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I. INTRODUCTION

Stochastic geometry (SG) is a field of applied probability that aims to provide tractable mathematical models and appropriate statistical methods to study and analyze random phenomena on the plane R 2 or in larger dimensions [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF]. Its development was driven by applications in several scientific areas such as forestry, image analysis, geophysics, neurophysiology, cardiology, finance, and economics. In the context of communication networks, the location of user equipment (UE) and base stations (BSs) are scattered randomly over an enormous number of possibilities, where designing the system for every network realization would be time-consuming and resource-intensive [START_REF] Baccelli | Stochastic geometry and architecture of communication networks[END_REF], [START_REF] Baccelli | Stochastic geometry models of mobile communication networks[END_REF]. Instead, using tools from SG [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF], the location of nodes (i.e., UEs and/or BSs) is assessed statistically in order to study the interaction between them, which inherently considers all possible network realizations and generally capture the main dependencies of the network performance connectivity (capacity/throughput and reliability). This is broadly understood if we see the concept of using a statistical distribution to abstract the variety of potential network topologies as actually similar to the approach of considering a statistical distribution to model the infinite possibilities of multipath fading and shadowing.

A. A Brief History of Stochastic Geometry

SG as a concept of geometric probability is a field that can be stretched back at least 300 years. Indeed, the bond between probability theory and geometry reverts back to the 18th century when several challenging problems and imagined experiments raised by prominent mathematicians, pondering about the impact of varying randomly geometric forms on the probability of specific events. We quote particularly the Buffon's needle problem 1 (1733), and afterwards questions related to Sylvester's four-point problem 2 (1864) and Bertrand's 1 Buffon's needle problem asks to find the probability that a needle of a given length will land on a line, given a window with equally spaced parallel lines far apart by a given distance. It provides a theoretical scheme to statistically determine the number π. 2 Sylvester's four-point problem asks for the probability that four points scattered randomly in a given window region have a convex hull, i.e., it will be possible to connect any two points within the shape constructed by the four points with a straight line that does not leave the shape. paradox 3 (1889). A short historical outline of these early days of geometric probability may be found in [START_REF] Schneider | Stochastic and integral geometry, Probability and its Applications[END_REF].

Since the 1950s, the framework of geometric probability broadened substantially and framed as an academic area. In particular, the focus mainly switched to models involving a typical number of randomly selected geometric objects. As a consequence, the four distinguishable mathematical strands of integral geometry theory [START_REF] Santaló | Integral Geometry and Geometric Probability[END_REF], random set theory [START_REF] Matheron | Random Sets and Integral Geometry[END_REF], random measures theory [START_REF] Grandell | Point processes and random measures[END_REF], and point process (PP) theory [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF] started to play a prominent role in the geometric probability, which since then was called stochastic geometry. Integral geometry gives a unified approach for defining integrands over curves, surfaces, volumes, and higher-dimensional manifolds by using tools from probability theory, group theory, and projective geometry. Random sets generalizes the concept of random vectors, by addressing random entities whose number of components is unknown. Random measures theory is focused on studying the properties of measures established on random elements. In the special case where these measures are integer-valued, random measures reduce to PPs considered as an important subclass of random measures. Discussions on how early problems on geometrical probability have led to the construction of primary results on these pillar theories of SG, can be found in [START_REF] Coupier | Stochastic Geometry: Modern Research Frontiers[END_REF]. Moreover, for the sake of exploratory data analysis, parameter estimation, and model fitting, SG has been endowed with a statistical theory in similarity with the traditional probability theory. More statistical analysis and parameters estimation can be found in [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF].

In the context of communication networks, the paper [START_REF] Gilbert | Random plane networks[END_REF] is the first to consider tools from SG to evaluate connectivity in a network of stations represented by a Poisson point process (PPP). In particular, it was only by the late 1990s that important ideas from SG found their way to modeling and analysis of communication networks [START_REF] Baccelli | Stochastic geometry and architecture of communication networks[END_REF], [START_REF] Baccelli | Stochastic geometry models of mobile communication networks[END_REF], where tools based on Poisson Voronoi tessellations and Delaunay triangulation were proposed to derive geometric characteristics of hierarchical links between stations. To the best of the authors' knowledge, key results were reported a decade later, where the baseline mathematical framework was characterized in the case of a generative single-tier wireless network [START_REF] Haenggi | A geometric interpretation of fading in wireless networks: theory and applications[END_REF]- [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. Since then, generalizations to more advanced SG models have been gradually adopted in subsequent works. For example, extensions to finite wireless networks are studied in [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF], to multi-tier networks are reported in [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF], and to the uplink direction are analyzed in [START_REF] Novlan | Analytical modeling of uplink cellular networks[END_REF]. More discussions about such early extensions can be found in [START_REF] Zuyev | Stochastic geometry and telecommunications networks[END_REF]- [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF].

B. The Importance of Stochastic Geometry in 5G/B5G Wireless Networks

With exponential digitalization of modern society, 5G/B5G networks are envisioned to play a major role in the process of achieving higher data rates, hyper-connectivity, and ultra-low latency [START_REF] Chih-Lin | 5G: Rethink mobile communications for 2020+[END_REF], [START_REF]Key drivers and research challenges for 6G ubiquitous wireless intelligence[END_REF]. To achieve such requirements, future 5G/B5G wireless networks are expected to be more heterogeneous due to various targeted verticals with specific demand, in addition to the use of higher-frequency bands (e.g., mmWave [START_REF] Pi | An introduction to millimeter-wave mobile broadband systems[END_REF], terahertz (THz) communications [START_REF] Song | Present and future of teraHertz communications[END_REF], and visible light communications (VLC) [START_REF] Pathak | Visible light communication, networking, and sensing: A survey, potential and challenges[END_REF]) enabling to build high-speed short-range networks. Also, environmental objects will be coated with intelligent metasurfaces, commonly known as reconfigurable intelligent surfaces (RIS), which can reflect incident signals in a customized way to optimise/recycle signal propagation in future networks [START_REF] Liaskos | A new wireless communication paradigm through softwarecontrolled metasurfaces[END_REF], [START_REF] Renzo | Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come[END_REF]. The use of unmanned aerial vehicles (UAVs) will be a common and mature technology, where they can be used as flying-BSs to support terrestrial coverage in isolated regions, enhance capacity in traffic overloaded user hotspots, and even used as flying-UEs for delivery or supervision purposes [START_REF] Mozaffari | A Tutorial on UAVs for wireless networks: Applications, challenges, and open problems[END_REF]. Interestingly, end terminals will be gradually equipped with computing and/or storage capabilities, in a fog radio access architecture (F-RAN) fashion [START_REF] Li | A survey of caching techniques in cellular networks: research issues and challenges in content placement and delivery strategies[END_REF], enabling to emerge from the paradigm of ubiquitous connectivity to that of ubiquitous wireless intelligence.

Consequently, as the complexity and heterogeneity of modern wireless networks is continuously increasing, tools from artificial intelligence and machine learning (ML) will be crucial to learn static and dynamic components of the wireless environment and then help to make optimal control decisions for system-level performance. Also, SG adopted as a powerful model-driven tool for the evaluation of wireless networks during the last decade, is expected to remain an effervescent area of research in the foreseeable future, due typically to the following reasons: First, spatial arrangement of transmitters and receivers will continue to play a major role in the prediction of performance metrics in 5G/B5G wireless networks, e.g., performance scaling laws in ultradense networks (UDNs) [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF], [START_REF] Alammouri | A unified asymptotic analysis of area spectral efficiency in ultradense cellular networks[END_REF], impact of coupling UE and BS locations on system-level performance (see Table IV). Second, a cross-fertilization between SG and ML can be made to achieve better results in terms of accuracy and flexibility [START_REF] Zappone | Wireless networks design in the era of deep learning: model-based, AI-based, or both?[END_REF], [START_REF] Zappone | Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks for wireless system optimization[END_REF]. For instance, SG can be integrated as a hypothesis class in the learning process of ML to evaluate the family of subset selection problems [START_REF] Blaszczyszyn | Determinantal thinning of point processes with network learning applications[END_REF], [START_REF] Saha | Machine learning meets stochastic geometry: determinantal subset selection for wireless networks[END_REF]. Third, despite the ability to build a programmable and controlled wireless environment in 5G/B5G networks, thanks to F-RAN and massive adoption of metasurfaces, it is actually impossible to control all facets of the environment, e.g., building sway generated by winds and thermal expansion of materials [START_REF] Kedar | Urban optical wireless communication networks: the main challenges and possible solutions[END_REF] or beams misalignment in higher-frequency communications [START_REF] Wildman | On the joint impact of beamwidth and orientation error on throughput in directional wireless Poisson networks[END_REF]. Hence, the need to model such uncontrolled network aspects with random processes, and then the ubiquitous need for SG.

C. Relevant Surveys on Stochastic Geometry for Wireless Networks

Given its mathematical flexibility and rich theoretical background, on the one hand, and massive proliferation of new communication concepts and technologies, on the other hand, several interesting survey and magazine papers have been developed on applications of SG in wireless networks [START_REF] Zuyev | Stochastic geometry and telecommunications networks[END_REF]- [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Andrews | Seven ways that HetNets are a cellular paradigm shift[END_REF]- [START_REF] Elsawy | Modeling and analysis of cellular networks using stochastic geometry: A tutorial[END_REF].

For instance, the work in [START_REF] Zuyev | Stochastic geometry and telecommunications networks[END_REF] is the first paper to survey the main SG models and tools used in the evaluation of communication networks. A particular focus of the paper is given to earlier references up to 2008, where tools from SG have been particularly leveraged in: i) fixed line networks to derive the main statistical properties of cables connecting subscribers and concentration points. Such properties are next used to evaluate infrastructure costs as a function of nodes density, ii) cellular networks to evaluate the impact of network geometry on key performance metrics based on the signal-to-interference-plusnoise ratio (SINR) levels, e.g., service coverage, handover, and paging, and iii) ad hoc networks to study connectivity properties of the random graphs based on the SINR. The paper in [START_REF] Haenggi | Stochastic geometry and random graphs for the analysis and design of wireless networks[END_REF] is a tutorial investigating how analytical tools from SG, percolation theory, and random geometric graphs can be applied to evaluate interference in large-scale ad hoc networks and hence derive the related performance metrics. The work in [START_REF] Elsawy | Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey[END_REF] is a comprehensive survey of the literature up to 2013 on modeling and analysis of cellular networks based on SG. The work focuses on multi-tier and cognitive cellular networks given their increased importance in future networks. However, since the publication of [START_REF] Elsawy | Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey[END_REF] quite a number of other radio access network (RAN) technologies have emerged, such as UAV-aided communication networks [START_REF] Mozaffari | A Tutorial on UAVs for wireless networks: Applications, challenges, and open problems[END_REF], cloud RAN (C-RAN) [START_REF]C-RAN: the road towards green RAN[END_REF], [START_REF] Checko | Cloud RAN for mobile networks: A technology overview[END_REF], and F-RAN [START_REF] Li | A survey of caching techniques in cellular networks: research issues and challenges in content placement and delivery strategies[END_REF]. Also, other 5G/B5G technology enablers have flourished, such as non-orthogonal multiple access (NOMA) scheme [START_REF] Islam | Power-domain non-orthogonal multiple access (NOMA) in 5G Systems: potentials and challenges[END_REF], in-band full-duplex (IBFD) communications [START_REF] Sabharwal | In-band full-duplex wireless: Challenges and opportunities[END_REF], and physical layer security [START_REF] Wu | A survey of physical layer security techniques for 5G wireless networks and challenges ahead[END_REF].

The tutorial paper in [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF] presented generative analytical techniques extensively used in the literature to derive the SINR distribution with an emphasis on Rayleigh fading and PPP distributed nodes. In [START_REF] Andrews | Seven ways that HetNets are a cellular paradigm shift[END_REF], [START_REF] Andrews | A primer on spatial modeling and analysis in wireless networks[END_REF], the authors highlighted the rapid trend of modern wireless networks towards heterogeneity and complexity, where new modeling paradigm from SG will be crucial to capture the implications of such heterogeneity, e.g., cell association, uplink-downlink relationship, and nodes' mobility. Furthermore, since connectivity in wireless networks is tightly related to the distribution distance between the receiver and the serving node/s, together with the distribution of the interference power, the survey paper in [START_REF] Moltchanov | Distance distributions in random networks[END_REF] discussed key techniques used to derive the distance distribution when assuming two generative cases: i) Nodes scattered in the 2-dimensional plane R 2 according to a PPP, and ii) nodes independently and uniformly distributed inside a bounded region of R 2 . Also, papers in [START_REF] Haenggi | Interference in Large Wireless Networks[END_REF], [START_REF] Cardieri | Modeling interference in wireless ad hoc networks[END_REF] reviewed the literature results on how SG models have been explored to capture the interference effect in ad hoc networks, while the work in [START_REF] Elsawy | Modeling and analysis of cellular networks using stochastic geometry: A tutorial[END_REF] is a tutorial paper on how SG has been judiciously used to characterize interference in cellular networks.

D. Our Contributions and Paper Organization

This paper differs typically from prior papers in the following ways. First, we review the largely fragmented literature, up to 2020 4 , in wireless communication applications leveraging PP models, and provide for the first time a comprehensive taxonomy of them. While all the previous works focused on standard PP models, namely the PPP, the binomial point process [START_REF] Andrews | Seven ways that HetNets are a cellular paradigm shift[END_REF], [START_REF] Andrews | A primer on spatial modeling and analysis in wireless networks[END_REF] On the importance of using SG to grasp the implications of modern networks tendency towards heterogeneity.

• [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF] Generative analytical techniques to derive coverage probability under the assumptions of Rayleigh fading and PPP distributed nodes.

• [START_REF] Moltchanov | Distance distributions in random networks[END_REF] Generative techniques used to derive the transmit-receive distance distribution.

• [START_REF] Zuyev | Stochastic geometry and telecommunications networks[END_REF] SG models, up to 2008, in the study of communication networks.

• • [START_REF] Haenggi | Stochastic geometry and random graphs for the analysis and design of wireless networks[END_REF] Applications of SG, percolation theory, and random geometry in interference characterization of ad hoc networks.

• • •

[25] SG models, up to 2013, in the study of heterogeneous and cognitive networks.

• • [START_REF] Haenggi | Interference in Large Wireless Networks[END_REF], [START_REF] Cardieri | Modeling interference in wireless ad hoc networks[END_REF] Stochastic interference characterization in ad hoc networks.

• [START_REF] Elsawy | Modeling and analysis of cellular networks using stochastic geometry: A tutorial[END_REF] Stochastic interference characterization in cellular networks.

• [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF], [START_REF] Santaló | Integral Geometry and Geometric Probability[END_REF]- [START_REF] Grandell | Point processes and random measures[END_REF] SG theory in conjunction with related mathematical strands, e.g., integral geometry theory, random set theory, and PP theory.

• •

This work SG models, up to 2020, in the study of wireless networks.

• • • •
(BPP), and the Matérn hard-core point process (MHPP), this paper also addresses other powerful PPs given their inherent properties and system modeling implications (see Fig. 7). This paper additionally reviews the key statistical methods used to compare between PPs and fit some empirical data. Second, we examine the key choices taken in the work of SG system models. For instance, configurations used in the literature to capture coupling between nodes (see Table IV), various cell association strategies, and generative models to capture propagation effects. Also, novel performance metrics introduced after the publication of previous works, are discussed in this paper such as the meta-distribution and the update of coverage probability to account for signal strength/quality and handoff event (see Fig. 10). Next, we present in a refined tutorial fashion for non-specialists, the analytical techniques developed to date in the literature of SG-based modeling and analysis of wireless networks, where we delve into their key mathematical sequence steps. Third, we outline key modeling properties of new 5G/B5G technologies that have been extensively studied in the SG-based literature since the publication of the previous papers, including emerging RAN architectures such as multi-tier networks, infrastructure densification, UAVaided networks, C-RAN, virtualized RAN, and F-RAN, and other enabling technologies such as NOMA, higher-frequency bands, and IBFD. Finally, we usher in new avenues that will stimulate growth into the use of SG over this new decade.

Table I summarizes the key differences between our work and previous ones. To the best of the authors' knowledge, Table II suggests some key references to help a non-specialist reader familiarize with the field of using SG in wireless networks and keep the subsequently discussed concepts less arcane. Fig. 1 summarizes the content of this paper and for convenience, all abbreviations are listed in the Glossary. Notation: P (.) and E (.) stand for probability and expectation measures. L X (s) = E e -sX is the Laplace transform of a random variable X evaluated at s, sometimes referred to as the moment generating function (MGF). Φ X (ω) = L X (-jω) is the characteristic function (CF) of the random variable X such as √ j = -1. We define for any reals m, x ∈ R,

F m (x) = 2 F 1 (1,-m;1 -m; -x) where 2 F 1 (., .; .; z) is the Gauss hypergeometric function for z ∈ C. For a, x ∈ R, Γ(a, x) = ∞ x t a-1 e -t
dt is the upper incomplete Gamma function. We denote by ψ -1 (.) the inverse function of a function ψ(.) and 1 (.) is the indicator function.

II. STOCHASTIC GEOMETRY PRELIMINARIES

In this section, we will discuss some core concepts of the PP theory that plays an important role in SG, since i) the building blocks of many important SG models are based on PPs as points are the most elementary types of geometrical objects; ii) it is common to parameterize geometric objects and map them with PPs in suitable state spaces, e.g., a line process in R 2 can be seen as a PP on a cylinder [START_REF] Santaló | Integral Geometry and Geometric Probability[END_REF]. Next, we will address the key properties of the PPP considered as the baseline and widely used PP, due to its practical mathematical attributes, where some key results can produce surprising consequences [START_REF] Baccelli | Stochastic geometry and architecture of communication networks[END_REF]- [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF], [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF].

A. Spatial Point Process Paradigm

In the context of communication networks, spatial PPs have become a burgeoning strand of SG models to evaluate the following aspects [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF] • The statistical properties of a given set of points.

• The possibility of having a point at a specific location.

• How to build a model of points with minimal error assumptions based on an empirical set of points. • Describing more general random geometric objects made up of unit random elements.

1) The concept of point process: In contrast to earlier applications in queuing theory, where time has a natural order in one-dimensional PPs, the concept is quite different in higher dimensions (d ≥ 2), where there is no natural order of points. Instead, the most common way is to consider the cumulative counting process of a spatial PP Ψ, defined for each bounded set B ⊂ R d as the number of points x i falling into B,

Ψ(B) = xi∈Ψ(B) 1 B (x i ). (1) 
In a more general way, we consider the nth factorial moment measure given by

M (n) (A 1 , • • • , A n ) = E Ψ (n) (A 1 × • • • × A n ) = E   = x1,••• ,xn∈Ψ 1 A1ו••×An (x 1 , • • • , x n )   = A1 • • • An ̺ (n) (x 1 , • • • , x n )dx 1 • • • dx n , (2) 
where = indicates the sum over pairwise distinct n-tuples and

̺ (n) (.) : A 1 × • • • × A n → R +
is the product density function w.r.t. the Lebesgue measure. Without loss of generality and for notation simplicity, we consider that when x i ∈ Ψ, x i will refer to a random variable that captures the potential location of the point x i in R d . However, when x i is used as a parameter of a PDF (or more generally of a product density function) inside a given integral for example, x i will refer to the integration variable over a bounded set covered by the PP Ψ.

2) The nearest neighbor distance and the contact distribution function: One important metric related to the cumulative counting process in [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], is the probability mass function (PMF) of N (•) defined as the probability that there will be exactly n points inside B, i.e., P(N (B) = n). A particular type is the void probability defined as void(B) = P(N (B) = 0). When B = b(y, r) is the ball 5 of radius r and centered at the typical 6 point y, void(b(y, r)) can be interestingly interpreted as the probability that the distance between y and the closest point of Ψ is larger than r. In this way, when y ∈ Ψ, we talk about the nearest neighbor distance distribution G y (.) defined as the distribution of the distance between y and the nearest point of Ψ \ {y}. In simple probability terms,

G y (r) = P(d(y, Ψ \ {y}) ≤ r|y ∈ Ψ) (3) = P(N (b(y, r) \ {y}) > 0|y ∈ Ψ) (4) = 1 -P(N (b(y, r)) = 1|y ∈ Ψ), (5) 
where d(y, Ψ \ {y}) is the distance between the fixed location y and the nearest point of Ψ except y.

When y / ∈ Ψ, we consider the contact distribution function F y (.) that represents the smallest radius necessary for the ball centered at y to contact a point in Ψ. Formally,

F y (r) = P(d(y, Ψ) ≤ r) = 1 -P(N (b(y, r)) = 0). (6) 
G y (.) and F y (.) are important first order summary characteristics of a given PP [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF] enabling to capture clustering or regularity in PPs. Typically, they are equal for the case of a totally random PP like the PPP, while G > F for clustered PPs (Cox, Nymann-Scott, etc.), and G < F for regular PPs (shifted regular lattices, hard-core, and soft-core repulsive PPs, etc.), as illustrated in Fig. 2. More discussions about PPs comparison and classification will be brought in the sequel.

3) The reduced Palm probability: We consider the typical point y from a stationary PP Ψ and we shift Ψ such as y lies at the typical fixed location o (the origin). For a given set B ⊂ R d , G y (.) can be seen as the ratio between the mean number of points except y in the ball of radius r and centered at o, and the mean number of points inside B. Formally, it is the ratio between the reduced Campbell measure expressed as

E ! o (Ψ(B)) = E y∈Ψ∩B 1 A (Ψ -y \ {y})
, and the average number of points inside B expressed as λ ν(B), where A is the event N (b(y, r) \ {y}) > 0, Ψ -y is the shifted PP Ψ such as y lies at o, and ν(B) is the Lebesgue measure or the d-dimensional volume of the subset B.

The previous interpretation of the nearest neighbor distance G y (.) is called the reduced Palm probability measure denoted by P ! o as [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF], [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF]-[8]

P ! o (Ψ ∈ A) = 1 λ ν(B) E   y∈Ψ∩B 1 A (Ψ -y \ {y})   , (7) 
where the index o is to mention the shifting of Ψ towards o, the superscript ! is to refer that the typical point in the origin o is not counted, i.e., P o (Ψ \ {y} ∈ A) = P ! o (Ψ ∈ A), and Ψ ∈ A mentioning that Ψ has the property A.

4) The marked point process: A generalization of the PP Ψ is the concept of marked PP where each point x i ∈ Ψ is assigned a further quantity m xi , called marks, that provides extra information on the object represented by x i . For example, when considering a PP incorporating BSs, marks can be the coverage area of each BS x i [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF], the fading gain between a BS x i and the typical UE [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF], [START_REF] Keeler | SINR-based kcoverage probability in cellular networks with arbitrary shadowing[END_REF], or the BS tier in a multi-tier network [START_REF] Nakata | Spatial stochastic models for analysis of heterogeneous cellular networks with repulsively deployed base stations[END_REF].
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The PPP Aggregative PPs: Cox, Nymann-Scott.. Fig. 2. The tendency towards regularity or clustering of PPs. Typically, increasing regularity reduces Gy and increases Fy simultaneously, while increasing clustering have a dual impact on Gy and Fy.

B. Poisson Point Process Essentials

The PPP is considered as the most popular PP given its tractability and analytical flexibility [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF]. In the following, we will discuss key properties underlying such tractability.

In general, a PPP Ψ of density λ(.) and intensity measure Λ(.) such as for a given

B ⊂ R d , Λ(B) = B λ(x)dx, is characterized by a PMF as P {Ψ(B) = n} = Λ(B) n n! e -Λ(B) . (8) 
1) Slivnyak-Mecke theorem: For a homogeneous PPP (HPPP) Ψ ⊂ R 2 with density λ, the number of points falling in disjoint Borel sets are independent. Hence, the points modeled by a HPPP are totally independent, that is why the HPPP is sometimes referred to as a zero-interaction PP [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF]. In a more general way, the nearest neighbor distance distribution G y and the contact distance distribution F y are equivalent in the case of HPPP. Interestingly, this similarity can be seen as the equivalence between the reduced Palm probability of Ψ in the typical point y located at the origin o and its original distribution counting y. In other words, the spatial averages observed at o / ∈ Ψ, are equivalent in distribution to those observed at o of Ψ∪{o}, which means that conditioning on the typical point does not affect the distribution of the PPP. This is the well-known Slivnyak-Mecke theorem [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF], formally expressed as

P ! y (Ψ ∈ .) = P(Ψ ∈ .). ( 9 
)
This theorem is extensively used in the literature. For instance, in a wireless network where the typical UE is located at the origin o, the Slivnyak-Mecke theorem can be used to derive the mean interference at o, conceiving that the serving BS x 0 belongs to the PP of interferers, but however, it does not contribute towards the interference [START_REF] Baccelli | Stochastic analysis of spatial and opportunistic aloha[END_REF], [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF]. Another valuable application is the transmit-receive distance distribution derived as in [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]Example 1.4.7] [16], [START_REF] Moltchanov | Distance distributions in random networks[END_REF], [START_REF] Haenggi | On distances in uniformly random networks[END_REF]- [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF].

2) Finite Poisson point process: For a fixed number n of nodes inside a given network area W , if k ≤ n nodes are located in a certain subset B ⊂ W , the remaining area W \ B contains necessarily nk nodes, which introduces dependence between points of W , and hence the PPP is not so accurate to model such finite networks. Alternatively, the BPP is considered as the most relevant PP for such scenarios [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF], [START_REF] Moltchanov | Distance distributions in random networks[END_REF], [START_REF] Valenti | A direct approach to computing spatially averaged outage probability[END_REF]- [START_REF] Guo | Outage probability in arbitrarilyshaped finite wireless networks[END_REF]. It is worth mentioning that according to [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF], the probability that a point x ∈ W belongs to B is proportional to the number of points falling inside B. Equivalently,

P (x ∈ B) = Λ(B) Λ(W ) . (10) 
In a more formal way, the conditional multivariate PDF f (x 1 , . . . , x n |Ψ(W ) = n) defined w.r.t. the Lebesgue measure on (R d ) n is expressed as

f (x 1 , . . . , x n |Ψ(W ) = n) = n i=1 λ(x i ) Λ(W ) k . (11) 
Interestingly, the concept of ( 11) is explored to capture the structure of point patterns exhibiting inter-point interactions. That is, it is used in a more refined structure called the Papangelou conditional intensity to construct the family of Gibbs PPs [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], [START_REF] Kroese | Spatial process generation[END_REF]- [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF] and fitting statistical models to specific spatial point patterns via pseudo-likelihood maximization [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns[END_REF]. More generally, [START_REF] Matheron | Random Sets and Integral Geometry[END_REF] is the building block in the definition of the reduced Palm distribution [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF].

3) Simulation of Poisson point process: The equivalence property between a conditional PPP and a binomial distribution in a bounded window W , is typically used in simulation studies to generate a stationary PPP of density λ [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], [START_REF] Kroese | Spatial process generation[END_REF]. Practically, we first generate a Poisson variate N with parameter λ ν(W ) and next we generate N independent and uniformly distributed (iud) points inside W . The resulted PP inside W is equivalent to a PPP with density λ. Besides, [START_REF] Matheron | Random Sets and Integral Geometry[END_REF] is considered as the key to generate an inhomogeneous PPP (IPPP). For example, we consider the realization of a 2dimensional IPPP with density λ(x, y) = 240(6x 5 + 4y 3 ) on the window W = [0, 1] × [0, 1]. The PDF of a given point located in (x, y) is f (x, y) = λ(x, y)/480 bounded by 5. Using the accept-reject method N times, where N is generated by a Poisson variate with parameter λ = 480, we draw uniformly g on [0, 1] and accept (x, y) such as f (x, y)/5 ≤ g. Fig. 3 describes the realization of the previous process in W . A valuable application of such technique in cellular networks modeling and analysis can be found in [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF]Section VI].

4) Campbell and probability generating functional theorems: In the previous analysis, the PPP were constructed based on the PMF in [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF]. In the following, a PPP Ψ can be constructed through probability densities on bounded subsets and generalizing the construction to the whole plane.

In fact, for any real positive function f defined over R d , the probability generating functional (PGFL) of a PPP Ψ, named equivalently the Laplace functional, is expressed as [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]

-[7] L Ψ (f ) = E exp - xi∈Ψ f (x i ) (12) = E exp - R d f (x)Ψ(dx) (13) (a) 
= exp -

R d (1 -e -f (x) )Λ(dx) , (14) 
where (a) follows by using the conditional PDF expression in [START_REF] Matheron | Random Sets and Integral Geometry[END_REF] as in [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]. The expression ( 14) is considered to derive two fundamental results widely explored in SG-based modeling and analysis of wireless networks, namely the Campbell and PGFL theorems. In fact, by considering tf (x) → f (x) in ( 14) with t ≥ 0 and differentiating w.r.t. t at t = 0, we obtain the Campbell theorem, as

E xi∈Ψ f (x i ) = R d f (x)Λ(dx). (15) 
While by replacing e -f (x) → f (x) in [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], we obtain the PGFL theorem for the PPP Ψ, as

E xi∈Ψ f (x i ) = exp - R d (1 -f (x)) Λ(x) . ( 16 
)
5) Preserving the Poisson law: Sometimes, it is necessary to consider some transformations on the PPP used to model node locations in order to obtain more insightful and tractable results. In the following, we consider popular operations preserving the Poisson law and extensively explored in the literature [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]- [START_REF] Coeurjolly | A tutorial on Palm distributions for spatial point processes[END_REF].

• Superposition: The union of independent PPPs

(Ψ k ) with intensities (Λ k ) is a PPP Ψ = k Ψ k with intensity measure Λ = k Λ k .
As an illustration, the superposition of independent K-tier networks is investigated in [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF], [START_REF] Andrews | Seven ways that HetNets are a cellular paradigm shift[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF], [START_REF] Di Renzo | Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[END_REF]. The superposition of two independent layers of line-of-sight (LOS) and non-lineof-sight (NLOS) BSs are considered in [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF]- [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF]. The superposition of independent PPPs to abstract the network of several competitive operators is considered in the context of infrastructure sharing [START_REF] Sanguanpuak | Infrastructure sharing for mobile network operators: analysis of trade-offs and market[END_REF], spectrum sharing [START_REF] Sciancalepore | STORNS: stochastic radio access network slicing[END_REF]- [START_REF] Park | Inter-operator base station coordination in spectrum-shared millimeter wave cellular networks[END_REF], or both [START_REF] Rebato | Resource sharing in 5G mmWave cellular networks[END_REF]- [START_REF] Jurdi | Modeling infrastructure sharing in mmWave networks with shared spectrum licenses[END_REF]. • Independent thinning: is a selection process Ψ p of specific points from the primary PPP Ψ such that each point x is randomly and independently selected with a probability p(x). Accordingly, Ψ p yields a PPP of intensity measure equals to R d p(x)Λ(dx) [4, Proposition 1.3.5.]. Typically, independent thinning is used to generate the family of Cox PP (e.g., Neymann-Scott, log-Gaussian) considered as a generalization of the PPP and used to capture clustered point patterns [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF], [START_REF] Chetlur | Coverage analysis of a vehicular network modeled as Cox process driven by Poisson line process[END_REF]. Also, the nodes of a given network can be thinned independently given their ability to be in LOS or NLOS transmissions with the typical UE [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF]- [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF], to operate in half-duplex (HD) or IBFD mode [START_REF] Munari | A stochastic geometry approach to asynchronous Aloha full-duplex networks[END_REF], or to use device-todevice (D2D) channels as in [START_REF] Sakr | Cognitive and energy harvesting-based D2D communication in cellular networks: stochastic geometry modeling and analysis[END_REF]. ALOHA, the popular algorithm used in the medium access control (MAC) layer to track simultaneous packet transmissions in the network, is considered in [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF], [START_REF] Song | Evaluation of macro diversity gain in long range ALOHA networks[END_REF] as an independent thinning of nodes willing to transmit data. 

