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Abstract

We examine the combined effects of oil dependence and the quality of insti-
tutions on economic growth. To do so, we introduce a new buffered threshold
panel data model and apply it to 19 oil rent-dependent countries over the
period 1996-2017. We show that the relationship between growth and oil-
dependence is not linear. More precisely, three categories of oil-dependent
countries are identified. Only countries with high-quality institutions are
very stable. All the other countries have experienced a transition into a
buffer zone and are potentially in a transition between two different regimes.
When considering oil dependence as a threshold variable, it appears that the
quality of institutions has a positive and significant effect on growth when
dependence is either low or high. More interestingly, for countries with in-
termediate levels of oil-dependence, the quality of the institutions negatively
impacts growth. Some of these countries have experienced something of an
oil-dependence trap.
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1. Introduction

Dependence on natural resources is the subject of a wide debate in the
analysis of economic growth in rentier states. However, in the empirical
studies, there is no clear consensus on the negative impact of resource rents
on long-term growth (Havranek et al., 2016). In practice, rentier states
are characterized by important heterogeneity in their economic performance.
The quality of institutions is one major explanation that has been advanced
in the literature to explain these disparities. As is now well documented in
the literature, natural resource dependence has given rise to some negative
phenomena that could hinder growth (rent-seeking behaviours, the contrac-
tion of non-resource production activities, corruption, the voracity effect,
civil conflicts, social pressure for additional redistribution, increases in pub-
lic spending in less productive sectors, etc.). In fact, a diversification of the
economy and an improvement in the quality of the institutions in natural
resource exporting countries seem to be efficient tools for enhancing their
growth performance. Indeed, these countries could reach such high levels
of dependency that it would become very difficult to sustain good economic
or institutional reforms. From an economic policy point of view, it is thus
important to understand how institutional reforms could impact economic
growth while interacting with natural resource dependence. Indeed, the eco-
nomic cost of ameliorating the quality of the institutions could be very high
before having a positive effect on economic growth.

The empirical literature studying the relationships among natural re-
sources, the quality of institutions and economic growth has not brought
about a consensus. Such studies can be roughly classified into three cate-
gories. In the first category, natural resources are found to have a negative
effect on growth when they are associated with weak institutions (see for
example, Leite and Weidman, 1999, Acemoglu et al., 2001, 2002, and Sala-
i-Martin and Subramanian, 2013). The second category shows that natural
resources interact with the quality of institutions, and their combined ef-
fects on growth depend on the nature of their combination (Mehlum et al.
2006a, b, Boschini et al., 2007, Arezki and Van der Ploeg, 2011). The third
and last category shows that the observed heterogeneity in economic growth
between rentier states is not explained by institutions (Sachs and Warner,
1999, Brunnschweiler, 2008 and Alexeev and Conrad, 2009). It is worth
noting that this literature generally assumes linearity in the dynamics to
address these rather complex relationships. Only a few contributions have
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insisted on their nonlinearity (Leite and Weidmann, 1999 and Sala-i-Martin
and Subramanian, 2013).

Since their introduction by Tong (1978), threshold models have been con-
sidered to be a very useful and sophisticated way to take into account the
nonlinearity exhibited in several financial and macroeconomic phenomena.
Indeed, they provide a simplified formulation to mimic nonlinear stylized
facts and, more precisely, the dynamics of regime changes. Their structure
has been widely used by econometricians in time series analysis. However,
many extensions and mathematical developments of threshold models, in
particular the panel data treatment framework, have been adopted for the
analysis of other data structures. Hansen (1999) proposed a panel threshold
regression (PTR) model for the nondynamic panel case. His main contribu-
tion lies in the possibility of allowing the individuals constituting the panel to
be in different regimes during a given period. This enables the heterogeneity
in the panel to be better captured and allows for a visualization of the nonlin-
earity in the interaction between the dependent variable and the explanatory
variables for each panel’s component. However, the sudden change in regime
that characterizes Hansen’s formulation may be problematic in some situa-
tions in which the transition is smooth. To capture the absence of sudden
jumps, Gonzalez et al. (2017) develop a non-dynamic panel smooth transi-
tion regression (PSTR) model with individual fixed effects. The parameters
are allowed to change smoothly as a function of the threshold variable. The
performance of this model may depend on the choice of the transition func-
tion for the studied phenomenon. Overall, this form of modelling turns out
to be useful when the number of regimes is sufficiently high.

In some circumstances, an interesting phenomenon happens when a past
temporary change in a relevant forcing variable leads to a change in the eco-
nomic behaviour of the analysed variable but a return to the initial value of
the forcing variable does not induce a return to the initial behaviour (i.e., the
state of a system is dependent on its history). This so-called hysteresis phe-
nomenon, originally stemming from physics, has been widely used in labour
theory and foreign trade to explain the persistent effects of temporary stimuli
(see, e.g., Göcke, 2002). For example, in foreign trade, temporary exchange
rate shocks could induce persistent consequences for quantities and prices due
to sunk market-entry costs. Indeed, to sell in a foreign market, a firm incurs
some entry costs that cannot be recovered after exit (e.g., distribution and
service networks). If the domestic currency temporarily depreciates, enter-
ing this foreign market becomes profitable for some domestic firms. However,

3



even if the exchange rate regains its initial level, it is still profitable to sell
in the foreign market if the variable costs are recovered. This simple mi-
croeconomic hysteresis can thus be aggregated and gives rise to a continuous
macro-level loop in overall exports (Borgersen and Göcke, 2007). This ef-
fect has been widely documented in the empirical literature (see Belke and
Kronen, 2019, for a recent study).

