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This paper presents a structure-preserving spatial discretization method for distributed parameter port-
Hamiltonian systems. The class of considered systems are hyperbolic systems of two conservation laws
in arbitrary spatial dimension and geometries. For these systems, a partitioned finite element method
(PFEM) is derived, based on the integration by parts of one of the two conservation laws written
in weak form. The non-linear one-dimensional shallow-water equation (SWE) is first considered as a
motivation example. Then, the method is investigated on the example of the non-linear two-dimensional
SWE. Complete derivation of the reduced finite-dimensional port-Hamiltonian system (pHs) is provided
and numerical experiments are performed. Extensions to curvilinear (polar) coordinate systems, space-
varying coefficients and higher-order pHs (Euler–Bernoulli beam equation) are provided.

Keywords: geometric spatial discretization; structure-preserving discretization; port-Hamiltonian sys-
tems; partitioned finite element method.

1. Introduction

The port-Hamiltonian formalism has proven to be a powerful tool for the modelling and control of
complex multiphysics systems. In many cases, spatio-temporal dynamics must be considered and
infinite-dimensional port-Hamiltonian models are needed (Rashad et al., 2020). Classical academic
examples such as the transmission line, the shallow water or the beam equations have been investigated
in the port-Hamiltonian framework (Duindam et al., 2009).

Besides, two- and three-dimensional problems have been recently considered (Trenchant et al.,
2017; Vu et al., 2016; Wu et al., 2015). In many of these examples, e.g. those arising from fluid
mechanics, systems of two balance equations are considered such as mass and momentum or volume
and momentum balance equations.

In order to simulate and design control laws, obtaining a finite-dimensional approximation which
preserves the port-Hamiltonian structure of the original system can be advantageous. It may serve as
a design guide such as in control by interconnection or in interconnection and damping assignment
passivity-based control (IDA-PBC). Besides, preserving the underlying Dirac interconnection structure
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2 F.L. CARDOSO-RIBEIRO ET AL.

results in energy conservation properties and associated dynamical properties (e.g. stability, controlla-
bility, etc.).

Mixed finite element methods were introduced a long time ago to perform structure-preserving
spatial discretization of the Maxwell field equations (Bossavit, 1988, 1998). Golo et al. (2004) applied
these mixed finite element methods to open systems with boundary energy flows. More precisely,
they considered a mixed finite element structure-preserving spatial discretization for one-dimensional
hyperbolic systems of conservation laws, making use of distinct low-order Whitney basis functions
to approximate the energy and co-energy variables, respectively. This idea was applied later for the
discretization of a parabolic diffusion problem related to pressure-swing-adsorption columns (Baaiu
et al., 2009b) and piezo-electric beams (Cardoso-Ribeiro et al., 2016) and was connected to finite
volume and staggered grid finite difference methods for one-dimensional problems (Kotyczka, 2016).
They were also generalized for two-dimensional systems by Wu et al. (2015) where they are applied to a
vibro-accoustic systems. Trenchant et al. (2017) considered two-dimensional finite difference staggered
grids schemes for the same vibro-accoustic system. Finally, these structure-preserving mixed finite
element methods, applied to the spatial discretization of general port-Hamiltonian systems (pHs) with
boundary energy flows, were stated in a geometry independent form making use of discrete exterior
calculus results by Seslija et al. (2014).

In these previous works, the central idea was to define different discretization bases for the
energy and co-energy variables such that the strong form of the equations was exactly satisfied
in the corresponding spanned finite-dimensional approximation spaces. This idea was extended to
geometric pseudo-spectral methods using conjugate high-order polynomial bases (Moulla et al., 2012)
or Bessel (Vu et al., 2017) basis functions, globally defined on the whole spatial domain. Farle and
his co-authors also used different approximation bases for the discretization of the one-dimensional
transmission line and three-dimensional Maxwell’s equations (Farle et al., 2014a,b, 2013). In these
latter works, one of the balance laws is kept in strong form (with exact spatial derivation) while
the other one is considered in the weak sense only and is being integrated by parts. A metric
dependent Stokes–Dirac structure is introduced, making use of the Hodge star duality product,
to make the element spaces compatible. As it was noticed by Hiemstra et al. (2014), defining
these compatible spaces—with power-conjugate approximation bases for the energy and co-energy
variables—is (relatively) straightforward for one-dimensional systems but seems to be cumbersome
for higher spatial dimensions or higher-order methods. The discretization of the co-boundary (exterior
derivative) and boundary operators may be performed independently such that the Stokes theorem still
holds in the chosen approximation dual spaces. Then, for complex geometries (e.g. non-rectangular
domain in N-dimensional spaces or non-smooth boundary, etc.) the approximated relations between in-
domain and boundary conjugate variables may become intricate, and the expression of the kernel rather
involved, potentially leading to dimensionality problems. As suggested by Kotyczka et al. (2018) the
discretization of the weak formulation of the considered pHs may be a practical solution to deal with
these higher dimensional problems or more complex geometries. We propose in this paper to follow
this approach but to perform integration by parts—which was used by Kotyczka et al. (2018) to get
the weak formulation—on one of the two balance equations only, defining in this way a partitioned
mixed finite element method. Doing so, the discretization in the chosen bases for the energy and
co-energy variables (and the associated test functions) directly leads to a finite-dimensional Dirac
interconnection structure and no further projection is required to get finite-dimensional pHs equations
with reversible causality. Besides, boundary conditions are naturally handled, even in the case of
higher-order finite element bases. Finally, the use of this weak-form formulation enables the use of
standard finite-element software to perform the proposed structure-preserving discretization and conse-
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 3

quently paves the way for further applications to more involved higher-order problems with complex
geometries.

This paper starts with a motivation example detailed in Section 2: a structure-preserving spatial
discretization for the one-dimensional shallow-water equations (1D SWEs). In Section 3, the approach is
generalized to higher spatial dimensions, where the initial model is stated in vector calculus, independent
of the specific geometry. The formulation of systems of two conservation laws with boundary energy
flows is presented, as well as their weak form, making use of Cartesian coordinates. In Section 4, the
proposed partitioned finite element method (PFEM) is applied to the two-dimensional shallow-water
equation (2D SWE) example. Numerical experiments are presented in Section 5. Finally, extensions of
the method to curvilinear (polar) coordinate systems, space-varying coefficients and higher-order pHs
(Euler–Bernouilli beam equations) are provided in Section 6. The paper ends with conclusions and open
questions which are discussed in Section 7.

2. An introductory example

The aim of this section is to present the general idea of this paper—partial integration by parts of
the weak form for systems of two conservation laws and structure-preserving projections in finite-
dimensional approximation spaces—applied on a simple one-dimensional example, namely the 1D
SWE written in the port-Hamiltonian formulation. First, the port-Hamiltonian formulation for these
equations is recalled (Subsection 2.1). Then, the partial integration by parts idea is performed on the
weak form for this 1D SWE example and a structure-preserving finite element spatial discretization
method is applied to obtain the finite-dimensional pHs (Subsection 2.2). This general idea differs from
previous works (Golo et al., 2004; Moulla et al., 2012) where the central idea was to define different
discretization spaces for the energy and co-energy variables such that the strong form of the equations
were exactly satisfied in these finite-dimensional spaces. Instead, we use a weak-form representation for
the equations, where only one of the conservation laws is integrated by parts. This partitioned approach
naturally leads to a skew-symmetric interconnection matrix between the flow and effort variables.
Furthermore, the use of weak form enables the use of classical finite-element methods to perform the
discretization.

2.1. Port-Hamiltonian strong formulation for the 1D SWE

The SWEs are sets of partial differential equations that can be used to represent an incompressible fluid
with free-surface motion. These equations are typically used to model fluid motion in water channels
(Hamroun et al., 2010), wave propagations in oceans and lakes and sloshing in fluid tanks (Alemi
Ardakani, 2016; Cardoso-Ribeiro et al., 2017, 2020c). When one considers the frictionless flow in a
horizontal channel with uniform rectangular cross-section, the one-dimensional mass and momentum
balance equations may be written as

∂

∂t
h = − ∂

∂z
(hu) ,

∂

∂t
u = − ∂

∂z

(
u2

2
+ gh

)
,

(2.1)

where h(z, t) is the fluid height, u(z, t) is the fluid average velocity in a cross-section, z is the spatial
coordinate, t is the time and g is the gravitational acceleration.
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4 F.L. CARDOSO-RIBEIRO ET AL.

The total energy of the system inside the domain [0, L] is given by the sum of kinetic and potential
(gravitational) energy:

H = 1

2

∫
[0,L]

(
ρb hu2 + ρbg h2

)
dz , (2.2)

where b is the width of the water channel (or tank) rectangular cross-section and ρ the water density.
Defining the energy-variables q(z, t) := bh(z, t) and p(z, t) := ρu(z, t), the system Hamiltonian (total
energy) is given by

H (q(z, t), p(z, t)) = 1

2

∫
[0,L]

(
qp2

ρ
+ ρg

b
q2
)

dz. (2.3)

Using these newly defined variables, (2.1) can be rewritten as

q̇(z, t) = − ∂

∂z
ep(z, t),

ṗ(z, t) = − ∂

∂z
eq(z, t),

(2.4)

where eq(z, t) and ep(z, t) are the co-energy variables (respectively, the total pressure and the water flow)

which are defined as the variational derivatives1 of the Hamiltonian with respect to q(z, t) and p(z, t):

eq = δH

δq
= p2

2ρ
+ ρg

b
q = ρ

(
u2

2
+ gh

)
,

ep = δH

δp
= qp

ρ
= bhu.

(2.5)

From the above definitions of energy and co-energy variables, using the SWE written in the
canonical Hamiltonian form (2.4) and Stokes theorem, one obtains for the power balance equation

Ḣ(t) =
∫

[0,L]

(
eq(z, t)q̇(z, t) + ep(z, t)ṗ(z, t)

)
dz,

= −
∫

[0,L]

∂

∂z

(
eq(z, t)ep(z, t)

)
dz,

= −
∫

∂[0,L]
eq(z, t)ep(z, t),

= uT
∂ y∂ ,

(2.6)

1 For the definition of variational derivative, see, e.g. (Olver, 1993, Definition 4.1) or (Duindam et al., 2009, Chapter 4).
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 5

where boundary port input variables, u∂ , are defined as the values of the co-energy variables evaluated
at the spatial domain boundary

u∂ :=
[

ep(0, t)
ep(L, t)

]
, (2.7)

while the power-conjugate boundary output variables are defined as

y∂ :=
[

eq(0, t)
−eq(L, t)

]
. (2.8)

Remark 2.1 These boundary input and output variables are the classical hydrodynamic pressure and
water flow which are indeed power-conjugate variables for lumped model hydraulic systems. Besides,
this canonical choice of input–output variables satisfies the matrix well-posedness condition proposed
by Le Gorrec et al. (2005) for linear pHs. Indeed, with this choice, equation (2.6) precisely states that
systems (2.5) and (2.7) are impedance passive, even impedance energy preserving. This property, which
is sufficient in the linear case, should be useful to address the well-posedness issues in the non-linear
case as well.

