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Accurate Computation of Fracture Density Variations: 
A New Approach Tested on Fracture Corridors

Sophie Viseur1, Juliette Lamarche1, 
Clément Akriche2, Sébastien Chatelée2, 

Metzger Mombo Mouketo2, Bertrand Gauthier3

Abstract Fracture density is an important parameter for characterizing fractured

reservoirs. Stochastic object-based simulation algorithms that generate fracture net-

works commonly rely on a fracture density to populate the reservoir zones with

individual fracture surfaces. Reservoirs, including fracture corridors, represent partic-

ular challenges in petroleum reservoir studies. Indeed, it is difficult to identify fracture

corridor zones objectively and precisely along one-dimensional well data, which are

characterized by high fracture densities compared to diffuse fractures. To estimate

fracture density, a common practice is to graphically depict only fracture corridors on

fracture cumulative intensity curves. In this paper, an approach is proposed to formal-

ize this technique using hypothesis testing. This method precisely compartmentalizes

the well data into several zones having specific fracture densities. The method consists

of the following steps: (i) dividing the diagram into zones depending on a priori drastic

changes in density, (ii) computing the local accurate fracture density for each zone and

(iii) clustering the zones characterized by similar densities statistically. The key point

is to couple regression and hypothesis testing. The regression aims at computing local

average fracture density and the hypothesis testing aims at clustering zones for which

the densities are statistically the most similar. The proposed approach is dedicated to

one-dimensional fracture surveys, such as well data and outcrop scanlines. First, a

synthetic case study is presented to prove the ability to highlight changes in fracture
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density. Second, the procedure is applied on a scanline dataset collected in a quarry

(Calvisson, SE France) to show the usefulness of characterizing fracture corridors.

Keywords Fracture density · Hypothesis testing · Regression · Classification ·

Fracture corridor

1 Introduction

Fractures have major impacts on fluid flow in most types of tight reservoirs (Antonellini

and Aydin 1994; Gauthier et al. 2000; Hansford and Fishe 2009; Agosta et al. 2010).

Many geostatistical approaches have been proposed to model three-dimensional frac-

ture networks (Chilès 1988; Bonneau et al. 2013). These geostatistical methods

generally require inputs such as fracture sizes, orientations and densities. Fracture

abundance, termed as Pi j , has been defined (Dershowitz 1984; Dershowitz and Herda

1992; Gauthier et al. 2012) so that i is the dimension of the sampling zone (1=lines,

2=areas, 3=volumes) and j is the dimension of the measured features (0=number,

1=length, 2=area, 3=volume). P30 or P32 (Gauthier et al. 2012) is required for geo-

statistical approaches but they are generally difficult to estimate from subsurface data

because only wells, which are one-dimensional data, allow fractures to be observed.

Approaches have been proposed to determine P10 or P32 by considering assump-

tions (Barthélémy et al. 2009; Kherroubi and Etchecopar 2009), and sizes from well

fracture observations (Gauthier et al. 2012; Gillespie et al. 1993; Marrett et al. 2018)

or logs (Tokhmchi et al. 2010). As the fracture density may vary spatially depending

on contextual factors (e.g., lithology, stress constraints), its stationarity is then often

questioned before modeling fracture networks. For instance, different facies may lead

to different fracture densities, and among fractures, corridors are peculiar geologi-

cal features characterized by sudden increases of fracture density (Ray et al. 2012;

Chatelée et al. 2015). A variety of methods have been proposed to characterize the

spatial organization of fractures including the fracture spacing index (Narr and Suppe

1991), the coefficient of variation (Gillespie et al. 1999) or more recently, the lacunar-

ity, a non scale-dependent entity (Roy et al. 2010, 2014), to identify fracture clusters

due to a particular process, such as fracture corridors, from random clusters. However,

these methods only estimate the existing pattern types (cluster, random, fractal, etc.)

and sizes within the fracture networks, but not their locations. They also do not esti-

mate the fracture density or perform statistical comparisons between fracture densities

to decipher whether two zones share the same density statistically. Alternatively, frac-

ture cumulative intensity (FCI) curves, which plot the cumulative fracture intensity

versus the distance to a datum, have been used to graphically define sudden changes

in fracture density (Dezayes et al. 2005; Fox et al. 2007; Jambayev 2013; Emiliano

et al. 2016) but no formal mathematical method is known to statistically compare or

cluster fracture density values.