This smooth switching between different equilibria (finite configurations
or finite states) of the studied variable (system) could thus be usefully mo-
bilized to analyse the dynamics of its evolution. This is why in this article,
we propose an alternative model based on this idea of hysteresis by defining
a new smooth and flexible regime switching mechanism. To illustrate and
highlight this point, let us limit ourselves, without loss of generality, to the
case of a two-regime model. Instead of assuming a single threshold parame-
ter, we consider an interval consisting of a lower and an upper threshold that
acts as a buffer zone. If the threshold variable is below the lower boundary
of the buffer zone, then the observation is from the first regime. Conversely,
the observation comes from the second regime when the threshold variable
is above the upper boundary. When the threshold variable falls within the
buffer zone, the regime indicator keeps the value of its most recent past. This
makes the transition dynamics smoother and more flexible than those of the
classical PTR model. Even though this idea is still in its infancy, it provides
a new way to understand and explain the nonlinearity observed in the data.
In addition to this new modelling approach, our paper provides several inter-
esting empirical results. First, we clearly show that the relationships between
growth and dependence on oil rents are not linear: there is a gradual positive
impact as the quality of institutions is enhanced. More precisely, our anal-
ysis identifies three categories of oil-dependent countries with respect to the
quality of institutions. It is worth noting that except for three countries in
the sample with high-quality institutions that are very stable, all the other
countries have experienced a transition into a buffer zone. They are thus
potentially in a transition between two different regimes, and the impact of
oil resource dependence on their growth has not yet stabilized. Moreover,
while considering dependence on oil rents as a threshold variable, it appears
that the quality of institutions has a positive and significant effect on growth
when dependence is low or high. More interestingly, it turns out that for
intermediate oil-dependent countries, the quality of their institutions nega-
tively impacts growth. Some of these countries have experienced something
of an oil-dependence trap.
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The remainder of the paper is organized as follows. In Section 2, we
provide the analytical framework for our model: the definition of our buffered
threshold panel data (BTPD) model, our estimation methodology, different
test procedures and a simulation study. In Section 3, we first provide and
discuss the results of our empirical study, which is devoted to the analysis
of the combined interaction effects of natural resource dependence and the
quality of institutions on economic growth in rentier countries. We thus
compare our results to those provided by some alternative models and show
how our model gives better results. Section 4 concludes.

2. Analytical framework

In this section, we first provide a precise definition of our BTPD model.
We thus describe the general outlines of the proposed least squares estimation
of the model. We afterwards lay down the general principles of our procedures
for testing the number of regimes. We finally discuss the main results of our
simulation study of the finite sample properties of these procedures.

Our model is inspired by the buffered process developed by Li et al. (2015)
for time series analysis, the “hysteresis autoregressive time series model”. It
is worth noting that this approach has been used in the recent literature
exclusively to analyse time series.1 It seems quite natural to extend this ap-
proach to phenomena characterized by a smooth transition in their dynamics
in addition to having an individual dimension. This is the purpose of our
model.

2.1. The buffered threshold panel data model

We consider the following balanced panel {Yi,t, qi,t, Xi,t : 1 ≤ i ≤ N, 1 ≤
t ≤ T}, where i and t denote the individual and temporal indices, respec-
tively. The dependent variable Yi,t is scalar. The threshold variable qi,t is
scalar. Xi,t is an m-vector of control variables. We first present the case
of two regimes. The observed data are generated from a nondynamic two-
regime BTPD model with fixed effects if they satisfy the following regression

1Lo et al. (2016) used buffered threshold GARCH models to study closing prices,
adjusted for dividends and splits. Chen and Truong (2016) developed a double hysteretic
heteroscedastic model to analyse the relationship between the underlying stock markets
and index futures markets. Zhu et al. (2017) used a buffered autoregressive model with
conditional heteroscedasticity to study exchange rates.
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model:
Yi,t = µi +Xi,tβ11(Ri,t=1) +Xi,tβ21(Ri,t=2) + εi,t (1)

where µi is the fixed effect for individual i and εi,t is the error term, which is
assumed to be independent and identically distributed with mean zero and
positive finite variance σ2. βk, k = 1, 2, represents the slope coefficients, and
1A is the indicator function for the set A. Ri,t is the regime indicator defined
as follows:

Ri,t =


1 if qi,t ≤ rL,1
Ri,t−1 if rL,1 < qi,t ≤ rU,1
2 if rU,1 < qi,t

where rL,1 and rU,1 (rL,1 ≤ rU,1) are the boundary parameters that constitute
the buffer or hysteresis zone. In model (1), the transition mechanism is
modelled in the same way as for the buffered threshold in a time series (see
Li et al., 2015). The originality lies in the representation of a panel as several
distinct regimes. Each regime is characterized by a different regression slope
(β1 or β2), and the transition between the two regimes is gradual rather than
abrupt. This proposal is justified by the fact that in practice, regime Ri,t

may not shift immediately, and there could be a buffer region in which the
regime of Yi,t depends on the regime of Yi,t−1. In addition, the contribution of
the individual dimension to the smooth transition mechanism is to group the
individuals following the same linear regression model on a given date into the
same regime. However, the individuals composing this regime are likely to
evolve smoothly over time, since the transition variable also depends on the
temporal dimension. In our empirical analysis, Yi,t is the real GDP growth
rate (GDPG) of country i at time t. Xi,t is a vector of explanatory variables.
The threshold variable qi,t is oil rents or the quality of the institutions. µi is
the fixed effect of country i.

Note that from formulation (1), we can obtain the classical PTR model
of Hansen (1999) as a special case by setting rL,1 = rU,1 = r. However, it is
worth mentioning that the transition is abrupt in Hansen (1999). Indeed, a
country can switch from one regime to another if the status of the threshold
variable oil rents (or quality of the institutions) qi,t crosses up or down the
threshold r. More precisely, if the variable oil rents drops below the threshold
(qi,t ≤ r), even slightly, GDPG is described by the first regime with slope
coefficients β1. Conversely, when this variable exceeds r, GDPG is described
by the second regime with slope coefficients β2. In other words, the regime
indicator Ri,t depends only on whether the oil rent value is smaller or larger
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than r. In our proposed model, the regime indicator may depend on the
infinitely far away past of the regime indicators (Li et al., 2015).

This two-regime BTPD model (1) can be easily extended to a three-
regime model. Indeed, suppose there are two buffer zones (rL,1, rU,1] and
(rL,2, rU,2] with

−∞ = rU,0 < rL,1 ≤ rU,1 < rL,2 ≤ rU,2 < rL,3 = +∞.