(A) = R d p(x ∈ A)Λ(dx),
A ⊂ R d ′ , as given by the displacement theorem [4, Theorem 1.3.9]. Valuable applications can be found in [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF], [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF], [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF], [START_REF] Hmamouche | A Stochastic geometry based approach to tractable 5G RNPO with a new H-LOS model[END_REF]. In some settings, a given point x ∈ Ψ may be moved deterministically with probability 1 into a function f (x) ∈ Ψ f [START_REF] Haenggi | A geometric interpretation of fading in wireless networks: theory and applications[END_REF], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF], and hence the new PP remains a PPP with intensity measure Λ

′ (A) = Λ(f -1 (.)).
This property is also known as the mapping theorem [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF].

A typical application is studied in [START_REF] Madhusudhanan | Stochastic ordering based carrier-to-interference ratio analysis for the shotgun cellular systems[END_REF], [START_REF] Madhusudhanan | Downlink performance analysis for a generalized shotgun cellular system[END_REF], where the authors considered an arbitrary path loss model and a generalized fading model, and next derived a sequence of equivalence relations between the so-called shotgun cellular system and a stochastically equivalent system, namely the canonical model.

III. POINT PROCESSES BEYOND THE PPP

Although the PPP model provides tractable results and many useful closed-form expressions, it cannot capture the geometry of real networks7 [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF], [START_REF] Li | Fitting determinantal point processes to macro base station deployments[END_REF], [START_REF] Nasri | Analytical tractability of hexagonal network model with random user location[END_REF], where nodes are negatively correlated, i.e., spatial inhibition and repulsion, or positively correlated, i.e., spatial aggregation and clustering. In fact, radio planning engineers are generally interested to deploy BSs on theoretical points where there will be a sufficient traffic demand and then an adequate return on investment (ROI). Hence, realistic deployments have commonly an increasing tendency towards clustering in user hotspots (e.g., events, urban area) and a tendency towards repulsion and regularity when users are equally likely scattered [START_REF] Michalopoulou | Studying the relationships between spatial structures of wireless networks and population densities[END_REF]- [START_REF] Achtzehn | Large-scale cellular network modeling from population data: an empirical analysis[END_REF]. In this way, since the received SINR is sensitive to the interaction degree between nodes location, capturing the geometry of such nodes through an appropriate PP will directly impact the accuracy of network performance evaluation [START_REF] Andrews | A primer on spatial modeling and analysis in wireless networks[END_REF], [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF], [START_REF] Michalopoulou | Studying the relationships between spatial structures of wireless networks and population densities[END_REF]- [START_REF] Chiaraviglio | What is the best spatial distribution to model base station density? A deep dive into two european mobile networks[END_REF].

In the following, we will review the alternative PPs used in the literature to model the location of nodes exhibiting interaction and outline the key methods used to infer them. Also, we will discuss the relevant studies applying them in a variety of communication scenarios. Finally, we will develop a comprehensive classification of these PPs according to several attributes such as the degree of interaction between points, the PP family, the ability to characterize interference at an arbitrary point when transmitters are scattered according to this PP, and the analytical tractability of such interference characterization.

A. Classification of Point Processes

A more universal way to classify PPs is by considering the interaction degree between points. In fact, point locations can interact negatively with each other to build a wellcrafted and regular structure or even an intermediate repulsive structure that can be either hard-core or soft-core. Conversely, a decrease in repulsion may be equivalent to an increase in randomness and then a tendency towards the paradigm of zero interaction PP, i.e., the PPP. Afterwards, a positive interaction between points will induce clustered points (see Fig. 2).

1) Stationary deterministic lattices: Traditionally, deterministic lattices, e.g., regular hexagonal lattice, or perfect square lattice, are often considered as a ubiquitous assumption in academia and research to model the location of nodes in a wireless network [START_REF] Haenggi | Interference in Large Wireless Networks[END_REF], [START_REF] Nasri | Analytical tractability of hexagonal network model with random user location[END_REF]. Formally, a 2-dimensional stationary regular lattice can be expressed under the form

Λ grid = cG + U : c ∈ Z 2 , ( 17 
)
where G is the generator matrix of the grid and U is a uniformly distributed random vector over the Voronoi cell of the origin to ensure the stationarity of lattices. However, despite the main advantage of regular lattices, where it is generally more efficient to design good channel access schemes as compared to networks where node locations are perceived as random or in motion, tractable network performance evaluation is only possible for specific user locations in the cell (cell edges, etc.), and a generalization over the entire cell requires complex and time-consuming Monte Carlo simulations [START_REF] Baccelli | Stochastic analysis of spatial and opportunistic aloha[END_REF], [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. Also, with the proliferation of heterogeneous networks (HetNets8 ) where cells radii vary considerably with differences in transmission power, grid models are seen as very idealized, yielding very optimistic results of performance evaluation [START_REF] Baccelli | Stochastic analysis of spatial and opportunistic aloha[END_REF], [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. Typically, when comparing the results obtained from the PPP and lattice models with real deployments, we observe that the PPP model provides a lower bound of reality, while perfect lattices give an upper bound. An accurate PP lies then somewhere between the two extremes. It is neither perfectly periodic, nor completely independent.

2) Hard-core point processes: In such a family of PPs, there are no points at a distance smaller than a specific minimum threshold δ, also known as the hard-core distance. In the following, we will discuss the key variants of hard-core PPs.

• Matérn hard-core point process (MHPP): There are generally two popular variants of MHPP used in the literature of wireless networks modeling and analysis, namely MHPP type I and MHPP type II [START_REF] Matérn | Spatial Variation[END_REF]. MHPP I deletes all pairs of points with pairwise distance less than δ such that the density of the resulting PP is λ = λ p exp(-πλ p δ 2 ),

where λ p is the density of the parent PPP. In MHPP II, the process MHPP I is changed into a dynamic scheme by considering the parent PPP as marked by the uniform speed arrival times t ∈ [0, 1], which results on a density λ = 1exp(-λ p πδ 2 ) /πδ 2 . For λ p → ∞, we note that MHPP I suggests that no point could survive after the dependent thinning process, while MHPP II predicts that the remaining points are correlated with 1/πδ 2 . Performance analytical evaluation of networks modeled by the MHPP is generally challenging given the reduced tractability of the contact and nearest neighbor functions, which enables to only derive approximations for the mean and the MGF of the interference. For instance, tight bounds of the mean interference in MHPP I and MHPP II wireless networks are investigated in [START_REF] Haenggi | Mean Interference in hard-core wireless networks[END_REF], [START_REF] Cho | Bounding the mean interference in Matérn type II hard-core wireless networks[END_REF] and the contact distribution is evaluated in [START_REF] Al-Hourani | Nearest neighbor distance distribution in hard-core point processes[END_REF]. Interestingly, MHPP II is exploited in the literature to capture the minimum safe distance between vehicles in vehicular ad hoc networks (VANETs) [START_REF] Martín-Vega | Geolocation-based access for vehicular communications: analysis and optimization via stochastic geometry[END_REF]. More theoretical analysis of the MHPP can be found in [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], [START_REF] Matérn | Spatial Variation[END_REF]. Formally, for a given finite spatial point pattern u = x 1 , . . . , x n(u) , the multivariate PDF of a finite Gibbs PP Ψ is expressed as

̺ (n) (u) = exp   V0 + n(u) i=1 V1(xi) + i<j≤n(u) V2(xi, xj) + . . .   , (18) 
where exp(V 0 ) is a normalizing factor ensuring that ̺ (n) (.) is a PDF, and for k ≥ 1, V k is a function reflecting the interaction order between points.

It is worth mentioning that the exponential form in [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF] is not arbitrary but driven by the formulation of a maximization problem of the entropy in physics, expressed generally on the basis of logarithmic functions. Typically, statistical analysis has shown that the pairwise interaction is generally sufficient to model inter-points interaction [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF]. In this way, the Gibbs PP is commonly known as pairwise interaction PP. The multivariate PDF of a stationary Gibbs PP Ψ, i.e., V 1 (x) = log(β), ∀x ∈ u, is simplified as

̺ (n) (u) = κβ n(u) i<j≤n(u) h( x i -x j ), (19) 
where x ix j = d(x i , x j ), κ = exp(V 0 ), and h(.) is a function dependent on the mutual distance between points.

The Poisson hard-core process (PHCP) is established as a special case of the Gibbs PP, such that

∀ x i , x j ∈ u, h( x i , x j ) = 1 if x i -x j > δ 0 if x i -x j ≤ δ. (20) 
In wireless networks modeling and analysis, the PHCP was initially investigated via simulations in pattern recognition of deployed nodes that exhibit repulsion [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF]. Some analytical investigations of the PHCP are next considered, to approximate for example performance metrics of a two-tier HetNet as in [START_REF] Flint | Analysis of heterogeneous wireless networks using Poisson hard-core hole process[END_REF]. • Poisson hole process (PHP): Another way to conceptualize hard-core repulsion between points is to consider independent realizations of two HPPPs Ψ 1 and Ψ 2 , with respective densities λ 1 and λ 2 . Next, a PHP Ψ is conceived by considering Ψ 2 as a parent PP depriving it of points located in holes (exclusion regions) of radius δ around the points of Ψ 1 . The density of Ψ is then expressed as [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF], λ = λ 2 exp (-πλ 1 δ). PHP belongs to the family of Cox PPs, i.e., doubly stochastic PPPs, where it is roughly considered as capturing clustering rather than inhibition, this is well understood since creating holes in one region forces nodes to cluster in other regions. Several valuable applications of the PHP are reported in the literature. For instance, in cognitive networks [START_REF] Lee | Interference and outage in Poisson cognitive networks[END_REF], the holes are interpreted as the guard regions around primary users, where the PHP models secondary users allowed to transmit as long as they are located outside the holes, which reduces the detrimental effect of interference. In HetNets [START_REF] Flint | Analysis of heterogeneous wireless networks using Poisson hard-core hole process[END_REF], [START_REF] Deng | Heterogeneous cellular network models with dependence[END_REF], the PHP is explored to capture dependence between tiers, where small cells are not allowed to be deployed very close to macro cells. In [START_REF] Chen | Decentralized opportunistic access for D2D underlaid cellular networks[END_REF], the authors proposed the use of the PHP to model a multi-cell D2D underlaid cellular network. Generally, despite the flexible construction of the PHP as compared to previous hard-core PPs, a complete characterization of interference and then SINR distribution is unfeasible. To overcome such limitation, two approaches are considered in the literature: i) Derive relatively tight bounds and approximations of the MGF of the interference [START_REF] Lee | Interference and outage in Poisson cognitive networks[END_REF], [START_REF] Chen | Decentralized opportunistic access for D2D underlaid cellular networks[END_REF], [START_REF] Yazdanshenasan | Poisson hole process: Theory and applications to wireless networks[END_REF], or ii) approximate the PHP realization with either a PPP or a tractable clustering PP [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF], [START_REF] Deng | Heterogeneous cellular network models with dependence[END_REF].

3) Soft-core repulsive point processes: A smooth way to generate inhibition between points is to increase the tendency towards repulsion and regularity without setting a deterministic restriction via hard-core distances. In the following, we will outline the key soft-core PPs used in the literature of wireless networks modeling and analysis.

• The family of Gibbs point process-Strauss point process (SPP): It is a special case of Gibbs PPs by defining for a constant 0 < γ < 1, the function h in (19), as

h( x i , x j ) = 1 if x i -x j > δ γ if x i -x j ≤ δ. (21) 
The multivariate PDF in [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF] is then simplified as

̺ (n) (u) = κβ n(u) γ s δ (u) , (22) 
where s δ (u) counts the number of unordered pairs of distinct points in u spaced apart by less than δ.

When s(u) increases, the PDF in ( 22) is integrable and goes towards 0, which decreases the tendency towards clustering. γ helps then to softly adjust the repulsiveness intensity, where the SPP is typically reduced to a PPP when γ = 1 and to a PHCP when γ = 0. Practically, it is revealed in [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF] that the SPP is an optimal candidate for point patterns that exhibit a tendency towards repulsion. However, despite its easy interpretation and construction, the finite SPP is geared towards timeconsuming simulations and does not have closed-form expressions for the moments, while generalizations to infinite Gibbs PP renders the analysis even more complicated. 

E   = x1,...,xn∈Ψ h(x 1 , . . . , x n )   = B • • • B ̺ (n) (x 1 , . . . , x n )h(x 1 , . . . , x n )dx 1 • • • dx n , and 
̺ (n) (x 1 , . . . , x n ) = det (C(x i , x j )) 1≤i,j≤n , (23) 
where = denotes that the finite points are pair-wise distinct, det(.) denotes the determinant function, and the matrix C is called the kernel of the DPP. The repulsiveness of the DPP Ψ stems from the observation that the determinant of a complex covariance matrix cannot be greater than the product of its eigenvalues [START_REF] Lavancier | Statistical aspects of determinantal point processes[END_REF], and then

̺ (n) (x 1 , • • • , x n ) ≤ n i=1 ̺ (1) (x i )
, where equality holds in a PPP. Furthermore, motioninvariance of Ψ implies that the kernel C 0 is real depending only on the distance between pairs of points. That is, its Fourier transform, i.e., spectral density, exists and is defined as

ϕ(x) = F (C 0 )(x) = B C 0 (y)e -2πjxy dy, (24) 
where the existence of the associated DPP Ψ to C 0 is constrained by checking |ϕ| ≤ 1 [113, Proposition 5.1]. Depending then on the formulation of the covariance function C 0 or the spectral density ϕ, several versions of motion-invariant DPPs are constructed with different levels of repulsiveness and tractability [START_REF] Ganti | Series expansion for interference in wireless networks[END_REF], [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF], [START_REF] Lavancier | Statistical aspects of determinantal point processes[END_REF]. For instance, Ψ is a Gauss DPP if for every

u ∈ R 2 , C 0 (u) = λ exp (-u/γ 2 )
, where λ is the spatial intensity of the Gauss DPP and γ is a parameter to adjust the repulsiveness of the DPP, such as πλγ 2 ≤ 1 for the existence condition. The Cauchy DPP is obtained when C 0 (u) = λ/ 1 + u/γ 2 m+1 and an existence condition such that πλγ 2 ≤ m, where λ is the intensity of the process and α and m, are shape parameters to tune repulsiveness. The generalized Gamma DPP is defined with a spectral density ϕ(u) = λ mγ 2 / (2πΓ(2/m)) exp (-uγ m ), where the existence condition is λmγ 2 ≤ 2πΓ(2/m).

For more tractability and mathematical convenience, another form of motion-invariant DPPs is introduced, namely the scaled Ginibre PP (β-GPP), by considering a kernel as

C(x, y) = cπ -1 e -c 2β (|x| 2 +|y| 2 ) e c β xy
, where the resulting density λ is scaling with c as λ = c/π [START_REF] Miyoshi | A cellular network model with Ginibre configurated base stations[END_REF]- [START_REF] Kong | Physical layer security in wireless networks with Ginibre point processes[END_REF] and β to seamlessly adjust the repulsion intensity. It is worth mentioning that in addition to the availability of closed-form moments of DPPs, a scaled β-GPP Ψ = (X i ) i∈N enhances mathematical tractability due to the fundamental property in which X 2 i i∈N are mutually independent and follow a Γ(i, β/c), ∀i ∈ N [113, Proposition 1]. Relevant applications of the DPP have been reported in the literature. For instance, the authors of [START_REF] Ganti | Series expansion for interference in wireless networks[END_REF] investigated the goodness-of-fit of a real deployment scenario of nodes with three motion-invariant DPPs: the Gauss model, the Cauchy model, and the Generalized Gamma model, where it is revealed that the latter provides the best fit accuracy at the expense of reduced tractability due to the spectral density based construction of the model. Analytical investigation of the scaled β-GPP is explored in [START_REF] Miyoshi | A cellular network model with Ginibre configurated base stations[END_REF]- [START_REF] Kong | Physical layer security in wireless networks with Ginibre point processes[END_REF], where tractable expressions of the contact distribution function and the Ripley's K-function (see next paragraphs) are derived; however, the distribution of SINR is yet of intractable formulation.

• Perturbed lattice (PL): At this stage, the above-discussed repulsive PPs differ in terms of their construction approaches, tractability, and capability to fit real deployment scenarios. However, one common shortcoming is their inability to softly capture point patterns that exhibit perfect regularity. Accordingly, the perturbed lattice (PL) is adopted in the literature of wireless networks modeling and analysis, such that the degree of perturbation allows to tune softly the process from a deterministic lattice (no perturbation) to highly random deployments (i.e., PPP) [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF], [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Banani | The penalty for random deployment in hexagonal lattice networks with perturbed interferers[END_REF]- [START_REF] Lagum | Cell switch-off for networks deployed with variable spatial regularity[END_REF]. Formally, the construction of a perturbed lattice Λ pert is based on [START_REF] Baccelli | Stochastic analysis of spatial and opportunistic aloha[END_REF], as

Λ pert = Λ grid + X c = cG + U + X c : c ∈ Z 2 , ( 25 
)
where X c , c ∈ Z 2 , is a family of i.i.d. random variables, uniformly distributed on a disk of radius R. In other words, R is a control knob to tune the degree of perturbation (see Fig. 4). R needs generally to be upper-bounded to avoid collision between nodes after perturbation, e.g., in the case of triangular lattice, R needs to verify 0 ≤ R < r s √ 3/2 where r s is the radius of the circumscribed circle of the perfect lattice. Given its ability to capture wide range of point patterns between the PPP and deterministic lattices, the PL is extensively investigated in the literature of wireless networks modeling and analysis. For instance, analytical bounds of the average interference and signal-tointerference ratio (SIR) distribution are studied in [START_REF] Banani | The penalty for random deployment in hexagonal lattice networks with perturbed interferers[END_REF], [START_REF] Banani | A perturbed hexagonal lattice to model basestation locations in real-world cellular networks[END_REF]. In [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Banani | A perturbed hexagonal lattice to model basestation locations in real-world cellular networks[END_REF], [START_REF] Lagum | Quantifying the regularity of perturbed triangular lattices using CoV-Based metrics for modeling the locations of base stations in HetNets[END_REF], the PL is used to model realistic node deployments that exhibit repulsion. Interestingly and given the observation that the best SINR distribution is achievable under perfect lattices [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], the authors of [START_REF] Le-The | Cell switch-off algorithms for spatially irregular base station deployments[END_REF], [START_REF] Lagum | Cell switch-off for networks deployed with variable spatial regularity[END_REF], proposed to proceed on the basis of a novel algorithm, namely the triangular lattice fit, to deactivate some empty BSs, i.e., BSs serving no UE, in such a way to render the structure of activated BSs as regular as possible, which will enable to maximize the overall performance. Evaluating the amount of regularity in the location of transmitters and/or receivers is typically an important metric to predict the performance of a given wireless network. A review of the sparse literature shows that there are generally two judicious tools to evaluate the amount of regularity in a point pattern. i) The coefficient of variation (CoV) metrics, introduced for the first time in [START_REF] Mirahsan | HetHetNets: heterogeneous traffic distribution in heterogeneous wireless cellular networks[END_REF]. They are constructed based on specific geometrical characteristics of point patterns, such as the area of Voronoi cells, the length of Delaunay triangulation edges, and the nearest neighbor function. CoV metrics are typically normalized by a given constant [START_REF] Tanemura | Statistical distributions of poisson Voronoi cells in two and three dimensions[END_REF] such that their value in the context of the PPP equals 1. Valuable applications can be found in [START_REF] Lagum | CoV-based metrics for quantifying the regularity of hard-core point processes for modeling base station locations[END_REF], [START_REF] Lagum | Quantifying the regularity of perturbed triangular lattices using CoV-Based metrics for modeling the locations of base stations in HetNets[END_REF]- [START_REF] Lagum | Cell switch-off for networks deployed with variable spatial regularity[END_REF]. ii) The average deployment gain introduced in [ in terms of the mean square deviation between the two curves of the SIR distribution under the PPP and the point pattern under investigation. • Combination of PPP and stationary grid: Due to the observation that all the nodes of a PL are subject to random perturbation, the authors of [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF] confirmed via experiments on realistic deployments that PLs cannot accurately capture spatial dependence between nodes. Alternatively, the authors of [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF] proposed a new approach to capture soft repulsion between nodes as a combination of two extreme sub-structures, namely a totally random PP (i.e., PPP) and a stationary deterministic lattice. That is, the repulsiveness of the outcome PP is softly tuned based on the ratio between the densities of the PPP and the stationary grid (see Fig. 5).

4) Aggregative point processes:

There are several aspects exhibiting clustering in realistic wireless networks. For instance, there will be a tendency towards clustering for indoor transmitters covering building's interior, or transmitters serving clustered users around hotspots, or even vehicles clustered due to traffic and intersections. Also, UEs of a D2D communication network need to lie in close proximity of each other, and sometimes, the clustering of nodes may be logically induced by some MAC protocols [START_REF] Ganti | Interference and outage in clustered wireless AdHoc networks[END_REF]- [START_REF] Afshang | Poisson cluster process based analysis of HetNets with correlated user and base station locations[END_REF]. In such circumstances of geometrically and logically induced clustering, aggregative PPs are required for an accurate evaluation of networks performance. A common way to capture the clustering of nodes is by considering a further generalization of the PPP via the IPPP, where the distance-dependent density of the IPPP increases in regions of interest. However, one main shortcoming of the IPPP is its non-stationarity, which limits the use of tractable simplifications considered in the case of stationary PPs and also ceases the concept of the typical user where the performance evaluation becomes dependent on the location of the user under investigation. In the following, we review the key aggregative PPs used in the literature to overcome such limitation.

• Cox cluster point process: A further generalization of the finite 9 IPPP is the stationary finite Cox process constructed by randomizing the parameters of the IPPP model. Typically, the intensity of the IPPP becomes a random variable mapped with realizations of a stationary random field with positive values (i.e., the intensity field). The Cox PP is also known as a doubly stochastic PP since its construction is tracked on two steps: i) Generate realizations of the random field {Λ(y)}, i.e., parent points; and next, ii) conditioned on a realization Λ(y) of the random field, point pattern is generated with an IPPP of density λ(y) = Λ(y), i.e., daughter points, where parent points are not observable and do not form part of the resulted point pattern. Depending on the construction method of the random field {Λ(y)}, several flexible families of the Cox PP may be established. For instance, the log-Gaussian Cox process (LGCP) is considered when the logarithm of the random field is a real-valued Gaussian process. In other words, the clustering of point patterns in

LGCP may be smoothly adjusted by acting on the mean and variance of the distribution, where a zero variance is equivalent to the PPP case, and an increasing variance (with constant mean) is equivalent to an increasing tendency towards clustering. Another interesting doubly stochastic PP is the α-stable Cox PP [START_REF] Li | The stochastic geometry analyses of cellular networks with α-stable self-similarity[END_REF], [START_REF] Zhou | On the α-stable distribution of base stations in cellular networks[END_REF], in which the random field follows the α-stable distribution.

The shot-noise Cox PP [START_REF] Møller | Shot noise Cox processes[END_REF] is obtained by generating the random field by a general PP Ψ p , where at each parent point x ∈ Ψ p , the daughter points Ψ d are generated by an IPPP with density m x ψ(yx), where m x is the average number of points clustered around x, and ψ(.) is the PDF of the distance between a daughter point y of the cluster and x. The density of the outcome Cox PP is then expressed as

λ(y) = x∈Ψp m x ψ(y -x), ∀y ∈ Ψ d . (26) 
The Cox PP is typically investigated in VANETs [START_REF] Chetlur | Coverage analysis of a vehicular network modeled as Cox process driven by Poisson line process[END_REF], [START_REF] Choi | Poisson Cox point processes for vehicular networks[END_REF], [START_REF] Choi | An analytical framework for coverage in cellular networks leveraging vehicles[END_REF], where a doubly stochastic process is useful to capture the randomness of roads (modeled by a Poisson line process (PLP)) as well as that of nodes location (modeled by a 1D PPP) (see Fig. 6). Alternatively, and based on empirical data of realistic networks, the authors of [START_REF] Zhou | On the α-stable distribution of base stations in cellular networks[END_REF] observed that user-centric capacity-driven behavior of modern BS deployments is accurately captured by heavy-tailed distributions of the BS density, particularly the α-stable distribution. In [START_REF] Li | The stochastic geometry analyses of cellular networks with α-stable self-similarity[END_REF], analytical investigation in addition to empirical data fitting is obtained by considering a generalized PPP setup with α-stable distributed BS density. In [START_REF] Wang | The impact of user spatial heterogeneity in heterogeneous cellular networks[END_REF], the spatial clustering degree of users (i.e., level of heterogeneity) is captured via the LGCP, where it is observed that the network performance decreases when users are clustered without being correlated to BSs location. • Poisson cluster process (PCP): In Cox cluster PP, the number of parent points follows a general PP while that of daughter points follows a PPP. The PCP, however, is based on a reciprocal approach where the number of parent points follows a PPP while that of daughter points follows a general PP. A representative family is the Gauss-Poisson PP, in which daughter points are either no points, one, or two points, with respective probabilities p 0 , p 1 , and p 2 = 1p 0p 1 [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF]. Another special case of the PCP is when daughter points are scattered i.i.d. around the origin and their number is Poisson distributed, which yields the family of the Neyman-Scott PP, also considered as a special case of the shot-noise Cox PP. In this way, considering the parent PP as HPPP and based on the expression of ψ(.) in ( 26), two important models of the Neyman-Scott PP are commonly constructed, namely the Matérn cluster processes (MCP), where daughter points are i.u.d in a ball b(x, δ) centered at each parent point x ∈ R d , and Thomas cluster processes (TCP), where daughter points are symmetric normal distributed.

Based on simulations and model fitting, relevant works in the literature compared empirical data of existing shared networks [START_REF] Kibiłda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF] and vehicular networks [START_REF] Cui | Vehicle distributions in large and small cities: spatial models and applications[END_REF] with the accurate PP from MCP, TCP, and LGCP. Results showed that the LGCP is the most suitable PP to characterize point patterns that exhibit strong tendency towards clustering, while analytical flexibility is in favor of the others, as performed in [START_REF] Ganti | Interference and outage in clustered wireless AdHoc networks[END_REF]- [START_REF] Afshang | Poisson cluster process based analysis of HetNets with correlated user and base station locations[END_REF] for MCP and TCP, and in [START_REF] Guo | The Gauss-Poisson process for wireless networks and the benefits of cooperation[END_REF], [START_REF] Deng | The benefits of hybrid caching in Gauss-Poisson D2D networks[END_REF] for the Gauss-Poisson PP. • The conditional thinning approach: A tractable generative approach to capture the tendency of nodes towards clustering (i.e., reduced homogeneity) is by considering a specific independent thinning. Typically, the authors of [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF], [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF] introduced a specific thinning of retention probability p conditioned on the serving BS and complementarily dependent on the empty probability of other BSs [START_REF] Lee | Coverage and economy of cellular networks with many base stations[END_REF] (i.e., the probability that a BS does not serve any user). A value of p = 1 is equivalent to a uniform distribution of users, while a decreasing value of p is equivalent to clustering of users around the serving BS. 5) Wide versatile point processes: Despite diversity of the previous discussed PPs, they are restricted to capture point patterns that exhibit either repulsion or clustering. However, in realistic deployments, we usually find a combination of repulsion and aggregation at different levels, and hence a compelling need for more general PPs. In the following, we consider a third type of PPs, namely the wide versatile PPs, that with regard to their typical construction may capture both repulsion and clustering.

• Geyer saturation point process (GSPP): The first PP is the GSPP seen as a natural generalization of the Increasing clustering and aggregation Increasing repulsiveness and regularity Total randomness: PPP for large-scale networks [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF]- [START_REF] Novlan | Analytical modeling of uplink cellular networks[END_REF] BPP for finite networks [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF], [START_REF] Valenti | A direct approach to computing spatially averaged outage probability[END_REF]- [START_REF] Guo | Outage probability in arbitrarilyshaped finite wireless networks[END_REF] Perfect lattices

Perfect clusters

Wide versatile PPs GSPP [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF] IDT approach [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF] Soft-core repulsive PPs

Hard-core repulsive PPs SPP [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF] Perturbed lattice [START_REF] Banani | The penalty for random deployment in hexagonal lattice networks with perturbed interferers[END_REF]- [START_REF] Lagum | Cell switch-off for networks deployed with variable spatial regularity[END_REF] Combination of PPP and stationary grid [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF] DPPs Gauss [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF] Cauchy [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF] Gamma [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF] β-GPP [START_REF] Miyoshi | A cellular network model with Ginibre configurated base stations[END_REF]- [START_REF] Kong | Physical layer security in wireless networks with Ginibre point processes[END_REF] PHCP [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Flint | Analysis of heterogeneous wireless networks using Poisson hard-core hole process[END_REF] MHPP I MHPP II [START_REF] Haenggi | Mean Interference in hard-core wireless networks[END_REF]- [START_REF] Lagum | CoV-based metrics for quantifying the regularity of hard-core point processes for modeling base station locations[END_REF] [98]- [START_REF] Lagum | CoV-based metrics for quantifying the regularity of hard-core point processes for modeling base station locations[END_REF] SSI [START_REF] Lagum | CoV-based metrics for quantifying the regularity of hard-core point processes for modeling base station locations[END_REF] The family of Gibbs PPs Cox cluster PPs [START_REF] Chetlur | Coverage analysis of a vehicular network modeled as Cox process driven by Poisson line process[END_REF], [START_REF] Choi | Poisson Cox point processes for vehicular networks[END_REF], [START_REF] Choi | An analytical framework for coverage in cellular networks leveraging vehicles[END_REF] PHP [START_REF] Flint | Analysis of heterogeneous wireless networks using Poisson hard-core hole process[END_REF]- [START_REF] Deng | Heterogeneous cellular network models with dependence[END_REF] LGCP [START_REF] Wang | The impact of user spatial heterogeneity in heterogeneous cellular networks[END_REF]- [START_REF] Cui | Vehicle distributions in large and small cities: spatial models and applications[END_REF] α-stable [START_REF] Li | The stochastic geometry analyses of cellular networks with α-stable self-similarity[END_REF], [START_REF] Zhou | On the α-stable distribution of base stations in cellular networks[END_REF] Shot-noise Cox [START_REF] Møller | Shot noise Cox processes[END_REF] Poisson cluster processes

Gauss-Poisson PP [START_REF] Guo | The Gauss-Poisson process for wireless networks and the benefits of cooperation[END_REF], [START_REF] Deng | The benefits of hybrid caching in Gauss-Poisson D2D networks[END_REF] Neymann-Scott PP MCP [START_REF] Ganti | Interference and outage in clustered wireless AdHoc networks[END_REF]- [START_REF] Saha | 3GPP-inspired HetNet model using Poisson cluster process: sum-product functionals and downlink coverage[END_REF] TCP [START_REF] Ganti | Interference and outage in clustered wireless AdHoc networks[END_REF]- [START_REF] Afshang | Poisson cluster process based analysis of HetNets with correlated user and base station locations[END_REF] Nymann-Scott as a Cox PP [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF] Conditional thinning approach [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF], [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF] SPP. Actually, when γ in ( 22) is below 1, the GSPP is equivalent to an SPP and then captures repulsiveness. However, in the case of clustering (i.e., γ > 1), the multivariate PDF in [START_REF] Novlan | Analytical modeling of uplink cellular networks[END_REF] is not integrable for s(u) → ∞. To overcome this, the GSPP is then saturated as

̺ (n) (u) = κβ n(u) γ min(s(u),t) , ( 27 
)
where t is a constant to bound the trend of s(u). If t is large enough, the GSPP can capture both repulsion and clustering depending on the fluctuation of γ. Moreover, if t = 0 or γ = 1, the GSPP is equivalent to a PPP.