The time derivatives of the energy variables are usually called flow variables. We define fq(z, t) :=
−q̇(z, t) and fp(z, t) := −ṗ(z, t). The co-energy variables are also called effort variables. The power
balance equation (2.6) defines a natural pairing or bilinear form

〈· |· 〉 : B → R ,

(e, f ) �→ 〈e |f 〉 :=
∫

[0,L]

(
eq(z, t)fq(z, t) + ep(z, t)fp(z, t)

)
dz + uT

∂ y∂ ,
(2.9)

where the bond space B := E × F is defined as the product of the effort real vector space

E :=
{

e :=
[
eq ep e∂

]T
∣∣∣∣ eq, ep ∈ H1 (0, L) ; e∂ ∈ R

2
}

, (2.10)

and its power-conjugate flow vector space

F :=
{

f :=
[
fq fp f ∂

]T
∣∣∣∣ fq, fp ∈ L2 (0, L) ; f ∂ ∈ R

2
}

, (2.11)

with H1 (0, L) and L2 (0, L) denoting the Sobolev space of functions with square integrable derivatives
on [0, L] and the usual Lebesgue space of square integrable functions on [0, L], respectively. Using the
bilinear form (2.9), the power balance equation (2.6) simply reads

〈⎡⎣ eq(t, ·)
ep(t, ·)
e∂ (t)

⎤⎦
∣∣∣∣∣∣
⎡⎣ −q̇(t, ·)

−ṗ(t, ·)
f ∂ (t)

⎤⎦〉 = 0, (2.12)
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6 F.L. CARDOSO-RIBEIRO ET AL.

with eT
∂ (t) = [

eq(0, t) −eq(L, T)
]

and f T
∂ (t) = [

ep(0, t) ep(L, T)
]

(or the reverse). Besides, the
pairing (2.9) may be symmetrized to obtain the associated indefinite bilinear form

� · |· 	: B × B → R(
(e1, f1), (e2, f2)

) �→� (e1, f1), (e2, f2) 	:= 1

2

(〈
e1

∣∣ f2〉+ 〈e2

∣∣ f1〉) .
(2.13)

It may be shown that the Hamiltonian formulation (2.4) for the SWE, together with the boundary
conditions (2.7) and output (2.8), may be equivalently implicitly defined as

((
δH

δq
,
δH

δp
, u∂

)
,

(
−dq

dt
, −dp

dt
, y∂

))
∈ D , (2.14)

where D ⊂ B is the linear subspace which is maximally isotropic (i.e. D = D ⊥) with respect to
the inner product (2.13) (Moulla et al., 2012). In that sense, the natural pairing (2.9) fully describes the
geometric structure of the pHs (2.4) with boundary values (2.7). Therefore, in this paper, structure-
preserving (or symplectic) spatial discretization will be understood as approximations (projections)
which preserve this power form (2.9). Symplecticity in that sense implies not only preservation of the
power balance (2.6) or (2.12) (i.e. isotropy) but also preservation of the whole geometric structure of the
system (e.g. the Poisson structure in the example of closed systems or the Dirac structure in the case of
open systems with time-varying boundary conditions) (Kotyczka et al., 2018; Moulla et al., 2012).

Note that the particular input and output port variables chosen here above in (equations (2.7) and
(2.8)) is only one among other possible choices. A description of all the possible choices of input/output
variables which lead to well-posed problems (in the linear case) is described by Le Gorrec et al. (2005).

2.2. Partitioned weak-form and structure-preserving discretization for the 1D SWE

We will now introduce a weak formulation for the 1D SWE and then perform integration by parts on the
first balance equation. Let vq(z) ∈ H1 (0, L) and vp(z) ∈ L2 (0, L) denote any arbitrary test functions, we
may obtain from the strong formulation (2.4) the following weak form:

∫
[0,L]

vq(z)q̇(z, t)dz = −
∫

[0,L]
vq(z)

∂

∂z
ep(z, t)dz,∫

[0,L]
vp(z)ṗ(z, t)dz = −

∫
[0,L]

vp(z)
∂

∂z
eq(z, t)dz.

(2.15)

Integrating by parts the first balance equation only, we get the following partitioned weak form:

∫
[0,L]

vq(z)q̇(z)dz =
∫

[0,L]
ep(z, t)

∂

∂z
vq(z)dz − vq(L)ep(L, t) + vq(0)ep(0, t),∫

[0,L]
vp(z)ṗ(z)dz = −

∫
[0,L]

vp(z)
∂

∂z
eq(z, t)dz.

(2.16)
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 7

Remark 2.2 In the specific case where vq(z) = 1 and vp(z) = 1, we get

∫
[0,L]

q̇(t, z)dz = ep(0, t) − ep(L, t),∫
[0,L]

ṗ(t, z)dz = eq(0, t) − eq(L, t),

(2.17)

which show that the two conservation laws for the total mass and the total momentum in the spatial
domain [0, L] are preserved in the weak formulation. When vq = eq(z, t) and vp = ep(z, t) are chosen,
one gets∫

[0,L]
eq(z, t)q̇(z)dz =

∫
[0,L]

ep(z, t)
∂

∂z
eq(z)dz − eq(L, t)ep(L, t) + eq(0, t)ep(0, t),∫

[0,L]
ep(z, t)ṗ(z)dz = −

∫
[0,L]

ep(z)
∂

∂z
eq(z, t)dz.

(2.18)

Therefore, the power balance equation (2.6) reads

Ḣ =
∫

[0,L]
(eq(z, t)q̇(z) + ep(z, t)ṗ(z))dz = −eq(L, t)ep(L, t) + eq(0, t)ep(0, t), (2.19)

which shows that the power balance is also preserved in the weak formulation.

We will now project the partitioned weak formulation (2.16) into finite-dimensional approximation
spaces chosen in such a way as to preserve the total mass and momentum conservation laws, the power
balance equation and the underlying Dirac structure of the original port-Hamiltonian model (2.4). Unlike
in Moulla et al. (2012) and Kotyczka et al. (2018) where different approximation bases are chosen for the
energy and co-energy variables, we obtain the mass, momentum, power and structure-preservation by
the selection of different approximation bases for the mass and momentum densities. This ‘partitioned’
choice for the approximation bases lead us to square skew-symmetric interconnection matrices.

Let us approximate the energy variables q(z, t) and p(z, t) as

q(z, t) ≈ qap(z, t) :=
Nq∑
i=1

φi
q(z)q

i(t) = φT
q (z)q(t),

p(z, t) ≈ pap(z, t) :=
Np∑
j=1

φj
p(z)p

j(t) = φT
p (z)p(t),

(2.20)

where φi
q(z) , i ∈ {1, . . . , Nq} are the chosen approximation basis functions in H1(0, L), φi

p(z) , i ∈
{1, . . . , Np} the chosen approximation basis functions in L2(0, L), while q(t) and p(t) are the approx-
imation coordinates for qap(z, t) and pap(z, t) in the approximation bases φq(z) and φp(z). The test
functions vq(z) and vp(z) are approximated in the same bases as q(z, t) and p(z, t), respectively. From
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8 F.L. CARDOSO-RIBEIRO ET AL.

the substitution of the approximated variables (2.20) in the weak form (2.16), the following finite-
dimensional equations are obtained:

vq
T
[∫

[0,L]
φq(z)φ

T
q (z)dz

]
q̇(t)= vq

T
[∫

[0,L]

dφq

dz
(z)φT

p (z)dz

]
ep(t)+ vT

q φq(0)eap
p (0, t)−vT

q φq(L)eap
p (L, t),

vp
T
[∫

[0,L]
φp(z)φ

T
p (z)dz

]
ṗ(t)= −vp

T

[∫
[0,L]

φp(z)
dφT

q

dz
(z)dz

]
eq(t),

(2.21)

where the H1(0, L) effort functions eq(·, t) have been approximated in the {φi
q(z)} basis, while the

L2(0, L) effort functions ep(·, t) have been approximated in the {φi
p(z)} basis. Similarly, the flow

functions q̇(·, t) and ṗ(·, t) have been approximated in the {φi
q(z)} and {φi

p(z)} bases, respectively. Since
these equations should remain valid for any choices of test functions coordinates v1 and v2, one gets

Mqq̇(t) = Dep(t) + B

[
ep(0, t)
ep(L, t)

]
,

Mpṗ(t) = −DTeq(t),

(2.22)

where Mq and Mp are square mass matrices (of size Nq × Nq and Np × Np, respectively) defined as

Mq :=
∫

[0,L]
φq(z)φ

T
q (z)dz , Mp :=

∫
[0,L]

φp(z)φ
T
p (z)dz. (2.23)

Matrix D is of size Nq × Np and is defined as

D :=
∫

[0,L]

dφq

dz
(z)φT

p (z)dz, (2.24)

and B := [
φq(0) −φq(L)

]
is an Nq × 2 matrix. Using the input–output conjugate boundary port

variables as defined in (2.7) and (2.8), since the boundary values of eap
q (z, t) may be written as

[
eap

q (0, t)
−eap

q (L, t)

]
=
[

φT
q (0)

−φT
q (L)

]
eq = BTeq, (2.25)

the approximation (2.22) may be written using the following finite-dimensional Dirac structure
representation: [

Mq 0
0 Mp

] [
f q(t)
f p(t)

]
=
[

0 D
−DT 0

] [
eq(t)
ep(t)

]
+
[

B
0

] [
ep(0, t)
ep(L, t)

]
,[

eap
q (0, t)

−eap
q (L, t)

]
= [ BT 0

] [ eq(t)
ep(t)

]
,

(2.26)
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 9

where f q(t) and f p(t) denote the vector coordinates for the flow approximations in the φi
q(z) and φ

j
p(z)

approximation bases, that is, f ap
q (z, t) = φT

q (z)f q(t) and f ap
p (z, t) = φT

p (z)f p(t), respectively.
We obtained the finite-dimensional Dirac structure representation (2.26) from the projection of the

Stokes–Dirac structure on the chosen approximation spaces. We will now derive the corresponding
approximation of the pHs dynamics (2.14) by restricting the Hamiltonian functional to the same
approximation spaces. From the definition of co-energy variables as variational derivatives of the
Hamiltonian with respect to q and p, we get

Ḣ(t) =
∫

[0,L]

(
eq(z, t)q̇(z, t) + ep(z, t)ṗ(z, t))

)
dz. (2.27)

Using the approximations (2.20) for the energy and co-energy variables, this power balance may be
approximated as

Ḣd(t) :=
∫

[0,L]

(
eap

q (z, t)q̇ap(z, t) + eap
p (z, t)ṗap(z, t)

)
dz,

= eT
q (t)Mqq̇(t) + eT

p (t)Mpṗ(t).