Then, the three-regime BTPD model can be defined as follows:

Yi,t = µi +
3∑

k=1

Xi,tβk1(Ri,t=k) + εi,t, (2)

where the regime indicator Ri,t divides the observations into three regimes
characterized by three different regression slopes βk, k = 1, 2, 3. Note that
the regime indicator Ri,t−1 is equal to k if the variable oil rents falls into
(rU,k−1, rL,k], and GDPG (more generally, the data-generating process, or
DGP ) will stay in the same regime at time t if the variable oil rents increases
towards the buffer zone (rL,k, rU,k] or decreases towards (rL,k−1, rU,k−1]. In
general, when the variable oil rents falls into the buffer zone (rL,l, rU,l] with
l > k or l < k − 1, the regime indicator Ri,t is set to l or l + 1, respectively
(see Figure 1).

2.2. Least squares estimation

The first step of the estimation process consists of eliminating the perma-
nent differences that exist between individuals over the period, which could
skew the estimates. Eliminating individual fixed effects involves removing
specific individual means. This step is standard in linear models (within
transformation). However, it requires more careful processing in the context
of threshold models and particularly in the BTPD model. Indeed, the in-
dividual effects depend on our knowledge about the buffer zone and must
therefore be recalculated for each candidate zone. Another problem arises
when the values of the threshold variables for the first observations may fall
within one of the buffer zones. This can make the identification of the regime
indicators difficult. To address this problem, we propose setting the regime
indicator for each individual component i of the first observation as a realiza-
tion of a uniform random variable on {k, k + 1} when its threshold variable
value falls within the buffer zone (rL,k, rU,k], i.e., when rL,k < qi,1 ≤ rU,k.
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Figure 1: Diagram illustrating the buffered transition mechanism.
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The regime indicator sequences {Ri,t, i = 1, ..., N and t = 2, ..., T} are subse-
quently generated.

To eliminate the individual effect, we need the following compact repre-
sentation of the BTPD model:

Yi,t = µi + Xi,tβ + εi,t, (3)

where Xi,t =
(
Xi,t1(Ri,t=1), ..., Xi,t1(Ri,t=K)

)
and β = (β′1, ..., β

′
K)′, for K ∈

{2, 3}. Let us define the centred individual variables Y∗i =
(
Y ∗i,1, ..., Y

∗
i,T

)′
,

X∗i =
(
X∗′i,1, ...,X

∗′
i,T

)′
and ε∗i =

(
ε∗i,1, ..., ε

∗
i,T

)
constructed from Yi = (Yi,1, ..., Yi,T )′ ,

Xi =
(
X′i,1, ...,X

′
i,T

)′
and εi = (εi,1, ..., εi,T ), respectively, by removing the

corresponding individual means. We are thus able to rewrite model (3) in
the following compact form

Y∗ = X∗β + ε∗,

where Y∗ = (Y∗′1 , ...,Y
∗′
N)′ , X∗ = (X∗′1 , ...X

∗′
N)′ and ε∗ = (ε∗′1 , ..., ε

∗′
N)′. Hence,

assuming that the number of regimes is known and, for a given configuration
of the buffer zones γ = (rL,1, rU,1, ..., rL,K−1, rU,K−1), that the NT ×Km ma-
trix X∗ (γ) has full column rank, the ordinary least squares (OLS) estimator

of the slope coefficients is given by β̂ (γ) =
(
(X∗ (γ))′X∗ (γ)

)−1
(X∗ (γ))′Y∗.

Once β̂ (γ) is obtained, the individual fixed effects are then estimated by

µ̂i = Yi−Xi (γ) β̂ (γ) , for i = 1, ..., N. We can also obtain the residual vector

as follows ε̂ (γ) = Y∗−X∗ (γ) β̂ (γ) . This enables the calculation of the sum

of the squared errors S (γ) = ε̂ (γ)
′
ε̂ (γ). We can thus estimate the residual

variance as follows σ̂2 (γ) = 1
NT−NS (γ) .

As previously discussed, the estimation of the slope coefficients requires
knowledge of the buffer zones γ that we should estimate. To do this, we
explore a set of buffer zone candidates constructed from quantiles of the
observed values of the threshold variable. To ensure a minimum number
of observations in each regime, we can - for example, when K = 2 - take
quantiles from a% to b% of each threshold value and sample within a carefully
chosen interval [a, b], and we generate all ordered 2-vectors of γ such that
r̂L,1 < r̂U,1. However, when K = 3, we require all buffer zone parameters to
lie within the bounded subset [r0, r1] of the threshold variable sample space,
and we choose the 4-vector γ̂ = (r̂L,1, r̂U,1, r̂L,2, r̂U,2) that minimizes the sum
of the squared errors, i.e.,

γ̂ = arg min
γ∈Γ

(S (γ)) ,
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where Γ = {(r̂L,1, r̂U,1, r̂L,2, r̂U,2) ∈ [r0, r1]4| rL,1 ≤ rU,1 < rL,2 ≤ rU,2}. Note
that our Γ is larger than the one used in Hansen (1999). Therefore, our
exploration of buffer zone candidates requires more computational effort.

2.3. Linearity test and determination of the number of regimes

We now deal with the issue of inference in BTPD models. As a priority,
we present the tests of linearity and the determination of the number of
regimes. These tests occupy a prominent place and guide us in the choice of
specification to take into account the nonlinearities.

Consider again a BTPD model with two regimes (K = 2) as given by
(2). As in Hansen (1999), one can use a likelihood ratio (LR) test to detect
the effect of this nonlinearity. The null hypothesis (no buffered threshold
effects) and the alternative hypothesis (the existence of buffered threshold
effects) are given by

H0 : β1 = β2 and H1 : β1 6= β2.

This testing problem corresponds to the famous Davies problem (1977, 1987)
and has been investigated by Andrews and Ploberger (1994) and Hansen
(1996). The bootstrap procedure suggested by Hansen (1996) and used in
Hansen (1999) to simulate the corresponding distribution of the LR test can
be adapted for our framework.

Under H0, the OLS method provides an estimation β̂1 for β1 and the
residuals ε̃∗i,t. The LR test statistic is then defined by

F1,2 =
S1 − S2 (γ̂2)

σ̂2
2 (γ̂2)

,

where S1 and S2 (γ̂2) are the residual sums of squared errors obtained from
(1) without and with buffered threshold effects, respectively; σ̂2

2 (γ̂2) is the
residual variance of the two-regime BTPD estimation.