• The inhomogeneous double thinning (IDT) approach:

The second PP is an analytical framework, namely the inhomogeneous double thinning (IDT) approach, introduced in [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF] in such a way to capture the interaction degree between points based on the superposition of two conditionally independent IPPPs. In fact, by conditioning on the serving BS, the first IPPP captures the fluctuation degree of the distance between the typical user and the serving BS (via the F -function), while the second IPPP captures the fluctuation degree of the distance between the typical user and interfering BSs (via Ripley's Kfunction). Interestingly, based on two triplets of parameters (i.e., one triplet for the F -function and the other triplet for the K-function), it is observed that the IDT model can accurately fit the structure of a wide range of wireless networks, where nodes location can exhibit spatial repulsion and/or clustering. Fig. 7 illustrates a comprehensive taxonomy of the PPs used in the literature of wireless networks modeling and analysis. Typically, the gray bar reflects the range of variation in the degree of interaction of each PP family. For instance, hard-core PPs can only reflect structures with hard-core repulsion dis-tance, without being able to capture totally random structures (PPP or BPP) or perfect lattices. DPPs which are part of softcore PPs, can capture structures ranging from the PPP to some repulsive structures below perfect lattices. However, other softcore PPs such as perturbed lattice and the combination of a PPP and a stationary grid can model more point patterns ranging from PPP to perfect lattices. Interestingly, the IDT approach can model structures ranging from the two extremes.

Table III classifies the PPs, used in the SG literature for modeling and analysis of wireless networks, by modeling use cases and various degrees of tractability. An important key measure of interest is the ability of the PP to permit the derivation of the PGFL of the interference at a given arbitrary point, which in turn allows to derive various performance metrics (e.g. coverage probability, ergodic rate). Three classes of PPs are identified; those enabling to derive the interference's PGFL, those failing to derive it so that an approximation of the PGFL or the mean value of the interference is made, and those with unknown PGFL and mean value of the interference.

B. The Superiority of the Poisson Point Process

With a comprehensive exploration of all the abovementioned references related to proposals for modeling wireless networks with PPs beyond the PPP, it is almost straightforward to infer that such PPs are more accurate than the PPP for modeling emerging wireless architectures. However, they are mathematically less tractable to derive the contact distance function, the nearest neighbor function, and hence we can only approximate the interference and performance behavior. Also, modeling node locations with the previous PPs does not provide a significant change to system design insights as compared to the PPP case [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Haenggi | Interference in Large Wireless Networks[END_REF], [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF]. -Involving analysis of the SINR's distribution inducing reduced computational efficiency.

LGCP

• • Unknown [135]-[137]
Unknown -Its construction is based on elegant simplicity as the random field is a real-valued Gaussian process.

-Can serve as a universal model to fit realistic multi-network empirical data PCP

•

Exact PGFL [START_REF] Chun | Modeling heterogeneous cellular networks interference using Poisson cluster processes[END_REF]- [START_REF] Mankar | Modeling and coverage analysis of BS-centric clustered users in a random wireless network[END_REF], [START_REF] Guo | The Gauss-Poisson process for wireless networks and the benefits of cooperation[END_REF], [START_REF] Deng | The benefits of hybrid caching in Gauss-Poisson D2D networks[END_REF] Medium Enables to capture spatial coupling between user and BS locations, which is in line with the 3GPP simulation models.

Conditional thinning approach • • Exact PGFL [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF], [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF] High Captures the tendency of users towards clustering (i.e., reduced homogeneity) around the serving BS.

IDT approach

• • • • Exact PGFL [69] Medium
Captures the interaction degree between points based on the superposition of two conditionally independent IPPPs Accordingly, in some analytical contexts, it is generally more appropriate to favor mathematical tractability with physically meaningful insights on system design, rather than increasing modeling accuracy but with a huge loss on tractability and mathematical flexibility. In other words, the tractability of the PPP sometimes justifies its possible inaccuracy. Subsequently, we consider four recent results that endorse even the accuracy of the PPP relatively to other beyond-PPPs:

• In [55, Theorem 3], the authors support analytically the assumption that modeling node locations through PPP is a realistic hypothesis since a given general model for a large structure of node locations can be seen under the effect of sufficiently strong log-normal shadowing, i.e., greater than approximately 10 dB, as equivalent to the PPP model. In other words, instead of modeling node locations with a given general PP under log-normal shadowing, we can equivalently consider a perturbation of node locations, which may lead to a totally random structure depending on the intensity of shadowing.

• In [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF]- [START_REF] Ganti | Asymptotics and approximation of the SIR distribution in general cellular networks[END_REF], the authors showed that the slope of the SIR distribution is the same for almost all motion-invariant PPs, i.e., the SIR distribution of a given network model is a shifted version of the other network models. For example, the horizontal gap between the PPP and the triangular lattice is approximately a constant of 3.4 dB for a wide range of SIR regimes. Interestingly, instead of modeling point patterns of a given network by a lesstractable but more accurate PP, one can use the PPP, i.e., the reference network model, endowed with its enhanced tractability and add some weight to the outcome network performance being evaluated under the PPP assumption.

• In [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF], [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF], the authors explored the PPP under a tractable generative model, namely the conditional thinning approach, which allows capturing smoothly a wide range of clustered UEs ordered from a totally random structure to a very clustered one. Consequently, the PPP can be harnessed in a meaningful way to create new PPs that are endowed with similar tractability as the PPP but can also capture inter-points interactions.

• In [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF], and since the IPPP is the most tractable alternative to the PPP, the authors introduced the IDT approach that can be used as the most tractable version of the PPP, and fully able to capture a wide range of network models from clustered PPs to stationary deterministic lattices. Since SG is also endowed with an important statistical theory [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], the PPP is typically leveraged as a reference PP to build statistical tools that enable to characterize the class of a given PP (totally random, clustered, or repulsive) or even to compare between PPs. Subsequently, we will review the key statistical methods used in the literature of wireless networks modeling and analysis to characterize PPs or fit them to realistic empirical data.

IV. SG STATISTICAL ANALYSIS

Several tools are used in the theory of PPs and spatial statistics to detect deviations from the PPP and characterize the interaction between points, particularly in terms of type, strength, and range [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], [START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF], [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF]. These tools are also used as fitting methodologies to identify an appropriate PP model for some empirical data, [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Li | Fitting determinantal point processes to macro base station deployments[END_REF], [START_REF] Deng | The Ginibre point process as a model for wireless networks with repulsion[END_REF].

A. Comparison between Point Processes

Using the observation that the contact function and the nearest neighbor function are identical in the PPP, the Jfunction is introduced in spatial statistics for r > 0 as

J y (r) = 1 -G y (r) 1 -F y (r) . (28) 
That is, J(r) = 1 in the case of a PPP. In clustered PPs, an arbitrary point of the plane is likely to be farther away from a given point of the PP rather than in the context of the PPP, whereas in the other direction, clustered points tend to lie closer to their nearest neighbors, hence F y (r) < G y (r) and then J y (r) < 1. Similarly, J y (r) is greater than 1 in the case of repulsive PPs. However, it is possible to construct sometimes a non-Poisson PP that checks J(r) = 1, which reduces the accuracy of the J-function in characterizing PPs [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF]. An alternative approach is by considering second order summary characteristics such as the pair correlation function [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF], defined for a PP Ψ ⊂ R d , ∀x, y ∈ Ψ as

g(x, y) = ̺ (2) (x, y) ̺ (1) (x)̺ (1) (y) , (29) 
where ̺ (1) (.) and ̺ (2) (.) are, respectively, the first and second moment densities of Ψ.

When Ψ is isotropic, g(x, y) is only dependent on the distance r between points x and y but not on their locations.

That is, for a completely random PP (i.e., the PPP), x and y are totally independent and then g(r) = 1. In clustered PPs, ̺ (2) (x, y) is likely to overcome ̺ (1) (x)̺ (1) (y), then g(r) > 1 for small r and converges to 1 as r increases. For hard-core repulsive PPs, where inter-points distance is almost greater than a certain barrier distance δ, the pair correlation function equals to 0 when r < δ. As r becomes greater than δ, g(r) can exceed 1 and fluctuates around it with increasing r.

Fig. 8 describes the overall trend of g(r) as a function of the PP class. Typically, r corr is the distance describing the approximate size of clusters. r 1 is the distance to the closest neighbors with most frequent short inter-point distance. r 2 is the distance at which g(r) contacts its first minimum after r 1 , and can be interpreted as the distance to regions with a small number of points beyond the nearest neighbors. r 3 is the second maximum of g(r), interpreted as the distance to the regions with further neighbors [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF].

Other popular second order summary statistics used to capture inter-points correlation are Ripley's K and L-functions defined for a stationary PP of density λ and r ≥ 0 as

K(r) = E ! o (Ψ(b(o, r))) λ and L(r) = K(r) π . ( 30 
)
We note that K(r) = πr 2 and L(r) = r in the case of a PPP. Repulsive and clustered PPs are however, respectively, characterized by smaller and larger K and L-functions as compared to the PPP. More discussions about PPs statistics and nodes real deployment characterization can be found in [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], [START_REF] Andrews | A primer on spatial modeling and analysis in wireless networks[END_REF], [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous Poisson point processes[END_REF], [START_REF] Li | Fitting determinantal point processes to macro base station deployments[END_REF], [START_REF] Zhou | Large-scale spatial distribution identification of base stations in cellular networks[END_REF], [START_REF] Chiaraviglio | What is the best spatial distribution to model base station density? A deep dive into two european mobile networks[END_REF], [START_REF] Deng | The Ginibre point process as a model for wireless networks with repulsion[END_REF].

Characterizing PPs based on their summary statistics is generally not sufficient to study the impact of inter-point interaction on macroscopic properties [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF]. Interestingly, the authors of [START_REF] Błaszczyszyn | Directionally convex ordering of random measures, shot-noise fields and some applications to wireless networks[END_REF], [START_REF] Lee | Stochastic ordering of interference in large-scale wireless networks[END_REF] developed PP ordering based on the directionally convex (dcx) order, where for two given realvalued PPs Ψ and Φ of the same dimension, Ψ is said to be less than Φ in dcx, if and only if for all directionally convex10 function f on R d , E (f (Ψ)) ≤ E (f (Φ)) < ∞ and we denote Ψ(.) ≤ dcx Φ(.). Typically, it has been shown in [146, Proposition 3.4 and Corollary 3.1] that the dcx order cover PPs comparison based on the pair-correlation and K-functions, where the largest PP in terms of dcx order is generally the one with the greatest pair-correlation and K-function, assuming the same mean number of points in the observation window. That is, the PPP is also taken as the reference PP on dcxbased comparison, where repulsive and clustered PPs are, respectively, smaller and larger in dcx order as compared to the PPP. They are then referred to as sub and super-Poisson, respectively.

In general, sub-and super-poissonianity can occur simultaneously but at different spatial scales, e.g., clustering at large scales and regularity at small scales. As an illustration, using the spatstat package in the R language, Fig. 9 shows the estimation of summary statistics J(r), g(r), and K(r) from a homogeneous PPP generated in the window W = [0, 10] × [0, 10]. We can see in particular the fluctuation of summary statistics with the range of observation. 

B. Modeling Real Nodes Deployment

In the following, we will review the statistical methods used to fit several PP candidates to empirical data of realistic networks. Next, we will investigate the various metrics explored in the literature to select the best fitted PP model, i.e., the goodness-of-fit.

1) Fitting the structure of nodes: In classical statistics, the likelihood function describes the probability of observing data samples given some model parameter θ [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns[END_REF]. Similarly, in the context of SG, the parameters of the PP model are approximated from existing point pattern x = {x 1 , . . . , x n }, where the likelihood function is maximized, yielding to param-eter estimation that best fits the data samples, e.g., the ratio between the number of point patterns and the window area is a natural estimator for the parameter density of an HPPP, the hard-core distance in inhibitive PPs is simply estimated by the minimum inter-point distance in the empirical data, etc.. The general formulation for the likelihood function of three classes of representative PPs, namely the HPPP, the IPPP, and finite Gibbs PP, can be found in [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns[END_REF]. However, due to the lack of closed-form expressions for the normalizing function rendering the likelihood function a PDF, the maximization problem for the likelihood function when considering several PPs beyond the PPP, is generally intractable [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns[END_REF]. To overcome such limitation, the pseudo-likelihood function of a given PP is defined in terms of the conditional intensity at a given point of the sample pattern [68, Equations ( 6), [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF]]. Also, when the conditional intensity is not available or parameter estimators are of reduced accuracy, which is typically the case for aggregative PPs, the minimum contrast method is proposed. In this way, the key idea is to define PP parameters that minimize the gap between the summary statistic of this PP and the estimated one from empirical data. This gap, as a function of the PP model parameters θ, is typically expressed as

∆(θ) = s2 s1 | S m (r) -S m θ (r)| n dr, (31) 
where S(r) is the estimated summary statistic from empirical data over a range radius s 1 ≤ r ≤ s 2 and m, n > 0 are parameters in the method.

2) Metrics for the goodness-of-fit: After the fitting procedure of several PP candidate models to the empirical data, comes the goodness-of-fit phase where the best fitted PP to empirical data is selected. In the following, we outline the key techniques used in the literature for the goodness-of-fit procedure:

• Summary statistics simulated envelope test (3SET): The most common approach for hypothesis testing is by evaluating the gap between summary statistics curves of the empirical data and the fitted PP model. In fact, by simulating the summary statistics of the fitted PP model, we end up getting the lower and upper envelopes that reflect the confidence interval. Next, the fitted PP model is considered as a good model if the curve of the estimated summary statistic of the empirical data, falls into the envelope with increased probability. Otherwise, the PP model may be rejected based on the 3SET method. Typically, the K and L-functions are the most popular summary statistics considered for the 3SET method [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF], [START_REF] Deng | The Ginibre point process as a model for wireless networks with repulsion[END_REF]. However, other summary statistics such as G, F , and J-functions are investigated in [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF], [START_REF] Deng | The Ginibre point process as a model for wireless networks with repulsion[END_REF], [START_REF] Van Lieshout | A nonparametric measure of spatial interaction in point patterns[END_REF]. Besides, if the curve of the estimated summary statistic of the empirical data lies within the envelope of several fitted PP models, a specific quantity may be considered to select the most suitable PP model, namely the root mean square deviation (RMSD), defined from [START_REF] Pathak | Visible light communication, networking, and sensing: A survey, potential and challenges[END_REF] as

RMSD = 1 N N k=1 S(r i ) -S θ (r i ) 2 , ( 32 
)
where N is the number of samples. • SINR distribution: Since the SINR distribution is tightly related to the network geometry (i.e., inter-points interaction), it is used as an evaluation metric to select the most suitable PP model for empirical data. Assuming that the reference user y is located at the origin of the point pattern Ψ and connected to the nearest point x 0 ∈ Ψ, the downlink SINR is defined as

SINR(x 0 ; y) = P tx h x0 ℓ( x 0 ) σ 2 + xi∈Φ\{x0} P tx h xi ℓ( x i ) , (33) 
where P tx is the BS transmit power, ℓ(.) is the path loss function, h x is a random variable that captures multipath fading and/or shadowing between user y and BS x, and σ 2 is the variance of noise power.

Based on simulations, the SINR distribution of the empirical data and the fitted PP models are evaluated w.r.t. a threshold in dB, then the suitable PP model is selected using envelope matching and eventually the RMSD method [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], [START_REF] Banani | A perturbed hexagonal lattice to model basestation locations in real-world cellular networks[END_REF], [START_REF] Chen | Modeling of cellular networks using stationary and nonstationary point processes[END_REF]. • Geometry-based evaluation metrics (GBEM): Two main geometry characteristics are considered in the literature as higher-order properties in PP model selection, namely the Voronoi area distribution (VAD) [START_REF] Baccelli | Stochastic geometry and architecture of communication networks[END_REF], [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Tanemura | Statistical distributions of poisson Voronoi cells in two and three dimensions[END_REF], [START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF] and the Delaunay triangulation edges length distribution (DTELD) [START_REF] Lagum | CoV-based metrics for quantifying the regularity of hard-core point processes for modeling base station locations[END_REF], [START_REF] Lagum | Quantifying the regularity of perturbed triangular lattices using CoV-Based metrics for modeling the locations of base stations in HetNets[END_REF]- [START_REF] Lagum | Cell switch-off for networks deployed with variable spatial regularity[END_REF]. The use of VAD and its dual DTELD is actually justified given the observation that coverage regions of BSs in a cellular network generally converge to Voronoi cells [4, Proposition 5.5.11], where the VAD is commonly approximated in the case of a PPP by a generalized gamma function [START_REF] Tanemura | Statistical distributions of poisson Voronoi cells in two and three dimensions[END_REF].

V. STOCHASTIC GEOMETRY FOR MODELING AND ANALYSIS OF WIRELESS NETWORKS

Modeling wireless networks is commonly considered as a set of conceptual choices to study a real or an imaginary communication scenario. Such model preferences are typically related to i) network elements, e.g., location model (deterministic, random, or mobile), node type (transmitter, receiver, or both), ii) their attributes, e.g, transmit power and antenna types, iii) the environment characteristics in which they operate, e.g, propagation effects, and iv) the interplay properties between nodes, e.g., association policy, coordination, and spatial interaction. In some cases, we can also include analytical and experimental tools used in the study, in addition to the considered key performance metrics. In the following, we will review the plethora of modeling choices made in the literature of SG-based modeling and analysis.

A. Modeling Network Elements

Based on the SG approach, elements of a wireless network are deemed to be hierarchically modeled in such a way that subscribers are 0-level stations, BSs are 1-level stations directly connected to 0-level stations, switching centers are 2level stations directly connected to BSs, and so on [START_REF] Baccelli | Stochastic geometry and architecture of communication networks[END_REF], [START_REF] Lee | Coverage and economy of cellular networks with many base stations[END_REF]. Besides, depending on the system model being considered, network elements can be partially or entirely distributed according to particular PPs and receiver/transmitter locations can be correlated 11 or not, e.g., coupling of users and BSs location in a user-centric capacity-driven cell deployment. Table IV summarizes the state-of-the-art main configurations used for modeling the location of users and BSs.

B. Modeling Propagation Effects

In a wireless network composed of many spatially dispersed nodes, communication is typically impaired by various deficiencies like wireless propagation effects introduced by i) the attenuation of radiated signals with blockages (shadowing), ii) receiving multiple copies of the same transmitted signal (multipath fading), and iii) signal losses with distance (path loss). In general, the received power at the typical receiver located at a distance r from the transmitter, is expressed as

P rx = P tx ℓ(r) k Z k , (34) 
where P tx is the reference transmitted power, ℓ(.) is the path loss function, and {Z k } are independent random variables accounting for propagation effects.

It is worth mentioning that the effect of shadowing is generally captured via log-normal distributed random variables where key parameters are fitted from field measurements. However, in view of the analytical intractability of such distribution PDF, a common approach in SG-based frameworks is to absorb shadowing model into the intensity function of a new PPP by means of the displacement theorem. Representative examples can be found in [START_REF] Haenggi | A geometric interpretation of fading in wireless networks: theory and applications[END_REF], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF], [START_REF] Madhusudhanan | Stochastic ordering based carrier-to-interference ratio analysis for the shotgun cellular systems[END_REF], [START_REF] Madhusudhanan | Downlink performance analysis for a generalized shotgun cellular system[END_REF], [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF]. Also, modeling shadowing via random variables fails to reflect the distance-dependence of blockage effects given that shadowing intensity needs to naturally grow with increased transmit-receive distance, particularly in higher-frequency bands where signals are more vulnerable to blockages. That is, the authors of [START_REF] Bai | Analysis of blockage effects on urban cellular networks[END_REF] proposed to capture blockages effect via the product M i=1 γ i , where 0 ≤ γ i ≤ 1 is the ratio of power loss due to the ith blockage, and M is the random number of blockages intersecting the transmitreceive link. Using tools from random shape theory [START_REF] Bai | Analysis of blockage effects on urban cellular networks[END_REF], M is shown to follow a Poisson distribution with parameter dependent on the blockages density, the link distance, and the average dimensions of blockages.

Regarding path loss functions, Table V summarizes the key models used in the literature of SG-based modeling and analysis. Typically, the great majority of works consider the simplistic single slope unbounded path loss model (UPM) (model #1 in Table V) given its ability to derive reliable and tractable results especially for sparse networks wherein the [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF].

Uniformly random Uniformly random Yes PPP PPP UE-BS coupling can be captured through i) a specific dependent thinning as in [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF] [141], or via ii) a power control scheme in uplink networks as in [START_REF] Novlan | Analytical modeling of uplink cellular networks[END_REF], [START_REF] Elsawy | On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control[END_REF]- [START_REF] Haenggi | User point processes in cellular networks[END_REF].

Uniformly PPP The analysis is focused on the clustering aspect of BSs [START_REF] Ganti | Interference and outage in clustered wireless AdHoc networks[END_REF], [START_REF] Chun | Modeling heterogeneous cellular networks interference using Poisson cluster processes[END_REF], [START_REF] Guo | The Gauss-Poisson process for wireless networks and the benefits of cooperation[END_REF], [START_REF] Deng | The benefits of hybrid caching in Gauss-Poisson D2D networks[END_REF].

Clustered Clustered Yes TCP TCP UEs and BSs are clustered around the same hotspots [START_REF] Afshang | Poisson cluster process based analysis of HetNets with correlated user and base station locations[END_REF].

Uniformly random Repulsive Yes PPP PHP

A typical application is when some UEs are allowed to transmit only if they are outside exclusion regions around specific UEs or BSs [START_REF] Lee | Interference and outage in Poisson cognitive networks[END_REF], [START_REF] Chen | Decentralized opportunistic access for D2D underlaid cellular networks[END_REF].

Repulsive Uniformly random No

Regular lattice, Soft-and hard-core PPs.

PPP

Typical configuration in rural areas where repulsion is required between BSs without necessarily coupling with UE locations [START_REF] Nasri | Analytical tractability of hexagonal network model with random user location[END_REF], [START_REF] Haenggi | Mean Interference in hard-core wireless networks[END_REF], [START_REF] Deng | The Ginibre point process as a model for wireless networks with repulsion[END_REF], [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF], [START_REF] Lin | Spectrum sharing for deviceto-device communication in cellular networks[END_REF].

average separation distance between nodes is greater enough to ignore the effect of singularity at the model (when r = 0). However, this effect cannot be ignored in environments with higher path loss exponent [START_REF] Inaltekin | On unbounded path-loss models: effects of singularity on wireless network performance[END_REF] or networks with very high infrastructure density [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF], [START_REF] Zhang | Downlink cellular network analysis with multi-slope path loss models[END_REF], [START_REF] Andrews | Are we approaching the fundamental limits of wireless network densification?[END_REF], where the single slope UPM is deemed as inaccurate. In fact, the SINR-invariance property obtained under the single slope UPM [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], such that the overall SINR is independent from infrastructure density in the interference-limited regime, has reopened the discussion on the reliability of UPM since it is not conceivable that splitting cells indefinitely through the addition of new BSs, will maintain the same SINR distribution. A key aspect to overcome this limitation is to revisit the single slope UPM. The authors of [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF], [START_REF] Zhang | Downlink cellular network analysis with multi-slope path loss models[END_REF] introduced the multi-slope UPM (model #2.1 in Table V) enabling to ascertain that the SINR-invariance property is no longer valid when the near-field path loss exponent is surprisingly under the dimension of the network, which turns out to near-universal outage as network density increases. A similar effect is assessed when considering the bounded path loss model (BPM) in [START_REF] Liu | Effect of densification on cellular network performance with bounded pathloss model[END_REF], the single slope UPM accounting for BSs antenna elevation in [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF], and the stretched exponential path loss model in [START_REF] Alammouri | SINR and throughput of dense cellular networks with stretched exponential path loss[END_REF].

Furthermore, based on extensive field measurements, it has been reported in [START_REF] Andrews | Modeling and analyzing millimeter wave cellular systems[END_REF] and the references therein that mmWave signals are very sensitive to blockages as compared to sub-6 GHz. Hence, considering LOS and NLOS paths in such environment is of great importance. That is, the authors of [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF], [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF] considered a revisited path loss model that incorporates LOS and NLOS transmissions, as ℓ(r) = ℓ los (r) with probability p los ℓ nlos (r) with probability p nlos = 1p los .

In [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], the authors included an outage state in addition to LOS and NLOS states to accurately capture the sensitivity of mmWave communications to blockages. Generally, the model in ( 35) is a building block for other sophisticated models depending on the approximation of the LOS probability p los and the preferences for ℓ los and ℓ nlos . For instance, the authors of [START_REF] Ding | Performance impact of LoS and NLoS transmissions in dense cellular networks[END_REF] introduced a composite model of ( 35) and the multi-slope UPM wherein the LOS probability is mapped with representative models adopted by the 3rd generation partnership project (3GPP). The LOS probability in [START_REF] Al-Hourani | Optimal LAP altitude for maximum coverage[END_REF] is approximated with a modified sigmoid function to characterize the air-to-ground (AtG) channel in UAV-aided communication networks. A comprehensive survey of channel modeling for UAV communications can be found in [START_REF] Khuwaja | A survey of channel modeling for UAV communications[END_REF].

C. Various Cell Association Strategies

In microwave (µWave, i.e., sub-6GHz) multi-tier wireless networks, various layers of BSs are deployed, where BSs of the ith tier Ψ i (i = 1, . . . , K) transmit data with a given transmit power p i . In such a context, shadowing is a slowly varying effect and the typical UE located at y commonly selects the 

ℓ(r) = Kr -α K = ℓ(1) = λ 4π 2
, where λ is the wavelength, α needs to be greater than 2 to bound the interference.

Popular model in the literature given its tractability. However, it is innacurate in some situations due to its singularity. [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF] 2

For n ∈ N,

ℓ(r)=      ℓ 0 (r), R 0 ≤ r < R 1 ℓ 1 (r), R 1 ≤ r < R 2 • • • ℓ n-1 (r), R n-1 ≤ r < Rn ∀ 0 ≤ i ≤ n -1, ℓ i (r) = K i r -α i , α i ≤ α i+1 , α n-1 > 2, K 0 = 1,
and

K i = i k=1 R α k -α k-1 k
Generalization of model #1 when α i = α i+1 ∀ 0 ≤ i ≤ n -1 and of model #3.3 when α 0 = 0.

[36], [START_REF] Zhang | Downlink cellular network analysis with multi-slope path loss models[END_REF] 

ℓ i (r) = K i (1 + r α i ) -1 , α i ≤ α i+1 , α n-1 > 2, K 0 = 1,
and

K i = i k=1 1+R α k k 1+R α k-1 k Generalization of model #3.2 when α i = α i+1 ∀ 0 ≤ i ≤ n -1. [175] 3 ℓ(r) = K (1 + r) -α , ℓ(r) = K (1 + r α ) -1 , ℓ(r) = K min 1, r -α K = ℓ(0) > 0, α > 2
Non-singular path loss models adopted especially for dense urban scenarios.

[47], [START_REF] Liu | Effect of densification on cellular network performance with bounded pathloss model[END_REF] 4

ℓ(r) = K r 2 + h 2 -α/2 K = ℓ(1) > 0, α > 2, h > 0 Near-universal outage in high network density. [73] 5 ℓ(r) = Ke -αr β K = ℓ(0) > 0, α, β > 0
Accurate model for short to moderate distances, i.e., 5m-300m, in UDNs.

[171] 6 mmWave communications: p los (r) = 1 r≤Rc (r), where Rc is a fixed radius and p nlos (r) = 1 -p los (r).

[71], [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF] mmWave communications:

p nlos (r) = 1 -p los (r) -pout(r), pout(r) = max(0, 1 -Aoute -aoutr ) p los (r) = (1 -pout(r)) e -a los r
where Aout, aout, and a los are fitting parameters.

[86], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF] ℓ(r) = p los ℓ los (r) + p nlos ℓ nlos (r) ℓ los (r) = K los r -α los , and ℓ nlos (r) = K nlos r -α nlos where K los and K nlos are, resp., intercepts of the LOS and NLOS paths, while α los and α nlos are, resp., LOS and NLOS path loss exponents.

Lower frequency bands (sub-6 GHz): p los (r) = e -ar 2 , where a is a parameter to fit 3GPP models and p nlos (r) = 1 -p los (r).

[176]

Lower frequency bands (sub-6 GHz): 3GPP case1:

p los (r) = 1 -r R 1 , r ≤ R 1 , 0 , r > R 1 3GPP case2: p los (r) = 0.5 -min 0.5, 5 exp -R 1 r + min 0.5, 5 exp -r R 2 . [72]
UAV-aided communication networks:

p los (θ) = 1/ [1 + a exp (-b [θ -a])],
where a and b are fitting parameters and θ is the elevation angle. [START_REF] Al-Hourani | Optimal LAP altitude for maximum coverage[END_REF] ℓ los (r) = K los (r 2 + h 2 ) -α los 2 , and

ℓ nlos (r) = K nlos (r 2 + h 2 ) -α nlos 2
Lower frequency bands (sub-6 GHz): the same probability models as [START_REF] Ding | Performance impact of LoS and NLoS transmissions in dense cellular networks[END_REF]. [START_REF] Ding | Performance impact of base station antenna heights in dense cellular networks[END_REF] ℓ los (r) = K los (1 + r α los ) -1 , and

ℓ nlos (r) = K nlos (1 + r α nlos ) -1
Lower frequency bands (sub-6 GHz):

p los (r) = min 18 r , 1 1 -e -r 36 
+ e -r 36 .