In this paper, an approach, based on the FCI curves, is proposed to estimate P10

from well data or outcrop scanlines and to statistically compare computed values.

Depending on a curvature-based criterion, the diagram is sequentially split into several

zones, in which simple regression is used to estimate the fracture density. Hypothesis
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testing allows the computation of the distance between the estimated per-zone P10.

This distance is used in a clustering algorithm to gather zones with similar fracture

densities. In the first section, basics on statistical methods are presented. The approach

proposed to estimate P10 is described in the second section. The presented automated

clustering of zones sharing similar fracture densities can be applied to several issues

(e.g., facies-dependent fracture densities, comparisons between data sources (Souche

et al. 2016)) but, in this paper, it is used for highlighting fracture corridors. Finally,

results on synthetic and real case studies (Calvisson, Nîmes, France) are presented

and discussed.

2 Basics on Statistical Tools

The simple regression (SR) may be used to linearly model the relationship between

two variables (Eisenhauer 2003). A key output is the slope of the linear trend between

both variables. Depending on the used regression model, the slopes computed from

two independant samplings of these two variables may be statistically tested with

hypothesis testing. The hypothesis testing assesses whether the estimated slopes are

to be considered as similar (i.e., stemming from the same statistical population) or

not. Furthermore, clustering algorithms are alternative techniques to cluster samples

that share similar properties. These techniques are used in the proposed approach; see

below for brief description.

2.1 Simple Regression with Intercepts

Let us assume two variables X and Y are measured on a n-sampling. The linear

regression model of Y on X is written as follows (Fig. 1)

yi = a · xi + b + ǫi , i ∈ [1; n], (1)

with (xi , yi ) the pairwise values measured at datapoints, a the slope and b the intercept

of the linear model, and ǫi is the random part non-explained by the linear model.

Various fitting models may be chosen to determine a and b. The most common one is

Fig. 1 Statistical methods. Left: linear regression; right: hypothesis testing
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the least-mean-squares (LMS) technique, commonly termed as model I. Using model

I means that the variable X a priori explains Y , or contains no error (i.e., X is the

controlled variable). The model II includes Major Axis and is recommended when both

variables contain errors or if there is a priori no evident causal relationship between

the variables. In this paper, LMS was used and only this model is considered in the

following sections.

Using the LMS, â and b̂ are estimated as follows (Saporta 1997)

â =
∑n

i=1(yi −ȳ)(xi −x̄)
∑n

i=1(xi −x̄)2 and b̂ = ȳ − â · x̄ . (2)

Also, it is a common practice to compute the coefficient of determination R2, which

accounts for the dispersion of the (xi , yi ) pairwise values around the linear trend.

R2 ∈ [0; 1] is considered as a quality criterion of the linear model if it is close to

1. However, additional analyses (e.g., analyses of residuals as well as the slope and

intercept significances) are often needed (Saporta 1997).

2.2 Comparison of Regression Slopes Between Two Independent Samplings

Let X and Y be variables measured on two independent samples {xi , yi }i∈[1;n1] and

{x j , y j } j∈[1;n2], respectively. Let us assume that â1 and â2 were computed by SR

using LMS of Y onto X . The aim is to determine whether the theoretical slopes a1

and a2 may be statistically considered as equal, which corresponds to the following

hypothesis testing
{

H0 : a1 = a2

H1 : a1 �= a2
. (3)

The statistical test is based on the computation of the statistics t that should follow

the Student law with n1 + n2 − 4 degrees of freedom

t =
a1 − a2

√

s2
a1

+ s2
a2

∼ T (n1 + n2 − 4), (4)

with

s2
a1

=
1/(n1−2).