(2.28)

Therefore, in order to write the power balance (2.28) as the total time derivative of the discrete
Hamiltonian written as a function of the finite-dimensional vector coordinates for the energy variables,
the following relationship between the co-energy variables and the discrete Hamiltonian gradient must
hold:

Mqeq(t) = ∂Hd

∂q
,

Mpep(t) = ∂Hd

∂p
,

(2.29)

where

Hd(q, p) := H
(
φT

q (z)q(t), φT
p (z)p(t)

)
. (2.30)

We obtain the finite-dimensional pHs formulation for the proposed structure-preserving reduction
scheme by combining equations (2.26) (for the linear finite-dimensional Dirac interconnection structure)
and the non-linear constitutive equations (2.29) and (2.30).

In the 1D SWE example, the Hamiltonian function is neither quadratic nor separable. Nevertheless,
an explicit form may be obtained for the constitutive equations (2.29). Since the Hamiltonian function
restricted to the approximation spaces for q and p reads

Hd(q, p) := 1

2

∫
[0,L]

⎛⎜⎝φT
q (z)q

(
φT

p (z)p
)2

ρ
+ ρg

b

(
φT

q (z)q
)2

⎞⎟⎠ dz. (2.31)
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10 F.L. CARDOSO-RIBEIRO ET AL.

One obtains for the effort variables the expressions

Mqeq(t) = ∂Hd

∂q
= ρg

b
Mq q(t) +

[
1

2ρ

∫
[0,L]

φq(z)p
T(t)φp(z)φ

T
p (z)dz

]
p(t),

Mpep(t) = ∂Hd

∂p
= qT(t)

[
1

ρ

∫
[0,L]

φq(z)φp(z)φ
T
p (z)dz

]
p(t).

(2.32)

Note that both constitutive equations exhibit non-linear terms. In order to compute them, the following
procedure was used. The first equation can be written as

∂Hd

∂q
= ρg

b
Mq q(t) + 1

2ρ

[∫
[0,L]

φq(z)p
T(t)φp(z)φ

T
p (z)dz

]
p(t)︸ ︷︷ ︸

w(t)

, (2.33)

where the components of w(t) can be computed as

wi(t) = pT(t)

(∫
[0,L]

φq,i(z)φp(z)φ
T
p (z)dz

)
p(t). (2.34)

Note that
∫

[0,L] φq,i(z)φp(z)φ
T
p (z)dz, for {i = 1, . . . , Nq} are Nq matrices of dimension Np × Np, which

can be computed once and remain constant. Similarly, the second constitutive relationship can be written
as a function of constant matrices.

Remark 2.3 Matrices Mq := ∫[0,L] φqφ
T
q dz and Mp := ∫[0,L] φpφ

T
p dz are the classical mass matrices of

the FEM. Since the basis functions have very small support (the stencil), often non-overlapping, these
matrices are diagonal for P0-Lagrange elements, tridiagonal for P1-Lagrange elements, pentadiagonal
for P2-Lagrange elements or indeed sparse, even if an integral over the whole domain [0, L] appears.
Similarly, in (2.34), the matrices obtained are even sparser, since the support of three different basis
functions are involved in the computation of the integral. See the illustration on Fig. 6.

Remark 2.4 We may deduce from the pHs representation (2.41), the non-linear constitutive equations
(2.46) and (2.48) that the power balance equation reads

Ḣd = −e1(0, t)e2(0, t) + e1(L, t)e2(L, t). (2.35)

Hence, the power balance (and the corresponding power product value) is preserved by the proposed
partitioned spatial discretization scheme. In that sense, we call it a structure-preserving or symplectic
scheme. When the basis functions satisfy

Nq∑
i=1

φi
q(z) =

Np∑
i=1

φi
p(z) = 1 , ∀z ∈ [0, L], (2.36)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/advance-article/doi/10.1093/im

am
ci/dnaa038/6053182 by guest on 29 D

ecem
ber 2020



A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 11

the mass and momentum conservation laws are also satisfied in the finite-dimensional approximation
spaces:

∫
[0,L]

φq(z)
T dz q̇(t) =

∫
[0,L]

q̇ap(z, t)dz = ep(0, t) − ep(L, t),

∫
[0,L]

φp(z)
Tdz ṗ(t) =

∫
[0,L]

ṗap(z, t)dz = eq(0, t) − eq(L, t).

(2.37)

In the beginning of this section, we motivated this work by the fact that previous work on
structure-preserving spatial discretization that relies on exact satisfaction of the strong form of the
equations usually lead to difficulties when generalizing to two- or three-dimensional systems. The
following questions arise: can the proposed PFEM method be easily generalized to higher-dimensional
problems (two- and three-dimensional)? Does it work with different coordinate systems? What about
convergence? We will answer these questions in the following sections.

3. A general setting

In this section, we generalize the definition of pHs, given in the previous section for the 1D SWE
example, for systems of two conservation laws in arbitrary dimension involving the (divergence,
gradient) system in vectorial representation. This will allow us to define, independently from the
particular spatial dimension, geometry or coordinate system, the class of problems which can be solved
by using the structure-preserving spatial discretization scheme proposed in this paper.

In Section 3.1, the class of pHs in dimension N is defined. In Section 3.2, we formulate the 2D SWE
example in this setting. In Section 3.3, we define the Stokes–Dirac interconnection structures associated
to these pHs and the corresponding power pairings which will be preserved in the discretization. Finally,
in Section 3.4, we will give the general weak form which will be used for the structure-preserving
discretization scheme presented next in Section 4.

3.1. Port-Hamiltonian formulation of systems of two conservation laws with boundary energy flows:
a vector calculus statement in higher space dimension

We will now extend the port-Hamiltonian formulation which has been presented in Section 2.1 only
for the 1D SWE example. Hyperbolic systems of two conservation laws will be stated using vector
calculus in R

n. Let us consider the two conserved quantities, a scalar one αq and a vector-valued one
αp; the geometric domain of interest is a connected domain Ω ⊂ R

n with Lipschitz boundary ∂Ω .
These variables αq = αq(z, t) and αp = αp(z, t) are scalar- or vector-valued distributed energy state
variables defined for any z ∈ Ω (z is the position vector) and time t � 0.

Let the Hamiltonian functional H be defined as

H(αq, αp) :=
∫

Ω

H
(
αq(z, t), αp(z, t), z

)
d z, (3.1)
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12 F.L. CARDOSO-RIBEIRO ET AL.

where H denotes the Hamiltonian density which is assumed to be a smooth function. The variational
derivatives of H with respect to αq and αp are the unique scalar δqH and vector-valued δpH functions2 ,
such that

H(αq + εδαq, αp + εδαp) = H(αq, αp) + ε

∫
Ω

(
δqH δαq + δpH · δαp

)
d z + o(ε). (3.2)

Therefore, from the Hamiltonian defined in (3.1), we may define the co-energy variables (efforts):

eq := δqH,
ep := δpH.

(3.3)

In practice, when the canonical scalar product is being used, and when the functional H does not depend
on the derivatives of the functions αq and αp, then the variational derivative amounts to the partial
derivative δqH = ∂αqH and the gradient δpH = gradαpH , respectively.

The Hamiltonian system of two canonically interacting conservation laws for αq and αp may be
defined as [

α̇q(z, t)
α̇p(z, t)

]
=
[

0 − div
−grad 0

]
︸ ︷︷ ︸

J

[
eq(z, t)
ep(z, t)

]
, (3.4)

and since the formal adjoint of the divergence is the gradient, then the matrix-valued differential operator
J remains formally skew-symmetric (that is, skew-symmetry assuming zero boundary conditions for
the arguments). According to (3.2), the time derivative of the energy functional (power balance) reads

Ḣ =
∫

Ω

(
δqH α̇q + δpH · α̇p

)
d z =

(
δqH, α̇q

)
L2(Ω)

+
(
δpH, α̇p

)
L2(Ω;Rn)

. (3.5)

According the state equations (3.4) and to the celebrated Green’s formula, this power balance may
be written as

Ḣ = −
(

eq, div ep

)
L2(Ω)

−
(

ep, gradeq

)
L2(Ω;Rn)

= −
∫

Ω

div(eq ep) d z = −
∫

∂Ω

eq

∣∣∣ ∂Ω ep

∣∣∣ ∂Ω · n ds.

(3.6)

This latter formula suggests the following boundary port variables:[
e∂

f∂

]
=
[

γ0 0
0 −γ⊥

] [
δqH(z, t)
δpH(z, t)

]
, (3.7)

2 In this definition, Riesz identification theorem has been used to identify continuous linear functionals with functions, relying
on the use of the canonical scalar product, but in general, care must be taken of the chosen scalar product in the pivot Hilbert
space.
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 13

involving the Dirichlet trace operator γ0 : H1(Ω) → H
1
2 (∂Ω), defined by γ0(eq) = eq

∣∣∣
∂Ω

, and the

normal trace operator γ⊥ : Hdiv(Ω) → H− 1
2 (∂Ω), defined by γ⊥(ep) = ep

∣∣∣
∂Ω

· n; we refer the reader

to (Tucsnak & Weiss, 2009, Chapter 10) for a precise definition of the functional spaces and both the
boundary operators. These boundary port variables are defined in such a way that the power balance
equation (3.5) and (3.6) may be written as

(
eq, f q)

L2(Ω)
+ (ep, f p)

L2(Ω;Rn)
+ 〈e∂ , f∂

〉
∂Ω

= 0. (3.8)

The last term on the boundary is not a scalar product in general but stands for a duality bracket between

H
1
2 (∂Ω) and H− 1

2 (∂Ω); moreover, the flow variables f q and f p are defined as

f q(z, t) := −α̇q(z, t),
f p(z, t) := −α̇p(z, t).