For the special case in which rL,1 = rU,1, the asymptotic distribution
of F1,2 is nonstandard (Hansen, 1999). Hence, the critical values and p-
values cannot be tabulated. However, this problem can be solved by referring
to Hansen’s (1996, 1999) bootstrap methodology. The same logic can be
applied to our buffered threshold model. The asymptotic p-value can be
approximated with the following bootstrap procedure.

Algorithm 1.

10



1. Treat the regressors Xi,t and the threshold jump variable qi,t as given,
and their values remain fixed during repeated bootstrap simulations.

2. Recover the regression residuals obtained under the null hypothesis ε̂∗i,t
and group them by individual ε̂∗i =

(
ε̂∗i,1, ε̂

∗
i,2, · · · , ε̂∗i,T

)
. Treat the sample

{ε̂∗1, ε̂∗2, · · · , ε̂∗N} as the empirical distribution to be used for bootstrap-
ping.

3. Draw (with replacement) a sample of size N from the empirical distri-
bution and use these errors to create a bootstrap sample under H0.

4. Using the bootstrap sample, estimate the model under the null hypoth-
esis and the alternative hypothesis and thereby calculate the bootstrap
value of F1,2.

5. Repeat this procedure a large number of times and calculate the per-
centage of draws for which the simulated statistic exceeds the observed
statistic F1,2. This percentage represents the p-value of F1,2 under H0.

Once the linearity hypothesis is rejected, the question is whether all the
nonlinearities in the observations have been taken into account or, in other
words, whether we should use a buffered threshold model containing three
regimes. The tests to determine the optimal number of regimes are an ex-
tension of the linearity tests and allow us to answer this question. Indeed, to
test whether the model has two regimes, i.e., H0 : β3 = 0, or at least three
regimes, i.e., H1 : β3 6= 0, the following LR test statistic must be applied:

F2,3 =
S2 (γ̂2)− S3 (γ̂3)

σ̂2
3 (γ̂3)

.

The null hypothesis of a single buffer zone is rejected in favour of at least
two buffer zones if the value of F2,3 is greater than the critical value simu-
lated by bootstrapping. It is worth noting that the bootstrap approach to
approximating the asymptotic critical values is very close to that presented
in Algorithm 1. The only significant change is in Step 2, in which the boot-
strap errors used are no longer those obtained under the null hypothesis but
under the alternative hypothesis.

2.4. Simulation study

We conducted a Monte Carlo experiment to evaluate the performance of
the OLS estimation under different settings. We generated samples from (2)
using different values of γ and β = (β′1, β

′
2, ..., β

′
K)′, where βk = (βk,1, βk,2, ..., βk,m)′.
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Xi,t, qi,t and εi,t are generated from different independent distributions (nor-
mal distribution, log-normal distribution, uniform distribution). For the
number of individuals N and the time period T , we use combinations of
T = 10, 20, 50, and 100 and N = 10, 20, 50, and 100. For each set of gener-
ated sample observations, we calculate the OLS estimator. We do this 1000
times with different values of the model parameters and for different choices
of N and T . The finite sample properties of the estimators are summarized
in Tables 10-13 provided in the appendix. For each case, we report the true
values (True) of the parameters for each of the considered BTPD models,
the empirical mean (Mean) and the empirical standard deviation (Std).

The estimates of the BTPD structural coefficients based on the OLS
method display reasonable biases, which decrease as either N or T becomes
large. Moreover, the Stds of some parameters are relatively large, but they
rapidly decrease with either the number of individuals or the time period.
The desirable consistency property of the OLS estimators is thus empirically
satisfied, and the proposed estimation procedure provides good results.

We now examine the empirical distribution of the estimator for the slope
parameters. Figures 6-8 in the appendix depict the sample histograms for
the estimated first parameters (β1,1 or β2,1) for three configurations of the
BTPD model that differ by the distribution of the error εi,t. In the first
case, the error term has a uniform distribution, while in the second and third
cases, the distribution is normal. It is important to note that the DGPs
are the same and are given in Tables 11-13. The Jarque-Bera test (JB in
Figures 6-8) shows that when the cross-sectional and temporal dimensions
of the panel are small, the empirical distribution is far from normal. Indeed,
the corresponding p-values are lower than 0.1. We thus reject the normality
hypothesis at the 1% significance level. However, when the number of indi-
viduals and/or the time period is at least equal to 50, we approach asymptotic
normality. Indeed, according to the Jarque-Bera test, we do not reject the
normality of the empirical distribution at any reasonable level. It is worth
noting that the same kind of results hold for the other slope parameters.

We finally investigate the finite sample performance of our proposed pro-
cedure for testing linearity in the BTPD framework. For that purpose, we
consider two DGPs. The first is used to assess the size of the test, while
the second is used to study its power. The number of replications is fixed
at 1000. In each replication, the model is estimated and analysed using the
proposed bootstrap-based test of linearity.

The rejection frequencies at the nominal levels of 1, 5 and 10 percent
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Algeria Cameroon Ecuador Kuwait Qatar
Australia Canada Egypt, Arab Rep Nigeria Saudi Arabia
Bolivia Colombia Gabon Norway Vietnam
Brunei Darussalam Côte d’Ivoire Indonesia Oman

Table 1: Sample countries.

are presented in Table 14. It is clear that the rejection frequencies are quite
close to the nominal sizes. Furthermore, the power of the test increases
with the cross-sectional and temporal dimensions of the panel. In summary,
our extension of the bootstrap-based test proposed by Hansen (1999) to
investigate linearity seems to work very well in our framework.

3. Empirical results

3.1. The BTPD model

In this section, we study the combined effects of the interaction between
natural resource dependence and the quality of institutions on economic
growth for a panel of 19 countries for the period 1996-2017. Through the
buffered regime switching mechanism, we analyse the heterogeneity in the
studied panel and how the interaction between natural resources and the
quality of institutions impacts the economic growth of rentier states. The
countries in our sample are given in Table 1.