[178]

serving BS x 0 based on the strongest average received power strategy (without fading) [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF], as

x 0 = arg max x∈Ψi, ∀i=1,...,K p i ℓ( x -y ), (36) 
where ℓ(.) is the path loss function (see Table V). Expression [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF] induces then an exclusion region of radius δ 0 around y wherein no interfering BS to x 0 exists. That is, δ 0 is expressed as

δ 0 = min x0∈Ψi, ∀j=1,...,K ℓ -1 p i p j ℓ ( x 0 -y ) . ( 37 
)
However, the association criterion in [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF] may sometimes lead to heavily loaded BSs especially those transmitting with the highest power, i.e., macro BSs, which reduces the average achievable rate and the efficiency of deploying small cells. An alternative way is then to associate users with BSs providing the highest data rate [START_REF] Andrews | Seven ways that HetNets are a cellular paradigm shift[END_REF], [START_REF] Ye | User association for load balancing in heterogeneous cellular networks[END_REF], which can be captured via a measure of BSs load. Accordingly, the authors of [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF] endowed BSs of each tier i by some adjustable bias B i , where the typical UE y selects the serving BS as that providing the maximum average power weighted by its bias, namely the biased cell association. [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF] becomes

x 0 = arg max x∈Ψi, ∀i=1,...,K p i B i ℓ( x -y ). (38) 
Bias B i can then improve the capacity of HetNets by offloading users from overloaded cells to lighter ones, namely, load balancing, which is similar to cell breathing through cell range expansion (CRE) [START_REF] Singh | Offloading in heterogeneous networks: modeling, analysis, and design insights[END_REF], [START_REF] Singh | Joint resource partitioning and offloading in heterogeneous cellular networks[END_REF].

In the single-tier case where BSs send data with the same transmit power, using the association strategy in [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF] turns into associating users with their spatially closest BS, which is equivalently named the nearest-neighbor cell association [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF], [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF], [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF], or extended to the nth nearest serving BS policy as [START_REF] Haenggi | A geometric interpretation of fading in wireless networks: theory and applications[END_REF], [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF], [START_REF] Moltchanov | Distance distributions in random networks[END_REF], [START_REF] Haenggi | On distances in uniformly random networks[END_REF]- [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF], [START_REF] Afshang | Fundamentals of modeling finite wireless networks using binomial point process[END_REF]. Furthermore, considering system models incorporating various propagation groups, with various path loss exponents (model #6 in Table V), the association policy in [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF] is equivalently referred to as the smallest path loss cell association [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF], [START_REF] Ding | Performance impact of LoS and NLoS transmissions in dense cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF].

Last but not least, in environments where shadowing is expected to be less slowly-varying, e.g., sensitive transmissions to blockages, interferers may be closer to the typical UE than the serving BS and then no exclusion region in ( 37) is considered. That is, we need to consider the shadowing effect Z x , which renders that the typical UE connects to the strongest BS instantaneously, namely the maximum instantaneous powerbased cell selection, or equivalently the max-SINR association policy [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF], such that

x 0 = arg max x∈Ψi, ∀i=1,...,K p i Z x ℓ( x -y ). (39) 
It is worth mentioning that SG-based modeling and analysis of wireless networks under the previous association policy has taken two directions: i) the first by resorting to the Campbell theorem [START_REF] Gilbert | Random plane networks[END_REF] as in [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], [START_REF] Madhusudhanan | Stochastic ordering based carrier-to-interference ratio analysis for the shotgun cellular systems[END_REF], [START_REF] Madhusudhanan | Downlink performance analysis for a generalized shotgun cellular system[END_REF], [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF], ii) the second by absorbing the shadowing effect into the intensity of a new PPP as in [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF], [START_REF] Madhusudhanan | Stochastic ordering based carrier-to-interference ratio analysis for the shotgun cellular systems[END_REF], [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], and hence (39) will be consistent with [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF].

D. Transmitter-Receiver Direction of Analysis

In downlink wireless networks, the analysis is generally focused on the received SINR at the level of the typical UE served by one or more BSs [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF]. However, with the growing interest in symmetric traffic applications, e.g., cloud-storage, the uplink performance analysis is becoming increasingly crucial [START_REF] Novlan | Analytical modeling of uplink cellular networks[END_REF], [START_REF] Elsawy | On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control[END_REF]- [START_REF] Haenggi | User point processes in cellular networks[END_REF]. Typically, analytical evaluation of uplink wireless networks is generally involved as compared to the downlink, due to the following fundamental changes in the system model: First, the use of locationdependent power control, where each UE smoothly adjusts its transmit power to partially/totally invert the effect of path loss [START_REF] Novlan | Analytical modeling of uplink cellular networks[END_REF], [START_REF] Elsawy | On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control[END_REF]- [START_REF] Martin-Vega | Analytical modeling of interference aware power control for the uplink of heterogeneous cellular networks[END_REF] and/or log-normal shadowing [START_REF] Herath | Stochastic geometry modeling of cellular uplink power control under composite Rayleigh-Lognormal fading[END_REF], which mitigates the uplink interference and reduces the UE battery consumption. Second, the dependency in the location of concurrent uplink UEs. These uplink modeling aspects render the approximation of the users PP less accurate.

Interestingly, the authors of [START_REF] Singh | Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets[END_REF]- [START_REF] Boccardi | Why to decouple the uplink and downlink in cellular networks and how to do it[END_REF], considered the paradigm of decoupled uplink-downlink access (DUDA), where different association policies are considered for uplink and downlink inducing that the typical UE will not necessarily be prompted to access the same BS for both directions. The DUDA capability is particularly relevant in the scenario of emerging HetNets [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Andrews | Seven ways that HetNets are a cellular paradigm shift[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], wherein users quality of experience (QoE) is affected by non-uniformity in transmit powers and traffic loads in both downlink and uplink. In such a context, DUDA enables to reduce the transmit power of edge users, which obviously helps to reduce the average uplink interference by about 2-3 dB (see [START_REF] Boccardi | Why to decouple the uplink and downlink in cellular networks and how to do it[END_REF] and references therein).

Last but not least, the works in [START_REF] Sabharwal | In-band full-duplex wireless: Challenges and opportunities[END_REF], [START_REF] Sakr | On user association in multi-tier fullduplex cellular networks[END_REF] considered the IBFD capability enabling to transmit and receive data simultaneously over the same frequency band, which offers the opportunity to double the spectral efficiency at the expense of extra self interference. More discussions about the use of SG for modeling and analysis of IBFD approach as a potential enabler for 5G/B5G networks will be presented in Section V.

E. Modeling Nodes' Mobility

The mobility of transmitters and receivers is a crucial component in the design and performance evaluation of modern wireless networks since it can impinge on traffic load per cell, signaling protocols, handoff algorithms, and location update mechanisms. However, modeling human mobility is generally challenging given its very complex temporal and spatial correlation [START_REF] Rhee | On the Levy-walk nature of human mobility[END_REF]. A comprehensive survey of user mobility models can be found in [START_REF] Camp | A survey of mobility models for adhoc network research[END_REF].

SG as a powerful mathematical tool has been explored in user mobility-aware performance analysis of wireless networks. Based on the formalization of the handoff rate, there are typically two directions of analysis adopted in the literature: i) the trajectory-based handoff, in which the handoff event occurs as well as the mobile UE crosses a cell border, and then the handoff rate is defined as the average number of crossing cell boundaries of different cells by a moving UE. Hence, the accuracy of such a concept is biased by the efficiency of quantifying the statistical distribution of cells boundary, which is generally consistent with the Buffon's needle problem (see Section I). The work in [START_REF] Baccelli | Stochastic geometry models of mobile communication networks[END_REF] is the first to consider this approach in an SG-based framework, where BSs are modeled as a 2D PPP, the road system as a PLP, and the location of users as a 1D PPP on the road layout (see Fig. 6). In [START_REF] Lin | Towards understanding the fundamentals of mobility in cellular networks[END_REF], the authors considered a tractable model for user's mobility, namely the random waypoint (RWP), where a detailed description can be found in [START_REF] Camp | A survey of mobility models for adhoc network research[END_REF]. Next, the authors derived the distribution of UE location during one movement period, the handover rate, and the average time of being served by a given BS, also known as the sojourn time. Other representative works using the same approach in the context of HetNets can be found in [START_REF] Bao | Stochastic geometric analysis of user mobility in heterogeneous wireless networks[END_REF]- [START_REF] Arshad | Velocity-aware handover management in two-tier cellular networks[END_REF]. ii) The second direction is based on the association-based handoff where the handoff event occurs as long as another BS verifies the association criterion better than the current serving BS. In this way, the handoff rate is defined as the probability of inducing a handoff for a UE served by a given BS and moving a random distance in a unit time [START_REF] Sadr | Handoff rate and coverage analysis in multitier heterogeneous networks[END_REF]- [START_REF] Hmamouche | Uplink coverage and handoff rate with realistic power control models and blind cell search[END_REF]. A comprehensive tutorial of mobilityaware performance analysis considering spatially random and deterministic grid-based topologies is given in [START_REF] Tabassum | Fundamentals of Mobility-Aware Performance Characterization of Cellular Networks: A Tutorial[END_REF].

In future wireless networks, BSs can also be enabled to move seamlessly in order to provide enhanced service to UEs. In this way, two important applications are identified in the literature. First, given their agility and flexible deployment, UAVs can be designed as airborne BSs to support coverage and capacity for various UEs. In particular, it has been demonstrated by aerodynamic theory that there is an operational UAV speed that provides the optimal energy consumption [START_REF] Enayati | Moving aerial base station networks: A stochastic geometry analysis and design perspective[END_REF]. Thus, a network of moving aerial BSs can outperform a static hovering one in terms of energy consumption. Also, mobile aerial BSs have the potential to reduce the average time that the typical UE experiences blockages, namely the average fade duration. However, uniformly distributed static aerial BSs can provide fairly uniform coverage over the entire service area. In this way, the authors of [START_REF] Enayati | Moving aerial base station networks: A stochastic geometry analysis and design perspective[END_REF] considered tools from SG to develop a family of trajectory processes (i.e., spiral and oval) for mobile aerial BSs to remain BPP-distributed, thus ensuring uniform coverage over the service area as in the static case [START_REF] Chetlur | Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles[END_REF]. In [START_REF] Banagar | Performance characterization of canonical mobility models in drone cellular networks[END_REF], the ergodic rate received by the typical UE is evaluated under a setup where four canonical mobility models are adopted for interfering aerial BSs and two service models for the serving aerial BS. Using the displacement theorem to capture the new PP resulting after running each service and mobility model, the results showed that the tractable straightline mobility model inspired from the 3GPP simulation models can serve as a lower bound for system-level performance evaluation with more sophisticated mobility models.

Second, given the growing number of users using wireless connectivity when moving via public transportation vehicles (i.e. buses, tramways, or high-speed trains), a dedicated moving relay node (RN) is envisioned to ensure seamless connectivity of UEs in public transport. In particular, mobile RNs can create their own cell inside a vehicle, thus eliminating a high vehicular penetration loss (which can reach 25 dB at 2.4 GHz) for onboard UE service [START_REF] Sui | Moving cells: a promising solution to boost performance for vehicular users[END_REF]. This improves the power consumption of such UEs and reduces the handoff signalling between them (i.e, grouped handoff). In addition, multiple backhaul antennas can be installed on the outer side of the mobile RN, allowing to establish a cooperative system with multiple static backhaul-enabled BSs, which improves propagation conditions and backhaul reliability for moving RNs. Using SG, the authors of [START_REF] Tang | Coverage performance of joint transmission for moving relay enabled cellular networks in dense urban scenarios[END_REF] conceived a system model in which outdoor antennas of moving RNs can assist the coverage of static UEs located outside vehicles. Based on the correlation between the received power at the typical UE when the power is transmitted by the nearest BS or the nearest moving RN, a bias-based CoMP association criterion is considered to improve the coverage of UEs served by moving RNs. Considering the effect of blockages and handoffs is, however, an important extension of this analysis.

From previous discussions, it is clear that the statistical characteristics of the wireless cell boundaries are crucial in the design of handover schemes. Typically, the wireless cell boundaries resulting from the Delaunay triangulation method or from the received power at edge UEs, divide the service area into several irregular polygons representing different wireless cellular coverage areas. Hence, for simplicity, the received power is assumed to be identical at all points with equal distances to the BS, which leads to a smooth wireless cellular boundary at small scales. This assumption does not take into account the anisotropy of path loss fading in real urban wireless propagation environments due to the irregular distribution of blockages and the effect of interference and load in different directions from the BS. Importantly, field measurements have shown that wireless coverage boundaries are not smooth at small scales and exhibit statistical fractal characteristics at angular scales [START_REF] Ge | Wireless fractal cellular networks[END_REF]. An alpha-stable distribution with the heavy tail feature is thus used to fit the PDF of the wireless cell coverage boundary. Based on SG, the authors of [START_REF] Chen | Coverage and handoff analysis of 5G fractal small cell networks[END_REF] proposed a multi-directional path loss model for fractal small cell networks, where the path loss exponent is modeled by i.i.d. random variables depending on the direction of signal propagation. Also, the association-based handoff abstraction is considered to derive the handoff rate under anisotropic path loss, which confirmed the importance of accurate wireless cell boundaries in the design of handoff parameters.

F. Spatio-temporal Traffic Modeling

Emerging new data-intensive applications, such as multiparty video conferencing or multiplayer online games, along with latency-critical applications such as smart manufacturing or autonomous driving, suggest that the integration of spatiotemporal traffic dynamics in the analysis of 5G/B5G wireless networks will play an increasingly crucial role in their design and deployment. Previous efforts have typically considered one aspect of traffic: i) abstraction based on queuing theory, which primarily evaluates scheduling algorithms and ignores the interaction of traffic with SINR statistics and hence with network geometry; ii) SG-based analysis, which usually does not consider the temporal arrival process of packets and focuses on reliability or throughput in fully buffered networks, i.e. each link always has a packet to send. Interestingly, traffic has recently been abstracted by spatio-temporal modeling that combines tools from SG and queuing theories. In particular, the spatial domain of traffic is captured by modeling nodes via an appropriate PP, while the temporal variation of traffic is captured by the temporal arrival of packets grasped tractably by independent Bernoulli processes [START_REF] Zhong | Heterogeneous cellular networks with spatio-temporal traffic: delay analysis and scheduling[END_REF], [START_REF] Salehi | Analysis of D2D underlaid cellular networks: SIR Meta distribution and mean local delay[END_REF].

A review of the literature shows that spatio-temporal traffic modeling has been particularly exploited to evaluate two important metrics of interest. First, delay that refers to the end-to-end duration from packet initiation at the transmitter to successful decoding at the receiver [START_REF] Zhong | Toward a tractable delay analysis in ultra-dense networks[END_REF]. This includes the delay in generating a packet, the delay in queuing it, and then the time it takes for the packet to be successfully transmitted within the wireless access network and backhaul links (including the delay incurred in the retransmission mechanism). Delay analysis through spatio-temporal modeling is generally challenging due to the following major issues: i) The delay is dependent on the system throughput determined by the SINR, which in turn relies on the network geometry and the complex channel fluctuations in large-scale networks. ii) The delay is a long-term measure in which the topology of nodes remains static but random for a fairly long time, which induces a coupling of interference across various time slots. iii) As part of the MAC, a scheduling policy is performed on many queuing nodes in a distributed manner. So, if a queue is idle, the related transmitter does not interfere with the other links; as a result, the service throughput of those links increases allowing their queues to drain faster. Such coupling between each queue and the state of all the other queues renders delay analysis less tractable. To make the analysis feasible, most of the literature focuses on the queuing delay based on the scheduling scheme, and the transmission delay related to the number of transmission trials required until a packet is successfully decoded, while the delay in backhaul links is generally omitted. A comprehensive example of backhaul link delay analysis can be found in [START_REF] Chen | Backhauling in heterogeneous cellular networks: modeling and tradeoffs[END_REF]. Next, the mean delay is evaluated conditioning on a given realization of the PP, which resorts to a formulation based on the meta-distribution metric that can be derived by applying the Gil-Pelaez theorem or the k-moment inversion. More discussions about the metadistribution and the Gil-Pelaez technique are brought in the sequel.

Second, the emerging metric of age of information (AoI) that measures freshness (timely updating) of the sensed data measurements of the IoT devices at the destination nodes. It is typically defined as the time expired since the previous successfully received update packet at the destination was generated at the source [START_REF] Abd-Elmagid | On the role of age of information in the internet of things[END_REF]. In this way, the requirement for timely updating actually reflects a small average age of status update, i.e., minimizing time-average AoI, which can help in the efficient design of freshness-aware IoT systems. It is worth mentioning that minimizing AoI does not really correspond to maximizing the system throughput, nor guaranteeing a minimum delay in receiving IoT measurements. Intuitively, throughput can be maximized by making sensors send updates as quickly as possible, which can result in higher AoI because the status messages will be pending/backlogged in the communication system. In such a context, reducing the system throughput may improve the AoI. It is worth mentioning that the optimal loading usually requires a perfect balance between overloading the queue and keeping it idle.

Since characterizing the distribution of AoI based on spatiotemporal traffic modeling is known to be notoriously difficult, efforts are mainly devoted to studying some of its easyconstructed variants. For instance, i) work with a lower bound on the average AoI obtained by ignoring the processing time at the source, which mean that a new update packet is instantaneously generated by the source node [START_REF] Hu | Age of information in Poisson networks[END_REF], or ii) consider the peak AoI that quantifies the maximum value of the AoI immediately before an update packet is delivered to the destination node, thus yielding insights into the pessimistic values of the AoI [START_REF] Emara | A spatiotemporal model for peak AoI in uplink IoT networks: time versus event-triggered traffic[END_REF], [START_REF] Yang | Optimizing information freshness in wireless networks: A stochastic geometry approach[END_REF]. A comprehensive tutorial about SG analysis of spatio-temporal performance in wireless networks can be found in [START_REF] Lu | Stochastic geometry analysis of spatial-temporal performance in wireless networks: a tutorial[END_REF].

G. Key Performance Metrics

Since Shannon's work [START_REF] Shannon | Two-way communication channels[END_REF], the received SINR has been considered as the first-order predictor of link reliability and users QoE, where almost all performance metrics conceived to date are closely related to the SINR. For instance, the bit error Potential throughput [START_REF] Zhang | Downlink cellular network analysis with multi-slope path loss models[END_REF].

Conventional coverage probability [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF].

Meta-distribution [START_REF] Haenggi | The Meta distribution of the SIR in Poisson bipolar and cellular networks[END_REF].

Average ergodic rate [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF].

Finite blocklength ergodic rate [START_REF] Polyanskiy | Channel coding rate in the finite blocklength regime[END_REF].

Area spectral efficiency [START_REF] Alouini | Area spectral efficiency of cellular mobile radio systems[END_REF].

Paired coverage probability [START_REF] Di Renzo | System-level modeling and optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF]. U: signal strength.

Mobility-aware coverage [START_REF] Sadr | Handoff rate and coverage analysis in multitier heterogeneous networks[END_REF]. U: Handover event.

Joint uplink/downlink rate [START_REF] Singh | Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets[END_REF]. U: Uplink/downlink.

Joint information and power [START_REF] Deng | Modeling and analysis of wireless power transfer in heterogeneous cellular networks[END_REF]. U: total received power.

Spectral efficiency [START_REF] Alouini | Area spectral efficiency of cellular mobile radio systems[END_REF].

Energy efficiency [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF].

Mean rate utility [START_REF] Sakr | On user association in multi-tier fullduplex cellular networks[END_REF]. U: Uplink/downlink. A review of the largely fragmented literature of SG-based studies for modeling and analysis of wireless networks reveals that almost all the adopted performance metrics are typically based on six key operations of SINR, as illustrated in Fig. 10. In the following, we will consider the definition of key representative performance metrics.

1) Spectral efficiency: The spectral efficiency S e is conceived as the maximum information rate that can be transmitted over a given bandwidth B. In the simplest case of AWGN and optimal theoretical link performance, the Shannon-Hartley theorem defines S e in units of [nats/s] as

S e B log (1 + SINR) . ( 40 
)

2) Energy efficiency (EE):

The EE E evaluates the number of bits that can be successfully transmitted with unit energy. It is generally expressed under the form [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF], [START_REF] Lee | Coverage and economy of cellular networks with many base stations[END_REF], [START_REF] Chang | Energy and spectral efficiency of cellular networks with discontinuous transmission[END_REF] 

E = S e ̟P tx + α , (41) 
where P tx is the BS transmit power and ̟, α are some positive constants depending on the power consumption model.

3) Mean rate utility: It is particularly defined in the context of a generic IBFD link [START_REF] Sakr | On user association in multi-tier fullduplex cellular networks[END_REF], as

R u (T DL , T UL ) = P S DL e ≥ T DL S DL e + P S UL e ≥ T UL S UL e , (42) 
where T DL and T UL are, respectively, the required spectral efficiency thresholds in the downlink and the uplink.

4) Conventional coverage probability:

The coverage probability P c , as opposed to outage probability P o , is defined as the probability that the typical user can reach a target SINR, T [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. It is expressed as

P c (T) = 1 -P o (T) = P(SINR ≥ T), (43) 
which also can be interpreted as the success probability of the typical transmission/link averaged over all spatial links [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF], [START_REF] Haenggi | Interference in Large Wireless Networks[END_REF], [START_REF] Ganti | Series expansion for interference in wireless networks[END_REF]. Formally, we first condition on the BS process and the typical UE located at the origin x 0 of the PP Ψ, and next average over all the spatial links, as

P c (T) = E P o (SINR ≥ T|Ψ) . ( 44 
)
5) Meta-distribution: Expression (44) can be rephrased as the reduced Palm expectation over the PP realization, which does not provide insights about how concentrated are the well covered areas or what are the link success probabilities. The meta-distribution concept is introduced in [START_REF] Haenggi | The Meta distribution of the SIR in Poisson bipolar and cellular networks[END_REF] to obtain finegrained information about the performance, as

F (T, u) = P P o (SINR ≥ T|Ψ) > u , u ∈ [0, 1] . (45)
The coverage probability in (44) becomes then

P c (T) = 1 0 F (T, u)du = lim u→1 u 0 F (T, x) dx Pc(T,u) . (46) 
Hence, the meta distribution concept can be seen as based on some philosophy of derivation from the distribution of SINR, i.e., F (T, u) = ∂P c (T, u) /∂u. The derivation construct actually aims to capture variability at particular points on a curve or any other geometric shape. Similarly, meta-distribution aims to evaluate fine-grained information on the distribution of the SINR. 6) Average ergodic rate: Another quantity of interest is the average ergodic rate τ , also known as the Shannon throughput, accounting for the mean data rate achievable over a cell. It is obtained in units of [nats/s/Hz] as [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF] τ E log (1 + SINR) .

(

) 47 
The average ergodic rate in (47) may actually require the preliminary calculation of P c [START_REF] Baccelli | Stochastic analysis of spatial and opportunistic aloha[END_REF], [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Di Renzo | Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[END_REF], since

τ = t>0 P log (1 + SINR) > t dt = t>0 P SINR > e t -1 dt = x>0 P c (x) x + 1 dx. ( 48 
)
7) Finite blocklength ergodic rate: From an informationtheoretic angle, ( 47) is a reasonable performance metric for modern wireless networks supporting enhanced mobile broadband (eMBB) services where codewords length is sufficiently large to maximize throughput and induce very small packet error probability. However, in the context of ultra-reliable and low latency communications (URLLC), the throughput is not a key requirement of the system, and the tradeoff between low latency and ultra-high reliability requires generally the use of short packets [START_REF] Ji | Ultra-reliable and low-latency communications in 5G downlink: physical layer aspects[END_REF] [START_REF] Ramezanipour | Finite blocklength communications in smart grids for dynamic spectrum access and locally licensed scenarios[END_REF]. In such a context, the ergodic rate of communication is approximated as [215, Equation 296]

τ * (n, ǫ) ≈ E C - V n Q -1 (ǫ) + 1 2n log(n) , ( 49 
)
where n is the blocklength, ǫ is the error probability, C = log(1 + SINR) is the capacity of an AWGN channel, and V is the channel dispersion approximated as a function of SINR in [215, Equation 293]. 8) Area spectral efficiency: The concept of area spectral efficiency (ASE) has been introduced for the first time in [START_REF] Alouini | Area spectral efficiency of cellular mobile radio systems[END_REF]Equation (65)] to measure, for a partially loaded system, the maximum average data rate per unit area per unit bandwidth supported by a cell. Formally,

ASE = 1 |A| Ns k=1 E log(1 + SINR k ) , ( 50 
)
where |A| is the area of interest, N s is the total number of active UEs inside |A|, and E [ln(1 + SINR k )] is the ergodic rate of the kth UE. Under the SG abstraction, ASE in (50) can be simplified as

ASE = λ E log(1 + SINR) , (51) 
where the expectation averages over different network and fading realizations, and λ is the density of active BSs [START_REF] Li | Success probability and area Spectral efficiency in multiuser MIMO hetNets[END_REF].

In realistic scenarios, a minimum SINR constraint γ 0 is required for the system operational regime [START_REF] Ding | Performance impact of LoS and NLoS transmissions in dense cellular networks[END_REF], which induces a constrained variant of the area spectral efficiency as

ASE c = λ E log(1 + SINR)1(SINR ≥ γ 0 ) . ( 52 
)
9) Potential throughput: The potential throughput considered in [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF], [START_REF] Zhang | Downlink cellular network analysis with multi-slope path loss models[END_REF], [START_REF] Alammouri | SINR and throughput of dense cellular networks with stretched exponential path loss[END_REF], is another variant of the area spectral efficiency. It is defined in units of bps/Hz/m 2 as

P th (T) = λ log (1 + T) P {SINR ≥ T} . (53) 
Interestingly, it has been demonstrated in [START_REF] Alammouri | A unified asymptotic analysis of area spectral efficiency in ultradense cellular networks[END_REF] that (51), [START_REF] Islam | Power-domain non-orthogonal multiple access (NOMA) in 5G Systems: potentials and challenges[END_REF], and ( 53), are ordered as follows

P th ≤ ASE c ≤ ASE.

10) Paired coverage probability:

A new definition of coverage probability is considered in [START_REF] Di Renzo | System-level modeling and optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF], [START_REF] Di Renzo | A tractable closed-form expression of the coverage probability in Poisson cellular networks[END_REF], such that the typical UE is in coverage if, i) it receives a sufficiently good signal strength, i.e., the short-term average signal-tonoise ratio SNR is greater than a certain threshold T s , and ii) it receives a good signal quality, i.e., the SIR is greater than another threshold T q . Formally,

P c (T s , T q ) = P SNR ≥ T s , SIR ≥ T q . ( 54 
)
(54) is shown to capture more system-level parameters than [START_REF] Wildman | On the joint impact of beamwidth and orientation error on throughput in directional wireless Poisson networks[END_REF], and enables deriving tractable closed-form expressions.

11) Mobility-aware coverage probability: In [START_REF] Sadr | Handoff rate and coverage analysis in multitier heterogeneous networks[END_REF], [START_REF] Hsueh | An equivalent analysis for handoff probability in heterogeneous cellular networks[END_REF], the authors introduced a mobility-aware coverage probability, where handoffs may cost service delays or drops. ( 43) is updated as P c (T) = P(SINR ≥ T, H) + (1β)P(SINR ≥ T, H), [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF] where H is the handoff event, and β ∈ [0, 1] reflects system sensitivity to QoS impairment when handoff occurs.

12) Joint uplink and downlink rate coverage: It is defined as the fraction of users with sufficient spectral efficiency (or SINR) in the uplink and downlink simultaneously [START_REF] Singh | Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets[END_REF]. It is expressed as

R(T DL , T UL ) = P S DL e ≥ T DL , S UL e ≥ T UL . ( 56 
)
13) Joint information and power coverage: The joint information and power coverage P, is introduced in [START_REF] Deng | Modeling and analysis of wireless power transfer in heterogeneous cellular networks[END_REF], [START_REF] Di Renzo | System-level analysis and optimization of cellular networks with simultaneous wireless information and power transfer: stochastic geometry modeling[END_REF] to evaluate the performance of simultaneous wireless information and power transfer (SWIPT). It is is expressed as

P (T i , T e ) = P (S e ≥ T i , E ≥ T e ) , ( 57 
)
where E is the total received power at the energy harvester.

H. Analytical Techniques

As discussed before, using non-PPPs helps to accurately capture the system behavior but reduces tractability and mathematical flexibility, which requires resorting to efficient numerical integration (e.g., quasi Monte-Carlo integration method [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF]), or even intractable approximations with limited impact on design insights [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF]Equation (25)], [START_REF] Deng | The Ginibre point process as a model for wireless networks with repulsion[END_REF]Equation (42)], [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF]Equation (22)]. Subsequently, we will focus on key approaches considered under the PPP seen as the reference PP. We will also consider its finite version, the BPP. To the best of authors knowledge, eleven techniques are reported in the literature, offering varying degrees of tractability, accuracy, and mathematical flexibility.

To illustrate the key generative sequence steps of each technique, we consider the general common definition of the received SINR at the level of the typical user located in y ∈ R d from a serving BS x 0 , as

SINR(x 0 ; y) = h/L(R 0 ) I + W , (58) 
where ℓ(.) = 1/L(.) is the path loss function (see Table V). I is the power of the other-cell interference normalized by the BS transmit power P tx , and can be expressed as

I = k∈Ψ\{x0} g k /L(R k ), (59) 
where (x k ) are BSs location modeled by a HPPP Ψ of density λ, x 0 is the serving BS under a given association strategy, R k = x ky is the Euclidean distance between the BS x k and the typical user y, h and {g k } k are, respectively, fading coefficients of the serving BS and interferers, and W is the noise power normalized by P tx .

1) The baseline two-step approach: This is the most popular technique used in the literature to derive coverage probability in [START_REF] Wildman | On the joint impact of beamwidth and orientation error on throughput in directional wireless Poisson networks[END_REF]. In fact, assuming Rayleigh12 fading for the desired link, the approach consists on first computing the coverage probability by conditioning on R 0 and next averaging w.r.t it. Accordingly, for h ∼ exp(1), the coverage probability in ( 43) is simplified as

P c (T) = P h ≥ T L(R 0 )(I + W ) (60) = E R0 P h ≥ T L(R 0 )(I + W ) R 0 ( 61 
) (a) = E R0 L W (TL(R 0 ))L I (TL(R 0 )) , (62) 
where (a) follows from the Laplace transform definition and the independence between W and I.