(3.9)

The power balance equation (3.8) simply states that the time derivative of the energy increase
inside the domain Ω equals the power supplied through the boundary ∂Ω . As it may be seen, we
have extended the systems of two conservation laws (3.4) with a boundary power supply and related
boundary port variables, obtaining an open system of two conservation laws with boundary energy
flows. The explicit definition of an open pHs of two canonically interacting conservation laws is given
by the distributed state equation (3.4) together with the definition of the boundary port variables (3.7). It
leads to the structural power balance equation (3.8) which is independent of the specific considered
Hamiltonian function (i.e. from the effort constitutive equations (3.2)). Many one-, two- or three-
dimensional examples, either linear or non-linear, may be recast in that framework and satisfy this
definition (Duindam et al., 2009; van der Schaft & Jeltsema, 2014). Even parabolic systems may be
formally represented with the skew-symmetric operator J with an appropriate definition of the effort
variables (Vu et al., 2016).

3.2. The irrotational 2D SWE example

We will consider as a running example for this paper the irrotational 2D SWEs which describe the
flow of an inviscid liquid where the horizontal components of the velocity field may be averaged on
the water level and where the vertical velocity component may be omitted (low depth or shallow-
water assumption). Besides, we will consider a ‘non-rotating’ flow. It is known that the corresponding
2D SWE then expresses the mass and momentum balance equations. Therefore, we will choose for
the energy state variables the mass density (which is proportional to the water level h(z, t)) and the
momentum density. For instance, using Cartesian coordinates, one would choose αq := h(z, t) (where
h(z, t) denotes the water level) and αp := ρ

[
u(z, t) v(z, t)

]T where u(z, t) and v(z, t) denote the
horizontal components of the fluid velocity, while ρ denotes the fluid mass density. Note that both αq

and αp are defined in the two-dimensional (n = 2) horizontal spatial domain Ω of the flow. Using these
energy state variables, one gets for the total (kinetic and potential) energy inside the domain Ω:

H(αq, αp) := 1

2

∫
Ω

(
ρg (αq)2 + 1

ρ
αq ‖αp‖2

)
d z. (3.10)
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14 F.L. CARDOSO-RIBEIRO ET AL.

Therefore, the co-energy variables are defined as

eq := δqH = ∂αqH = ρgαq + 1

2ρ
‖αp‖2,

ep := δpH = gradαpH = αq αp

ρ
,

(3.11)

which are the hydrodynamic pressure eq (an intensive variable in the 2D domain Ω) and the volume
flow ep, respectively. For instance, using the same Cartesian coordinates as previously, one gets eq =
ρgh + ρ

2

(
u2 + v2

)
and ep := h

[
u(z, t) v(z, t)

]T . Using these co-energy variables, the Hamiltonian
system of two canonically interacting conservation laws (3.4) reads[

α̇q

α̇p

]
=
[

0 − div
−grad 0

] [
eq
ep

]
, (3.12)

which are exactly the usual irrotational 2D SWE. For instance, (3.12) reads in Cartesian coordinates
using the usual vector calculus notations⎡⎣ ḣ

ρ

[
u̇
v̇

] ⎤⎦ =
[

0 − div
−grad 0

]⎡⎣ ρgh + ρ u2+v2

2

h

[
u
v

] ⎤⎦ . (3.13)

3.3. The geometric structure of pHs

In the previous section, we proposed a port-Hamiltonian formulation for open systems of two
canonically interacting conservation laws (distributed state space equations (3.4) and the boundary
equations (3.7)). Since boundary energy flows are considered, boundary port variables are needed to
derive the power balance equation (3.8). The port-Hamiltonian model (3.4, 3.7) may then be implicitly
defined as a linear subspace in the Bond space of effort and flow variables which embeds boundary
effort and flow variables. In turn, this linear subspace may be geometrically defined as the linear
subspace which is maximally isotropic with respect to some inner product associated to the natural
power product—or power form in the Bond space—between effort and flow variables. Therefore, in
the sequel, we aim at structure-preserving discretization which will preserve this power form in the
approximation spaces. We will speak about symplectic discretization in the sense that this power form is
preserved. In this section, we will define the Bond space, the power symplectic form, the associated inner
product and the associated Stokes–Dirac structure which implicitly defines the port-Hamiltonian model
(3.4, 3.7). Readers are referred to van der Schaft & Maschke (2002) for details about this representation.

Let the Bond space of extended flow and effort variables be B := F × E with3

F := L2(Ω) × L2(Ω;Rn) × H− 1
2 (∂Ω),

E := H1(Ω) × Hdiv(Ω) × H
1
2 (∂Ω).

(3.14)

3 Let us recall that H1(Ω) is the space of scalar-valued functions with square integrable weak gradient, Hdiv(Ω) is the space of
vector-valued functions with square integrable weak divergence, and the duality bracket 〈e∂ , f∂ 〉∂Ω := 〈f∂ , e∂ 〉

H
− 1

2 (∂Ω), H
1
2 (∂Ω)

will be needed at the boundary, though for regular enough data it amounts to a scalar product in L2(∂Ω).
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 15

We may define on this Bond space the real power pairing or power form which maps any effort-flow

vector (e, f ) ≡
(
(f q, f p, f∂ ), (eq, ep, e∂ )

)
∈ B to

〈e |f 〉 := (eq, f q)
L2(Ω)

+ (ep, f p)
L2(Ω;Rn)

+ 〈e∂ , f∂
〉
∂Ω

, (3.15)

in such a way that every pair (e, f ) of extended effort and flow variables in the Bond space, satisfying the
port-Hamiltonian equations (3.4) and (3.7), also satisfies the power balance equation 〈e|f 〉 = 0. From
the power pairing (3.15), we may define the following symmetric bilinear form:

� ·, · 	 : B × B → R

� (
e1, f1

)
,
(
e2, f2

)	:= 1

2

(〈
e1

∣∣ f2〉+ 〈e2

∣∣ f1〉) .
(3.16)

With the help of this symmetric bilinear form (inner product on B ), we may define the Dirac structure
associated to the power pairing (3.15) as the linear subspace D ⊂ B which is maximally isotropic,
that is, such that D = D ⊥ where the orthogonality is defined with respect to the inner product � ·, · 	.
In particular, any (e, f ) ∈ D satisfies � (e, f ) , (e, f ) 	= 0, hence the power balance 〈e| f 〉 = 0.

Dirac interconnection structure may be used to define implicitly the dynamics of pHs. In particular,
the linear subspace D in the Bond space B := F × E , with F and E as in (3.15), which is
defined by

D :=

⎧⎪⎪⎨⎪⎪⎩
(
(f q, f p, f∂ ), (eq, ep, e∂ )

)
∈ B

∣∣∣∣∣∣∣∣
[

f q

f p

]
=
[

0 div
grad 0

] [
eq
ep

]
[

e∂

f∂

]
=
[

γ0 0
0 −γ⊥

] [
eq
ep

]
⎫⎪⎪⎬⎪⎪⎭ (3.17)

is a Dirac structure associated to the natural power pairing (3.15). This is proved by using the generalized
Stokes theorem (van der Schaft & Maschke, 2002). Therefore, in this particular case, the interconnection
structure is called a Stokes–Dirac structure. The dynamics (3.4), generated by the Hamiltonian function
H(αq, αp) (see Definition 3.1), with boundary energy flow and port boundary variables (3.7), may be
implicitly defined by (

(−α̇q, −α̇p, f∂ ), (δqH, δpH, e∂ )
) ∈ D . (3.18)

In that sense, we will say that (3.18) defines a boundary pHs of two canonically interconnected
conservation laws. In order to define a well-posed Cauchy problem, boundary conditions still need
be chosen either for e∂ or f∂ .

Remark 3.1 The Stokes–Dirac structure (3.17), associated to the natural power bilinear form (3.15),
may be used to represent hyperbolic systems, either linear (when the Hamiltonian density is quadratic)
or non-linear (in the other cases). It may even be used to represent parabolic systems when the effort
differential forms do not derive from the same Hamiltonian operator (Baaiu et al., 2009a). The choice
of Dirichlet boundary conditions for e∂ or f∂ will lead to a well-posed system. There are, however,
many other possible choices for admissible boundary conditions which lead to well-posed systems. For
linear systems (quadratic Hamiltonian), these admissible boundary conditions have been parameterized
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16 F.L. CARDOSO-RIBEIRO ET AL.

elegantly by Le Gorrec et al. (2005). Many examples of physical systems have been represented
using the port-Hamiltonian formulation and its implicit representation using Stokes–Dirac structures,
including Maxwell field equations and Navier–Stokes flow problems (van der Schaft & Maschke,
2002), beam and membrane equations (Duindam et al., 2009), vibro-acoustic problems (Trenchant et al.,
2015), shallow-water flow problems (Cardoso-Ribeiro et al., 2015; Hamroun et al., 2006; Pasumarthy
et al., 2008), advection-diffusion or adsorption problems (Baaiu et al., 2009a), Tokamak plasma MHD
problems (Vu et al., 2016), etc.

3.4. The partitioned weak form for pHs of two conservation laws

We will follow the approach presented in Section 2.2 for the 1D SWE and generalize it to the formulation
(3.4) for pHs of two conservation laws. Let vq ∈ H1 (Ω) and vp ∈ L2 (Ω) denote any arbitrary test
functions. We may obtain from the strong formulation (3.4) the following weak form:

(
vq, α̇q)

L2(Ω)
= −(vq, div ep

)
L2(Ω)

,(
vp , α̇p)

L2(Ω)
= −(vp , gradeq

)
L2(Ω)

.
(3.19)

Integrating by parts the first state equation only, and using the integration by parts formula, we get the
following partitioned weak form:

(
vq, α̇q)

L2(Ω)
= (gradvq , ep

)
L2(Ω)

−
∫

∂Ω

vq

∣∣∣ ∂Ω ep

∣∣∣ ∂Ω · n ds,(
vp , α̇p)

L2(Ω)
= −(vp , gradeq

)
L2(Ω)

.

(3.20)

Remark 3.2 With the particular choice vq = eq and vp = ep, one gets

(
eq, α̇q)

L2(Ω)
= (gradeq , ep

)
L2(Ω)

−
∫

∂Ω

eq

∣∣∣ ∂Ω ep

∣∣∣ ∂Ω · n ds,(
ep , α̇p)

L2(Ω)
= −(ep , gradeq

)
L2(Ω)

.

(3.21)

Therefore, the power balance equation (2.6) reads

Ḣ = (eq, α̇q)
L2(Ω)

+ (ep , α̇p)
L2(Ω)

= −
∫

∂Ω

eq

∣∣∣ ∂Ω ep

∣∣∣ ∂Ω · n ds, (3.22)

which shows that the power balance is also preserved in the weak formulation.