∑n1
i=1(yi −ŷi )

2

∑n1
i=1(xi −x̄)2

s2
a2

=
1/(n2−2).

∑n2
j=1(yi −ŷi )

2

∑n2
j=1(x j −x̄)2

ŷi = â.xi + b̂

. (5)

Any hypothesis testing is based on the user-defined risk α to reject H0 although it is

true (Fig. 1). Thus, depending on n1, n2 and α, the critical value tc is determined from

the Student Law T (n1 +n2 −4) (Saporta 1997). The observed statistics t̂ is estimated

from the estimated slopes â1 and â2, using Eq. 4. Using bilateral hypothesis testing,

the result is given as follows (Fig. 1): if t̂ > tc, the slopes a1 and a2 are considered as

significantly different; if t̂ ≤ tc, the slopes a1 and a2 are considered as similar.
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2.3 Hierarchical Ascendant Clustering

Clustering algorithms aim to gather samples sharing the same properties into clusters

(Saporta 1997). Among the clustering techniques, hierarchical ascendant clustering

(HAC) is used whenever the a priori number of clusters is unknown, hence an optimal

partition of the sampling must be sought. HAC relies on a measure of distance or

dissimilarity, but also on an aggregation criterion (e.g., complete link, Ward). The

Ward criterion requires a Euclidian distance, while other criteria do not impose such

a condition.

At the beginning, each sample is considered as an individual cluster and, at each step

of clustering, the two closest clusters according to the used distance and aggregation

criterion are merged. These successive operations are summarized in the dendrogram.

The dendrogram is the tree of merging steps, which is plotted as a function of the

aggregation rate. The height of the tree branches is the aggregation gap. The optimal

partition is chosen considering the maximum gap value in the dendrogram, as sug-

gested by Saporta (1997). Moreover, it is common to consider the second maximum

gap when the maximum gap splits only two groups (Saporta 1997). Indeed, the split-

ting into two groups often leads to an important increase in inter-class variance (due

to outliers, etc.).

3 Proposed Approach for Computing P10

In this section, it is supposed that one-dimensional data of fracture locations have

been collected along wells or scanlines, and that the Terzaghi corrections (Terzaghi

1964) have been previously applied. First, the mathematical settings and the concept

of our approach to characterize P10 spatial variability or stationarity are described.

Second, the approach to estimate P10 in the stationary case is presented. Finally, a

semi-automated method is proposed to isolate zones where fracture density is roughly

stationary, which will allow us to estimate P10 in each zone and to cluster zones sharing

similar P10 values. The latter section is particularly dedicated to characterizing the

fracture corridor occurrence and boundaries.

3.1 Settings and Key-Points

Let F and D be two random variables that correspond to the fracture rank along a

linear sampling and to the distance from the first fracture, respectively. Considering

this data type, F corresponds to values fi = i with i ∈ [1; N f ], where N f is the total

number of fractures and D is defined by {di }i∈[1;N f ] with d1 = 0 (Fig. 2).

If F and D are plotted in a diagram (Fig. 2), it could be deduced that the derivative

of F with respect to D corresponds to P10. Indeed, the approximation of the derivative

between two samples i and j can be written as follows

ΔF

ΔD
=

f j − fi

d j − di

=
j − i

d j − di

, (6)
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Fig. 2 Data representation. Left: well data or scanline on outcrop; right: diagram between F and D

where d j −di represents the distance between the fractures i and j and f j − fi = j − i

corresponds to the number of fractures over d j −di . Therefore, this entity corresponds

to a fracture density P10 (i.e., the number of fractures counted over a distance).