The expectation in ( 62) is generally expressed under the form E R0 (ϕ(R 0 )) = ∞ 0 ϕ(x)f R0 (x)dx, where the function f R0 (.) reflects a unified framework of the BS association scheme [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF]. Typically, when considering the nearest-neighbor cell association [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF], [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF], [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF], f R0 (.) is the PDF of the random variable R 0 , as f R0 (ξ) = 2πξe -πλξ 2 . However, if the max-SINR association is considered [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF], f R0 (ξ) = 2πλξ. Besides, the Laplace transform of the interference can be expressed via the PGFL theorem ( 16) as [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF] 

L I (TL(R 0 )) = exp -πλE g ∞ ϑ(R0) 1 -exp -g TL(R 0 ) L(u) udu , (63) 
where ϑ(.) captures the exclusion region of interferers. Typically, ϑ(x) = x in the nearest-neighbor cell association, where interferers cannot be closer to the typical UE than the serving BS. In the max-SINR association, no exclusion region is considered for interferers and ϑ(x) = 0. Interestingly, (63) can be further simplified using variable changes as in [START_REF] Di Renzo | Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[END_REF]Equation (34)]. If interference signals are also experiencing Rayleigh fading, (63) will be simplified as

L I (TL(R 0 )) = exp   -πλ ∞ ϑ(R 2 0 ) dx 1 + L( √ x) TL(R0)   . ( 64 
)
Despite the Rayleigh assumption on the intended signal and interferers, coverage probability in ( 62) is generally expressed under an improper integral requiring a two-fold numerical integration [18, Theorem 1]. Some efforts are made in the literature to derive closed-form expressions or approximations of the coverage probability. For instance, tractable expressions are obtained in [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF] by assuming the interference-limited regime or a path loss exponent equals to 4. In [START_REF] Hmamouche | A Stochastic geometry based approach to tractable 5G RNPO with a new H-LOS model[END_REF], a more generalized closed-form expression is proposed assuming an integer value of the path loss exponent. In [START_REF] Guruacharya | Integral approximations for coverage probability[END_REF], four approximation techniques are proposed based on the network operational regime. It has particularly shown that the optimal approximation is achieved by combining the four techniques in accordance with their convergence properties.

2) Coverage probability new abstraction: To develop a closed-form expression of the coverage probability in [START_REF] Valenti | A direct approach to computing spatially averaged outage probability[END_REF], it has been proposed in [START_REF] Di Renzo | System-level modeling and optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF], [START_REF] Di Renzo | A tractable closed-form expression of the coverage probability in Poisson cellular networks[END_REF] to bound the upper endpoint of the integral in (62) by introducing the concept of the paired coverage probability as in [START_REF] Wu | A survey of physical layer security techniques for 5G wireless networks and challenges ahead[END_REF]. That is, ( 54) is simplified as

P c (T s , T q ) = P h 1 {L(R 0 ) ≤ 1/(W T s )} IL(R 0 ) ≥ T q = L -1 (1/(W Ts)) 0 L I (T q L(ξ))f R0 (ξ)dξ, (65) 
which can be further simplified by considering common combinations of i) the standard path loss function of path loss exponent α, ii) additive and constant thermal noise, and iii) the nearest-neighbor cell association, as

P c (T s , T q ) = 1 -exp -πλ W Ts 2 α F -2 α (T q ) F -2 α (T q ) . (66) 
In [START_REF] Hmamouche | Stochastic analysis of UDNs with resource capacity and user scheduling[END_REF], this technique has been considered to benchmark the performance of UDNs under three representative scheduling schemes in terms of fairness and implementation complexity. Assuming elevated BSs, closed-form expressions are obtained allowing to assess the network performance in a more tractable and meaningful fashion as compared to the conventional definition of coverage probability in [START_REF] Wildman | On the joint impact of beamwidth and orientation error on throughput in directional wireless Poisson networks[END_REF].

3) The relative distance process (RDP) based approach: Based on the assumptions of: i) the standard path loss model with path loss exponent α, ii) Rayleigh fading, iii) the nearest BS association policy, and iv) the interference-limited regime, a new way is considered to derive the coverage probability in (60) via the RDP Ψ R of the PPP Ψ, defined as [212]

Ψ R = R 0 R k x k ∈ Ψ \ {x 0 } ⊂ [0, 1] , (67) 
where its intensity measure is derived based on [START_REF] Matheron | Random Sets and Integral Geometry[END_REF], as [START_REF] Ganti | Asymptotics and approximation of the SIR distribution in general cellular networks[END_REF] Λ(dr) = 2r -3 dr.

When Ψ R is an IPPP, the PGFL can be expressed as

G IPPP Ψ R {f } = exp -2 1 0 1 -f (r) r 3 dr . ( 69 
)
In the general case, Ψ R is not an IPPP, and then ( 60) is derived based on G IPPP Ψ R , as [145, Lemma 1]

P c (T) = E P SIR > T Ψ (70) = E y∈Ψ R f (y) = 1 1 -log G IPPP Ψ R {f } , (71) 
where f (y) = 1/(1 + Ty α ) due to the assumptions i)-iv) considered in this technique.

(70) is actually a special case of the k-th moment, since

M k (T) = E P SIR > T Ψ k ( 72 
) (a) = 1 0 ku k-1 F (T, u)du, (73) 
where (a) comes from the meta-distribution expression in [START_REF] Andrews | A primer on spatial modeling and analysis in wireless networks[END_REF].

It is worth mentioning that M 1 (T) is the coverage probability defined in [START_REF] Wildman | On the joint impact of beamwidth and orientation error on throughput in directional wireless Poisson networks[END_REF]. Moreover, using similar steps from ( 70) to [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF], the expression of the k-th moment M k (T) in ( 73) can generally be expressed in a closed-form expression. However, reshaping the meta-distribution from M k (T), is an instance of the Hausdorff moment problem, which is to derive the inverse k-moment. For instance, two techniques have been considered in [START_REF] Haenggi | The Meta distribution of the SIR in Poisson bipolar and cellular networks[END_REF]. The first one is by inverting the jω-moment via the Gil-Pelaez theorem [START_REF] Gil-Pelaez | Note on the inversion theorem[END_REF], which resulted in less tractable expressions of the meta-distribution requiring efficient numerical integration. The second technique is based on approximating the meta-distribution with a beta distribution, where the design parameters are fitted from the first and second moments. This approach has showed an impressive accuracy, but remains relevant only for the measurements considered in study and may diverge for more general setups. In [START_REF] Guruacharya | Approximation of Meta distribution and its moments for Poisson cellular networks[END_REF], the authors proposed to reconstruct the PDF of the entire meta-distribution defined over the interval [0, 1], by means of shifted Jacobi polynomials via Fourier-Jacobi expansion. The obtained series expansion is infinite, where the coefficients are mapped with the moments of P SIR > T Ψ via the binomial expansion. The approach is promising, but needs more investigation on the convergence conditions. In [START_REF] Haenggi | Efficient calculation of Meta distributions and the performance of user percentiles[END_REF], the authors explored binomial mixtures properties to obtain an approximation of the meta-distribution as a function of a finite double sum of the moment sequence. That is, the accuracy of the approach increases with the length of the moment sequence, which requires however efficient numerical computation.

In [START_REF] Kalamkar | Simple approximations of the SIR meta distribution in general cellular networks[END_REF], the meta-distribution analysis is generalized to PPs beyond the PPP, where the k-th moment of the conditional success probability for a stationary PP can be inferred from that of the PPP by using the same horizontal shift technique introduced in [143]- [START_REF] Ganti | Asymptotics and approximation of the SIR distribution in general cellular networks[END_REF]. Further extensions of the metadistribution to other system setups may be found in [START_REF] Salehi | Analysis of D2D underlaid cellular networks: SIR Meta distribution and mean local delay[END_REF], [START_REF] Deng | A fine-grained analysis of millimeter-wave device-to-device networks[END_REF]- [START_REF] Ali | Meta distribution of downlink non-orthogonal multiple access (NOMA) in Poisson networks[END_REF].

4) Finite networks assumption: Following a review of the existing state-of-the-art works on modeling and analysis of finite wireless networks, we can generally identify three streams of thoughts ordered in decreasing tractability and mathematical flexibility. The first, considers a typical setup where the reference receiver is located randomly in a compact C ⊂ R 2 , while BSs are uniformly randomly distributed in a disc [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF] or a L-sided polygon [START_REF] Valenti | A direct approach to computing spatially averaged outage probability[END_REF] centered at the reference receiver. The second, extends the first model by considering an arbitrarily-located reference receiver in the disc [START_REF] Chetlur | Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles[END_REF], [START_REF] Wang | Modeling and analysis of aerial base station-assisted cellular networks in finite areas under LoS and NLoS propagation[END_REF] or L-sided polygon of BSs [START_REF] Afshang | Fundamentals of modeling finite wireless networks using binomial point process[END_REF]. The third setup considers an arbitrarily-located reference receiver in an arbitrarily-shaped area that contains finite BSs [START_REF] Guo | Outage probability in arbitrarilyshaped finite wireless networks[END_REF].

As an illustration of the generative analytical background, we consider a typical scenario, in which the reference receiver is arbitrarily located in a disk-shaped finite wireless network, wherein N transmitting BSs are uniformly randomly distributed in a disc C ξ of radius ξ, i.e., Ψ is a BPP. The reference receiver is located at a distance 0 ≤ d ≤ ξ from the origin of C ξ and interfering BSs are assumed to be exclusively located in an annular region A of inner radius r in and outer radius r out from the reference receiver, such as 0 ≤ r in < r out < ξ. Fig. 11 illustrates the typical realizations of C ξ and A.

rout + d ≤ ξ d = 0 ξ < r in + d r in + d ≤ ξ < rout + d
The density of the BPP is λ = N/πξ 2 , while the probability of having k ≤ N interferers inside A is

P (Ψ(A) = k) = N k p k (1 -p) N -k , where p = |A ∩ C ξ | πξ 2 .
Given Rayleigh fading on the desired link, the coverage probability under such setup is expressed as in [START_REF] Valenti | A direct approach to computing spatially averaged outage probability[END_REF], where R 0 can be selected uniformly at random from the transmitting BSs [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF], [START_REF] Khalid | Distance distributions in regular polygons[END_REF] (blue points in Fig. 11), or based on the nth nearest serving BS policy [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF], [START_REF] Afshang | Fundamentals of modeling finite wireless networks using binomial point process[END_REF]. The MGF of the interference can be expressed using similar sequence steps in [4, Page 9], as

L I (s)= 1 -p + p rout rin f R (u)E g e -sg/L(u) du N , (74) 
where s = TL(R 0 ) and f R (.) is the PDF of the distance from the reference receiver to interferers, expressed as [START_REF] Khalid | Distance distributions in regular polygons[END_REF] f

R (u) =    2πu |A∩C ξ | , r in ≤ u ≤ r max 2u |A∩C ξ | cos -1 u 2 +d 2 -ξ 2 2du , r max ≤ u ≤ r out ,
where r max = max (r in , ξd).

5) Nakagami fading on the desired signal: Capturing small-scale fading with Rayleigh distribution is particularly justified in NLOS propagation environments. However, in the context of UDNs, where the transmitter-receiver distance is reduced, the likelihood of specular LOS paths increases, and the Rayleigh assumption is no longer realistic. Similar observation is considered in the context of higher-frequency bands where signal propagation is generally sensitive to LOS and NLOS paths [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], [START_REF] Andrews | Modeling and analyzing millimeter wave cellular systems[END_REF]. In such scenarios, Rician fading is commonly accepted to capture fading in LOS propagation [START_REF] Tepedelenlioglu | The Ricean K factor: estimation and performance analysis[END_REF], [START_REF] Georgiou | Polarized rician fading models for performance analysis in cellular networks[END_REF], where it can be well approximated by means of a more tractable Nakagami-m distribution. Also, the Nakagami assumption can actually be seen as a gamma distribution since X 2 is gamma distributed when X is Nakagami distributed, which improves analytical convenience.

We now assume that the desired link h follows a gamma distribution with shape parameter m and scale parameter θ, (60) simplifies then as

P c (T) = E R0,I,W Γ m, T θ L(R 0 )(I + W ) Γ(m) ( 75 
) (a) = E R0 m-1 k=0 (-1) k k! s k d k L I+W (s) ds k s= T θ L(R0) , (76) 
where (a) follows from the expansion of the upper incomplete gamma function as Γ(m, x) = Γ(m)e -x m-1 k=0

x k k! . The computation of coverage probability in ( 76) requires then a prior evaluation of the kth derivative of L I+W (s). Assuming the interference-limited regime, i.e., L I+W (s) ≃ L I (s), several frameworks have been proposed in the literature to derive or approximate the kth derivative of the Laplace transform of the interference. For instance, an approximation via Taylor expansions is considered in [START_REF] Hunter | Transmission capacity of ad hoc networks with spatial diversity[END_REF]. In [START_REF] Gupta | Downlink multi-antenna heterogeneous cellular network with load balancing[END_REF]- [START_REF] Tanbourgi | Analysis of joint transmit-receive diversity in downlink MIMO heterogeneous cellular networks[END_REF],

The authors proposed the use of the Faà di Bruno's formula [START_REF] Johnson | The curious history of Faa di Bruno's formula[END_REF], where an alternative formulation under the Bell polynomials is used in [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF]. Also, a recursive-technique is proposed in [START_REF] Tanbourgi | Analysis of joint transmit-receive diversity in downlink MIMO heterogeneous cellular networks[END_REF], [START_REF] Li | Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations[END_REF], where the expression of the kth derivative is transformed to a lower triangular Toeplitz matrix with positive entries. However, reducing analysis to the interference-limited regime can be seen as less efficient in scenarios where thermal noise is a key player in the network performance, e.g., higherfrequency bands. Interestingly, an alternative framework based on the Alzer's lemma is suggested in [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF], [START_REF] Yi | Modeling and analysis of D2D millimeter-wave networks with Poisson cluster processes[END_REF], which enables to derive a relatively tight approximation of coverage probability, as

P c (T) ≈ E R0 m k=1 (-1) k+1 m k L I (ks) L W (ks) , where s = βT θ L(R 0 ) and β = Γ(1 + m) -1
m . It should be noted that this framework is generally suitable whenever the desired link is experiencing a fading model of the form [238, Theorem 1], P (h > u) = n∈N e -nu k∈N a nk u k . 6) The factorial moment based approach: Considering the max-SINR association policy, the authors of [START_REF] Keeler | SINR-based kcoverage probability in cellular networks with arbitrary shadowing[END_REF], [START_REF] Mukherjee | Downlink SINR distribution in a heterogeneous cellular wireless network with max-SINR connectivity[END_REF]- [START_REF] Błaszczyszyn | Studying the SINR process of the typical user in Poisson networks using its factorial moment measures[END_REF], conceived the coverage probability experienced by the typical UE y w.r.t. all BSs x ∈ Ψ, as the probability that the kth smallest BS in terms of SINR meets the required target T. In other words, the typical user is in coverage if at least k BSs meet the required SINR target. Formally,

P (k) c (T) = P x∈Ψ 1 SINR(x; y) > T ≥ k . ( 77 
)
Let's denote by n ≥ 1, the number of BSs with SINR greater than the required threshold. Next, the authors introduced a key quantity of interest, namely the factorial moment measure S n (T) of the SINR process, defined as the average number of ways that the typical UE can be associated to n different BSs. Formally, it can be expressed as

S n (T) = E   = x1,...,xn∈Ψ 1 n i=1 SINR(x i ; y) > T x i ∈ Ψ   . (78) 
Interestingly, ( 77) can be simplified via the famous inclusionexclusion principle [START_REF] Keeler | SINR-based kcoverage probability in cellular networks with arbitrary shadowing[END_REF], [START_REF] Mukherjee | Downlink SINR distribution in a heterogeneous cellular wireless network with max-SINR connectivity[END_REF]- [START_REF] Błaszczyszyn | Studying the SINR process of the typical user in Poisson networks using its factorial moment measures[END_REF], as

P (k) c (T) = ∞ n=k (-1) n-k n -1 k -1 S n (T). ( 79 
)
The sum in ( 79) is actually finite since nT/(1 + T) needs to be lowered by 1 as demonstrated in [4, Proposition 6.2]. That is, ( 79) is simplified as

P (k) c (T) = ⌈1/T⌉ n=k (-1) n-k n -1 k -1 S n (T). ( 80 
)
The computation of the k-coverage probability in (80) requires then a prior evaluation of S n (T) for n ≥ k, which can be derived via higher order Campbell's theorem as in [START_REF] Keeler | SINR-based kcoverage probability in cellular networks with arbitrary shadowing[END_REF]Theorem 6] [246,Theorem 7]. It is worth mentioning that despite the analytical relevance of technique #6 and its ability to reflect several connectivity scenarios of the typical UE, it provides however less-tractable expressions of coverage probability and requires generally a thorough indepth knowledge of the factorial moment measure and its higher order Campbell's theorem.

7) The Plancherel-Parseval approach: For the sake of further generalization, so that the performance evaluation would not be limited to a particular fading distribution that is only valid in some operational regimes, the authors of [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF], [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF], [START_REF] Baccelli | Stochastic analysis of spatial and opportunistic aloha[END_REF], [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF] considered the Plancherel-Parseval theorem [START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF]Lemma 12.2.1] to derive an exact expression of coverage probability regardless of the fading model. That is, assuming a generalized fading distribution on both the desired link and interferers, the coverage probability in (61) becomes,

P c (T) = E R0 ∞ -∞ L I (2jπL(R 0 )Ts)L W (2jπL(R 0 )Ts) × L h (-2jπs) -1 2jπs ds . ( 81 
)
8) The Gil-Pelaez inversion approach: An alternative way to incorporate generalized fading, is by using the Gil-Pelaez inversion theorem [START_REF] Gil-Pelaez | Note on the inversion theorem[END_REF], in which the cumulative distribution function (CDF) F X of a random variable X can be expressed based on the characteristic function Φ X (ω), as

F X (x) = 1 2 - 1 π ∞ 0 Im(e -jωx Φ X (ω)) ω dω. ( 82 
)
Relevant applications can be found in [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], [START_REF] Haenggi | The Meta distribution of the SIR in Poisson bipolar and cellular networks[END_REF], [START_REF] Di Renzo | Stochastic geometry modeling of coverage and rate of cellular networks using the Gil-Pelaez inversion theorem[END_REF], where the coverage probability in ( 60) is reformulated as

P c (T) = E R0,h,W P I I ≤ h TL(R 0 ) -W R 0 , h, W (83) 
= 1 2 - 1 π E R0 ∞ 0 Im Φ h ( -ω TL(R 0 ) )Φ W (ω)Φ I (ω) dω ω ,
where the characteristic function is obtained as

Φ I (ω) = exp -2πλ ∞ ϑ(R0) 1 -E g exp jωg L(u) udu ,
such that ϑ(.) is the function considered in technique #1.

Interestingly, the Gil-Pelaez technique can also be leveraged to invert the jw-moment of the conditional success probability in order to derive important metrics of interest under the spatio-temporal modeling of traffic such as mean delay and peak AoI [START_REF] Zhong | Heterogeneous cellular networks with spatio-temporal traffic: delay analysis and scheduling[END_REF], [START_REF] Salehi | Analysis of D2D underlaid cellular networks: SIR Meta distribution and mean local delay[END_REF], [START_REF] Yang | Optimizing information freshness in wireless networks: A stochastic geometry approach[END_REF].

9) The Laplace transform inversion approach: Another inversion technique to derive the PDF of a random variable X, is by considering the Fourier inversion theorem, also known as the Laplace transform inversion [START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF], [START_REF] Blaszczyszyn | Using Poisson processes to model lattice cellular networks[END_REF], [START_REF] Khoshkholgh | Coverage analysis of Max-SIR cell association in HetNets under Nakagami fading[END_REF], [START_REF] Krikidis | Simultaneous information and energy transfer in largescale networks with/without relaying[END_REF], the characteristic function inversion [START_REF] Madhusudhanan | Downlink performance analysis for a generalized shotgun cellular system[END_REF], [START_REF] Yang | Performance analysis of dense small cell networks with generalized fading[END_REF], or even the MGF inversion [START_REF] Georgiou | Polarized rician fading models for performance analysis in cellular networks[END_REF]. Generally, the PDF f X (.) of X is obtained via the Bromwich contour inversion integral, as

f X (y) = L -1 {L X (s)} = 1 2πj γ+j∞ γ-j∞ L X (s) e ys ds, ( 84 
)
where γ is a real constant such as the contour of integration runs from γ -j∞ to γ + j∞ along a straight line and lies to the right of all the singularities of L X (.). As for the CDF of X, it can be derived equivalently as

F X (x) = x 0 f X (y)dy = L -1 L X (s) s (x). (85) 
That is , the coverage probability in [START_REF] Munari | A stochastic geometry approach to asynchronous Aloha full-duplex networks[END_REF], simplifies then as

P c (T) = E R0,h,W L -1 L I (s) s h TL(R 0 ) -W . (86) 
Similarly to previous inversion techniques, this approach derives exact expressions of coverage probability under generalized fading distribution, but requires involved analysis with limited design insights [START_REF] Błaszczyszyn | Studying the SINR process of the typical user in Poisson networks using its factorial moment measures[END_REF]. A more flexible version is to resort to the characteristic function inversion enabling to avoid contour integration as illustrated in [START_REF] Madhusudhanan | Downlink performance analysis for a generalized shotgun cellular system[END_REF], [START_REF] Yang | Performance analysis of dense small cell networks with generalized fading[END_REF].

10) The interference approximation approach: An alternative way to derive the PDF of the interference without resorting to previous less tractable inversion techniques, is to approximate the interference behavior [START_REF] Elsawy | Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey[END_REF]. Two main approaches are considered in the literature. The first one, is by considering the interference contribution from only some specific transmitters based on the adopted association policy. For example, the k dominant interferers in terms of the received power are considered when assuming max-SINR association criterion [START_REF] Cardieri | Modeling interference in wireless ad hoc networks[END_REF], while the k-nearest interferers are considered in the case of the nearest [START_REF] Zhang | Dense cellular network analysis with LoS/NLoS propagation and bounded path loss model[END_REF] or the nth nearest neighbor association policy [START_REF] Chetlur | Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles[END_REF]. This approach enables actually to derive an upper bound of coverage probability, where bound accuracy increases with increasing path loss exponent to justify ignoring the contribution of distant interferers [START_REF] Elsawy | Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey[END_REF]. The second approach is by approximating the distribution of the other-cell interference via well-known distributions with parameters fitting the essential physical parameters that affect interference. Typically, the authors of [START_REF] Win | A mathematical theory of network interference and its applications[END_REF] showed that the interference behavior can be captured by the family of αstable distributions, while in [START_REF] Heath | Modeling heterogeneous network interference using Poisson point processes[END_REF], interference distribution is approximated via gamma distribution.

1 + I W R 0 , W = E R0   ∞ 0 L W (s) L I (s) 1 -L h s L(R0) s ds   . ( 87 
)
Next, the framework was widely adopted in the literature. For instance, the work in [START_REF] Tabassum | A framework for uplink intercell interference modeling with channel-based scheduling[END_REF] evaluated the uplink average ergodic rate when considering representative scheduling schemes in terms of performance and implementation complexity. In [START_REF] Kamel | Performance analysis of multiple association in ultra-dense networks[END_REF], the downlink average ergodic rate is investigated under the scenario of multiple cell association in UDNs environment.

Table VI summarizes the eleven techniques commonly used in the literature to evaluate main performance metrics of wireless networks under the PPP/BPP abstraction. Also, we examined their mapping with various association schemes considered in the SG literature, as well as illustrated the required fading model for each technique.

VI. STOCHASTIC GEOMETRY AND PROMISING RAN ARCHITECTURES FOR 5G/B5G

In this section, we will review key aspects and challenges of emerging RAN architectures for 5G/B5G, and subsequently outline major state-of-the-art contributions which, based on SG, can evaluate the key properties of these promising RAN architectures.

A. Terrestrial Heterogeneous Networks

Adding new macro BSs in a homogeneous and regular fashion is typically constrained by increased deployment costs, in addition to heterogeneity in site location availability and users demand. An alternative strategy is to consider the deployment of HetNets, where several classes of low-power and low-cost nodes are deployed in poorly covered small areas or traffic hotspots, overlaid within macro BSs.

The key aspects of a generative SG model consist of K overlaid tiers of BSs, where the BSs of each tier are characterized by some distinctive marks (e.g., transmit power, connectivity threshold, BS density, backhaul type) and the locations of each tier nodes are modeled with a specific PP. Typically, a regular or repulsive PP for macro BSs and clustering PPs for lowpower cells [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF], [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF]. For instance, the downlink SINR of HetNets is evaluated under various BS association policies and fading models in [START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF], [START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], [START_REF] Mukherjee | Distribution of downlink SINR in heterogeneous cellular networks[END_REF], [START_REF] Kamel | Performance analysis of multiple association in ultra-dense networks[END_REF]. The uplink analysis of HetNets is studied in [START_REF] Elsawy | On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control[END_REF]- [START_REF] Martin-Vega | Analytical modeling of interference aware power control for the uplink of heterogeneous cellular networks[END_REF]. Also, given the heterogeneous attributes of BS transmit power in HetNets, the typical UE may be associated to different BSs in uplink and downlink, i.e., DUDA. Further analysis of DUDA in the context of HD HetNets can be found in [START_REF] Singh | Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets[END_REF]- [START_REF] Boccardi | Why to decouple the uplink and downlink in cellular networks and how to do it[END_REF], while DUDA in the context of IBFD HetNets is given in [START_REF] Sakr | On user association in multi-tier fullduplex cellular networks[END_REF] and the references therein. One important use case of small cells in HetNets is to support overloaded macro cells. That is, the impact of CRE on the performance of HetNets is assessed in [START_REF] Dhillon | Load-aware modeling and analysis of heterogeneous cellular networks[END_REF], [START_REF] Singh | Offloading in heterogeneous networks: modeling, analysis, and design insights[END_REF], [START_REF] Singh | Joint resource partitioning and offloading in heterogeneous cellular networks[END_REF]. Last but not least, the question of mobility is also crucial in HetNets where it is generally governed by several tradeoffs. For example, a mobile UE in HetNets will suffer from frequent handovers, which may increase call drop rate and service delays. However, adding more low-power cells increases the average number of lightly loaded BSs and then reduces interference [START_REF] Ding | Performance impact of idle mode capability on dense small cell networks[END_REF], which can reduce handover failure rate. In all cases, incorporating mobility is very challenging given the complex behavior of users movement [START_REF] Rhee | On the Levy-walk nature of human mobility[END_REF], [START_REF] Camp | A survey of mobility models for adhoc network research[END_REF], [START_REF] Tabassum | Fundamentals of Mobility-Aware Performance Characterization of Cellular Networks: A Tutorial[END_REF]. Further analysis of mobility-aware HetNets can be found in [START_REF] Bao | Stochastic geometric analysis of user mobility in heterogeneous wireless networks[END_REF], [START_REF] Xu | Modeling and analyzing the cross-tier handover in heterogeneous networks[END_REF], [START_REF] Arshad | Velocity-aware handover management in two-tier cellular networks[END_REF]- [START_REF] Hsueh | An equivalent analysis for handoff probability in heterogeneous cellular networks[END_REF].

B. Non-Terrestrial Networks

A promising frontier for terrestrial HetNets is by extending their deployment to the sky via UAVs as aerial BSs [START_REF] Mozaffari | A Tutorial on UAVs for wireless networks: Applications, challenges, and open problems[END_REF], [START_REF] Bor-Yaliniz | The new frontier in RAN heterogeneity: Multi-tier drone-cells[END_REF]. In fact, given their distinctive features, UAVs can be quickly deployed to support coverage in isolated regions and capacity of terrestrial HetNets during flash crowded events. However, despite the benefits of UAVs as flying nodes, several new challenges are introduced. Among them, the AtG propagation model, which is no longer similar to popular terrestrial models due to UAVs operational altitude and 3D mobility. Typically, the widely used AtG model is the one proposed in [START_REF] Al-Hourani | Optimal LAP altitude for maximum coverage[END_REF] based on a modified sigmoid function.

A comprehensive survey about channel modeling for UAVassisted communications can be found in [START_REF] Khuwaja | A survey of channel modeling for UAV communications[END_REF]. Also, given their technical constraints combined with ground UEs QoS requirements, optimal placement of UAVs is another challenging task, which may include UAVs trajectory optimization [START_REF] Bushnaq | Aeronautical data aggregation and field estimation in IoT networks: hovering and traveling time dilemma of UAVs[END_REF], altitude optimization [START_REF] Al-Hourani | Optimal LAP altitude for maximum coverage[END_REF], [START_REF] Hammouti | Learnas-you-fly: a distributed algorithm for joint 3D placement and user association in multi-UAVs networks[END_REF], flight time optimization [START_REF] Bushnaq | Aeronautical data aggregation and field estimation in IoT networks: hovering and traveling time dilemma of UAVs[END_REF], [START_REF] Qin | Performance evaluation of UAV-enabled cellular networks with battery-limited drones[END_REF], and UAVs density optimization [START_REF] Alzenad | Coverage and rate analysis for vertical heterogeneous networks (VHetNets)[END_REF].

With the introduction of a new research area based on SG, spatial locations of nodes in UAV-aided wireless networks are totally or partially modeled as randomly distributed according to a PP. This approach is followed in [START_REF] Bushnaq | Aeronautical data aggregation and field estimation in IoT networks: hovering and traveling time dilemma of UAVs[END_REF], where a UAV flies sequentially over several finite fields of PPP terrestrial sensors to collect IoT big data. The results indicate that the mean square error of the mission duration can be minimized by carefully adjusting the number of sensor fields, the area of each field, the hover locations, the hover time at each location, and the flight path between hover locations. In [START_REF] Alzenad | Coverage and rate analysis for vertical heterogeneous networks (VHetNets)[END_REF], the authors investigated the performance of a vertical HetNet composed of two PPP layers of ground and aerial BSs, where the rationale is to capture the impact of UAVs altitude and density on coverage enhancement and on-demand capacity boost of ground UEs. The authors of [START_REF] Mozaffari | Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs[END_REF] evaluate how the altitude of a single UAV operating as BS, can impact the coverage and rate of two types of ground UEs: downlink UEs and D2D UEs. Next, it has been found that in order to provide coverage for all downlink UEs, UAV need to move around the overall area of interest in such a way that the number of stopping points increases monotonically with the density of downlink UEs. In such a context, handover needs actually to be taken into careful consideration since UAV mobility can improve the coverage of one UE but it is likely to affect the coverage of another. In [START_REF] Chetlur | Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles[END_REF], a finite network of aerial BSs whose locations are modeled as a uniform BPP is considered to support coverage at a reference ground UE. Assuming independent Nakagami-m fading for all wireless links, a general expression of the downlink coverage probability is derived by using the analytical techniques #4 and #5 and approximations were next made using the dominant interferer-based approach in technique #10.