Remark 3.3 Instead of integrating the first equation by parts in (3.20), letting vq ∈ L2 (Ω) and vp ∈
Hdiv (Ω), we could integrate the second equation, which would also lead to another skew-symmetric
structure (involving div instead of grad); the boundary inputs and outputs would not be the same either,
more precisely their role would be switched.
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 17

In the case of the irrotational 2D SWE, written in Cartesian coordinates, the partitioned weak
formulation (3.20) reads

∫
Ω

vq α̇q dx dy =
∫

Ω

(
gradvq

)
· ep dx dy −

∫
∂Ω

vq ep · n ds,∫
Ω

vp · α̇p dx dy = −
∫

Ω

vp · gradeq dx dy .

(3.23)

In this latter equation, αq denotes the water level (proportional to the water surfacic density), while the

bold vector notations αp := ρh(x, y, t)[u(x, y, t), v(x, y, t)]T , ep and vp denote the vectors of Cartesian
coordinates for the momentum, water flow and test functions, respectively. With n as the outward unit

normal to the boundary ∂Ω , the term −n · ep

∣∣∣
∂Ω

denotes the boundary port variable f∂ (perpendicular

water flow at the boundary) which will be chosen as the boundary input u∂ ; thus, the collocated boundary

output will be y∂ := e∂ = eq

∣∣∣
∂Ω

.

In the following section, we discretize the partitioned weak form (3.23), and we show that the
resulting system is a finite-dimensional pHs preserving the power balance of the original system at
the discrete level.

4. PFEM for the 2D SWE

In this section, the partitioned weak-form representation for the SWEs, presented in Section 3.4, will be
projected into finite-dimensional approximation spaces in such a way as to preserve the total mass and
momentum conservation equations and the underlying Dirac structure of the original port-Hamiltonian
model. This section is divided in two parts, firstly, the weak form is discretized in Section 4.1 and
a finite-dimensional pHs is obtained. Secondly, we show how to obtain the discrete constitutive
relationships in Section 4.2.

4.1. Structure-preserving finite element discretization

Let us approximate the energy variables αq(x, y, t) using the following basis with Nq elements:

αq(x, y, t) ≈ αap
q (x, y, t) :=

Nq∑
i=1

φi
q(x, y)αi

q(t) = φq(x, y)Tαq(t), (4.1)

where φi
q(x, y), i ∈ {1, . . . , Nq} are the chosen approximation basis functions in H1(Ω), and αi

q(t) are
the approximation coordinates for α

ap
q (x, y, t). The test functions vq and the co-energy variables eq are

also approximated using φq(x, y).
Similarly, the vectorial variable αp(x, y, t) is approximated as

αp(x, y, t) ≈ αp
ap(x, y, t) :=

Np∑
i=1

φp
i(x, y)αi

p(t) = Φp(x, y)Tαp(t), (4.2)
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18 F.L. CARDOSO-RIBEIRO ET AL.

where φp
i(x, y) =

[
φx,i

p (x, y)

φ
y,i
p (x, y)

]
represents a two-dimensional vectorial basis function and, conse-

quently, φp(x, y) is an Np×2 matrix. The variables αi
p(t) are the approximation coordinates for α

ap
p (x, y, t)

in the Φp(x, y) approximation space. The test functions vp and the co-energy variable ep are also
approximated using Φp(x, y).

Remark 4.1 Note that a particular choice for Φp is

Φp(x, y) =
[

φx
p(x, y) 0

0 φ
y
p(x, y)

]
(4.3)

such that we can decompose the variables with index p in their Cartesian components as αp =
[

αx
p

α
y
p

]
.

With this particular choice, we recover the case where the basis functions components of the
vectorial variables are decoupled. We studied this case by Cardoso-Ribeiro et al. (2018).

Finally, the boundary input can be discretized using any one-dimensional set of basis functions, say
ψ(s) = [ψ i(s)]:

u∂ (s, t) ≈ uap
∂ (s, t) :=

N∂∑
i=1

ψ i(s)ui
∂ (t) = ψ(s)Tu∂ (t). (4.4)

Remark 4.2 In the sequel, in the implementation of our finite element method, we conveniently chose
ψ(s) as φq(x(s), y(s)) evaluated on the boundary. Other choices could be investigated.

From the substitution of the approximated variables, (4.1), (4.2) and (4.4), in the weak form (3.28),
the following finite-dimensional equations are obtained:

vq
T
[∫

Ω

φqφ
T
q dx dy

]
α̇q = vq

T
[∫

Ω

[
∂φq
∂x

∂φq
∂y

]
ΦT

p dx dy

]
ep+

− vq
T
[∫

∂Ω

φq(x(s), y(s))Ψ T(s) ds

]
u∂ (t),

vp
T
[∫

Ω

ΦpΦ
T
p dx dy

]
α̇p = − vp

T

⎡⎣∫
Ω

Φp

⎡⎣ ∂φT
q

∂x
∂φT

q
∂y

⎤⎦ dx dy

⎤⎦ eq.

(4.5)

Since these equations should remain valid for any test functions coordinates vq and vp, one gets

Mqα̇q(t) =Dep(t) + Bu∂ (t),

Mpα̇p(t) = − DTeq(t),
(4.6)
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 19

where Mq and Mp are square mass matrices (of size Nq × Nq and Np × Np, respectively), defined as

Mq :=
∫

Ω

φqφ
T
q dx dy, Mp :=

∫
Ω

ΦpΦ
T
p dx dy. (4.7)

The matrix D is of size Nq × Np, defined as

D :=
∫

Ω

[
∂φq
∂x

∂φq
∂y

]
ΦT

p dx dy, (4.8)

and B is an Nq × N∂ matrix

B :=
∫

∂Ω

φq(x(s), y(s))ψT(s) ds. (4.9)

Defining y∂ (t), the output conjugate to the input u∂ (t) as

y∂ (t) := BTeq(t), (4.10)

the approximated system can be written using the following finite-dimensional Dirac structure
representation:

[
Mq 0
0 Mp

] [
f q(t)
f p(t)

]
=
[

0 −D
DT 0

] [
eq(t)
ep(t)

]
+
[ −B

0

]
u∂ (t)

y∂ (t) = [ BT 0
] [ eq(t)

ep(t)

]
,

(4.11)

where f q(t) := −α̇q(t) and f p(t) := −α̇p(t) denote the vector coordinates for the flow approximations

coordinates in the φi
q(x, y) and φp

i(x, y) approximation bases, that is, f ap
q (x, y, t) = φq(x, y)T f q(t) and

f ap
p (x, y, t) = Φp(x, y)T f p(t).

From the definition of the co-energy variables as the variational derivatives of the Hamiltonian with
respect to αq(x, y, t) and αp(x, y, t), the time derivative of the continuous Hamiltonian is given by

Ḣ =
∫

Ω

(
α̇p(x, t) · ep(x, t) + α̇q(x, t)eq(x, t)

)
dΩ . (4.12)

Using the approximations for the energy and co-energy variables, this power balance can be approxi-
mated as

Ḣd =
∫

Ω

(
α̇p(t)

TΦp(x, y)Φp(x, y)Tep(t) + α̇q(t)
Tφq(x, y)φq(x, y)T eq(t)

)
dΩ ,

= α̇p(t)
TMpep(t) + α̇q(t)

TMqeq(t).

(4.13)
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20 F.L. CARDOSO-RIBEIRO ET AL.

The approximated equations (4.11), together with the power balance (4.13), provide a Dirac structure
representation that is a projection of the Dirac–Stokes structure.

Therefore, in order to write the power balance as the total time derivative of the discrete Hamiltonian
written as a function of the finite-dimensional vector coordinates for the energy variables, the following
relationships must hold:

Mqeq = ∂Hd

∂αq
,

Mpep = ∂Hd

∂αp
,

(4.14)

where the approximated Hamiltonian is defined as

Hd(αq, αp) := H[αq(x, t) = αT
q (t)φq(x),

αp(x, t) = αT
p (t)Φp(x)

]
.

(4.15)

From (4.11) and (4.13), the time derivative of the approximated Hamiltonian is given by

Ḣd(t) = α̇q(t)
TMq eq(t) + α̇p(t)

TMp ep(t),

= eT
p DT eq + u∂BT eq − eT

q D ep(t)

= yT
∂ u∂ .

(4.16)

Note that uT
∂ y∂ is the discrete analogue of the transferred power over the boundary (right side of power

balance equation (2.19) in the continuous case). Furthermore, this power balance is exactly preserved
in the finite-dimensional approximation spaces. From the definition of the B matrix (4.5), the definition
of the approximated boundary input uap

∂ (s, t) := ψ(s)Tu∂ (t) and approximated co-energy variable
eap

p (x(s), y(s), t) := φq(x(s), y(s))Teq(t), we get

Ḣd = eT
q

∫
∂Ω

φq(x(s), y(s))ψT(s) ds u∂ ,

=
∫

∂Ω

eap
q (x(s), y(s), t)uap

∂ (s, t) ds.

(4.17)

Remark 4.3 Note that using classical first-order finite-element one-dimensional discretization basis
for the boundary input, the coordinates u∂ (t) provide the values of the inflow (−n · eq) at the boundary
nodes. For instance, in the case of SWEs, these are the values of volumetric influx into the system.
The conjugate output y∂ is related with the curve integral of eq(x(s), y(s), t) along the elements. The co-
energy variable eq(x(s), y(s), t) is the pressure; thus, the discretized outputs coordinates y∂ (t) are related
to the forces per unit length applied along the external boundary.

Note that we can also define an output that is given by the point-wise values of the co-energy
variables eq(s, t) evaluated on the boundary. In this case, a convenient choice of basis function for the
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 21

approximation would be the same as the input, i.e.

yap(s, t) = ψT(s)ŷ∂ (t), (4.18)

where the coordinates ŷ∂ (t) represents the values of pressure at the boundary nodes. The power balance
through the boundary is computed as

Ḣd =
∫

∂Ω

yap
∂ (s, t)uap

∂ (s, t) ds

= ŷT
∂ (t)

(∫
∂Ω

ψ(s)ψT(s) ds

)
u∂

= ŷT
∂ (t)Mψu∂ ,

(4.19)

where

Mψ =
∫

∂Ω

ψ(s)ψT(s) ds (4.20)

is a symmetric positive-definite N∂ × N∂ mass matrix.
Furthermore, since the power balances (4.16) and (4.19) must coincide, the following relationship

between these two output definitions must hold:

Mψ ŷ∂ = y∂ . (4.21)

Consequently, from (4.13) and (4.19), the following power product must hold (satisfying (4.11)):

〈⎡⎣ f p
f p
ŷ∂

⎤⎦
∣∣∣∣∣∣
⎡⎣ eq

ep
u∂

⎤⎦〉 := f T
p Mpep + f T

q Mqeq + uT
∂ Mψ ŷ∂ = 0. (4.22)

With the help of a symmetric bilinear form as (3.16), using the previous power product, a finite-
dimensional Dirac interconnection structure can be defined.