To control for dependence on natural resources and the effects of the
quality of institutions, we introduce the variables ‘oil rents’ and ‘rule of law’,
respectively. The interaction effect can be analysed by using these variables
as explanatory and transition variables at the same time. We add the most
used variables in the traditional empirical literature on the macroeconomic
determinants of growth to our econometric specification. According to several
studies (e.g., Barro, 1991, Barro and Sala-i-Martin, 2003 and Jones, 2001),
trade openness, fixed investment, moderate inflation and output volatility,
and a better educated workforce have helped countries achieve a higher rate
of growth. All the variables used in our study are taken from the World
Development Indicators, the World Government-Based Indicators and the
International Financial Statistics databases. A short description of these
variables is provided in Table 2.

Table 3 provides some descriptive statistics of the data used. It appears
that the mean growth rate of GDP in our sample decreased between 1996
and 2017. The indicator of the quality of institutions (rule of law) increased
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Variable Description
GDPG The growth rate of GDP.
QINST Rule of law is a governance indicator developed by the World

Bank. It includes several indicators that measure the confidence
in and respect for the laws and rules of society.
Its value varies between −2.5 and 2.5. A high value indicates
a favourable institutional environment and a low value indicates
the opposite.

DEP Dependence on natural resources is represented by oil rents as a
percentage of GDP. Oil rents are the difference between the value
of crude oil production at world prices and the total costs of
production.

INFL Macroeconomic stability as measured by the inflation rate.
INVEST Gross fixed capital formation (GFCF) is measured as a percentage

of GDP.
OPEN Trade openness is the sum of exports and imports of goods and

services relative to GDP.
POPG Population growth is measured as the annual rate of population

growth.

Table 2: Description of the variables used.
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Mean Max Min Std
1996 2017 1996 2017 1996 2017 1996 2017

GDPG 4.13 2.337 9.34 7.70 0.61 -2.87 2.23 2.55
QINST -0.026 0.019 1.92 2.02 -1.44 -1.20 1.00 0.97
DEP 14.37 8.52 40.96 36.61 0.60 0.21 14.25 9.86
INFL 7.95 4.16 29.27 29.50 0.496 -0.83 8.84 7.17
INVEST 23.45 27.26 41.31 48.40 12.11 15.27 8.14 8.77
OPEN 0.67 0.66 1.206 2.00 0.36 0.23 0.231 0.39
POPG 1.84 1.89 3.08 4.67 0.51 0.84 0.628 0.90

Source: Constructed using World Bank and IMF datasets

Table 3: Descriptive statistics.

very slightly. Moreover, we observe a significant decrease in the mean level
of oil rents as a percentage of GDP , from 14.37% to 8.52%. Inflation also
decreased significantly, from approximately 7.95% to 4.16%. However, the
means of investment and population growth increased during this period,
while openness decreased very slightly. These tendencies are globally and
clearly observed in comparing the maximum and minimum values between
these two years.

We investigate two models to explain the interaction between natural re-
sources and the quality of institutions and their impact on GDP growth in
our sample. In the first model, we consider the quality of institutions to be a
threshold variable and dependence on natural resources to be an explanatory
variable. In the second model, dependence on natural resources is consid-
ered the threshold variable, and the quality of institutions is considered an
explanatory variable.

We first test for linearity against a two-regime BTPD model and then a
two-regime model against a three-regime model.2 The results of these tests
are reported in Table 4. In both models, we reject linearity at the 1% level.
We also reject the two-regime model in favour of the three-regime model

2It is important to note that in practice it is sufficient to consider only the cases K = 2
and K = 3 to capture the nonlinearities due to regime switching. This is why our analysis
is limited to a model with at most three regimes. In our case, this is mainly due to the
computational costs of the estimation. Indeed, for our case we have N×T = 19×22 = 418
observations and if the values of a and b are the 10th and 90th percentiles of the data
respectively, we would need to estimate 324540216 candidate models when K = 4. Note
that the the creation of arrays with this dimension (324540216 × 4) causes MATLAB to
become unresponsive.
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Linearity against a 2-regime BTPD model.

Model (I) Model (II)
γ̂2 [0.1490, 0.9584] [0.9941, 6.3392]

S (γ̂2) 3503.1316 3760.4068
F1,2 55.5199 52.6517

p-value 0.0020 0.0000

2-regime BTPD model against a 3-regime BTPD model.

Model (I) Model (II)
γ̂3 [−1.0506, 0.0720, 0.1490, 0.9584] [0.9941, 6.3392, 35.9635, 36.6427]

S (γ̂3) 3263.9008 3324.4110
F2,3 29.2451 52.3288

p-value 0.0020 0.0000

Table 4: Results of the tests of the BTPD models.

at the 1% level. We hereafter discuss the implications of this model for
explaining the evolution of the growth of these oil rent-dependent countries.
The results of our regressions are given in Table 5.

We first discuss Model (I), in which the threshold variable is the qual-
ity of institutions. Three regimes are clearly identified.3 In the lower one
(regime 1 with low values for the rule of law), it appears that oil rents and
openness have no significant effect on the growth of the economy, while in-
flation has a negative impact and investment and population growth have a
positive impact. Using a V AR model, Antonakakis et al. (2016) showed that
in developing and medium-high income countries with weak political institu-
tions, oil dependence is not growth-enhancing. In the middle regime (regime
2 with intermediate values for the rule of law), oil rents have a positive and
significant impact on growth as well as investment and population growth.
Openness still has no significant effect. In the upper regime (regime 3 with
high values for the rule of law), oil rents have an even greater positive and
significant effect on growth. Moreover, openness has a strong and significant
positive effect, while population growth and inflation have a negative impact.
It thus seems that the stronger the rule of law is, the higher the positive im-
pact of oil rents on economic growth. This gradual positive impact of the

3Figures 2 and 3 give the different regimes of the countries according to both models.
A number in black means that the country is clearly in a given regime. When the colour
is different, the country is in a buffer zone (i.e., in a possible transition to another regime).
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Model Model (I) Model (II)
Endogenous GDPG

variable
Threshold QINST DEP
variable

Lower Middle Upper Lower Middle Upper
QINST − − − 3.0868

(2.0027)

∗∗ −3.3466
(3.7693)

∗∗∗ 4.3239
(2.5206)

∗∗∗

DEP 0.0550
(1.0948)

0.1389
(3.5044)

∗∗∗ 0.3144
(5.4706)

∗∗∗ − − −

OPEN −1.5412
(0.7802)

−0.5650
(0.3474)

5.6116
(2.0016)

∗∗ 1.7676
(0.5819)