In [START_REF] Hayajneh | Performance analysis of UAV enabled disaster recovery networks: A stochastic geometric framework based on cluster processes[END_REF], UAVs are aimed to assist public safety networks, where the location of ground BSs surviving after a natural disaster are modeled as an independent thinned PPP, while UAVs form a PCP around the locations of destroyed BSs to replace them. A Key outcome suggest that efficient coverage by the emergency network can be achieved by adjusting the number of UAVs per cluster, the flight altitude, and the transmission power ratio between aerial and ground BSs. Sometimes and due to their limited storage and processing capabilities, UAVs are required to operate as mobile aerial RNs for ground nodes. In particular, the authors of [START_REF] Ma | Secure mmWave communication using UAV-enabled relay and cooperative jammer[END_REF] considered a setup where a thinned part from PPP distributed UAVs are used as airborne DF relays to support mmWave communication of a terrestrial legitimate UE, and the other part of the UAVs are used to jam the channel quality of PPP distributed terrestrial malicious eavesdroppers. In particular, it has been shown that more secure communications can be achieved by making a convenient tradeoff between system-level parameters of relaying and jamming UAVs, which actually corresponds to tuning the thinning probability.

In [START_REF] Qin | Performance evaluation of UAV-enabled cellular networks with battery-limited drones[END_REF], the authors adopted a similar abstraction of vertical HetNet, as in [START_REF] Alzenad | Coverage and rate analysis for vertical heterogeneous networks (VHetNets)[END_REF], to address the question of the limited energy resources when using UAVs as a BS, as this leads to restricted flight times, and therefore forces UAVs to regularly interrupt their operations to recharge or swap their batteries. One key outcome is that battery quality (quantified by the charging speed) and the density of charging stations play a supplementary role in minimizing UAV interruption time and then in achieving the required QoS for terrestrial UEs. Alternatively, the authors of [START_REF] Bushnaq | Optimal deployment of tethered drones for maximum cellular coverage in user clusters[END_REF] considered tethered UAVs to alleviate the limitations of conventional untethered UAVs in terms of battery autonomy and backhaul capacity between aerial and ground BSs. Accordingly, since untethered UAVs are limited by the need to remain sufficiently close to their backhaul-BS, which limits their ability to serve larger areas, the study's results show that tethered UAVs can outperform their untethered counterparts in terms of the end-to-end coverage probability, defined as the joint probability that the SNR of out-of-band backhaul and access link are greater than a predefined threshold. However, in realistic scenarios, tethered UAVs are also limited by the length of the tether and the likelihood that the ground backhaul-BS will be located away from UEs hotspot, which can significantly reduce the performance of tethered UAVs.

In [START_REF] Hmamouche | Uplink energy efficiency distribution with aerial users in cellular networks[END_REF], UAVs are abstracted as aerial UEs. The authors have derived the uplink EE coverage under a setup where two classes of PPP terrestrial and aerial UEs are served by ground BSs. It has been shown that an aggregation of systemlevel parameters of aerial UEs (through the aerial priority bias) needs to meet some transcendental constraint, based on the principal branch of the Lambert W function, to mitigate interference from aerial UEs and enhance the uplink EE coverage of ground UEs. It is worth highlighting that despite the expected advantages of UAVs when exploited as aerial UEs in communication networks. They can however adversely affect the performance of terrestrial UEs, which are usually assigned more mission-critical roles than UAVs (e.g. monetary transactions, health care services). As an illustration, we plot in Fig. 12 the fluctuations of the uplink terrestrial coverage EE, i.e., the probability that the uplink EE of terrestrial UEs is greater than a predefined threshold, as a function of aerial UEs parameters [START_REF] Hmamouche | Uplink energy efficiency distribution with aerial users in cellular networks[END_REF].

Table VII summarizes the key modeling choices made in previous relevant research papers on the applications of SG in the modeling and analysis of UAV-assisted wireless networks. In particular, it can be observed that since UAVs can offer an extremely agile deployment allowing LOS transmissions to be established with ground stations (e.g. UEs, BS, sensors), Nakagami-m fading is considered to capture such AtG links and then the association policy based on the smallest path loss and the analytical technique #5 are generally the most widely adopted modeling choices in the SG-based literature.

C. UDNs via Infrastructure Densification

Infrastructure densification is envisioned as the workhorse for ubiquitous coverage and capacity improvement in 5G/B5G networks [START_REF] Bhushan | Network densification: the dominant theme for wireless evolution into 5G[END_REF]- [START_REF] Kamel | Ultra-dense networks: A survey[END_REF]. It can generally be realized by adding new transmitters in the area of interest, which may be in the form of new BSs or distributed antennas from the existing ones. Many experts also consider some spatial diversity technologies such as relays, and D2D communications, as a form of densification since they allow decentralized opportunistic short-range communication [START_REF] Bhushan | Network densification: the dominant theme for wireless evolution into 5G[END_REF]. In the following, we will discuss the main technologies competing in terms of infrastructure densification in HetNets, as well as the key state-ofthe-art contributions based on SG.

1) Small cells: Adding small cells is a common way to emerge from HetNets to UDNs. Several challenges are, however, brought into analysis. For instance, the question of association policy is a key concern, where UEs can access small cells without any logical restriction, namely open access, and hence the need to judiciously adjust cells load via CRE [START_REF] Singh | Offloading in heterogeneous networks: modeling, analysis, and design insights[END_REF], [START_REF] Singh | Joint resource partitioning and offloading in heterogeneous cellular networks[END_REF] and interference via intercell interference coordination (ICIC) [START_REF] Lopez-Perez | Enhanced intercell interference coordination challenges in heterogeneous networks[END_REF]. Also, access to small cells can exclusively be given to some specific UEs belonging to a closed subscriber group (CSG), namly closed access, or consider an hybrid access scheme, in which some additional UEs not registered in the CSG can also access the cell along with registered UEs [START_REF] Andrews | Femtocells: past, present, and future[END_REF]. Typical challenges may also include, the scaling law of network performance with infrastructure density [START_REF] Gupta | SINR and throughput scaling in ultradense urban cellular networks[END_REF], [START_REF] Ding | Performance impact of LoS and NLoS transmissions in dense cellular networks[END_REF], [START_REF] Atzeni | Downlink cellular network analysis with LOS/NLOS propagation and elevated base stations[END_REF], [START_REF] Zhang | Downlink cellular network analysis with multi-slope path loss models[END_REF], [START_REF] Liu | Effect of densification on cellular network performance with bounded pathloss model[END_REF], [START_REF] Alammouri | SINR and throughput of dense cellular networks with stretched exponential path loss[END_REF], [START_REF] Ding | Performance impact of base station antenna heights in dense cellular networks[END_REF], [START_REF] López-Pérez | Towards 1 Gbps/UE in cellular systems: understanding ultra-dense small cell deployments[END_REF] and qualitative and quantitative comparison between adding new cells, using multi-antenna transmissions, or increasing macro cells storage capacity [START_REF] Hwang | A holistic view on hyper-dense heterogeneous and small cell networks[END_REF], [START_REF] Bastug | Cache-enabled small cell networks: Modeling and tradeoffs[END_REF]. More discussions about other representative challenges are given in [START_REF] Bhushan | Network densification: the dominant theme for wireless evolution into 5G[END_REF]- [START_REF] Kamel | Ultra-dense networks: A survey[END_REF].

2) Infrastructure sharing: A new viable business model for infrastructure densification is by allowing concurrent operators share their mutual infrastructure [START_REF] Frisanco | Infrastructure sharing and shared operations for mobile network operators: From a deployment and operations view[END_REF]. This paradigm is expected to lower the time to market of each operator and reduce costs by an average of up to 40% and 15% in terms of capital expenditure (CAPEX) and operational expenditure (OPEX) costs, respectively [START_REF] Khan | Network sharing in the next mobile network: TCO reduction, management flexibility, and operational independence[END_REF]. Questions related to the optimal sharing strategy between operators, are actually the main concern of research studies. Typically, two extreme variants of infrastructure sharing are considered: Passive sharing, wherein operators can only share site location and common operation costs, while each operator installs and maintains its own equipment, and active sharing wherein operators share their network physical infrastructure and have access to it on the basis of an agreed resource allocation strategy.

Based on the tractability of SG, several mathematical frameworks and PP models have been investigated to quantify the benefits of infrastructure sharing. For instance, the authors of [START_REF] Kibiłda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF] evaluated the goodness-of-fit of some realistic sharedinfrastructure networks with various aggregative PP models, where they revealed that LGCP can serve as a universal model to fit realistic multi-network empirical data. In [START_REF] Sanguanpuak | Infrastructure sharing for mobile network operators: analysis of trade-offs and market[END_REF], infrastructure sharing is evaluated under a setup of one buyer operator and multiple seller operators, where the aim of the study is to define an optimal buying strategy to meet a target QoS requirement with reduced costs. In [START_REF] Sciancalepore | STORNS: stochastic radio access network slicing[END_REF], the authors derived the potential SE required per tenant and formulated an optimization problem to identify the optimal transmit power and spectrum to guarantee the minimum potential SE required by each tenant. In [START_REF] Gupta | On the feasibility of sharing spectrum licenses in mmWave cellular systems[END_REF]- [START_REF] Park | Inter-operator base station coordination in spectrum-shared millimeter wave cellular networks[END_REF], spectrum sharing between several operators is studied, particularly at mmWave frequencies where antenna beamforming, transmissions sensitivity to blockages, and operators cooperation, can help to mitigate inter-operator interference [START_REF] Boccardi | Spectrum pooling in MmWave networks: opportunities, challenges, and enablers[END_REF]. In [START_REF] Rebato | Resource sharing in 5G mmWave cellular networks[END_REF]- [START_REF] Jurdi | Modeling infrastructure sharing in mmWave networks with shared spectrum licenses[END_REF] both spectrum and infrastructure sharing are investigated.

3) Multi-hop relays: One practical limitation of densifying HetNets via fully-functioning new cells is the complexity of provisioning all new cells with a dedicated wired backhaul connection. One proposed solution is to consider the deployment of RNs between BSs and cell-edge UEs [START_REF] Lo | Multi-hop relay architectures for 3GPP LTEadvanced[END_REF]. That is, several relaying protocols have been investigated by the research community. For instance, amplify-and-forward (AF) RN, decode-and-forward (DF) RN, also known as L2 relay, and L3 RN, envisioned to support almost similar capabilities as small cells but without the need of a wired backhaul connection. Several use cases of RNs are assessed in the literature. For instance, RN with IBFD capability is surveyed in [START_REF] Liu | In-band full-duplex relaying: A survey, research issues and challenges[END_REF]. Cooperative RNs to create spatial diversity are investigated in [START_REF] He | A Tutorial on lossy forwarding cooperative relaying[END_REF]. In [START_REF] Nomikos | A survey on buffer-aided relay selection[END_REF], cooperative RNs can be equipped with buffers to store received packets and resend them when optimal connectivity conditions are met.

Using methods from SG, several research works have considered analytical performance evaluation of relay-aided wireless networks. For instance, a novel analytical framework for the analysis of outage probability in the regime of high SNR and low BS density is proposed in [START_REF] Ganti | Spatial analysis of opportunistic downlink relaying in a two-hop cellular system[END_REF]. The paradigm of SWIPT with cooperative relaying is investigated in [START_REF] Krikidis | Simultaneous information and energy transfer in largescale networks with/without relaying[END_REF], [START_REF] Ding | Wireless information and power transfer in cooperative networks with spatially random relays[END_REF]. Quantifying the performance gain achieved when using RNs in HetNets is studied in [START_REF] Wen | On the capacity of downlink multi-hop heterogeneous cellular networks[END_REF]. In [START_REF] Lu | Stochastic geometry modeling and systemlevel analysis & optimization of relay-aided downlink cellular networks[END_REF], a flexible cell association scheme is proposed, where some bias coefficients are introduced to prioritize the association of the typical UE with single-or multi-hop links, and then optimize the overall end-to-end coverage and rate. Interestingly, the performance of IBFD relay-aided cellular networks where BSs and RNs are equipped with MIMO antennas, is investigated in [START_REF] Ntontin | On the feasibility of fullduplex relaying in multiple-antenna cellular networks[END_REF].

4) Device-to-device communications: Cooperative communications via fixed terminal relaying can bring substantial improvements in wireless networks [START_REF] He | A Tutorial on lossy forwarding cooperative relaying[END_REF]. However, with the drastic growth in UE's density and their unpredictable complex movement [START_REF] Rhee | On the Levy-walk nature of human mobility[END_REF], the paradigm of cooperative communications via D2D communications is considered. Comprehensive surveys about D2D communications underlaying cellular networks can be found in [START_REF] Asadi | A survey on device-to-device communication in cellular networks[END_REF], [START_REF] Jameel | A survey of device-to-device communications: research issues and challenges[END_REF].

SG has been extensively explored in modeling and analysis of D2D communications. For instance, the crucial question of spectrum sharing in D2D communications is investigated in [START_REF] Lin | Spectrum sharing for deviceto-device communication in cellular networks[END_REF], [START_REF] Wu | Device-to-device communications underlaying cellular networks: To use unlicensed spectrum or not?[END_REF]. Also, since neighbor D2D UEs are more likely to be in prominent LOS transmissions, the authors of [START_REF] Peng | Device-to-device underlaid cellular networks under Rician fading channels[END_REF] evaluated network performance under Rician small-scale fading. Due to many technical challenges when deploying D2D communications in licensed bands, traffic offloading via D2D in unlicensed bands is considered in [START_REF] Andreev | Analyzing assisted offloading of cellular user sessions onto D2D links in unlicensed bands[END_REF]. The tendency of D2D UEs towards clustering is captured via PCP in [START_REF] Afshang | Modeling and performance analysis of clustered device-to-device networks[END_REF], [START_REF] Afshang | Fundamentals of cluster-centric content placement in cache-enabled device-to-device networks[END_REF], where coverage probability and ASE are next derived under several content availability scenarios. Last but not least, uplink analysis of D2D communications is provided in [START_REF] Elsawy | Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks[END_REF], the benefits of combining IBFD with the merit of underlaid D2D communications are evaluated in [START_REF] Vu | Full-duplex device-to-device cellular networks: power control and performance analysis[END_REF], the impact of massive MIMO on reducing D2D-to-cellular interference is studied in [START_REF] Lin | The interplay between massive MIMO and underlaid D2D networking[END_REF], and the performance of D2D communications when considering aerial access points is available in [START_REF] Mozaffari | Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs[END_REF].

D. Cloud Radio Access Networks

Albeit the expected benefits of infrastructure densification, there are still many notable limitations. Among them, the increasing CAPEX and OPEX costs with densification [START_REF]C-RAN: the road towards green RAN[END_REF]. Also, interference is expected to be more critical, which demands an aggressive frequency reuse. The question of mobility is also crucial due to reduced cells size and heterogeneity in neighboring cells, which requires proper load balancing and smooth handover schemes. An innovative paradigm to address such challenges, is to consider C-RAN architecture, in which the baseband units (BBUs), responsible of scheduling and data processing, are separated from radio units, and pooled farther away in a centralized data center equipped with the potential of cloud computing. Remote radio heads (RRHs) are connected to BBUs via a dedicated high-speed and low-latency links, e.g., radio over fiber, namely the fronthaul link. C-RAN can therefore manage simultaneously the BBU processing of a large geographical zone, which reduces costs (e.g., about 15% in CAPEX and 50% in OPEX [START_REF]C-RAN: the road towards green RAN[END_REF]), facilitates load balancing, and enables the use of ICIC techniques and coordinated multipoint (CoMP) transmission and reception, considered as potential solutions in C-RAN [START_REF] Checko | Cloud RAN for mobile networks: A technology overview[END_REF]. One important variant of C-RAN is distributed antenna system (DAS), in which BS antennas and inherent radio frequency (RF) components are deployed far away from the BS to form a distributed antenna array, while the central intelligence is kept at the BS level. A typical application of DAS is the reinforcement of indoor coverage as aimed by the baseline work in [START_REF] Saleh | Distributed antennas for indoor radio communications[END_REF].

Using tools from SG, the dynamics on the location of nodes in a C-RAN architecture, are captured for analytical evaluation of network performance. For instance, a model of 4-layers of nodes (UEs, RRHs, backhaul nodes, and data centers), modeled by independent PPPs is considered in [START_REF] Suryaprakash | Are heterogeneous cloudbased radio access networks cost effective?[END_REF], where by assuming various representative costs (cost of nodes, processing, and backhaul technology), the authors demonstrated that C-RAN based architectures can reduce costs by at least 10%. In [START_REF] Khan | Performance analysis of cloud radio access networks with distributed multiple antenna remote radio heads[END_REF], the performance of a C-RAN with multiple antenna RRHs is evaluated when assuming three degrees of collaboration between RRHs and their associated BS. In [START_REF] He | Modeling and analysis of cloud radio access networks using Matérn hard-core point processes[END_REF], the authors considered MHPP II to capture the repulsion behavior in RRHs location. Interestingly, the contributions of some emerging techniques in the context of C-RAN is also studied. Representative works can be found in [START_REF] Veetil | Coverage analysis of cloud radio networks with finite clustering[END_REF] for C-RAN with ICIC techniques, in [START_REF] Liu | D2D enhanced coordinated multipoint in cloud radio access networks[END_REF] for C-RAN as an enabler for CoMP protocols, in [START_REF] Mohammadi | Uplink/downlink rate analysis and impact of power allocation for fullduplex cloud-RANs[END_REF] for IBFD transmissions, and in [START_REF] Gu | Outage probability analysis of non-orthogonal multiple access in cloud radio access networks[END_REF] for NOMA-based communications. As for the DAS variant of C-RAN, outage probability is investigated in [START_REF] Zhang | Distributed antenna systems with randomness[END_REF], while spectral efficiency is studied in [START_REF] Lin | Downlink spectral efficiency of distributed antenna systems under a stochastic model[END_REF], [START_REF] Cheng | Downlink transmission capacity analysis for virtual cell based distributed antenna systems[END_REF].

E. Virtualized Radio Access Networks

Increased network densification, as well as the use of CoMP and ICIC techniques in a C-RAN architecture, are expected to boost the overall network performance. However, they can amplify the signaling and control overhead, which is expected to generate a critical burden at the fronthaul level. One promising approach to alleviate the fronthaul bottleneck is by splitting the control plane (C-plane) and the user plane (Uplane) of the radio link via RAN virtualization. This capability is particularly supported by the software-defined networking (SDN) [START_REF] Arslan | Software-defined networking in cellular radio access networks: Potential and challenges[END_REF] where U-plane (message forwarding) is deployed in a decentralized fashion, while C-plane (control and radio resource management) is centralized in a controller. Typically, the C-plane can be provided by high-power nodes operating at sub-6 GHz bands to guarantee large coverage and efficient mobility schemes, while the U-plane can be provided by low-power nodes, namely phantom cells, operating at higherfrequency bands [START_REF] Ishii | A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept[END_REF], [START_REF] Zakrzewska | Dual connectivity in LTE HetNets with split control-and user-plane[END_REF]. Such low/high-frequency bands operation helps actually to pave the way for joint URLLC and eMBB communications [START_REF] Semiari | Integrated millimeter wave and sub-6 GHz wireless networks: A roadmap for joint mobile broadband and ultra-reliable low-latency communications[END_REF], which generally requires a prior combining of the C-RAN paradigm with HetNets, also known as H-CRAN [START_REF] Peng | Heterogeneous cloud radio access networks: a new perspective for enhancing spectral and energy efficiencies[END_REF].

Based on the tractability of SG, several recent works have investigated the performance gain under the setup of Cplane/U-plane split architecture. For instance, the authors of [START_REF] Mukherjee | Energy efficiency in the phantom cell enhanced local area architecture[END_REF] evaluated EE improvements under the phantom cell paradigm as compared to a macro-only deployment. In [START_REF] Han | Small cell offloading through cooperative communication in software-defined heterogeneous networks[END_REF], the authors studied offloading of the macrocellular layer through small cells CoMP transmissions in a virtualized RAN architecture. In [START_REF] Ibrahim | Mobilityaware modeling and analysis of dense cellular networks with Cplane/U -plane split architecture[END_REF], a tractable mobility-aware model is considered to quantify the expected performance gain with C-plane/U-plane split. Further extensions of the analysis are considered in [START_REF] Yang | Coverage and handover analysis of ultra-dense millimeter-wave networks with control and user plane separation architecture[END_REF] by taking into account mmWave sensitivity to LOS and NLOS transmissions, and in [START_REF] Arshad | Integrating UAVs into existing wireless networks: A stochastic geometry approach[END_REF] by considering UAV-aided cellular networks.

F. Fog Radio Access Networks

Another promising paradigm to alleviate the fronthaul burden in H-CRAN is F-RAN architecture, in which a consider-able fraction of the cloud is deployed in close proximity to UEs, which can be done through endowing edge terminals or third-party entities (e.g., parks, shopping centers) with computing and storage capabilities [START_REF] Mao | A survey on mobile edge computing: The communication perspective[END_REF]. There are generally two typical applications of such promising paradigm. i) Storing and computing capabilities, wherein computation-intensive tasks are processed at the level of nearby fog servers and the result will be forwarded back to end UEs, which enables using the released memory space at UEs to process other services, and then enhance users QoE. ii) Content delivery and caching, wherein close fog servers, also known in this context as helper nodes, are endowed with high capacity caches in order to proactively cache popular internet content requested by end UEs [START_REF] Li | A survey of caching techniques in cellular networks: research issues and challenges in content placement and delivery strategies[END_REF].

Using tools from SG, most literature works on the analysis of F-RAN architectures, are typically focused on quantifying the benefits of the caching capability of helper nodes when assuming a network with limited backhaul [START_REF] Bastug | Cache-enabled small cell networks: Modeling and tradeoffs[END_REF] or fronthaul link capacity [START_REF] Kong | Fog radio access networks: Ginibre point process modeling and analysis[END_REF]. Typically, the SG generative setup is to consider the location of helper nodes as modeled according to some PP (e.g., PPP [START_REF] Bastug | Cache-enabled small cell networks: Modeling and tradeoffs[END_REF], β-GPP [START_REF] Kong | Fog radio access networks: Ginibre point process modeling and analysis[END_REF], MHPP II [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF], PCP [START_REF] Afshang | Fundamentals of cluster-centric content placement in cache-enabled device-to-device networks[END_REF]), each node has a finite cache capacity, wherein files are placed according to some popularity distribution function (e.g., Zipf), and each cached file requires a minimum bitrate to meet the requirements of users QoE. That is, the performance of a cache-enabled network is quantified by the average delivery rate, defined as the probability that the typical UE can receive a downlink rate greater than the file bitrate threshold, and also the requested file can be found in the local cache of the tagged helper node. Otherwise, the file will be requested from the core network, and the average delivery rate of files will be constrained by the backhaul/fronthaul link capacity.

Accordingly, two lines of research are adopted in the literature. The first, is related to the content placement strategy, in which the problem can be stated as, how should we place the files in the helper caches to optimize some performance metrics (e.g., the hit probability defined as the probability that the typical UE may find the requested file at the tagged helper node)? Representative works can be found in [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF] for singletier cellular networks, in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF] for D2D communications, and in [START_REF] Wen | Cache-enabled heterogeneous cellular networks: optimal tier-level content placement[END_REF] for content placement policy in large-scale HetNets. The second direction of research is related to the optimal delivery strategy, wherein the analysis is focused on how to deliver the cache content at the user request in order to boost some performance metrics (e.g., the average delivery rate). For instance, the average delivery rate is considered in [START_REF] Bastug | Cache-enabled small cell networks: Modeling and tradeoffs[END_REF] to evaluate the question of adding more BSs or increasing the caching capability of already deployed BSs. In [START_REF] Yang | Analysis on cache-enabled wireless heterogeneous networks[END_REF], the content delivery protocol is studied in a HetNet scenario where the typical UE can request content from the nearest BS, RN, or cache-enabled UE. Interestingly, the joint analysis of placement and delivery techniques is brought in [START_REF] Cui | Analysis and optimization of caching and multicasting in large-scale cache-enabled information-centric networks[END_REF], [START_REF] Zhao | Cluster content caching: an energy-efficient approach to improve quality of service in cloud radio access networks[END_REF].

VII. STOCHASTIC GEOMETRY AND KEY 5G/B5G EMERGING TECHNOLOGIES

In this section, we will review modeling challenges to capture the properties of 5G/B5G key emerging technologies, and highlight the penetration degree of SG in modeling and analysis of their fundamental attributes.

A. Stochastic Geometry for Communications in Higher Frequency Bands

With the severe spectrum scarcity in commercial wireless networks running generally at sub-6GHz frequency bands, researchers are steering new opportunities in higher frequency bands to conceive a sufficiently higher bandwidth and hence meet the increased data rate requirements for eMBB services [START_REF] López-Pérez | Towards 1 Gbps/UE in cellular systems: understanding ultra-dense small cell deployments[END_REF]. In the following, we will outline the key aspects and challenges of using SG to evaluate communications in some key higher frequency bands.

1) mmWave communications: With wavelengths from 1 to 10 mm and frequency range from 30 to 300 GHz, mmWave combined with advances in integrated circuit technologies enable to concentrate tens of miniaturized and high gain antennas in small areas, which permits directional beamforming alignment and enables to compensate for the excessively high propagation loss in higher frequencies [START_REF] Pi | An introduction to millimeter-wave mobile broadband systems[END_REF], [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF], [START_REF] Andrews | Modeling and analyzing millimeter wave cellular systems[END_REF]. In this way, several changes need to be considered w.r.t. conventional mathematical SG frameworks available for modeling and analysis of µWave wireless networks. Typically, i) nodes are equipped with directional antennas such that the antenna gain is maximized when the steering angle is inside a given main lobe width [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], ii) the vulnerability of mmWaves to blockages is captured by considering LOS and NLOS transmissions in addition eventually to an outage state, in which the path loss is approximately infinite [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], [START_REF] Akdeniz | Millimeter wave channel modeling and cellular capacity evaluation[END_REF], and iii) the primacy of the thermal noise w.r.t. the interference in mmWave communications [START_REF] Akdeniz | Millimeter wave channel modeling and cellular capacity evaluation[END_REF], is captured by assuming the noise-limited regime, i.e., SINR ≃ SNR. This could, for example, be omitted in the case of UDNs where the high density of transmitters is likely to justify the prevalence of interference over thermal noise [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF].

In addition to the previous considerations to be taken into account in the analysis of mmWave wireless networks, most of the existing literature based on SG and its inherent PP theory requires the inclusion of specific assumptions to ensure tractability. For instance, i) the distribution of random shapes incorporating blockages is assumed to be motion-invariant. This is well captured by the Boolean blockages scheme in which the planar centers of the blockages are distributed according to the PPP, while the measures of length, width, height, and orientation are i. i. d. according to a given PDF [START_REF] Bai | Analysis of blockage effects on urban cellular networks[END_REF]. ii) mmWave is very sensitive to blockages such that large-scale reflections are generally ignored for mathematical convenience. iii) Another key assumption is that the blockages occur on each transmit-receive link independently, implying that the number of blockages on different transmit-receive links is independent. This assumption enables estimating that a particular area around the typical UE contains only LOS BSs with a decreasing exponential probability such that its parameters are fitted from the propagation environment, e.g., frequency, density, and blockages dimensions [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF], [START_REF] Bai | Analysis of blockage effects on urban cellular networks[END_REF], [START_REF] Andrews | Modeling and analyzing millimeter wave cellular systems[END_REF].

Based on SG, several representative research works are considered in the literature. For instance, a generative analytical framework is suggested in [START_REF] Bai | Coverage and rate analysis for millimeter wave cellular networks[END_REF] to derive SIR distribution and average rate in a single-tier mmWave UDN (that justifies the SIR regime). The analysis is next simplified by capturing blockages effect via an approximate LOS step function (see Table V), which enhances the computation speed but at the cost of SINR distribution errors. In [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], the previous framework is further generalized by considering an outage state of the blockage model, with emphasis on the noiselimited regime. Based on the displacement theorem to absorb the shadowing effect, results reveal that expanding the outage state can reduce coverage, but at the same time it will reduce interference from outage cells. On the other hand, it has been shown that if the average cell radius is no more than 50 m, the probability of LOS will be greater than 80%, which will not only improve the throughput of mmWave over µWave, but also the coverage. The obtained theoretical results are also extended by taking into account beamforming alignment errors [START_REF] Wildman | On the joint impact of beamwidth and orientation error on throughput in directional wireless Poisson networks[END_REF] and a multi-tier mmWave cellular deployment.

As noted in the previous works, densification with small cells is essential for mmWave networks to achieve acceptable coverage and throughput. However, this presents a major challenge for the backhaul network, given the complexity of bringing the backhaul to every new cell in urban areas and also given the enormous rates resulting from mmWave bandwidths of the order of GHz. In this way, the authors of [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF], [START_REF] Fontanesi | Outage analysis for millimeterwave fronthaul link of UAV-aided wireless networks[END_REF] propose to exploit the interference isolation provided by the narrow directional mmWave beams so that a wired link can provide the backhaul for some new cells via mmWave beams. In particular, [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF] evaluated self-backhauling concept wherein BSs are PPP-distributed into three classes: µWave BSs, mmWave BSs with wired backhaul, and mmWave BSs with wireless backhaul to those BSs with wired backhaul. The displacement theorem and Laplace inversion technique are next leveraged to derive the SNR/SINR and rate coverage assuming association in access and backhaul links. For mathematical convenience, an approximate blockage model is adopted such that all adjacent BSs to a given UE were treated as LOS and BSs beyond a given distance were neglected. In [START_REF] Fontanesi | Outage analysis for millimeterwave fronthaul link of UAV-aided wireless networks[END_REF], the authors considered a C-RAN abstraction and examined the feasibility of bringing wireless fronthaul to distributed aerial units by means of mmWave beams. The outage probability is next derived using technique #5 that allows an upper bound based on Alzer's lemma. Results show that UAVs need to tune their altitude according to the considered frequency (mmWave or µWave) to ensure an acceptable coverage.

Furthermore, low-power mmWave small cells can be coupled with high-power BSs at sub-6 GHz such that the former provide increased data throughput, while the latter ensure wide coverage and efficient mobility systems. In such a context, [START_REF] Park | Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks[END_REF] approximated the average spectral efficiency for a DUDA scheme under UDN configuration such that µWave macrocells are superimposed by mmWave small cells. In particular, power control is ignored and Rayleigh fading is adopted for enhanced tractability. Also, blockages are supposed to be impenetrable so that the receiver (in uplink or downlink) must be in LOS with transmitters to detect any signal. A key outcome of this work is an optimization problem enabling to maximize the downlink spectral efficiency under the constraint of a minimum required uplink data rate as a function of the µWave/mmWave bandwidth and BS/UE transmit power and density. In [START_REF] Elshaer | Downlink and uplink cell association with traditional macrocells and millimeter wave small cells[END_REF], a similar system model is adopted under the biased cell association scheme. With the diverse propagation patterns between µWave and mmWave and the wide imbalance in their bandwidths, the primary challenge of the study was to identify the optimal association bias allowing to maximize coverage and rate for the DUDA scheme.

Table VIII summarizes the key modeling choices of some relevant studies in SG-based modeling and analysis of mmWave cellular networks.