This formulation and the shape of the (F, D) plot (Fig. 3) leads to the three following

key-points: (i) the straighter the (F, D) plot is, the more constant (i.e., stationary) P10

is over the studied length (Fig. 3a, b). The slope of the linear trend is an estimation of

P10; (ii) if the (F, D) plot shows discontinuities or “sharp angles”, this means that

P10 changes abruptly, which highlights fracture corridor boundaries (Fig. 3c); (iii)

if the (F, D) plot shows an exponential-like increase, this means that P10 evolves

gradually (Fig. 3d).

Thus, characterizing the shape of the (F, D) graph yields the ability to characterize

the spatial fracture density variability. In case of linear trend (first abovementioned

key-point), the aim is to estimate the fracture density by computing the slope of the

linear trend that best fits the (F, D) graph.

Fig. 3 Possible cases of (F, D) plots: a purely stationary, fractures are evenly organized. The coefficient of

determination should be R2 = 1; b not stationary. The mean value (i.e., slope) is the same but the coefficient

of determination decreases; c abrupt change in fracture density. Residuals include trend; d gradual change

in fracture density. The (F, D) plot shows an exponential-like shape, then residual should show cyclicity
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3.2 Fracture Density Estimation

It is assumed that a (F, D) graph is available over a given length, in which N f fractures

were counted. Let us consider that (F, D) follows a linear trend. The aim is to estimate

P10 as the slope â of the linear model between F and D as follows

fi = â.di + b̂ + ǫi , i ∈ {1, N f }. (7)

The SR technique is used to estimate the slope â. As mentioned in Sect. 2.1,

a suitable model must be chosen. In the present case, the measured distance may

contain errors, whereas the fracture rank is, by definition, controlled. Thus, although

the interest for P10 computation is the derivative ΔF
ΔD

(i.e., the slope â of Eq. (7)),

we propose to perform an LMS simple regression of D with respect to F . Hence, the

estimated linear slope â′ represents the inverse of the fracture density d̂ f , expressed

as follows
{

di = â′. fi + b̂′ + ǫ′
i , i ∈ {1, N f }

d̂ f = 1

â′

. (8)

Beyond the estimation of fracture density using the computed slope, the SR results

present three additional interests (Fig. 3): (i) the coefficient of determination R2 is

a criterion for evaluating the representativness of P10 over the given range when it

is stationary enough to be considered as constant over this range (Fig. 3a, b); (ii)

the analysis of residuals highlights the cyclicity around the main linear trend and

determines whether the linear model is appropriate (Fig. 3a, b); (iii) the estimated

slope can be statistically compared with a slope (i.e., fracture density) estimated in

another zone using the hypothesis testing presented in Sect. 2.2. This test checks

whether the two values stem from the same population (i.e., similar fracture densities)

or not (i.e, different fracture densities).

The first two points above are related to the study of the stationarity of P10 over

the studied length. The third one is useful to compare P10 between different sampling

zones. However, the hypothesis testing allows comparisons between two samples only.

Multiple cross pairwise comparisons increase the risk alpha (to reject H0 although

it is true). Therefore, an automated approach that uses the statistic t as a distance for

clustering is proposed.

3.3 Automated Approach

Considering a fracture rank and cumulative distance dataset, the algorithm automat-

ically identifies zones having the similar estimated P10. First, it divides the dataset

into several zones. This needs to cut where fracture density drastically changes. Sec-

ond, P10 is estimated for each zone as described in the previous section. Finally, a

clustering algorithm is used to gather zones sharing statistically similar theoretical

P10.

As previously stated (3.1), slope breaks in the (F, D) graph correspond to sudden

changes in fracture density. Slope variability may be characterized by the gradient,
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which is the curvature (Fig. 3c) written as below

grad(a′) =
da′

d f
, (9)

as

a′ =
dd

d f
. (10)

Then

grad(a′) =
d2d

d2 f
=

−→
k ( f ), (11)

where
−→
k is the curvature vector, whose norm is the curvature k. This suggests that

abrupt changes in P10 are shown as high curvature values of the (F, D) graph. There-

fore, the dataset is cut where the curvature k j at a point j exceeds a given user-defined

threshold. The dataset is thus divided into several non-overlapping zones. Two addi-

tional rules are accounted for: (i) each zone must contain at least three points; (ii)

sucessive points with high curvatures are merged into a single zone. As a result, a

set of Np zones are generated. On each zone, P10 is estimated using the approach

proposed in the previous section. For each zone j ∈ [1; Np], it provides two outputs:

(i) the slope a′
j , then the P10 = ˆd f j ; (ii) the coefficient of determination R2

j , revealing

the local stationarity.