2.5070
(1.7458)

∗ 5.2574
(1.7982)

∗

INF −0.2442
(5.3949)

∗∗∗ −0.0093
(0.4126)

−0.5179
(2.1196)

∗∗ −0.3091
(5.6253)

∗∗∗ −0.0142
(0.6850)

−0.0321
(0.1759)

INVEST 0.0798
(1.9024)

∗ 0.1457
(3.1595)

∗∗∗ −0.0069
(0.1090)

0.2213
(3.5098)

∗∗∗ −0.0025
(0.0847)

0.1247
(1.2769)

POPG 3.0376
(3.7167)

∗∗∗ 0.4452
(3.4131)

∗∗∗ −1.2796∗∗∗
(3.9515)

1.1948
(1.3368)

0.9298
(7.4040)

∗∗∗ −0.6637
(2.7045)

∗∗∗

γ̂3 [−1.0506, 0.0720, 0.1490, 0.9584] [0.9941, 6.3392, 35.9635, 36.6427]
AIC 2.1783 2.1966
BIC 2.3327 2.3511

The t-statistics are given in parentheses.
∗∗∗Significant at the 0.01 level, ∗∗at the 0.05 level, and ∗at the 0.10 level.

Table 5: GDP growth, the quality of institutions and oil dependence: estimated three-
regime BTPD model.

Figure 2

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

 Algeria 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Australia 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Bolivia 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

 Brunei Darussalam 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

 Cameroon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Canada 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Colombia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Cote d'Ivoire 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Ecuador 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

 Egypt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Gabon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Indonesia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Kuwait 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2

 Nigeria 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Qatar 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

 Norway 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Oman 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Saudi Arabia 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 Vietnam 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 2: GDP growth and quality of institutions (as the threshold variable): regime
indicator (Ri,t) values obtained from the estimated three-regime BTPD model.
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Figure 3

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

 Algeria 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Australia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Bolivia 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1

 Brunei Darussalam 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Cameroon 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Canada 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Colombia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

 Cote d'Ivoire 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Ecuador 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Egypt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Gabon 2 2 2 2 3 2 2 2 2 3 3 2 3 2 2 2 2 2 2 2 2 2

 Indonesia 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1

 Kuwait 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2

 Nigeria 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Qatar 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2

 Norway 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 Oman 3 2 2 2 3 3 2 2 3 3 3 3 3 2 2 3 3 3 2 2 2 2

 Saudi Arabia 2 2 2 2 3 2 2 3 3 3 3 3 3 2 3 3 3 3 3 2 2 2

 Vietnam 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 3: GDP growth and oil dependence (as the threshold variable): regime indicator
(Ri,t) values obtained from the estimated three-regime BTPD model.

quality of the institutions has also been shown in a PTR model by Abdulahi
et al. (2019).

In practice, our model shows that most of the countries (14 of 19) did
not experience a switch in their growth regimes during the period of study.
We can classify the countries in our sample into the three regimes as follows.
Regime 1: Algeria, Cameroon, Colombia, Côte d’Ivoire, Gabon, Indonesia
and Nigeria. Regime 2: Egypt, Oman, Saudi Arabia and Vietnam. Regime
3: Australia, Canada and Norway. However, five countries in our sample did
experience a change in their growth regime. The situation for four of them
worsened: Bolivia and Ecuador (from regime 2 to regime 1) and Brunei
Darussalam and Kuwait (from regime 3 to regime 2). Only Qatar improved
its situation (from regime 2 to regime 3). It is worth noting that for most
of the period, these countries were in buffer zones (see Figure 2). They can
be considered to still be in transition, and their regime shift is not definitive.
More generally, it is important to mention that except for the countries in
Regime 3, which were very stable during the whole period of study, all the
other countries experienced, to different degrees, a transition into the buffer
zones.

For Model (II), the three regimes show very different impacts of the
quality of institutions on economic growth. In the lower and upper regimes
(regimes 1 and 3), the quality of institutions has a positive and significant
effect on growth (even though the impact is greater in the upper regime,
in which the oil rents are very high). In the middle regime (regime 2, in
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which the oil rents have intermediate values), the effect of the quality of
institutions is negative and significant. This means that enhancing the rule
of law damages the economic growth of the countries in this regime. One
can assume that some of these countries have somehow experienced an oil-
dependence trap. To the best of our knowledge, only Belarbi et al. (2016)
mentioned such a result when considering the quality of institutions and
growth in rentier states. In regime 1, we have Australia, Canada and Côte
d’Ivoire (see Figure 3). The countries belonging to regime 2 are Algeria,
Brunei Darussalam, Cameroon, Ecuador, Egypt, Nigeria and Norway. All
the other countries experienced a shift from one regime to another during
the period of study. For example, Colombia (in 2011) and Vietnam (in
2000) moved from regime 1 to regime 2. In these countries, the quality of
institutions exerts a negative impact on economic growth (beginning in the
transition year), while their oil rents significantly increased. Other countries
experienced back-and-forth changes: between regimes 1 and 2 (Bolivia and
Indonesia) and between regimes 2 and 3 (Gabon, Kuwait, Oman, Qatar and
Saudi Arabia). It is worth noting that no switch between the extreme regimes
1 and 3 took place during the whole period of study.

3.2. Comparison with alternative models

For the sake of comparison, we first provide the same kind of analysis with
a PTR model à la Hansen (1999). Table 6 provides the results of the tests
of linearity vs. a one-threshold model and a one-threshold vs. two-threshold
model. Our results clearly reject linearity in favour of the existence of a
threshold at the 5% level. Moreover, the one-threshold model is rejected
in favour of the two-threshold model at the 1% level. Table 7 provides the
results of the estimation of a two-threshold Hansen (1999) model with a 0.1%
step.

Concerning Model (I), in which the transition variable is the quality of
institutions, the three regimes provide results that differ substantially from
ours, particularly in terms of the impact of natural resource dependence
on economic growth. Indeed, in regimes 1 and 3, the impact is positive
and significant, while in regime 2, the impact is negative and significant.
However, it is worth noting that countries are very rarely in regime 2 in
our sample (only five times during the whole period of study; see Figure 4).
Moreover, it appears that there was some switching between the extreme
regimes 1 and 3, in contrast to the results of the BTPD model. This is
explained by the presence of the buffer zone, which makes the transitions
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Linearity against a one-threshold model.
Model (I) Model (II)

γ̂2 = r̂1 0.4079 36.7892
S (γ̂2) 3798.6519 3855.9799
F1,2 20.1600 41.4572

p-value 0.0360 0.0000
One-threshold model against a 2-threshold model.