2) Terahertz communications: Compared to mmWaves, directional beamforming alignment in terahertz frequencies (from 300 GHz to 3 THz and wavelengths from 100 µm to 1 mm) is considerably more feasible due to shorter wavelength, which suggests roughly the same system model changes as those previously discussed in mmWave. However, additional key changes to the system model need to be considered in the case of THz communications [START_REF] Song | Present and future of teraHertz communications[END_REF]: First, since THz has narrower beams as well as being more sensitive to blockages (objects, human bodies), fast fading is generally not as pronounced as for µWave and mmWave, and hence, it is assumed that any effect of fast fading is essentially ignored in the analysis of THz transmissions. Second, THz frequencies incur high propagation loss due to severe sensitivity to rain and resonant absorption in water molecules. Accordingly, the path loss function in the case of a THz propagation is generally revisited by frequency-dependent molecular absorption effect with an emphasis on the LOS link as [START_REF] Jornet | Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the teraHertz band[END_REF],

ℓ(r) = c 4πf 2 r -αLOS e -k(f )r , (88) 
where k(f ) is the medium absorption coefficient at frequency f , α LOS is the path loss exponent in the LOS region, and c is the speed of light. Third, besides its effect on path loss, molecular absorption from THz EM rays in the medium is reemitted out of phase at the same frequencies it was initially absorbed, resulting in a source of noise dependent on operating frequencies, also known as molecular noise.

Using tools from SG, couple of works are developed in the literature for modeling and analysis of systems operating in THz frequencies [START_REF] Petrov | Interference and SINR in millimeter wave and teraHertz communication systems with blocking and directional antennas[END_REF]- [START_REF] Chaccour | Can teraHertz provide high-rate reliable low latency communications for wireless VR?[END_REF]. In particular, due to the previous distinctive features of THz bands, deriving the Laplace functional of interference is not feasible and evaluating system performance is quite challenging. In this way, some simplifying assumptions are usually included to enhance mathematical convenience. These include treating only the effect of thermal noise, while molecular noise is assumed to be very weak and ignored. Also, instead of resorting to the Laplace functional of the interference, the authors of [START_REF] Petrov | Interference and SINR in millimeter wave and teraHertz communication systems with blocking and directional antennas[END_REF] propose to use the Campbell theorem to infer the mean of the interference in a PPP distributed THz-only network. Furthermore, Taylor expansions were adopted to approximate the mean and variance of SIR/SINR. In [START_REF] Kokkoniemi | Stochastic geometry analysis for mean interference power and outage probability in THz networks[END_REF], the SIR distribution is derived for a dense Poisson THz-only network where the interference is approximated by a logistic distribution in which the parameters are fitted from the theoretical moments obtained from the Campbell's and PGFL's theorems.

In [START_REF] Ntontin | Toward the performance enhancement of microwave cellular networks through THz links[END_REF], coverage probability and ergodic rate are approximated for a network setup where BSs are expected to provide µWave or THz links to their intended UEs based on the transmission distance and the ability to establish a LOS link. In this way, when the typical UE is attached to a THz BS, interference is ignored, as well as path loss and noise generated by molecular absorption, which enable to derive performance metrics based on the PPP void probability, offering then increased computational efficiency. In [START_REF] Sayehvand | Interference and coverage analysis in coexisting RF and dense teraHertz wireless networks[END_REF], downlink coverage probability has been derived in a twotier cellular network composed of PPP distributed µWave and THz BSs such that the typical UE can select the serving BS based on the biased cell association policy. Interestingly, the lack of fading in THz transmissions preventing the use of the flexible Laplace transform for interference evaluation, has been tackled by judiciously using the Gil-Pelaez inversion theorem (i.e., technique #8). The analysis provides accurate results for coverage probability but may be extremely tedious to compute given the use of several infinite sums and products.

SG is used in [START_REF] Chaccour | Can teraHertz provide high-rate reliable low latency communications for wireless VR?[END_REF] as a powerful analytical tool to quantify the connection uncertainty when using the potential of THz frequencies to meet high-rate and high-reliability low latency communications requirements for wireless virtual reality users. In particular, the probability of a LOS link is first abstracted from a combination of self-blockage in which the user's body blocks a fraction of BSs due to its uniform orientation in [0, 2π], and dynamic blockers moving in a random direction with a given velocity where the distribution of the blocked interval is obtained as the busy period distribution of a queuing system. Next, the instantaneous rate is quantified by approximating the interference by a normal distribution with mean and variance parameters obtained from the Campbell theorem. Finally, the mean delay is derived assuming a spatiotemporal modeling of the traffic as a function of the mean rate, the LOS probability, and the required traffic size.

Table IX outlines some of the key studies developed in the literature for the modeling and analysis of SG-based THz wireless networks, ordered in terms of their analytical accuracy and complexity.

3) Visible light communication: Using light-emitting diodes (LEDs) in license-free visible light spectrum from 400 to 800 THz and wavelengths from 375 to 780 nm, VLC can offer simultaneous high brightness illumination and high indoor data rate [START_REF] Pathak | Visible light communication, networking, and sensing: A survey, potential and challenges[END_REF]. That is, information bits are modulated onto the intensity of the emitted light, where the path loss function is expressed under the form #4 in Table V, such that the path loss exponent is mapped to the Lambertian emission order of the LED light [START_REF] Chen | Downlink performance of optical attocell networks[END_REF]Equation 11]. Also, given the reduced VLC wavelength combined with the vicinity of receivers detection area, multipath fading is generally ignored in VLC networks.

Based on SG frameworks, we can discern three typical lines of research in the literature. i) Performance evaluation of multiuser VLC networks where the SINR statistics are evaluated under the setup of a VLC-only system. For instance, the authors of [START_REF] Chen | Downlink performance of optical attocell networks[END_REF] evaluated the downlink performance of a VLC network under two extreme deployments of LED APs in the ceiling, namely PPP and regular lattice. The analytical framework is promising but remains intractable since the SINR distribution is expressed as a function of the Gram-Charlier series and Laguerre polynomials requiring efficient numerical computation. In [START_REF] Yin | Coverage analysis of multiuser visible light communication networks[END_REF], a novel SG framework is developed by considering a 3D model and idle mode capability at VLC APs. Coverage probability is next derived based on successive statistical equivalences of SINR, but the approach requires fundamental revisions in the way to address the lack of a fading term in VLC networks. ii) Optimizing hybrid VLC/RF networks such that a joint operation of both technologies is evaluated. For instance, the authors of [START_REF] Tabassum | Coverage and rate analysis for coexisting RF/VLC downlink cellular networks[END_REF] considered a setup of several configurations of coexisting RF/VLC networks to derive coverage probability based on techniques #5 and #8 in Tab VI. In [START_REF] Kong | Energy efficient optimization of base station intensities for hybrid RF/VLC networks[END_REF], the outage probability is first derived in a VLC/RF system by approximating the interference as a sum of gamma distributions (technique #10 in Tab VI), and an optimization problem is next formulated to optimize the density of VLC/RF nodes enabling higher EE under an outage probability constraint. Furthermore, due to the inherent broadcast nature of VLC networks, data transfer may be subject to fraudulent eavesdropping. Several papers have considered iii) secrecy enhancement in VLC networks, where the physical layer (PHY) is exploited to prevent the information-theoretic security from interception [START_REF] Pan | Secure hybrid VLC-RF systems with light energy harvesting[END_REF]- [START_REF] Cho | Securing visible light communication systems by beamforming in the presence of randomly distributed eavesdroppers[END_REF].

4)

Free-space optical communications: Using signals with wavelength range in 785-1550 nm, free-space optical (FSO) communication is a laser beam for high data rate transmissions in a point-to-point free space setup, where it can serve as a promising backhaul solution to avoid expensive or not feasible deployments of wired connections [START_REF] Kedar | Urban optical wireless communication networks: the main challenges and possible solutions[END_REF], [START_REF] Khalighi | Survey on free space optical communication: A communication theory perspective[END_REF].

Despite the potential benefits of FSO communications, SG as a powerful analytical tool has not been sufficiently used in the evaluation of FSO networks due to several major modeling challenges. To the authors' knowledge, it is only recently that the first PPP abstraction model has been leveraged in performance evaluation of FSO networks [START_REF] Lahmeri | Stochastic Geometrybased analysis of Airborne Base Stations with Laser-powered UAVs[END_REF], where a scenario of SWIPT through laser beams emitted from the ground to UAV-mounted BSs is considered. In fact, the use of SG in modeling FSO communications is generally challenging due to the following aspects: i) FSO narrow beams require a perfect alignment of the LOS path, which can be problematic due to building sway generated by some environmental factors. Such feature needs to be captured by a random process to be introduced into performance analysis [START_REF] Kedar | Urban optical wireless communication networks: the main challenges and possible solutions[END_REF]. ii) Urban FSO is very sensitive to weather conditions 13 , which can be typically captured by an attenuation function dependent on distance, rain, and snowfall rate [START_REF] Nadeem | Weather effects on hybrid FSO/RF communication link[END_REF], [START_REF] Vavoulas | Weather effects on FSO network connectivity[END_REF]. iii) The FSO signal is also attenuated by atmosphere molecular absorption dependent on the wavelength of the transmitted signal. iv) Such signal can also be constrained by fluctuations in temperature and humidity gradients over time, also known as scintillation or turbulence-induced fading. The universal model to capture such turbulence conditions is to consider doubly stochastic fading models [START_REF] Kedar | Urban optical wireless communication networks: the main challenges and possible solutions[END_REF], [START_REF] Khalighi | Survey on free space optical communication: A communication theory perspective[END_REF], [START_REF] Letzepis | Outage probability of the freespace optical channel with doubly stochastic scintillation[END_REF]. Last but not least v) the FSO link is also subject to undesirable ambient noise caused by photons radiations of sunlight [START_REF] Sidorovich | Solar background effects in wireless optical communications[END_REF]. 13 Several techniques are considered to overcome such impairements, for example using a mmWave backup link to supplement the FSO main link during adverse weather conditions [START_REF] Nadeem | Weather effects on hybrid FSO/RF communication link[END_REF], or using relay-assisted transmissions where the overall FSO path is splitted into small paths with reduced losses [START_REF] Vavoulas | Weather effects on FSO network connectivity[END_REF].

B. Stochastic Geometry for Cognitive Wireless Networks

Cognitive radio (CR) is a promising technology to address the scarcity of the licensed spectrum. CR techniques ensure actually an opportunistic allocation of the available spectrum where secondary users, also known as cognitive users, can scan and access the unused spectrum portions at specific time or place without impairing existing primary users [START_REF] Haykin | Cognitive radio: brain-empowered wireless communications[END_REF]. The literature is rich in contributions dealing with the use of SG to evaluate the benefits of various spectrum sharing schemes. The fundamental challenge actually is how to use SG tools to capture the availability of unused licensed spectrum portions. One key approach is to consider geographical regions where cognitive users are less likely to impair the performance of primary users.

The analysis of the literature shows that there are generally three generative ways to capture such event: i) The guard zone approach [START_REF] Lee | Interference and outage in Poisson cognitive networks[END_REF], [START_REF] Tefek | Interference management through exclusion zones in two-tier cognitive networks[END_REF], in which the secondary user is allowed to transmit as long as it is outside an exclusion region around primary users. The locations of active cognitive users can be modeled for example by a PHP [START_REF] Lee | Interference and outage in Poisson cognitive networks[END_REF], or a MHP [START_REF] Tefek | Interference management through exclusion zones in two-tier cognitive networks[END_REF]. Such coupling in the locations of active cognitive and primary users via exclusion regions renders the analysis of interference very challenging as no tractable expression of the PGFL is available, and then only some estimates of the aggregate interference are obtained. ii) The max-received power approach [START_REF] Song | Spatial throughput characterization in cognitive radio networks with threshold-based opportunistic spectrum access[END_REF], in which the process of active cognitive users is derived as an independent thinning based on the probability that the maximum instantaneous signal power at the level of a random secondary user and sent by active primary users is below a certain threshold. iii) The outage probability approach [START_REF] Bang | An efficient relay selection strategy for random cognitive relay networks[END_REF], in which the location of active cognitive users follow a PPP with a specific density in such a way to guarantee that the induced outage probability at the level of the primary network will not exceed a predefined threshold.

Furthermore, CR capability can be used beyond the conventional primary/secondary users setup, typically as a promising technique for distributed interference mitigation in co-channel deployments of HetNets [START_REF] Cheng | Design and analysis of downlink spectrum sharing in two-tier cognitive femto networks[END_REF]. That is, Femto BSs equipped with CR abilities, can sense the spectrum usage in intra-tier and cross-tier layers and hence select the appropriate spectrum sharing policy to avoid severe interference.

C. Multiple-Input Multiple-Output Systems

In conjunction with adding new cells and using higher frequency bands, MIMO technology is considered as a key component in the race towards higher data rates in 5G/B5G networks [START_REF] Bhushan | Network densification: the dominant theme for wireless evolution into 5G[END_REF]- [START_REF] Kamel | Ultra-dense networks: A survey[END_REF]. MIMO is usually used to increase spatial diversity and combat channel fading, which enhances the reliability of the reception. Alternatively, fading can be seen as a source of increasing the degrees of freedom in MIMO systems. That is, the receiving antenna array can retrieve independent information streams with sufficiently different spatial signatures, which helps improve data rate. This technique is referred to as spatial multiplexing. The third popular use case of MIMO is precoding or multi-flow beamforming, wherein the same information symbol is sent by each of the transmitting antennas with appropriate phase and gain weighting, so that the signal power is maximized at the receiver by constructively adding signals emitted by different antennas. Accordingly, channel estimation and symbol detection is a key challenge in MIMO systems.

Most research works evaluating the performance of MIMO systems has considered the one cell scenario where interference from other cells is neglected. The performance analysis of a multi-cell network is however much more challenging due to geometrical properties between cells and the resulting intercell interference. In such a context, SG provides a set of powerful tools for performance modeling and analysis of several MIMO techniques. A first premise that worth be considered in SGbased models for MIMO systems is that a mapping between the number of user antennas and the number of BS antennas under Rayleigh fading channels, i.e. exponentially distributed channel power gains, can tractably define the implemented MIMO technique. It is then possible to formulate the SINR within a SISO setup in such a way that the channel power gain for the desired and interference signals are gamma distributed with a scale of 1 and a shape defined as a function of the number of user's and BS's antennas [354, II]. In this way, the gamma distribution is widely adopted in the performance analysis of SG-based MIMO systems, where the key task is to compute the n-th derivatives of the Laplace transform, which resorts to the approximations discussed in technique #5 of Table V.

MIMO can be leveraged as a multi-user system (MU-MIMO) where several antennas at the BS can serve simultaneously a number of users. To decode the data transmitted simultaneously by multiple users, each BS needs the channel knowledge of its associated users, which is estimated by a set of orthogonal uplink pilot sequences, while channel reciprocity is exploited at the BS to pre-encode data in the downlink. Due to the limited size of the coherence block and also the limited number of orthogonal pilot sequences available for channel estimation, pilot sequences are reused in different cells, giving rise to coherent interference between UEs sharing the same pilots, also known as pilot contamination (PC).

There are mainly three key approaches used in the SGbased literature to address the issue of PC. i) The regular pilot (RP) transmission approach in which the transmission of pilot and data symbols is done separately in the coherence block to minimize interference in the channel estimation process [START_REF] Björnson | Deploying dense networks for maximal energy efficiency: small cells meet massive MIMO[END_REF]. ii) The superimposed pilot (SP) approach consisting of simultaneous transmission of pilot and data signals [START_REF] Verenzuela | Spectral and energy efficiency of superimposed pilots in uplink massive MIMO[END_REF]. SP allows the use of longer pilot sequences, as compared to RP, which reduces pilot contamination at the expense of increased estimation overhead, which in turn, reduces the amount of data symbols transmitted per coherence block. Also, simultaneous transmission of pilot and data signals in SP will introduce interference into the channel estimation process from data symbols. The previous approaches consider the use of fully orthogonal pilots between cells, while the spectral efficiency can be further improved by using a more dynamic pilot reuse scheme. iii) The third approach thus considers fractional pilot reuse (FPR), where the users of one cell are split into two groups, i.e. center of cell (CC) and edge of cell (EC) users [START_REF] Parida | Stochastic geometry-based uplink analysis of massive MIMO systems with fractional pilot reuse[END_REF]. While all pilots for CC users are reused in each cell, pilots for EC users are reused in specific cells according to the reuse factor. For tractability, CC region is captured by the Johnson-Mehl cell of its BS while the remainder of the Poisson Voronoi cell is assumed to be the EC region.

D. The Promising Approach of Metasurfaces

Despite relatively lower costs and easy deployment of RNs as compared to macro and small cells, extensive deployment of RNs in UDNs can increase costs in view of their inherent power consumption and OPEX costs. Recently, a radically new wireless communication paradigm has been proposed [START_REF] Liaskos | A new wireless communication paradigm through softwarecontrolled metasurfaces[END_REF], [START_REF] Renzo | Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come[END_REF], [START_REF] Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: how It works, state of research, and the road ahead[END_REF], wherein some software-controlled metallic reflectors made of low-cost passive elements, i.e., metasurfaces, are judiciously placed in environmental objects and/or aerial platforms to support communication of edge terrestrial and/or aerial users [START_REF] Alfattani | Aerial platforms with reconfigurable smart surfaces for 5G and beyond[END_REF]. As elaborated in [START_REF] Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: how It works, state of research, and the road ahead[END_REF], an RIS is usually made of tiny scattering elements that are controlled by low-cost and low-power electronic circuits that enable their configurability over time. In general, an RIS requires many tunable elements in order to get similar performance as other transmission technologies, e.g., relays [START_REF] Renzo | Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison[END_REF]. Broadly speaking, RISs make a tradeoff between the low complexity of their electronic circuits, the absence of power amplifiers and multiple RF chains with a large number of the available scattering elements.

Quantifying the performance of RIS-assisted wireless works, especially in large-scale deployments, require new analytical tools along two main directions: i) the development of link-level models for RISs that allow us to quantify the power scattered by an RIS as a function of its configuration; and ii) the amalgamation of the resulting link-level models with SG in order to quantify network-level performance metrics [START_REF] Di Renzo | Reflection probability in wireless networks with metasurface-coated environmental objects: an approach based on random spatial processes[END_REF], [START_REF] Kishk | Exploiting randomly-located blockages for large-scale deployment of intelligent surfaces[END_REF].

As far as the analysis of the power scattered by an RIS is concerned, this is an open research issue and some attempts have recently been made [START_REF] Björnson | Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces[END_REF]- [START_REF] Qian | Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces[END_REF]. In [START_REF] Danufane | On the path-loss of reconfigurable intelligent surfaces: an approach based on Green's theorem applied to vector fields[END_REF], in particular, it is shown that the electromagnetic field scattered by an RIS depends on several factors, which include the electrical size of the RIS and transmission distances between the transmitter, the RIS, and the receiver. In general, the scattered electromagnetic field is formulated in terms of an integral (or a finite sum), which can be formulated in a closed-form expression only in some asymptotic regimes, e.g., when the size of the RIS is very large or is very small. In these operating regimes, the scaling laws of the propagation distances may be different. The surface gain offered by an RIS also depends on the specific function that it needs to realize. The study conducted in [START_REF] Danufane | On the path-loss of reconfigurable intelligent surfaces: an approach based on Green's theorem applied to vector fields[END_REF] is applicable to homogenized (or virtually continuous) RISs. In [START_REF] Gradoni | End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: an electromagnetic-compliant approach based on mutual impedances[END_REF], the authors have recently introduced a communication model for discrete-type RISs, which resembles a MIMO communication link. The communication model in [START_REF] Gradoni | End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: an electromagnetic-compliant approach based on mutual impedances[END_REF] has recently been used in [START_REF] Qian | Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces[END_REF] for system optimization. A major limitation of the available link-level models to quantify the electromagnetic field scattered by an RIS is that they usually apply to free-space channels.

As far as the amalgamation of link-level models for RISs with SG is concerned, the resulting problem is non-trivial and open [START_REF] Di Renzo | Reflection probability in wireless networks with metasurface-coated environmental objects: an approach based on random spatial processes[END_REF], [START_REF] Kishk | Exploiting randomly-located blockages for large-scale deployment of intelligent surfaces[END_REF]. This is due to two main reasons. i) Existing link-level models for RISs are applicable to free-space channels and are, in general, formulated in terms of integrals or summations. This makes their integration in conventional SG frameworks difficult. The analytical frameworks available for some asymptotic regimes, e.g., in [START_REF] Danufane | On the path-loss of reconfigurable intelligent surfaces: an approach based on Green's theorem applied to vector fields[END_REF], are only in part applicable in a SG framework since they are accurate only for some specific transmission distances. Since in SG-based analysis the transmission distance is a random variable and the users may be very close to the RIS, accurate path-loss models need to be used. This implies that, for application to SG-based studies, link-level models for RISs need to account for the near-field regime. This is briefly elaborated in [START_REF] Danufane | On the path-loss of reconfigurable intelligent surfaces: an approach based on Green's theorem applied to vector fields[END_REF]. ii) RISs are expected to be deployed on environmental objects, such as the walls of buildings. In typical SG-based analysis, the environmental objects are usually modeled as blocking objects, while the impact of reflections and how they affect the SINR is usually ignored due to the associated analytical complexity [START_REF] Di Renzo | Reflection probability in wireless networks with metasurface-coated environmental objects: an approach based on random spatial processes[END_REF], [START_REF] Kishk | Exploiting randomly-located blockages for large-scale deployment of intelligent surfaces[END_REF]. Likewise, the large size of RISs may not be compatible with the typical assumption that the links scattered by the same RISs are statistically independent of each other. This requires the development of new analytical methods for modeling RIS-coated objects in large-scale wireless networks.

Overall, the modeling, analysis, and optimization of largescale RIS-assisted wireless networks is a major open research issue, which requires the development of new tools for the link-level modeling of RIS, which needs to account for the scattering (e.g., reflections) introduced by RIS-coated objects, and which needs to consider appropriate association strategies between the users and the RIS so as to best use the available RISs [START_REF] Perović | Achievable rate optimization for MIMO systems with reconfigurable intelligent surfaces[END_REF], [START_REF] Abrardo | Intelligent reflecting surfaces: sum-rate optimization based on statistical CSI[END_REF]. Finally, the development of tools that combine ML and SG for optimizing large-scale networks is another major research venue [START_REF] Zappone | Wireless networks design in the era of deep learning: model-based, AI-based, or both?[END_REF], [START_REF] Zappone | Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks for wireless system optimization[END_REF].

E. Stochastic Geometry for NOMA Networks

Compared to conventional orthogonal multiple access techniques where UEs are served in orthogonal resource blocks, NOMA is introduced as an emerging technology enabling multiple UEs to share the same time-frequency resource block [START_REF] Saito | Non-orthogonal multiple access (NOMA) for cellular future radio access[END_REF]. One key variant is actually power-domain NOMA [START_REF] Islam | Power-domain non-orthogonal multiple access (NOMA) in 5G Systems: potentials and challenges[END_REF], in which multiple UEs can use the same resource block but at different power levels. That is, UEs are first ordered according to a measure of link quality. Next, the BS superposes the UEs in the same resource block by allocating a fraction of the BS transmit power to each UE so that the worst UE in terms of link quality is assigned the highest power coefficient. In downlink 14 NOMA reception, successive interference cancellation (SIC) is implemented at each UE in such a way that signals of weaker UEs are decoded and canceled from the observation, while signals of stronger UEs are treated as noise.

Based on such key components of power-domain NOMA, several research works have leveraged SG for performance analysis of NOMA wireless networks. The key modeling choices are: i) how to capture the cluster of UEs to be simultaneously served in the same resource block. Several setups are considered in the literature, for example, consider only the case of two UEs, typically two random UEs in the Voronoi tessellation of the serving BS, i.e., random pairing [START_REF] Liu | Nonorthogonal multiple access in massive MIMO aided heterogeneous networks[END_REF], [START_REF] Zhang | Downlink and uplink non-orthogonal multiple access in a dense wireless network[END_REF], [START_REF] Gu | Outage probability analysis of non-orthogonal multiple access in cloud radio access networks[END_REF], [START_REF] Hou | Multiple antenna aided NOMA in UAV networks: A stochastic geometry approach[END_REF], or selective pairing of a cell-center and a cell-edge UE [START_REF] Liu | Nonorthogonal multiple access in massive MIMO aided heterogeneous networks[END_REF]- [START_REF] Martin-Vega | Modeling and analysis of NOMA enabled CRAN with cluster point process[END_REF], [START_REF] Swami | On user offloading in NOMA-hetnet using repulsive point process[END_REF]. Some works assume a more general setup where the cluster is a constant number of UEs (> 2) [START_REF] Ali | Meta distribution of downlink non-orthogonal multiple access (NOMA) in Poisson networks[END_REF], [START_REF] Salehi | Meta distribution of SIR in large-scale uplink and downlink NOMA networks[END_REF], a bounded random number of UEs modeled as PPP [START_REF] Liu | Heterogeneous networks with power-domain NOMA: coverage, throughput, and power allocation analysis[END_REF] or as PCP [START_REF] Tabassum | Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes[END_REF], [START_REF] Ali | Meta distribution of downlink non-orthogonal multiple access (NOMA) in Poisson networks[END_REF], or even two layers of user group in a NOMA-based multicast setup [START_REF] Zhang | Fundamental tradeoffs of non-orthogonal multicast, multicast, and unicast in ultradense networks[END_REF]. ii) Which measure of link quality to use in served UEs ordering. Due to its tractability, the common metric is to classify UEs based on their distance to the serving transmitter [START_REF] Tabassum | Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes[END_REF], [START_REF] Liu | Nonorthogonal multiple access in massive MIMO aided heterogeneous networks[END_REF], [START_REF] Liu | Heterogeneous networks with power-domain NOMA: coverage, throughput, and power allocation analysis[END_REF], [START_REF] Ali | Meta distribution of downlink non-orthogonal multiple access (NOMA) in Poisson networks[END_REF], [START_REF] Salehi | Meta distribution of SIR in large-scale uplink and downlink NOMA networks[END_REF]. Other metrics is to consider the fading gain [START_REF] Zhang | Downlink and uplink non-orthogonal multiple access in a dense wireless network[END_REF], [START_REF] Swami | On user offloading in NOMA-hetnet using repulsive point process[END_REF], the instantaneous signal power based on fading and the path loss function [START_REF] Ali | Meta distribution of downlink non-orthogonal multiple access (NOMA) in Poisson networks[END_REF], or the instantaneous signal power normalized by noise and inter-cell interference power [START_REF] Ali | Meta distribution of downlink non-orthogonal multiple access (NOMA) in Poisson networks[END_REF]. Also, iii) how to introduce the effect of SIC in the SINR formulation. The generative approach is to introduce a fraction parameter (∈ [0, 1]) that reflects the accuracy of SIC [START_REF] Ali | Meta distribution of downlink non-orthogonal multiple access (NOMA) in Poisson networks[END_REF].

F. Stochastic Geometry for IBFD Technology

IBFD wireless nodes can transmit and receive data simultaneously at the same time/frequency channel. Such capability is expected to double the spectrum efficiency at the expense of increased residual self-interference (SI) between uplink and downlink [START_REF] Sabharwal | In-band full-duplex wireless: Challenges and opportunities[END_REF]. SG has been extensively used in the literature to quantify the performance gains achieved by IBFD capability [START_REF] Lee | Hybrid full-/half-duplex system analysis in heterogeneous wireless networks[END_REF]- [START_REF] Atzeni | Full-duplex MIMO small-cell networks with interference cancellation[END_REF]. The key model change is actually to account for the SI power after performing cancellation, which can be perfect, imperfect, or without prior knowledge of its effect.

Several models have been considered in the literature to capture such residual SI power gain. The common practice is to consider a constant value dependent on the transmit power, which is a typical scenario in digital cancellation techniques, where the SI intensity after cancellation can be estimated [START_REF] Lee | Hybrid full-/half-duplex system analysis in heterogeneous wireless networks[END_REF]- [START_REF] Tabassum | Analysis of massive MIMOenabled downlink wireless backhauling for full-duplex small cells[END_REF], [START_REF] Atzeni | Full-duplex MIMO small-cell networks with interference cancellation[END_REF]. However, in the context of other cancellation techniques where an estimation of the risidual SI is not feasible, e.g., analog-domain or propagation-domain schemes as pointed out in [START_REF] Lee | Hybrid full-/half-duplex system analysis in heterogeneous wireless networks[END_REF], the residual SI channel is generally modeled by a random variable, e.g., Rician fading [START_REF] Shojaeifard | Massive MIMO-enabled full-duplex cellular networks[END_REF], [START_REF] Sharma | Joint backhaul-access analysis of full duplex self-backhauling heterogeneous networks[END_REF], Nakagami-m fading [START_REF] Sakr | On user association in multi-tier fullduplex cellular networks[END_REF]. For instance, modeling and analysis of a wireless network with random combination of HD and IBFD nodes is studied in [START_REF] Tong | Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation[END_REF], where it has been shown an enhanced success probability in HDonly networks, even under perfect SI cancellation. However, IBFD-only networks, can outperform their HD peers in terms of throughput due to higher resource utilization.

It is worth noting that the benefits of dense HetNets in terms of capacity improvements are generally limited by the spectrum scarcity. Typically, IBFD as a frequency reuse technique has been investigated in HetNets setup, where it has been reported that network throughput can be maximized under HD-only or IBFD-only HetNets rather than using a combination of them [START_REF] Lee | Hybrid full-/half-duplex system analysis in heterogeneous wireless networks[END_REF]. The problem of optimizing user association policy in IBFD HetNets with DUDA scheme is evaluated in [START_REF] Sakr | On user association in multi-tier fullduplex cellular networks[END_REF]. Also, due to less viable wired backhaul for small cells, IBFD is investigated in [START_REF] Tabassum | Analysis of massive MIMOenabled downlink wireless backhauling for full-duplex small cells[END_REF], [START_REF] Sharma | Joint backhaul-access analysis of full duplex self-backhauling heterogeneous networks[END_REF] as a promising solution for wireless backhaul of small cells. Last but not least, the potential of MIMO antennas to mitigate the extra interference introduced by IBFD is analyzed in [START_REF] Shojaeifard | Massive MIMO-enabled full-duplex cellular networks[END_REF], [START_REF] Atzeni | Full-duplex MIMO small-cell networks with interference cancellation[END_REF], while the impact of equipping MIMO RNs with IBFD capability in a cellular network with MIMO BSs is quantified in [START_REF] Ntontin | On the feasibility of fullduplex relaying in multiple-antenna cellular networks[END_REF]. A common result is that BSs and IBFD RNs need to be equipped with sufficiently large number of antennas to achieve the expected benefits of IBFD capability.