Moreover, the statistic ti j is computed between each pairwise zone i and j . Instead

of using the statistic ti j for statistical comparison, ti j is used as a distance between

slopes of two parts: the lower ti j is, the closer both slopes a′
i and a′

j are, hence d f i

and d f j . A matrix of the distances ti j between slopes a′
i and a′

j , i, j ∈ [1; Np] is built.

Finally, an HAC clustering algorithm is used to gather zones sharing similar P10.

The key point is to use the statistic ti j as the clustering distance. In this paper, the

“complete link” is used as the aggregation criterion.

Thus, the zones sharing the similar P10 according to ti j are clustered into the same

group. The resulting groups with a similar density may be spatially consecutive, or

not.

4 Applications

A synthetic case study has been generated to test the performance of the approach

for detecting fracture corridor boundaries. Then, a real case study is used to show

the usefulness of characterizing fracture corridors from field data. The results of this

method were then compared to the overall and visual interpretations of a structural

field geologist.
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4.1 Synthetic Dataset

A three-dimensional 100 × 100 × 50u3 grid was built with a resolution of 1u (u is a

given reference unit). Three zones have been generated (Fig. 4): the diffuse fractures

(F D), the first (FC1) and the second (FC2) corridors.

Whithin the grid, discrete fracture networks were generated using a stochastic

simulation algorithm available in Gocad-SKUA software. Fractures were simulated

as rectangles using a Poisson-point process (Goovaerts 1997). Input parameters are

probability laws for fracture sizes and orientations. This algorithm relies on an intensity

parameter θ , which is physically similar to P30.

First, fracture sets were defined as DF , FC1 and FC2 networks. To avoid the

effect of fracture orientation variabilities, all fractures were assumed to be vertical

(dip= 90◦) and N000-trending. Fracture size was similar for all sets. The fracture

width was defined as a uniform density probability law (pdf) ranging from 20 to 30.

Fracture height was a constant width-height ratio equal to 2. Only densities varied

between zones and were equal to 1.e−4 fractures/u for F D, to 1.e−3 for FC1 and to

2.e−3 for FC2. Fracture corridors have densities at least 10 times higher than diffuse

fractures (Chatelée et al. 2015).

Second, 100 scanlines were simulated. A hundred straight lines were simulated

perpendicularly to the fracture strikes between X = −10u and X = 110u so they

crossed the entire grid. Their Y and Z locations were randomly chosen using a Monte-

Carlo sampling technique on uniform laws conditioned to respective grid dimensions.

Fig. 4 Stochastic simulations of fracture corridors: a the different zones, the diffuse fractures (F D, blue),

the first corridor (FC1, orange), and the second one (FC2, grey); b a realization of the stochastic simulation

of fractures; c stochastic simulation of 100 scanlines; d Computation of the intersection points between the

fractures and the scanlines. Each point corresponds then to an observed fracture
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Fig. 5 Results of the classification: a the resulting zones mapped along the 100 scanlines. The three classes

are ordred after the estimated densities such as C1 < C2 < C3; b Results of the cumulative computation

of the proportions of each class along the V axis. Top: the input zones with lower density in diffuse fracture

zones (Z1, blue), the first fracture corridor (Z2, orange), the second one (Z3, grey). Bottom: the proportions

of the three classes

The sampling for proportion computation was performed at 15 in Y and 7.5 in Z from

the grid boundaries to avoid border effects.