Model (I) Model (II)
γ̂3 = (r̂1, r̂2) [0.0757, 0.1037] [27.3327, 28.6872]

S (γ̂3) 3376.3984 3441.7750
F2,3 52.4932 48.0182

p-value 0.0000 0.0000

Table 6: Results of the tests of the PTR model.

Model Model (I) Model (II)
Endogenous GDPG

variable
Threshold QINST DEP
variable

Lower Middle Upper Lower Middle Upper
QINST − − − 0.4499

(0.5717)
−99.9189
(2.6600)

∗∗∗ 2.2351
(1.5584)

DEP 0.1035
(2.4978)

∗∗∗ −4.3509
(3.4777)

∗∗∗ 0.1884
(4.0568)

∗∗∗ − − −

OPEN −1.7152
(1.1812)

152.2385
(2.5700)

∗∗∗ −3.0108
(0.9635)

−0.3238
(0.2492)

781.1823
(3.0363)

∗∗∗ −0.1336
(0.0579)

INF −0.0576
(2.9157)

∗∗∗ 4.3268
(5.6810)

∗∗∗ −0.0037
(0.0319)

−0.0636
(3.2244)

∗∗∗ 21.0582
(4.0837)

∗∗∗ 0.2342
(1.6050)

INVEST 0.1016
(2.7473)

∗∗∗ −3.2426
(2.5130)

∗∗∗ 0.0731
(1.6057)

0.0347
(1.1076)

−21.3537
(3.0790)

∗∗∗ 0.0647
(0.9093)

POPG 0.6112
(0.9315)

50.9949
(3.4523)

∗∗∗ 0.6168
(4.4795)

∗∗∗ 0.4377
(1.7740)

∗ 13.2968
(3.6394)

∗∗∗ 0.4620
(2.7784)

∗∗∗

γ̂3 = (r̂1, r̂2) [0.0757, 0.1037] [27.3327, 28.6872]
AIC 2.2122 2.2313
BIC 2.3666 2.3858

Table 7: GDP growth, quality of institutions and oil dependence (step = 0.1%): estimated
three-regime PTR model.
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between the regimes smoother. More generally, it appears that our model
allows us to clearly classify countries into three categories, which is not the
case with simple threshold regression models. The same kind of results are
found for Model (II). Regime 2 is very different from the others but is very
rarely occupied (only five times, see Figure 5). Even in threshold regressions
with a 1% step, regime 2 is not significant. Our model thus better captures
the evolution of the dynamics in the studied sample. This PTR approach
has recently been used by Abdulahi et al. (2019) for 14 resource-rich sub-
Saharan countries. They have results similar to ours: a three-regime model
with a central regime that is also very rarely occupied, and their estimated
thresholds are very close. The use of a buffer zone is thus more strongly
indicated even for their data.

Fundamentally, it is worth noting that the classical PTR model is a
special case of our BTPD model that is generated by setting rL,k = rU,k = rk
for all k = 1, ..., K − 1 (i.e., the buffering regions are absent). Therefore,
when we choose the vector γ̂ that minimizes the sum of the squared errors,
we implicitly consider PTR models as candidates. Indeed, these two classes
of models are nested. Therefore, minimizing the sum of squares allows us to
implicitly identify whether it is better to choose our buffered model or the
classical threshold model.

We can go further in the interpretation of our results. The minimization
of S (γ) indicates that the optimal transition mechanism is the one given
by buffered models (see Tables 4 and 6). Moreover, we can strengthen our
strategy for choosing between the two classes of models by calculating certain
selection criteria that are very often used in the literature, such as the AIC
and BIC that select models via the optimization of a penalized objective
function. It turns out that based on the minimum AIC and BIC and for a
fixed K, the buffered models are preferred to the classical threshold models.

As we have already mentioned, another approach to tackling sudden
jumps is PSTR modelling (Gonzales et al., 2017). We thus propose a sec-
ond alternative model for our data using this approach. More precisely, we
consider the following model:

yi,t = µi +Xi,tβ0 +
r∑
j=1

Xi,tβj (1 + exp (−γj (qi,t − cj)))−1 + ui,t.

Table 8 provides the results of our tests for the different numbers of
regimes. In Model (I), in which the quality of institutions is the thresh-
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Figure 4

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

 Algeria 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Australia 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Bolivia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Brunei Darussalam 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Cameroon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Canada 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Colombia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Cote d'Ivoire 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Ecuador 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Egypt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Gabon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Indonesia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Kuwait 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 2

 Nigeria 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Qatar 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Norway 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Oman 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Saudi Arabia 3 2 1 1 1 1 1 3 1 1 1 2 1 1 3 1 3 3 3 3 3 2

 Vietnam 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4: GDP growth and the quality of institutions (as the threshold variable): regime
indicator (Ri,t) values obtained from the estimated PTR model.

Figure 5

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

 Algeria 1 1 1 1 1 1 1 1 1 3 3 2 3 1 1 1 1 1 1 1 1 1

 Australia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Bolivia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Brunei Darussalam 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1

 Cameroon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Canada 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Colombia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Cote d'Ivoire 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Ecuador 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Egypt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Gabon 3 1 1 1 3 1 1 1 1 3 3 3 3 1 3 3 3 3 1 1 1 1

 Indonesia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Kuwait 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

 Nigeria 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Qatar 3 2 1 3 3 3 2 3 3 3 3 3 3 1 2 3 3 1 1 1 1 1

 Norway 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Oman 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1

 Saudi Arabia 3 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1

 Vietnam 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5: GDP growth and oil dependence (as the threshold variable): regime indicator
(Ri,t) values obtained from the estimated PTR model.
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Linearity against a 2-regime PSTR model.
Model (I) Model (II)

γ̂ 70.2885 2.0617
ĉ 0.3944 37.6029

SSR2 3938.0969 3987.9135
LM1,2 5.5343 26.3876
p-value 0.3542 0.0001

2-regime PSTR model against a 3-regime PSTR model.
Model (I) Model (II)

γ̂ = (γ̂1, γ̂2) − (25.8914, 2.1034)
ĉ = (ĉ1, ĉ2) − (3.9882, 37.5683)
SSR3 − 3463.8230
LM2,3 − 42.2983
p-value − 0.0000

Table 8: Results of the tests of the PSTR models. The LMk,k+1 statistic is defined
as LMk,k+1 = TN (SSRk − SSRk+1) /SSRk, where SSRk is the panel sum of squared
residuals under H0 (PSTR model with k regimes) and SSRk+1 is the panel sum of squared
residuals under H1 (PSTR model with (k + 1) regimes).