G. Stochastic Geometry for Physical Layer Security

The usual bit-level cryptographic protocols, requiring heavy overheads and intense coordination, can be generally compromised if eavesdroppers are equipped with convenient computing capabilities. An alternative promising approach is to consider physical layer security besides the conventional error correction mechanisms in such a way to impair the channel capacity of eavesdroppers with limited impact on the QoS of legitimate users [START_REF] Wu | A survey of physical layer security techniques for 5G wireless networks and challenges ahead[END_REF]. In fact, based on the Wyner's encoding scheme, a transmitter selects two rates, namely, the rate of codewords R t and the rate of confidential messages R s , i.e., the secrecy rate. Reliable connection is actually achieved when the instantaneous capacity at the intended receivers is greater than R t , while a secrecy failure event occurs when the instantaneous capacity at eavesdroppers is above R t -R s [START_REF] Zhou | On the throughput cost of physical layer security in decentralized wireless networks[END_REF].

SG is typically harnessed to evaluate the impact of key system parameters on the physical layer security of largescale wireless networks. That is, the interplay between cell association policy and the secrecy capability is investigated in [START_REF] Wang | Physical layer security in cellular networks: A stochastic geometry approach[END_REF]- [START_REF] Wang | Physical layer security in heterogeneous cellular networks[END_REF]. Physical layer security in the context of largescale networks with NOMA is studied in [START_REF] Liu | Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[END_REF], with MIMO in [START_REF] Wang | Artificial noise aided physical layer security in multi-antenna small-cell networks[END_REF], and with D2D communications in [START_REF] Ma | Interference exploitation in D2D-enabled cellular networks: A secrecy perspective[END_REF]. The sensitivity of mmWave communications to blockages is explored in [START_REF] Vuppala | An analysis on secure communication in millimeter/micro-wave hybrid networks[END_REF] to establish a tradeoff between higher data rates and enhanced secrecy. The question of secure communications in the context of a multiuser VLC network deployed in public areas under a broadcast topology is investigated in [START_REF] Pan | Secure hybrid VLC-RF systems with light energy harvesting[END_REF]- [START_REF] Cho | Securing visible light communication systems by beamforming in the presence of randomly distributed eavesdroppers[END_REF]. There are generally four popular techniques considered in the literature to enhance physical layer security. For instance, i) the artificial noise approach in which some artificial noise is added to secret messages in order to make decoding harder to eavesdroppers [START_REF] Wang | Artificial noise aided physical layer security in multi-antenna small-cell networks[END_REF], [START_REF] Wang | Impact of artificial noise on cellular networks: A stochastic geometry approach[END_REF]. ii) The secrecy guard zone approach in which confidential messages are transmitted only if eavesdroppers are outside an exclusion region around legitimate nodes [START_REF] Yin | Physical-layer security in multiuser visible light communication networks[END_REF], [START_REF] Zhou | On the throughput cost of physical layer security in decentralized wireless networks[END_REF], [START_REF] Liu | Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[END_REF]. iii) The friendly interference approach in which a friendly interference is generated to jam the channel capacity of eavesdroppers with controlled impact on the QoS of legitimate users, e.g., exploit the generated interference by D2D communications [START_REF] Ma | Interference exploitation in D2D-enabled cellular networks: A secrecy perspective[END_REF] or by a set of friendly jammers [START_REF] Tang | Physical layer security in heterogeneous networks With jammer selection and full-duplex users[END_REF], [START_REF] Kong | Physical layer security in wireless networks with Ginibre point processes[END_REF]. iv) The selective transmission approach where confidential messages are transmitted selectively to users in such a way to reduce the likelihood of being intercepted by eavesdroppers, e.g., using directional antennas [START_REF] Zhou | On the throughput cost of physical layer security in decentralized wireless networks[END_REF], or the transmit antenna selection technique [START_REF] Chen | Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers[END_REF].

VIII. TOWARDS NEW HORIZONS FOR STOCHASTIC

GEOMETRY

After intensive use of SG in modeling and analysis of communication networks, notably during the last decade of the seminal results [START_REF] Haenggi | A geometric interpretation of fading in wireless networks: theory and applications[END_REF]- [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], the research community begins to experience some congestion on applications of SG and some degree of duplication in the literature. This is in particular due to the following reasons: i) SG is very rich in theory but only few results are used practically in modeling and analysis of wireless networks, including Campbell's and PGFL theorems, as well as constructing properties that may preserve the Poisson law (e.g., superposition, displacement, mapping, independent thinning). ii) Given some modeling and design challenges, SG has not been sufficiently explored in the analysis of promising research areas (e.g., networks with metasurfaces, molecular communication (MC), ML, FSO for backhaul or satellites communications). iii) No bridges of interaction are created between SG and other emerging mathematical theories, which can give rise to new practical results of SG. In this section, we will outline some emerging research avenues that can revitalize the use of SG during this decade.

A. Stochastic Geometry for Modeling and Analysis of Molecular Communications

One promising frontier of conventional EM communication systems is the ability to share, manipulate and control information on a very small scale in such a way to connect swarms of intelligent autonomous nano-devices, i.e., devices in a scale ranging from 1 to 100 nanometers, e.g., nano-robots, nanoprocessors, nano-clocks. Based on biological communication in nature where molecules are the basic carriers of information, MC is expected to be one of the next big 15 ideas of communication due to its inherent biocompatibility and enhanced EE at the cost of slow propagation speed as compared to EM wave based communications [START_REF] Rikhtegar | A brief survey on molecular and electromagnetic communications in nano-networks[END_REF], [START_REF] Farsad | A comprehensive survey of recent advancements in molecular communication[END_REF].

The vision of molecular nanonetworks is actually fraught with many challenges, among them, how information can be encoded in molecules and how such molecules are supposed to propagate from a transmitter to a receiver. Several MC propagation schemes are considered in the literature such as diffusion-based propagation, flow assisted propagation and bacteria chemotaxis. The most common approach is the free diffusion of particles where molecules can propagate from one point to another in a random Brownian motion via inherent thermal energy, which does not require any external source of energy and may induce confusion in molecules detection at the receiver, also known as inter-symbol-interference. Several ways are considered to encode information in such diffusing particles, for example encoding information according to the time of arrival of molecules at the receiver, according to molecular composition or to the variations on molecules concentration in the space. 15 As was first pointed out conceptually by the 1965 nobel laureate physicist Richard Feynman in his famous speech entitled "There's Plenty of Room at the Bottom" in Dec. 1959.

Another major constraint in MC systems is the laborious and expensive nature of laboratory experimentation which justifies the wide use of simulation environments for MC analysis [START_REF] Farsad | Tabletop molecular communication: Text messages through chemical signals[END_REF]. Interestingly, the authors of [START_REF] Deng | Analyzing large-scale multiuser molecular communication via 3-D stochastic geometry[END_REF] presented a first attempt to provide some appropriate analytical tools via SG in such context of miniaturization in MC. The work proposed a mathematical framework for performance evaluation of a 3D diffusion-based large-scale MC system. The average number of sensed particles and the bit error probability at a receiver located at the origin are next characterized over many spatial realizations of a swarm of point transmitters scattered in space according to some PPP and emitting the same bit sequence (the same type of molecule) simultaneously, i.e., cochannel transmitters. Analytical evaluation of MC as a serious alternative to EM wave based systems, particularly in strong attenuation regimes of EM waves, is relatively new and several fundamental questions need actually years and years to be answered and agreed about [START_REF] Guo | Molecular versus electromagnetic wave propagation loss in macro-scale environments[END_REF]. However, many advances are expected in the near future due especially to recent development in inexpensive testbed for MC systems capable of transmitting short text messages via chemical signals [START_REF] Farsad | Tabletop molecular communication: Text messages through chemical signals[END_REF].

B. Stochastic Geometry in the Era of Machine Learning

SG and ML have recently been considered as the most popular methods with renewed and widespread interest in the design and analysis of wireless networks. The former is actually a powerful model-driven approach aimed to enhance the tractability and accuracy of conventional probabilistic models, e.g., channel, interference, scheduling, by considering the randomness on the locations of the transmitters and/or the receivers, so that one can evaluate performance metrics of wireless networks upon several realizations of network geometry [START_REF] Baccelli | Stochastic geometry and architecture of communication networks[END_REF], [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. The latter is however, a data-driven simulationbased approach, which by collecting sufficient amount of realistic data, i.e., the training set, can feed a supervised and/or unsupervised learning process deployed at the cloud components of the network, to enable the prediction of the desired result, e.g., performance metrics [START_REF] Simeone | A very brief introduction to machine learning with applications to communication systems[END_REF], [START_REF] Sun | Application of machine learning in wireless networks: key techniques and open issues[END_REF].

To the best of the authors' knowledge, there are fundamentally two lines of thought in the literature regarding the mode of interaction that should prevail between ML and SG. The first vision is based on an evolutionary interaction [START_REF] Simeone | A very brief introduction to machine learning with applications to communication systems[END_REF]- [START_REF] Hammouti | A machine learning approach to predicting coverage in random wireless networks[END_REF], in which ML is conceived as a separate evolved alternative to SG enabling to overcome the shortcomings of the latter and provide more accurate representation of reality. In fact, SG model-driven approach is generally governed by a tradeoff between tractability and accuracy, where tractable models are simply less accurate to reflect realistic scenarios, while precise models are hard to derive and their resulting algorithms are too complex to implement. However, with the unprecedented availability of data, inducing the need for software-controlled and optimized operations, in addition to recent developments in smart radio environments via the use of metasurfaces [START_REF] Liaskos | A new wireless communication paradigm through softwarecontrolled metasurfaces[END_REF], [START_REF] Di Renzo | Reflection probability in wireless networks with metasurface-coated environmental objects: an approach based on random spatial processes[END_REF], it is difficult to develop accurate SG models that can capture such complex scenarios of analysis due to the unlimited degrees of freedom and system constraints. The second vision is based on a collaborative interaction [START_REF] Zappone | Wireless networks design in the era of deep learning: model-based, AI-based, or both?[END_REF]- [START_REF] Saha | Machine learning meets stochastic geometry: determinantal subset selection for wireless networks[END_REF]; in which a common ground and potential crossfertilization between SG and ML is created such that the strength of both approaches will be jointly harnessed to tackle the same issue. For instance, SG models can be integrated as a hypothesis class in the learning process of ML. One representative example is the class of problems known as the subset selection problems, where an optimal subset needs to be selected from a ground set. In such context, SG probabilistic models constructed by finite DPPs are used to feed ML datadriven supervised learning frameworks.

C. Stochastic Geometry as a Multi-objective Analytical Tool

From the previous discussions, it is evident that future 5G/B5G wireless networks are going to be highly heterogeneous, multi-layered, with embedded intelligence at both the core and the edge of the network, where ML is expected to play a crucial role in link and system-level decisions. In such a context, future performance metrics need to be carefully tailored to ensure the joint evaluation of throughput, latency, and reliability, which ultimately leads to the joint optimization of communication, control, localization, sensing, energy consumption, and many other parameters and resources. Interestingly, SG can be envisioned as a potential analytical candidate in this way.

For instance, Fig. 10 presents some scenarios where the SINR can be combined with useful utility functions to enable the joint analysis of communication and other related attributes, e.g., DUDA, SWIPT [START_REF] Di Renzo | Spectral-energy efficiency Pareto front in cellular networks: a stochastic geometry framework[END_REF], [START_REF] Song | System-level optimization in Poisson cellular networks: an approach based on the generalized benders decomposition[END_REF]. Also, SG is increasingly adopted in studying the joint localization and communication of users in a given propagation environment. In particular, the authors of [START_REF] Schloemann | Toward a tractable analysis of localization fundamentals in cellular networks[END_REF], [START_REF] O'lone | A statistical characterization of localization performance in wireless networks[END_REF] use tools from SG and its inherent PP theory to evaluate the statistics of the number of BSs/anchors (i.e., nodes with known positions) that can participate in the localization procedure of users/agents (i.e., nodes with unknown positions) as a function of systemlevel parameters and channel impairments. Typically, there is a tradeoff, known as the hearability problem, that needs to be considered between communication requirements that ask for a strong signal from the desired BS and a poor one from interferers, versus localization that requires a good signal from most BSs.

Furthermore, SG and its inherent random set theory are becoming widely adopted for the analysis of combined recognition, data manipulation, and movement in real-world environments. Typically, SG is used to study uncertainty in geometric objects in order to build models from IoT measurements [START_REF] Vo | Joint detection and estimation of multiple objects from image observations[END_REF], [START_REF] Mullane | A random-finite-set approach to bayesian SLAM[END_REF]. The physical environment landmarks are actually abstracted into parametric representations such as points, lines, and edges. These features are next handled as realizations of random variables modeled as a finite random set, which based on the Bayesian estimation paradigm, can allow to jointly estimate the number of objects and their states. This is relevant for example to detect and locate objects from surveillance images [START_REF] Vo | Joint detection and estimation of multiple objects from image observations[END_REF]. Besides, random set theory is gaining increased importance for providing a theoretical estimation for the famous simultaneous localization and map building (SLAM) problem that asks for the ability to place an autonomous robot at an undefined location in an undefined environment and construct a map based only on relative ambient observations, and subsequently use this map for spatial mobility of this robot [START_REF] Mullane | A random-finite-set approach to bayesian SLAM[END_REF]. Using random finite set theory, SLAM is then presented as a Bayesian filtering problem in which the joint recursive estimation of the robot route and set-valued map are spatially distributed over time as measurements are acquired.

Future research efforts are therefore expected to identify attractive applications of SG in multi-objective optimization.

D. Grothendieck Toposes as Mathematical Bridges for Stochastic Geometry

One effective way to deal with the embarrassing tradeoff between tractability and accuracy that governs SG models, is to investigate how to build more advanced and accurate SG models from tractable and easy-to-interpret models conceived by other mathematical fields. Our vision therefore is to create some abstract bridges of interaction between SG and other mathematical fields where we have reached some remarkable degree of specialization and proficiency. The rationale is to create meaningful and powerful analogies that may illuminate concepts and suggest new practical results in SG. A promising approach to meet such aims is through the concept of topos introduced by Alexandre Grothendieck during his Seminar on Algebraic Geometry in the early sixties.

"It is the notion of topos that is this "bed" where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures. It is the most vast thing I have conceived, to grasp with finesse, through the same language rich in geometric resonances, an "essence" common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things."-Alexandre Grothendieck commented in his famous text of autobiographical reflections "Récoltes et Semailles" [START_REF] Grothendieck | Récoltes et Semailles[END_REF].

Recently, new perspectives on the notion of topos have emerged. According to Olivia Caramello [START_REF] Caramello | The unification of mathematics via topos theory[END_REF], Grothendieck toposes can be used as unifying spaces that can serve as bridges for transferring properties, ideas, and results between distinct mathematical theories. In our case, between SG and other mathematical fields, so that long-standing problems formulated in SG can be solved using techniques from a different field, and results in a well known area can be appropriately transferred to results in SG.

IX. CONCLUSION

In this paper, we surveyed and investigated PP models, statistical tools, SG system model preferences, and the major analytical techniques extracted from the rich legacy of SGbased research works, conducted over the past decade in modeling and analysis of wireless networks. We also outlined how SG has been considered to capture the properties of new RANs and quantified the benefits of a number of 5G/B5G enabling technologies. The main goal is to review the milestones established in the past decade in the usage of SG for wireless networks and to predict the challenges in the upcoming decade in the light of 5G/B5G emerging paradigms.

The insights presented in this paper illustrate the flexibility of SG and its ability to capture the analysis of the rather unconventional scenarios; these features of SG will likely enable it to remain as an essential tool in modeling and analysis of future wireless networks, especially given its potential of cross-fertilization with ML and its expected role in the analysis of emerging wireless communication systems and network architectures. Also, the Grothendick's toposes is a powerful mathematical concept that can illuminate novel seminal results into SG and hence pave the way for the next generation use cases of SG in wireless networks.
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 3 Fig. 3. Realization of a non homogeneous PPP on the window W = [0, 1] × [0, 1] with density λ(x, y) = 240(6x 5 + 4y 3 ). Voronoi tessellation shows cells boundaries based on the spatially nearest points.
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 4 Fig. 4. Two realizations of the square lattice with uniform perturbation on the disk b(0,R). The dotted lines reflect borders of the Voronoi tessellation of the square lattice without perturbation (red triangles) and the solid lines that of the Voronoi tessellation of the perturbed lattice (circles).
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 6 Fig. 6. Two realizations of roads (solid lines) modeled by a Poisson line process (a) and by a deterministic set of lines (b). Vehicles (dots) are modeled by a 1D PPP with similar densities in (a) and (b). Voronoi tessellation (dotted lines) reflects the association region of each vehicle.
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 7 Fig. 7. Taxonomy of PPs and frameworks used to model nodes in wireless communication networks.
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 8 Fig. 8. Typical shape of pair correlation function for the three classes of PPs.
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 9 Fig. 9. Estimation of summary statistics J(r), g(r), and K(r) from two HPPP in W = [0, 10] × [0, 10]. The red bold line is for HPPP density λ = 0.3, the green thin line is for λ = 0.7, and the dotted lines are the theoretical values of the summary statistics assuming an infinite expansion of the window W .
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 10 Fig. 10. Main performance metrics used in the SG abstraction. rate depends on Q(a √ SINR) [5, Claim 24.3.4] and the data rate follows log(1 + SINR) [5, Definition 16.2.5], where Q(.) is the Q-function and a is a constant depending on modulation and detection.A review of the largely fragmented literature of SG-based studies for modeling and analysis of wireless networks reveals that almost all the adopted performance metrics are typically based on six key operations of SINR, as illustrated in Fig.10. In the following, we will consider the definition of key representative performance metrics.1) Spectral efficiency: The spectral efficiency S e is conceived as the maximum information rate that can be transmitted over a given bandwidth B. In the simplest case of AWGN and optimal theoretical link performance, the Shannon-Hartley theorem defines S e in units of [nats/s] as
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 11 Fig. 11. The typical realizations of C ξ and A where the square red points are interferers.
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 412 Fig.[START_REF] Grandell | Point processes and random measures[END_REF]. Mean load approximation of the uplink terrestrial EE coverage for the threshold 10 bps/W as a function of aerial UEs altitude, the power control coefficient ǫ, and the average density of terrestrial/aerial UEs per BS. Numerical parameters: frequency 2.1 GHz, path loss exponent 4, and the total effective uplink bandwidth 5 MHz.

TABLE II A

 II PROPOSED READING PATH TO GET STARTED WITH SG IN WIRELESS NETWORKS

	References	Main topics	Suitability to researchers
		A concept primer	A technical primer	Intermediate reader	Advanced reader

•

  Displacement: is a random transformation of points of Ψ from R d to some new location in Ψ p from R d ′ according to a probability p. The new PP inherits the Poisson law and its intensity measure is Λ ′

TABLE III TAXONOMY

 III OF PPS IN TERMS OF THE ABILITY TO CHARACTERIZE THE INTERFERENCE AND ANALYTICAL TRACTABILITYMore efficient to design good channel access schemes as compared to networks where node locations are perceived as random or in motion.-System-level performance evaluation requires complex and time-consuming Monte Carlo simulations.-Do not capture the geometry of Hetnets.

			Modeling use cases					
	Point process	Regularity	Repulsion	Clustering	Independence	Interference characterisation	References	Analytical tractability	Comments
	Stationary regular lattice -PPP • Exact mean [47], [91] High -Enhanced tractability and mathematical convenience, more simplifications compared to other PPs, captures randomness • Exact PGFL [18] High of network geometry.
									-Cannot capture the geometry of realistic scenarios, where
									nodes are highly correlated (repulsion or clustering).
	BPP				•	Exact PGFL	[63]	Medium	-The PPP version to model finite networks. -Reduced tractability as compared to the PPP.
									-Capture the mutual repulsion between nodes.
	MHCPP		•			Approximate mean	[98], [99]	Low	-Underestimates the density of transmitters in high density of the parent PPP points, which affects the interference
									estimation.
									Overcomes the limitations of MHCPP in terms of
	SSI					Unknown	[102]	Unknown	underestimating the density of transmitters in high
									density of the parent PPP points.
	PHCP		•			Exact PGFL	[104]	Low	-Easy interpretation of the model and flexible simulations.
	SPP		•			Unknown	[66], [67]	Unknown	-GSPP: Suitable for a wide range of PPs ranging from the aggregative family to the repulsion one.
	GSPP		•	•	•	Unknown	[66]	Unknown	-No closed form expressions for the moments. -Can resort to time consuming simulations.
	PHP			•		Approximate PGFL	[105], [106], [108]	Medium	Enables to conceptualize hard-core repulsion between points based on the tractability of two independent HPPPs.
									-The moments are known as they are described by certain
	DPP		•			Exact PGFL, Exact mean	[109]-[114]	Low	determinants of matrices -Involving analysis of the contact distribution function and
									the SINR's distribution
	Perturbed lattice	•	•		•	Approximate mean	[116], [117]	Medium	
	Superposition of PPP and Shifted lattice	•	•		•	Approximate PGFL	[123]		

-Enables to softly capture point patterns that exhibit perfect regularity.

-All nodes of a PL are subject to random perturbation, which reduces the accuracy to capture spatial dependence between nodes in realistic deployments. Medium -Overcomes the limitations of the perturbed PL.

-Involving analysis of the SINR's distribution.

Alpha-stable Cox

• Exact PGFL

[START_REF] Li | The stochastic geometry analyses of cellular networks with α-stable self-similarity[END_REF] 

Low -Superior accuracy to statistically model the varying BS density in different areas.

TABLE IV TYPICAL

 IV CONFIGURATION OF BSS AND USERS IN A STOCHASTIC GEOMETRY BASED MODELING

	Configuration of BSs Configuration of UEs UE-BS coupling?	Adopted PP		Comments
				For BSs	For UEs	
	Uniformly random	Uniformly random	No	PPP	PPP	Total independence between UEs and BSs

TABLE VII KEY

 VII MODELING CHOICES IN SG-BASED MODELING AND ANALYSIS OF UAV-ASSISTED WIRELESS NETWORKS

	Reference	Terrestrial nodes	Aerial nodes	UAV function	Performance metrics	Association policy	Analytical techniques	Optimization task
	[259]	BPP	One single UAV	Data aggregator	Success probability	Smallest path loss	Techniques #4 and #5	UAV trajectory and hovering time
	[262]	PPP	PPP	Airborne BS	Coverage probability, ergodic rate	Smallest path loss	Technique #5	UAV density and altitude
	[263]	BPP, PPP	One single UAV	Airborne BS	Coverage probability	Smallest path loss	Technique #4	UAV trajectory and altitude
	[195]	One single UE	BPP	Airborne BS	Coverage probability	Smallest path loss	Techniques #4, #5, and #10	UAV density and altitude
	[264]	PPP	PCP	Emergency Airborne BS	Coverage probability	Smallest path loss	Technique #1	UAV density and altitude
	[265]	One single BS	PPP	Airborne DF Relay	Secrecy outage	Smallest path loss	Technique #5	UAV density and altitude
	[261]	PPP, PCP	PPP	Airborne BS	Coverage probability	Smallest path loss	Technique #5	UAV hovering time
	[266]	BPP	One single UAV	Tethered airborne BS	Coverage probability	Smallest path loss	Technique #4	UAV location (tether length and (x, y) coordinates)
	[267]	PPP	PPP	Airborne UE	Uplink energy efficiency	Biased cell association	Technique #1	An aggregation of UAV system-level parameters

TABLE VIII KEY

 VIII MODELING CHOICES OF SG-BASED MODELING AND ANALYSIS OF MMWAVE WIRELESS NETWORKS

	References	Technologies	Small-scale fading	Shadowing	Blockages model	Association policy	Analytical technique	Performance Metrics
	[71]	mmWave, UDNs	Nakagami	Ignored	Decreasing exponential function, estimated by a step function	The smallest path loss	Technique #5	SIR distribution and ergodic rate
	[165]	mmWave, single-tier, and multi-tier networks	Ignored	Log-Normal	Decreasing exponential function, estimated by a step function	The smallest path loss & the maximum instantaneous power	Technique #1 after recurrent use of the displacement theorem	SNR/SINR distribution and ergodic rate
	[164]	µWave, mmWave, and backhauling	Ignored	Log-Normal	LOS ball under the setup of impenetrable blockages	The smallest path loss	Technique #1 and #9 after recurrent use of the displacement theorem	SNR/SINR and rate distribution
	[327]	mmWave, fronthauling, and UAV	Nakagami	Ignored	Decreasing exponential function	The smallest path loss	Technique #5	SINR distribution
	[328]	µWave, mmWave, UDNs, and DUDA	Rayleigh	Ignored	LOS ball under the setup of impenetrable blockages	The Strongest average received power	Technique #1	Average spectral efficiency
	[329]	µWave, mmWave, and DUDA	Rayleigh	Ignored	LOS ball under the setup of impenetrable blockages	The Biased cell association	Technique #1 after recurrent use of the displacement theorem	SNR/SINR and rate distribution

TABLE IX KEY

 IX MODELING CHOICES OF SG-BASED MODELING AND ANALYSIS OF THZ WIRELESS NETWORKS

	References	Technologies	Fading	Molecular noise	PP of nodes	Blockages model	Association policy	Analytical techniques	Performance Metrics	Analytical accuracy	Analytical complexity
								The Campbell theorem to estimate			
	[331]	THz-only networks	Ignored	Adopted	PPP	Decreasing exponential function	The desired receiver is located at a fixed location	the mean interference and Taylor expansion to estimate mean and	SIR/SINR mean and variance.	Approx.	Low
								variance of SIR/SINR			
								Interference is estimated by a logistic			
	[332]	Dense THz-only networks	Ignored	Ignored	PPP	Ignored	The desired receiver is located at a fixed location	distribution in which the parameters obtained from the Campbell's and are fitted from the theoretical moments	Success probability	Approx.	Medium
								PGFL's theorems.			
	[333]	Hybrid µWave/THz networks	Ignored	Ignored	PPP	Decreasing exponential function	The nearest neighbor association	Poisson void probability	SIR distribution and ergodic rate	Approx.	Low
	[334]	Hybrid µWave/THz networks	Ignored	Ignored	PPP	Ignored	The Biased cell association	The Gil-Pelaez inversion theorem (Technique #8)	Rate distribution	Exact	Medium
	[335]	Dense THz networks for wireless virtual reality	Ignored	Adopted	MHPP	Decreasing exponential function based on a combination of self-blockage and dynamic blockers	The desired receiver is located at a fixed location	Estimating interference by a normal distribution	Mean delay	Approx.	Medium

Table I ]

 I [START_REF] Yu | A unified framework for the tractable analysis of multi-antenna wireless networks[END_REF] Table 

The Bertrand paradox asks for the probability that the chord of a circle will be longer than the side of an equilateral triangle inscribed in this circle.

All previous papers suggest over 200 citations, while this paper considers 424 representative references given the wide time frame and diversity of this paper scope.

A different shape may be taken instead of a ball depending on the dimension d of the Euclidean plane and the isotropy of Ψ.

In PP theory, the typical point of a PP Ψ is often considered. In wireless networks analysis, it is termed as the typical UE for the downlink analysis and the typical BS for the uplink analysis. Formally, it is a point that has been chosen by a selection procedure in which each point in the process has the same chance of being selected[START_REF] Baccelli | Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking[END_REF],[START_REF] Haenggi | Stochastic Geometry for Wireless Networks[END_REF].

By the end of this Section, we will discuss some recent research strands that endorse the ability of the PPP to capture the structure of real networks under some special setups (e.g., sufficiently strong log-normal shadowing, interference-limited regime, tendency of users towards clustering).

There is a slight abuse of meaning with the term of non homogeneous networks modeled by a PP with location-dependent density.

Stationarity or homogeneity of a PP implies implicitly infinite point patterns. In other words, it is realistic to consider large inhomogeneous point patterns as part of a stationary PP while IPPP is generally a finite PP[START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF].

For any x, y, z and u ∈ R d , such as x ≤ y, z ≤ u and y+ z = x + u, we have f (y) + f (z) ≤ f (x) + f (u).

This term should not be confused with temporal and spatial correlation in BS activity factors where the former is induced by the mobility of receivers across neighboring transmitters, while the latter is induced by correlation through interference and load traffic between neighboring transmitters[START_REF] Krishnan | Spatio-temporal interference correlation and joint coverage in cellular networks[END_REF].

The Rayleigh assumption is generally supported by i) its better tractability and mathematical flexibility incorporated into analysis[START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF],[START_REF] Dhillon | Modeling and analysis of K-Tier downlink heterogeneous cellular networks[END_REF],[START_REF] Jo | Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[END_REF],[START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF], and ii) its ability to give a pessimistic version of the SINR distribution as compared to more realistic fading models, e.g., Nakagami fading[START_REF] Lee | Stochastic ordering of interference in large-scale wireless networks[END_REF].

In uplink NOMA, SIC is implemented at the level of the serving BS, where signals from strong UEs are decoded and cancelled successively, while signals from weak UEs are considered as noise[START_REF] Islam | Power-domain non-orthogonal multiple access (NOMA) in 5G Systems: potentials and challenges[END_REF],[START_REF] Tabassum | Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes[END_REF].

Max-SINR cell association

The nth nearestneighbor association

Smallest path loss cell association

Technique #1 Approximation Low Rayleigh Generalized [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF] [18], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF] [73], [START_REF] Dhillon | Modeling nonuniform UE distributions in downlink cellular networks[END_REF] [21], [START_REF] Singh | Offloading in heterogeneous networks: modeling, analysis, and design insights[END_REF] [181]

[20], [START_REF] Andrews | A primer on cellular network analysis using stochastic Geometry[END_REF], [START_REF] Madhusudhanan | Analysis of downlink connectivity models in a heterogeneous cellular network via stochastic geometry[END_REF] [141] [START_REF] Jung | Worst-case user analysis in Poisson Voronoi cells[END_REF], [START_REF] Nigam | Coordinated multipoint joint transmission in heterogeneous networks[END_REF] [71], [START_REF] Ding | Performance impact of LoS and NLoS transmissions in dense cellular networks[END_REF] [165]

Technique #2 Approximation Low Rayleigh Generalized - [START_REF] Di Renzo | System-level modeling and optimization of the energy efficiency in cellular networks -A stochastic geometry framework[END_REF], [START_REF] Di Renzo | A tractable closed-form expression of the coverage probability in Poisson cellular networks[END_REF] [223] ----

Technique #5 [START_REF] Cardieri | Modeling interference in wireless ad hoc networks[END_REF], average ergodic rate is commonly mapped to coverage probability via integration over the positive real axis (Fig. 10). Such an approach reduces the use of time-consuming simulations, but requires however the computation of multi-fold numerical integral. An alternative approach is proposed in [START_REF] Hamdi | A useful lemma for capacity analysis of fading interference channels[END_REF] to derive the average ergodic rate by considering general fading distributions and without necessarily going through the coverage probability expression. A qualitative and quantitative comparisons of the MGF-based framework with the coveragebased conventional approach can be found in [START_REF] Di Renzo | Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[END_REF]. Typically, using [254, Lemma 1], the average ergodic rate in (47) can be simplified as
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