Third, the scanlines were cut by all the fracture surfaces. Each time a scanline was

intersected by a surface, a point was added to the polyline. From −10 to 110, the

cumulative distance D at a point and rank F were computed so that 100 scanlines

with variables D and F were obtained.

The procedure was applied on the 100 scanlines (Fig. 5). Three classes were found,

namely C1 < C2 < C3. The computed P10 could not be compared to the input P30

because they are different entities. However, it was observed in the three-dimensional

view of the scanlines (Fig. 5a) that the trend of the input densities was reproduced

and that the fracture corridor boundaries had been detected. In Fig. 5b, the cumulative

proportions of each class were summed up along the V axis. The input DF , FC1,

and FC2 zones were detected, on average. It may be noticed that the proportion of

the lower density was greater in FC1 than in FC2. This was consistent with the input

data as FC1 had a lower density than FC2.

4.2 Case Study

The Calvisson quarry (Cévennes Massif Lat. 43.786551, Long. 4.172987; Southern

France) was chosen as a case study for analyzing fracture corridors because the quarry

exposes high-quality and continuous outcrops on walls at two of its levels. This allows

the corridors to be observed continuously and in three dimensions (Fig. 6a). The host

rocks are limestones of Lower Hauterivian age (Berger 1974), gently dipping 15◦ to 20◦

to the north. The fracture network is composed of diffuse fractures (Fig. 6c) alternating

with localized corridors (Fig. 6b, d). The main diffuse fracture set trends SW-NE and

a minor set trends NW-SE. Fracture corridors are 2 to 10 meters wide and 20 to 200

meters distant from each other. The geometrical analysis allows to the identification of

10 corridors that are visible on 19 sites along both quarry levels, 8 of them striking NE-

SW (Bisdom et al. 2014; Chatelée et al. 2015). Fracture measurements were acquired

along three scanlines located on Fig. 6. Scanline 1 (SL1) was measured on level 2,

along 25.81 meters from south to north and crossing a fracture corridor. The corridor
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Fig. 6 Photographs of the case study quarry of Calvisson (Cévennes Massif Lat. 43.786551, Long.

4.172987; Southern France). a Aerial picture of the quarry and location of 3 sampled scanlines; b scanline

1 (SL1) crossing though a single fracture corridor; c scanline 2 (SL2) across diffuse fractures; d scanline 3

(SL3) crossing through a dual zone fracture corridor

is composed of breccias and dense fractures (Fig. 6b). Scanline 2 (SL2) was measured

on level 1, along 20.42 meters from south to north and crossing diffuse fractures only

(Fig. 6c). Scanline 3 (SL3) was measured on level 2 along 24.27 meters from west to

east. This scanline crosses, from west to east, a fractured corridor composed of two

densely fractured zones bracketing an intact zone (Fig. 6d), and a blast zone related

to quarrying operations. Along the scanlines, the fractures are numbered from 1 to

347 in SL1, from 1 to 211 in SL2 and from 1 to 287 in SL3. For each fracture, the

spacing to the previous fracture is measured and the distance to the first fracture is then

computed. The Terzaghi correction has been applied to correct the fracture spacing.

The above proposed approach was applied to each scanline. The achieved dendro-

gram of density separation is displayed on Fig. 7. The number of density groups of

each scanline is deciphered by a cut threshold at the second highest distance separation

(red dashed line on Fig. 7). On SL1 and SL3, three groups of density range (G1 to

G3) are obtained and four groups on SL2 (G1 to G4). R2 was also computed for each

scanline zone and the minimum, maximum and average values of R2 per cluster and

per scanline are shown in the Table 1. As the clusters G3 of SL1 and SL3 and the

cluster G4 of SL2 are singletons, the single computed value is set in the row of the

average of R2 only.

