. AlAmmouri, J. G. Andrews, and F. Baccelli, “SINR and throughput
of dense cellular networks with stretched exponential path loss,” IEEE

Trans. on Wireless Commun., vol. 17, no. 2, pp. 1147-1160, Feb. 2018.

[172] J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta,
and R. W. Heath, “Modeling and analyzing millimeter wave cellular
systems,” IEEE Trans. Commun., vol. 65, no. 1, pp. 403-430, Jan. 2017.

[173] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 569-572, Dec. 2014.

[174] A. A. Khuwaja, Y. Chen, N. Zhao, M.-S. Alouini, and P. Dobbins, “A
survey of channel modeling for UAV communications,” IEEE Commun.

Surveys Tuts, vol. 20, no. 4, pp. 2804-2821, Fourthquarter 2018.

[175] J. Liu, M. Sheng, L. Liu, and J. Li, “Performance of small cell networks
under multislope bounded pathloss model: from sparse to ultradense
deployment,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11022-
11034, Nov. 2018.

[176] C. Galiotto, N. K. Pratas, N. Marchetti, and L. Doyle, “A stochastic
geometry framework for LOS/NLOS propagation in dense small cell
networks,” in Proc. IEEE Int. Conf. Commun. (ICC), pp. 2851-2856,
London, UK, 2015.
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[310] A. Zakrzewska, D. López-Pérez, S. Kucera, and H. Claussen, “Dual
connectivity in LTE HetNets with split control- and user-plane,” in
Proc. IEEE Globecom Workshops (GC Wkshps), pp. 391-396, Atlanta,
GA, USA, Dec. 2013.

[311] O. Semiari, W. Saad, M. Bennis, and M. Debbah, “Integrated millimeter
wave and sub-6 GHz wireless networks: A roadmap for joint mobile
broadband and ultra-reliable low-latency communications,” IEEE Wire-

less Commun., vol. 26, no. 2, pp. 109-115, Apr. 2019.

[312] M. Peng, Y. Li, J. Jiang, J. Li, and C. Wang, “Heterogeneous cloud
radio access networks: a new perspective for enhancing spectral and
energy efficiencies,” IEEE Wireless Commun., vol. 21, no. 6, pp. 126-
135, Dec. 2014.

[313] S. Mukherjee and H. Ishii, “Energy efficiency in the phantom cell
enhanced local area architecture,” in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), pp. 1267-1272, Shanghai, China, 2013.

[314] T. Han et al., “Small cell offloading through cooperative communi-
cation in software-defined heterogeneous networks,” IEEE Sensors J.,
vol. 16, no. 20, pp. 7381-7392, Oct. 2016.

[315] H. Ibrahim, H. ElSawy, U. T. Nguyen, and M.-S. Alouini, “Mobility-
aware modeling and analysis of dense cellular networks with C-
plane/U -plane split architecture,” IEEE Trans. Commun., vol. 64, no.
11, pp. 4879-4894, Nov. 2016.

[316] B. Yang, X. Yang, X. Ge, and Q. Li, “Coverage and handover analysis
of ultra-dense millimeter-wave networks with control and user plane
separation architecture,” IEEE Access, vol. 6, pp. 54739-54750, 2018.

[317] R. Arshad, L. Lampe, H. ElSawy, and M. J. Hossain, “Integrating UAVs
into existing wireless networks: A stochastic geometry approach,” in
Proc. IEEE Globecom Workshops (GC Wkshps), pp. 1-6, Abu Dhabi,
UAE, Dec. 2018.

[318] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, Fourthquarter
2017.

[319] H. Kong, I. Flint, P. Wang, D. Niyato, and N. Privault, “Fog radio
access networks: Ginibre point process modeling and analysis,” IEEE

Trans. on Wireless Commun., vol. 17, no. 8, pp. 5564-5580, Aug. 2018.

[320] D. Malak, M. Al-Shalash, and J. G. Andrews, “Spatially correlated
content caching for device-to-device communications,” IEEE Trans.
Wireless Commun., vol. 17, no. 1, pp. 56-70, Jan. 2018.

[321] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in Proc. IEEE Int. Conf. Commun. (ICC), pp. 3358-
3363, London, UK, 2015.



48

[322] J. Wen, K. Huang, S. Yang, and V. O. K. Li, “Cache-enabled hetero-
geneous cellular networks: optimal tier-level content placement,” IEEE
Trans. Wireless Commun., vol. 16, no. 9, pp. 5939-5952, Sep. 2017.

[323] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on cache-enabled
wireless heterogeneous networks,” IEEE Trans. Wireless Commun., vol.
15, no. 1, pp. 131-145, Jan. 2016.

[324] Y. Cui, Y. Wu, and D. Jiang, “Analysis and optimization of caching
and multicasting in large-scale cache-enabled information-centric net-
works,” IEEE Glob. Commun. Conf. (GLOBECOM), pp. 1-7, San
Diego, CA, USA, Dec. 2015.

[325] Z. Zhao, M. Peng, Z. Ding, W. Wang, and H. V. Poor, “Cluster content
caching: an energy-efficient approach to improve quality of service in
cloud radio access networks,” IEEE J. Sel. Areas Commun., vol. 34,
no. 5, pp. 1207-1221, May 2016.

[326] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp.
1164-1179, Jun. 2014.

[327] G. Fontanesi, A. Zhu, and H. Ahmadi, “Outage analysis for millimeter-
wave fronthaul link of UAV-aided wireless networks,” IEEE Access,
vol. 8, pp. 111693-111706, Jun. 2020.

[328] J. Park, S. Kim, and J. Zander, “Tractable resource management
with uplink decoupled millimeter-wave overlay in ultra-dense cellular
networks,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4362-
4379, Jun. 2016.

[329] H. Elshaer, M. N. Kulkarni, F. Boccardi, J. G. Andrews, and M. Dohler,
“Downlink and uplink cell association with traditional macrocells and
millimeter wave small cells,” IEEE Trans. Wireless Commun., vol. 15,
no. 9, pp. 6244-6258, Sep. 2016.

[330] J. M. Jornet and I. F. Akyildiz, “Channel modeling and capacity
analysis for electromagnetic wireless nanonetworks in the teraHertz
band,” IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3211-3221,
Oct. 2011.

[331] V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Kouch-
eryavy, “Interference and SINR in millimeter wave and teraHertz
communication systems with blocking and directional antennas,” IEEE

Trans. Wireless Commun., vol. 16, no. 3, pp. 1791-1808, Mar. 2017.
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