4.2. Obtaining the non-linear constitutive relationships: discretization of the Hamiltonian

In the previous section, a finite-dimensional Dirac structure was obtained for the 2D SWEs, relating the
energy and co-energy variables as well as the boundary inputs and outputs. The next step is to obtain
the constitutive relationships from the Hamiltonian.

The Hamiltonian of the 2D SWE (3.10) can be rewritten using the coordinate variables as

H[αq(x, y, t), αp(x, y, t)] := 1

2

∫
Ω

(
αq(x, y, t)‖αp‖2

ρ
+ ρg(αq(x, y, t))2

)
dΩ . (4.23)
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22 F.L. CARDOSO-RIBEIRO ET AL.

The energy variables are restricted to the approximation spaces for αq(x, y, t) and αp(x, y, t). From
(4.15), the discretized Hamiltonian reads

Hd(αq, αp) := 1

2

∫
Ω

⎛⎜⎝φT
q (x, y)αq

(
ΦT

p (x, y)αp

)2

ρ
+ ρg

(
φT

q (x, y)αq

)2

⎞⎟⎠ dΩ . (4.24)

The reduced effort variables are obtained from the gradient of the discretized Hamiltonian:

∂Hd

∂αq
= ρgMq αq(t) +

[
1

2ρ

∫
Ω

φq(x, y)αT
p (t)Φp(x, y)ΦT

p (x, y) dΩ

]
αp(t)

∂Hd

∂αp
= αT

q (t)

[
1

ρ

∫
Ω

φq(x, y)Φp(z)Φ
T
p (z) dΩ

]
αp(t).

(4.25)

Both constitutive equations exhibit non-linear terms. In order to compute them, the following procedure
was used. The first equation can be written as

∂H

∂αq
= ρgMq αq(t) + 1

2ρ

[∫
Ω

φq(x, y)αT
p (t)Φp(x, y)ΦT

p (x, y) dΩ

]
αp(t)︸ ︷︷ ︸

w(t)

, (4.26)

where the components of w(t) can be computed as

wi(t) = αT
p (t)

(∫
Ω

φq,i(x, y)Φp(x, y)ΦT
p (x, y) dΩ

)
αp(t). (4.27)

Note that
∫
Ω

φq,i(x, y)Φp(x, y)ΦT
p (x, y) dΩ , for {i = 1, . . . , Nq} are Nq matrices of dimension Np × Np,

which can be computed once and remain constant. Similarly, the second constitutive relationship can be
written as a function of constant matrices.

4.3. Numerical solution

The finite-dimensional Dirac structure (4.11) together with the constitutive relations (4.14) provides a
finite-dimensional dynamical system in port-Hamiltonian form, detailed below:

[
Mq 0
0 Mp

] [
α̇q(t)
α̇p(t)

]
=
[

0 D
−DT 0

] [
eq(t)
ep(t)

]
+
[

B
0

]
u∂ (t)

y∂ (t) = [ BT 0
] [ eq(t)

ep(t)

]
,

(4.28)
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 23

where the co-energy variables are obtained from the constitutive relationships

Mqeq(t) = ∂Hd

∂αq

(
αq(t), αp(t)

)
,

Mpep(t) = ∂Hd

∂αp

(
αq(t), αp(t)

)
,

(4.29)

and the initial conditions for the energy variables are: αq(t = 0) and αp(t = 0); some compatibility
condition must be met relating the boundary values of the co-energy variable ep and the control input
u∂ at time t = 0.

From a scientific computational point of view, three strategies are possible for solving the implicit
equations (4.28) and (4.29) with sparse mass matrices. Let us give a short overview of these techniques.

1. Firstly, at each time-step, the co-energy variables can be obtained from (4.29) as a solution of
the linear system. Then, (4.28) is solved using usual ODE numerical integration schemes in the
time domain. This strategy has already been used on three-dimensional Maxwell’s equations with
40.000 degrees of freedom (dof) (Payen et al., 2020).

2. Secondly, both equations can be solved at the same time using implicit methods specific to DAEs
(see, e.g. Egger et al., 2018, Mehrmann & Morandin, 2019, and the references therein).

3. Finally, when the number of dof is small, typically a few hundreds, it is also possible to find
explicit pHs representations, involving the inversion of the mass matrices. For instance, defining
new energy variables α̃p(t) := Mpαp(t) and α̃q(t) := Mqαq(t), it is possible to rewrite (4.28) and
(4.29) as [ ˙̃αq˙̃αp

]
=
[

0 D
−DT 0

][ ∂Hd
∂α̃q
∂Hd
∂α̃p

]
+
[

B
0

]
u∂ ,

y∂ =BT ẽq ,

(4.30)

where the approximated Hamiltonian is given by

Hd(α̃q, α̃p) := H
[
αap

q (x, y, t) = M−1
q α̃q(t)φq(x, y),

αap
p (x, y, t) = M−1

p α̃p(t)Φp(x, y)
]

.
(4.31)

The code corresponding to this latter implementation on the two-dimensional shallow water can
be found in Cardoso-Ribeiro et al. (2020a) with 1024 dof.

5. Numerical experiments

In this section, we present numerical experiments to test the PFEM. Firstly, results for the 1D SWE are
presented in Section 5.1. Then, the two-dimensional case is presented in Section 5.2. The source codes
for the numerical results presented in this section are available online at Cardoso-Ribeiro et al. (2020b).
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24 F.L. CARDOSO-RIBEIRO ET AL.

Fig. 1. Convergence of the first natural frequency for different polynomial interpolation of the basis functions.

5.1. One-dimensional SWEs

The example presented in Section 2 was implemented using finite elements with polynomial basis
functions.

Firstly, a spectral convergence analysis of the numerical method was done. The eigenvalues obtained
from the linearized 4

numerical model were compared with the exact eigenfrequencies of the linear wave equation with
constant coefficients. The inputs u∂ (t) of (2.26) were considered to be zero.

Recall that the variables vq(z, t), eq(z, t) and q(z, t) must be discretized in z with polynomials of
order at least one (since they are derived once on (2.16)). Figure 1 shows the relative error of the first
modal frequency for four different choices of polynomial approximations. P1P0 stands for first-order
polynomial for the variables related to q, and order zero for the variables related to p. P1P1 uses first-
order polynomial for both all variables. P1P2 uses first-order polynomial for the q variables and p
variables. Finally, P3P3 uses third-order polynomial for all variables.

Secondly, time-domain simulations for the SWE

4 Hereafter, the linearized partial differential equations are used for validation purposes. They are obtained assuming small
amplitudes of variations of height h̃(t, z) and velocity ṽ(t, z) (such that h(t, z) = h̄ + h̃(t, z) and v(t, z) = v̄ + ṽ(t, z), with v̄ = 0).
Consequently, (2.1) can be approximated using only the first-order terms as

∂

∂t
h̃ = −h̄

∂

∂z
ũ,

∂

∂t
ũ = −g

∂

∂z
h̃,

which is a linear wave equation with constant coefficients. The previous equation can be written as a pHs, using p̃ = ρṽandq̃ = bh̃,
with exactly the same structure as (2.4). The only difference is that in the linear case, the Hamiltonian (2.3) becomes quadratic:

Hl = 1
2

∫
[0,L]

(
bh̄ p̃2

ρ + ρg
b q̃2

)
dz.
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 25

Fig. 2. Four snapshots of a time-domain simulation representing the fluid height as a function of horizontal position z. This result
uses a harmonic boundary excitation with very small amplitude. The non-linear and the linearized equations exhibit very similar
results.

were performed. The following initial conditions were considered:

q(z, t = 0) = 1, 0 � z � L,

p(z, t = 0) = 0,
(5.1)

together with the following boundary conditions:

ep(0, t) = ep(L, t) = A

(
t

1 + t

)
sin(ωt), (5.2)

such that these conditions represent a harmonic influx through both boundaries. In order to avoid
spurious oscillations, the initial condition of the control input must agree with the initial conditions
within the domain (avoiding discontinuities). Furthermore, the term t/(1 + t) is included to smooth the
control input at initial condition.

The simulations were performed using 20 elements of type P1P1. Trapezoidal method was used as
time integration scheme.

Two different amplitudes A were used in the simulations. Snapshots of the simulations are presented
in Figs 2 and 3. The first figure shows snapshots for a small amplitude value for the input inflow. In
the second figure, the amplitude is multiplied by 100. Non-linear phenomenon is observed in this case.
Finally, Fig. 4 presents the evolution of the height in time, considering the non-linear simulation with
large input amplitude.
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26 F.L. CARDOSO-RIBEIRO ET AL.

Fig. 3. Four snapshots of a time-domain simulation representing the fluid height as a function of horizontal position z. This result
uses a harmonic boundary excitation with larger amplitudes, such that non-linear phenomenon is now observed.

Fig. 4. Time-domain simulation representing the fluid height as a function of horizontal position z and time t. This result uses a
harmonic boundary excitation with large amplitude, as in the previous figure.

5.2. Two-dimensional SWEs

The example presented in Section 4 was implemented using quadrilateral finite elements with polyno-
mial basis functions for a square domain.

As we did for the 1D SWE in the previous subsection, firstly, a spectral convergence analysis of the
numerical method was done.

For the 2D SWE, recall that the variables with index q (αq, eq, vq) must be discretized with
polynomials of order at least one (since they are derived once on (3.23)). Figure 5 shows the relative
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 27

Fig. 5. Convergence of the first natural frequency of the two-dimensional linear SWEs.

error of the first modal frequency for three different choices of polynomial approximations. PiPjPj
stands for ‘i-th’ order polynomial for the variables with index q, and ‘j-th’ order for the two components
of the vector variables of index p (αp, ep and vp). The sparsity of the of the PFEM matrices Mq, Mp and
D for elements of type P1P0P0 are presented in Fig. 6.

Time-domain simulations were performed using the discretized system under boundary-port
excitation. The following initial conditions were considered:

αq(x, y, t = 0) = 1, [x, y] ∈ Ω ,

αp(x, y, t = 0) = 0,
(5.3)

together with the following boundary conditions:

u∂ (x, y, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A

(
t

1 + t

)
sin(π t) , [x, y] ∈ ∂Ωup,

−A

(
t

1 + t

)
sin(π t) , [x, y] ∈ ∂Ωleft,

0 , [x, y] ∈ ∂Ωdown ∪ ∂Ωright.

t � 1s, (5.4)

and u∂ (x, y, t) = 0, [x, y] ∈ ∂Ω , t > 1s. The boundary is split in four sides: ∂Ω = ∂Ωup ∪ ∂Ωleft ∪
∂Ωdown ∪ ∂Ωright. These conditions impose a harmonic inflow on one side of the boundary and the
opposite condition on the other side.