The density groups are displayed as a color scale along each scanline. The scanlines

are positioned on the photos in front of their corresponding outcrop (Fig. 8) where

fracture corridors detected with the human eye are painted blue. The SL1 is composed

of three density groups. Along the line, tow areas are distinguished: the southern half
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Fig. 7 Graphical ouput of dendrogram analysis of density groups separation applied on scanlines SL1, SL2

and SL3. Horizontal scale: number of the scanline segment; vertical scale: distance separation between two

density groups. The number of density groups results from a cut at the second highest distance separation

(red dashes line). The min-max and mean fracture density for groups G1 to G4 is given in tables and colored

from grey to red from lower to higher density

of the line is dominated by group 1 densities (G1, beige on Fig. 8) and corresponds to

diffuse fractures in the outcrop; the northern half is dominated by group 2 densities (G2,

orange on Fig. 8) and fits with the fracture corridor. A minor high-density group (G3,

red on Fig. 8) corresponds to a local, confined and neglectable high fracture density.

The area dominated by high density is slightly larger than the fracture corridor detected

by human eyes. Indeed, the proposed approach allows to overcome the bias inferred

by human judgement and a priori on fracture density estimation. The SL2 is composed

of four groups. With exception of group 4, which is anecdotic, the relative low gaps

on the dendrogram (Fig. 7) between groups G1 to G3 show that these three groups

are not so differentiated. These groups are randomly distributed along the scanline

where only diffuse fractures occur (Fig. 8, SL2). The SL3 is composed of three groups

of density. G3 is an outlier but fits anyway in a fracture corridor. Density groups G2

and G3 are well differentiated on the dendrogram of Fig. 7. When compared to the

outcrop, the highest and medium density groups fit perfectly with the location of the

dual fracture corridor and of a blast zone (respectively blue and green on Fig. 8). The

low-density group G1 is located along areas of diffuse fractures.

The R2 values obtained per group are all very high. They are rougly always greater

than 0.8, except for G2 of SL1 (minimum is 0.6693) and G1 of SL2 (minimum is

0.747). This shows that the fracture spacing is particularly stationary in each zone.

To summarize the fracture density analysis, the dendrograms show either well or

poorly differentiated density groups, which corresponded respectively to outcrops with

or without fracture corridors. In addition, the location of high density groups fit with

the observed corridors on the outcrop. In the case of SL1, the fracture analysis detected

a wider density increase, which the human eye did not arbitrarily notice. Finally, when

local anomalous high density occurs along a line (group G3), it is not misinterpreted

and does not influence the detection of fracture corridors.
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Fig. 8 Comparison of density group analysis on scanlines with the outcrops. Color scale after Fig. 7
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5 Conclusions

The proposed approach not only estimates the fracture density, but also compares frac-

ture densities within or between datasets. This approach is based on the analysis of

FCI curves computed from well data or scanlines. The key idea is to combine regres-

sions with hypothesis testing and clustering in order to propose a formal approach to

decipher regions with different fracture densities. Beyond the computation of fracture

density, this technique allows: (i) criteria to be defined for evaluating the stationarity

of the fracture density over the given range and whether this fracture density is statis-

tically representative for this range; (ii) the typology of fracture density to be defined

as a function of the derivative variability.

The results show that this approach has the ability to detect the boundaries of

zones with a specific fracture density. The use of the curvature threshold provides the

possibility of fitting other models than linear ones. In the case of linear fitting, it could

be also interesting to check if it is possible to combine piecewise linear regression

with the hypothesis testing. Another possibility could be to combine this approach

with the lacunarity method. Indeed, lacunarity provides information about the sizes

and spacings of fracture pattern clusters. This information could be used to guide the

splitting of FCI curves, in addition to the curvature value.

Other applications of this approach are envisaged in order to compare fracture

densities obtained from different data sources or facies. The proposed technique can

also be used to statiscally compare values between any known region boundaries.

Further investigations may focus on the use of this approach on different case studies,

especially on well data from petroleum subsurface data. The statistical framework

of the approach could also be useful for correlations between well data and other

subsurface data, such as seismic. Finally, this approach can be applied to any fractured

reservoir problematic, which includes petroleum or water ressources and C O2 or

nuclear waste storage.
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