The simulations were performed using a 10 × 10 grid of P1P0 elements. Again, trapezoidal method
was used for time integration.
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28 F.L. CARDOSO-RIBEIRO ET AL.

Fig. 6. Sparsity of the matrices Mq, Mp and D. The black dots represents the non-zero values. P1 elements were used for the q
variables and P0 elements were used for the p variables.

Simulations for two different values of amplitude A are presented. First, snapshots for small
amplitudes are presented in Figs 7 and 8. Secondly, snapshots for large amplitudes are presented in
Figs 9 and 10.

Figure 11 shows how the approximated Hamiltonian (4.24) and V(t) = ∫
Ω

α
ap
1 (x, y, t) dΩ , the total

volume of fluid, change with time. As expected, the Hamiltonian only changes during the first second
of simulation, while the system is excited through the boundary ports. After that, since Ḣd = uT

∂ y∂ = 0,
the Hamiltonian is constant. Finally, the total volume is kept nearly constant and the changes are only
due to numerical precision (of order 10−14).

6. Extensions

In this final section, the extension of PFEM to more general configurations is addressed, in order to
illustrate the flexibility of the proposed numerical method: in Section 6.1 the specific expression in polar
coordinates is investigated, in Section 6.2 the case of heterogeneous medium with variable coefficients
is presented and in Section 6.3 the method is applied to second-order differential operators, such as
those involved in the port-Hamiltonian formulation of the Euler–Bernoulli beam in one-dimensional.
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 29

Fig. 7. Snapshots of simulation for a harmonic inflow excitation at two of the boundaries of the domain. The variable αq (fluid
height) is shown. Here, small inputs are considered, such that the non-linear and linearized time responses are almost equivalent.

6.1. Polar coordinates

The goal of this subsection is to prove the applicability of PFEM in two-dimensional, when the chosen
coordinate system is not Cartesian: polar coordinates are presented. In order to avoid unnecessary
technicalities, the geometry of a disc has been chosen to illustrate this extension. Further control
applications on this test case can be found in Cardoso-Ribeiro et al. (2019).

The 2D SWEs in a disc, as a pHs in polar coordinates. Let us consider the disc Ω = DR of radius
R > 0 with boundary ∂Ω = CR, the circle of radius R. Polar coordinates r and θ will be used. In vector
calculus, the energy variables are represented by the scalar function αq = h, and the vector function

αp := ρ [ur(t, r, θ), uθ (t, r, θ)]T . The Hamiltonian reads

H = 1

2

∫
DR

[ρg h2 + ρh ((ur)2 + (uθ )2)] r dr dθ , (6.1)

=
∫

DR

[
1

2
ρg α2

q + 1

2ρ
αq|αp|2] r dr dθ . (6.2)
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30 F.L. CARDOSO-RIBEIRO ET AL.

Fig. 8. Snapshots of simulation for a harmonic inflow excitation at two of the boundaries of the domain. The variable αq (fluid
height) is shown along a cross-section in the middle of the domain. Here, small inputs are considered, such that the non-linear and
linearized time responses are almost equivalent.

The effort or co-energy variables can be computed as eq := δqH = ρg αq + 1
2ρ

|αp|2 and ep := δpH =
1
ρ
αqαp = h [ur(t, r, θ), uθ (t, r, θ)]T .

With these notations and definitions, we get the same system as (3.13) for the strong form of the
pHs, namely ⎡⎣ ḣ

ρ

[
u̇r

u̇θ

] ⎤⎦ =
[

0 − div
−grad 0

]⎡⎣ ρ(gh + (ur)2+(uθ )2

2 )

h

[
ur

uθ

] ⎤⎦ , (6.3)

with boundary control u∂ (θ , t) := −ep·n = −er
p(R, θ , t) and collocated boundary observation y∂ (θ , t) :=

eq(R, θ , t) at the boundary ∂Ω = CR. Let us conclude with the energy balance for this system,

d

dt

1

2

∫
DR

[ρg h2 + ρh ((ur)2 + (uθ )2)] r dr dθ =
∫

CR

u∂ (θ , t) y∂ (θ , t) R dθ . (6.4)

The PFEM directly applies to the pHs in polar coordinates. Now, let us first rewrite the weak form
(3.23) with test functions vq and vp.∫

DR

vqα̇q r dr dθ =
∫

DR

(
gradvq

)
· ep r dr dθ −

∫
CR

vq n · ep R dθ ,∫
DR

vp · α̇p r dr dθ = −
∫

DR

vp · gradeq r dr dθ .

(6.5)
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 31

Fig. 9. Snapshots of simulation for a harmonic inflow excitation at two of the boundaries of the domain. The variable αq (fluid
height) is shown. Differences between the non-linear and linearized time responses are now observed.

Let us approximate the scalar energy variables αq(r, θ , t) using the following basis with Nq elements:

αq(r, θ , t) ≈ αap
q (r, θ , t) :=

Nq∑
i=1

φi
q(r, θ)αi

q(t) = φq(r, θ)Tαq(t). (6.6)

The variables eq and vq are also approximated using φq(r, θ).
Similarly, the vectorial energy variable αp is approximated as

αp(r, θ , t) ≈ αp
ap(r, θ , t) :=

Np∑
k=1

φp
k(r, θ)αk

p(t) = Φp(r, θ)Tαp(t), (6.7)

where φp
k(r, θ) =

[
φr,k

p (r, θ)

φθ ,k
p (r, θ)

]
represents a two-dimensional vectorial basis function and, conse-

quently, Φp(r, θ) is an Np × 2 matrix. Remark 4.1 does apply here also. Furthermore, ep and vp are
also approximated using Φp(r, θ).
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32 F.L. CARDOSO-RIBEIRO ET AL.

Fig. 10. Snapshots of simulation for a harmonic inflow excitation at two of the boundaries of the domain. The variable αq
(fluid height) is shown along a cross-section in the middle of the domain. Differences between the non-linear and linearized time
responses are observed.

Fig. 11. (a) Hamiltonian as a function of time for the simulation for a harmonic inflow excitation at two of the boundaries of the
domain. Hamiltonian only changes during the first second, while an external excitation is applied. (b) Total volume of fluid as a
function of time for the simulation for a harmonic inflow excitation at two of the boundaries of the domain. The total volume is
constant along all the simulation.

Finally, the boundary input, localized on the circle of radius r = R can be discretized using any one-
dimensional set of basis functions, say ψ = [ψm], provided 2π -periodicity is ensured (trigonometric
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 33

polynomials are a fair trial approximation basis, see, e.g. (Boyd, 2001, Chapter 18)):

u∂ (θ , t) ≈ uap
∂ (θ , t) :=

N∂∑
m=1

ψm(θ)um
∂ (t) = ψ(θ)Tu∂ (t). (6.8)

Introducing the notation ∂rφq := [∂rφ
i
q] and ∂θφq := [∂θφ

i
q] for the matrices of partial derivatives

of the functions φi
q, we define matrix

D :=
∫

DR

[
∂rφq r−1 ∂θφq

]
ΦT

p r dr dθ =
∫

DR

[
r ∂rφq ∂θφq

]
ΦT

p dr dθ , (6.9)

where the apparent singularity at r = 0 has been removed. Then, with classical mass matrices
Mq := ∫

DR
φqφ

T
q r dr dθ , Mp := ∫

DR
ΦpΦ

T
p r dr dθ , together with the control matrix B :=∫

CR
φq(R, θ) ψT(θ) R dθ , the finite-dimensional equations become

Mq α̇q =D ep + B u∂ (t),

Mp α̇p = − DT eq,
(6.10)

where Mq and Mp are square matrices (of size Nq × Nq and Np × Np, respectively). D is an Nq × Np
matrix and B is an Nq × N∂ matrix.

Defining y∂ (t), the output conjugate to the input u∂ (t) as

y∂ (t) := Mψ
−1BTeq(t), (6.11)

with boundary mass matrix Mψ := ∫
CR

ψψTR dθ , the approximated system can be written using the
finite-dimensional Dirac structure representation given by (4.11), and as found in Remark 4.3, the global
energy balance reads

d

dt

1

2
(αT

q Mqαq + αT
p Mpαp) = yT

∂ Mψu∂ , (6.12)

which mimicks that at the continuous level, namely (6.4).

6.2. Heterogeneous case with variable coefficients

The goal of this subsection is to prove the applicability of PFEM when the coefficients are space varying.
In order to avoid unnecessary technicalities, the choice has been made to tackle the one-dimensional
model, first derived in Section 2 as introductory example. Another fully worked out example can be
found in Serhani et al. (2019b) on the anisotropic heterogeneous wave equation in two-dimensional.

The variable-coefficient physical model as a pHs. Let us consider the SWE in a water channel with
a space-varying cross section, i.e. with z �→ b(z) the width of the channel, it is easy to understand that
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34 F.L. CARDOSO-RIBEIRO ET AL.

the energy given by (2.2) remains unchanged, with function b(z) instead of coefficient b, but then the
balance equations (2.1) must be modified as follows:

∂

∂t
(b h) = − ∂

∂z
(bhu) ,

∂

∂t
u = − ∂

∂z

(
u2

2
+ gh

)
.

(6.13)

With the appropriate choice of energy variables q := b h, and p := ρ b u, the Hamiltonian (2.2) now
reads

H (q(z, t), p(z, t)) = 1

2

∫
[0,L]

(
qp2

ρ b2 + ρg

b
q2
)

dz. (6.14)

The co-energy variables are found to be eq := δqH = ρ
(

u2

2 + gh
)

, and ep := δpH = h u; thus,

system (6.15) becomes in compact form

q̇(z, t) = − ∂

∂z

[
b(z) ep(z, t)

]
,

ṗ(z, t) = −b(z)
∂

∂z
eq(z, t),

(6.15)

to be compared with (2.4) in the uniform case. Hence, the new interconnection operator J b reads

J b :=
[

0 −∂z [b(z) .]
−b(z) ∂z 0

]
.

Since
∫

[0,L] ϕ ∂z(b(z) ψ) dz = − ∫[0,L] b(z)(∂zϕ)ψ dz for smooth scalar functions ϕ and ψ , a straight-
forward computation shows that (J bu , v) = −(u , J bv) for smooth vector-valued functions u and
v vanishing at the ends of the interval, and with the standard scalar product in L2 × L2. Hence, the
unbounded matrix-valued differential operator J b proves skew-symmetric in L2 × L2.

The PFEM directly applies to the pHs with variable coefficients. Here, the same procedure as in
Section 2.2 is being followed. We begin with a weak formulation of (6.15), then two complementary
choices can be made.

If we choose to integrate by parts the mass balance equation only, i.e. the first line of the obtained
weak form, we get exactly the same finite-dimensional pHs as (2.36), but with D a new Nq × Np matrix,
defined by

D :=
∫

[0,L]
b(z)

dφq

dz
(z)φT

p (z)dz, (6.16)
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 35

and a new Nq × 2 control matrix B := [
b(0)φq(0) −b(L)φq(L)

]
. The boundary control remains

u∂ (t) := [
ep(0, t) ep(L, t)

]T
, and the new collocated boundary observation reads y∂ (t) := BTeq(t) =[

b(0) eq(0, t) −b(L) eq(L, t)
]T

.
If instead, we choose to integrate by parts the momentum balance equation only, i.e. the second line

of the obtained weak form, we get the following finite-dimensional pHs:

Mqq̇(t) = D̃ep(t) ,

Mpṗ(t) = −D̃Teq(t) + B̃

[
eq(0, t)
eq(L, t)

]
,

(6.17)

but with D̃ another Nq × Np matrix, defined by

D̃ := −
∫

[0,L]
φq(z)

d

dz
[b(z)φT

p (z)]dz, (6.18)

and a new Np × 2 control matrix B̃ := [
b(0)φp(0) −b(L)φp(L)

]
. The boundary control is now

defined by u∂ (t) := [
eq(0, t) eq(L, t)

]T
, and the new collocated boundary observation reads y∂ (t) :=

B̃Tep(t) = [ b(0) ep(0, t) b(L) ep(L, t)
]T

.
Finally, note that in both the above cases, the following power balance is met:

Ḣd(t) := eT
q (t)Mqq̇(t) + eT

p (t)Mpṗ(t) = yT
∂ (t) u∂ (t).

6.3. Higher-order systems

In the previous sections, the PFEM was applied to first-order (one- and two-dimensional) formally skew-
symmetric differential operators. Indeed, the method seems to be much more general and can be applied
similarly to higher-order equations.

The Euler–Bernoulli beam equation can be written as a pHs of second order. The equations are
given by (see, e.g. Cardoso-Ribeiro et al. (2016)):

ẋ1(z, t) = − ∂2

∂z2 e2(z, t),

ẋ2(z, t) = ∂2

∂z2 e1(z, t),

(6.19)

where e1 and e2 are obtained from the variational derivative of the Hamiltonian:

H = 1

2

∫ L

0

(
x1

2 + x2
2
)

dz. (6.20)
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36 F.L. CARDOSO-RIBEIRO ET AL.

From the definition of the variational derivatives, the time derivative of the Hamiltonian is
computed as

Ḣ =
∫ L

z=0

(
e1ẋ1 + e2ẋ2

)
dz,

=
∫ L

z=0

(
−e1∂

2
z2 e2 + e2 ∂2

z2 e1

)
dz,

=
∫ L

z=0

(
∂z

(−e1 ∂z(e2) + ∂z(e1) e2

))
dz,

= − e1(L, t) ∂z(e2)(L, t) + ∂z(e1)(L, t)e2(L, t)

+ e1(0, t) ∂z(e2)(0, t) − ∂z(e1)(0, t)e2(0, t). (6.21)

Note that Ḣ depends only on the boundary values of e1 (vertical speed), e2 (moment), ∂ze1 (rotation
speed) and ∂ze2 (force). This motivates the definition of the boundary ports, which allows writing the
infinite-dimensional equations as pHs. From (6.21), one possible definition for the boundary ports is as
follows:

y∂ :=

⎡⎢⎢⎣
f1∂

f2∂

f3∂

f4∂

⎤⎥⎥⎦ :=

⎡⎢⎢⎣
∂ze1(L, t)

−∂ze1(0, t)
−e1(L, t)
e1(0, t)

⎤⎥⎥⎦ , u∂ =

⎡⎢⎢⎣
e1∂

e2∂

e3∂

e4∂

⎤⎥⎥⎦ =

⎡⎢⎢⎣
e2(L, t)
e2(0, t)

∂ze2(L, t)
∂ze2(0, t)

⎤⎥⎥⎦ . (6.22)

The final power balance (Ḣ) can thus be written as

Ḣ = yT
∂ u∂ . (6.23)

Weak-form representation of Euler–Bernoulli beam equation. Let us use arbitrary test functions
v1(z) and v2(z) and develop a weak form of (6.19):∫ L

0
v1(z)ẋ1(z, t)dz = −

∫ L

0
v1(z)

∂2

∂z2 e2(z, t)dz,∫ L

0
v2(z)ẋ2(z, t)dz =

∫ L

0
v2(z)

∂2

∂z2 e1(z, t) dz,

(6.24)

Integrating the first equation by parts twice, we get the following partitioned weak form:∫ L

0
v1(z)ẋ1(z, t)dz = −

∫ L

0

∂2

∂z2
v1(z) e2(z, t)dz

+ [ ∂zv1(L) −∂zv1(0) −v1(L) v1(0)
]⎡⎢⎢⎣

e2(L, t)
e2(0, t)

∂ze2(L, t)
∂ze2(0, t)

⎤⎥⎥⎦ .

∫ L

0
v2(z)ẋ2(z, t)dz =

∫ L

0
v2(z)

∂2

∂z2 e1(z, t)dz,

(6.25)
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A PARTITIONED FEM FOR POWER-PRESERVING DISCRETIZATION 37

Finite-dimensional pHs. Similarly to the development in Section 2.2, we chose finite-dimensional
basis functions (2.20) as φ1(z) and φ2(z), for the variables with index 1 and 2, respectively. From the
substitution of the approximation functions in the weak form (6.25), we find

M1ẋ1(t) = −De2(t) + B

⎡⎢⎢⎣
e2(L, t)
e2(0, t)

∂ze2(L, t)
∂ze2(0, t)

⎤⎥⎥⎦ ,

M2ẋ2(t) = DTe1(t)

(6.26)

where M1 and M2 are square mass matrices (of size N1 × N1 and N2 × N2, respectively), equivalent to
(2.23). The matrix D is of size N1 × N2:

D :=
∫ L

z=0

(
∂2φ1

∂z2
(z)

)
φ2(z)

Tdz , (6.27)

and B is an N1 × 4 matrix:

B :=
[

∂φ1
∂z (L) − ∂φ1

∂z (0) −φ1(L) φ1(0)

]
. (6.28)

Finally, the conjugate-output can also be written in terms of the previous B matrix:

y∂ =

⎡⎢⎢⎣
∂ze1(L)

−∂ze1(0)

−e1(L)

e1(0)

⎤⎥⎥⎦ = BTe1. (6.29)

Defining the flow variables as f 1(t) := −ẋ1(t) and f 1(t) := −ẋ2(t), we find the following finite-
dimensional Dirac structure representation:

[
M1 0
0 M2

] [
f 1(t)
f 2(t)

]
=
[

0 −D
DT 0

] [
eq(t)
ep(t)

]
+
[ −B

0

]⎡⎢⎢⎣
e2(L, t)
e2(0, t)

∂ze2(L, t)
∂ze2(0, t)

⎤⎥⎥⎦
⎡⎢⎢⎣

∂ze1(L)

−∂ze1(0)

−e1(L)

e1(0)

⎤⎥⎥⎦ = [ BT 0
] [ eq(t)

ep(t)

]
.

(6.30)

Following the same procedure presented in the previous sections for the 1D and 2D SWEs, from
the discretization of the Hamiltonian using the energy variables approximation spaces, one gets the
underlying port-Hamiltonian dynamics for the approximated Euler–Bernoulli beam equations.

The analogue of the Euler–Bernoulli beam in one-dimensional is the Kirchhoff plate in two-
dimensional, one can refer to Brugnoli et al. (2019b) for the modelling as a pHs using tensor calculus,
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38 F.L. CARDOSO-RIBEIRO ET AL.

and the application of PFEM to it, with various boundary controls; note that the analogue of the
Timoshenko beam in one-dimensional is the Mindlin plate in two-dimensional, and PFEM can also
be applied to this model—see Brugnoli et al. (2019a).

7. Conclusion and open questions

The partitioned finite element method (PFEM) provides a full-rank structure-preserving representation
of pHs in two- and three-dimensional: a general setting has been proposed here, written in the language
of vector calculus for common PDE applications. This method can be easily implemented thanks to
ready to use FEM software to compute the matrices of the representation, which are all sparse. It applies
to complex geometries, works in any coordinate systems and allows for space-varying coefficients;
moreover, higher-order differential operators can also be tackled. Although PFEM has already been
successfully applied to linear PDEs with quadratic Hamiltonian functionals, e.g. vibrating membranes
and plates, here the methodology carries over to a non-linear PDE with non-quadratic and non-separable
Hamiltonian functional, the irrotational SWE in two-dimensional.

The ongoing work include the mixed boundary control (possibly leading to differential algebraic
problems as pHDAEs), see, e.g. Brugnoli et al. (2020a); the three-dimensional application of PFEM to
Maxwell’s equation, see, e.g. Payen et al. (2020); the application of PFEM to the heat equation, see,
e.g. Serhani et al. (2019a); the mathematical convergence analysis (choice of the finite element bases
and theoretical rate of convergence), see, e.g. Haine et al. (2020); and the development of a unified
computational framework, see, e.g. Brugnoli et al. (2020b).

Future work include the description of PFEM in a more general setting making use of exterior
calculus on differential forms, following, e.g. Flanders (1963) or Frankel (2011) for their use in physical
systems modelling, and, e.g. Arnold et al. (2010) and Arnold (2013) for the numerical approximations
using finite element spaces of differential forms. Another topic of interest is the study of some
one-dimensional test cases to analyse the case of appearance of a shock in finite time, even with
regular initial data: it is known that the energy might not be preserved but transferred to the thermal
domain thanks to an entropy production. Some worked-out two-dimensional test cases will be studied
on coupled systems, e.g. fluid-structure interaction, or thermal-structure coupling. Lastly, structure-
preserving model reduction techniques will be tested on the high-fidelity finite-dimensional systems
obtained by PFEM; see, e.g. Egger et al. (2018) for pHs or Hauschild et al. (2019) for pHDAEs. The
reduced order system will then be most useful to apply dedicated control laws for pHs, like IDA-PBC,
which do take advantage of the specific structure of these dynamical systems with collocated inputs and
outputs; see, e.g. Ortega et al. (2008).
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