Model Model (I) Model (II)
Endogenous GDPG

variable
Threshold QINST DEP
variable

β0 β1 β2 β0 β1 β2
QINST − − −0.7567

(−0.7515)
−0.7750
(−1.5072)

8.6892
(3.6096)

∗∗∗

DEP 0.1639
(5.2576)

∗∗∗ − − − − −

OPEN −2.7269
(−1.9166)

∗ − − −0.8193
(−0.7292)

1.2486
(1.1822)

3.5827
(1.0384)

INF −0.0509
(−2.4788)

∗∗ − − −0.2536
(−3.7430)

∗∗∗ 0.2402
(3.3965)

∗∗∗ −0.0595
(−0.2948)

INVEST 0.0908
(2.9265)

∗∗∗ − − 0.0882
(2.1498)

∗∗ −0.0747
(−1.6931)

∗ 0.1304
(0.9377)

POPG 0.4829
(3.9210)

∗∗∗ − − 1.1144
(2.5139)

∗∗ −0.2132
(−0.4643)

−1.6709
(−4.0201)

∗∗∗

γ̂ = (γ̂1, γ̂2) − (25.8914, 2.1034)
ĉ = (ĉ1, ĉ2) − (3.9882, 37.5683)

AIC 2.2922 2.2797
BIC 2.3404 2.4631

Table 9: GDP growth, the quality of institutions and oil dependence: estimated PSTR
Model.
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old variable, we do not reject linearity. Therefore, PSTR modelling is not
suitable for explaining the observed heterogeneity in our data. Indeed, as
our BTPD (and even PTR) models reject linearity, we can say that our
approach fits our data better than a PSTR approach. For Model (II), in
which the threshold variable is dependence on natural resources, we accept a
three-regime PSTR model. Let us now compare the two models: the three-
regime BTPD and the three-regime PSTR. The estimation results for the
latter are provided in Table 9. In this model, we have two location param-
eters, c1 = 3.98 and c2 = 37.56. They represent the threshold values that
indicate breaks in the relationship within the different regimes. However, the
interpretation of the parameters is less easy than in the BTPD case. Indeed,
in the latter, the beta coefficients correspond to the effect of the exogenous
variables in each regime (lower, middle and upper) identified by the thresh-
old values. In the PSTR case, the beta coefficients should be combined with
the threshold functions to determine the effect of the exogenous variables on
the dependent variable. Roughly speaking, we can determine two extreme
regimes with certainty: for very low natural resource dependence, the effect
of the exogenous variables is β0; for very high dependence rates, this effect
is given by β0 + β1 + β2. In between, the impact of the exogenous variables
varies continuously. In practice, the interpretation of the marginal effect is
more interesting (e.g., Belarbi et al., 2016). BTPD modelling thus offers a
more precise classification while giving, at the same time, a smooth transi-
tion between the different regimes. The effect of the quality of institutions
is highly statistically significant in the three regimes, while only β2 is signif-
icant in the PSTR model. The BTPD approach thus better captures the
heterogeneity in GDP growth among the countries in our sample.

4. Conclusion

In this article, we revisit the question of the relationships among growth,
oil dependence and institutions by providing a new approach to address non-
linearities in the panel data framework. Our model is suitable for accounting
for the problem of sudden jumps in PTR models. The results show that it is
a very useful tool for studying smooth transitions between different regimes.
It can also be considered a promising alternative to PSTR modelling and
provides results that are more easily interpretable. Indeed, our application
shows that, compared with PTR and PSTR models, BTPD model can
provide a richer and more precise description of the evolution of economic
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growth in rentier states while taking into account the interactions between
oil dependence and the quality of institutions. In our sample, it is clear that
the relationships between growth and dependence on oil rents are not linear:
there is a gradual positive impact as the quality of institutions increases.
Only oil-dependent countries with high-quality institutions are very stable.
All the other countries in our sample have experienced a transition into a
buffer zone. They are potentially in a transition between different regimes.
Moreover, when considering dependence on oil rents as a threshold variable,
it appears that the quality of institutions has a positive and significant effect
on growth when oil dependence is low or high. More interestingly, the qual-
ity of institutions negatively impacts growth in intermediate oil-dependent
countries. Some of these countries experience something of an oil-dependence
trap. These results are relatively new in the literature dealing with growth
in rentier states. Our BTPD formulation better highlights the impacts of
oil dependence and the quality of institutions on economic growth. Indeed,
the BTPD model allows us to clearly classify countries into three categories,
while this is not the case with classical PTR and PSTR models. Finally, our
model offers a wide perspective in terms of applications to different frame-
works and could enhance our understanding of the dynamics of the evolutions
of various economic phenomena.

Acknowledgements

We would like to thank the Co-Editor Angus Chu, an Associate Editor
and two anonymous referees for their very helpful comments and suggestions
that highly improved the quality of the paper.

References

Abdulahi, M. E., Shu, Y., Khan, M. A. (2019). Resource rents, economic
growth, and the role of institutional quality: A panel threshold analysis.
Resources Policy, 61, 293-303.

Acemoglu, D., Johnson, S., Robinson J. (2001). The Colonial Origins of Com-
parative Development: An Empirical Investigation. American Economic
Review, 91 (5), 1369-1401.

Acemoglu, D., Johnson, S., Robinson J. (2002). Reversal of fortune: geogra-
phy and institutions in the making of the modern world income distribu-
tion. Quarterly Journal of Economics, 117 (4), 1231-1294.

25



Alexeev, M., Conrad R. (2009). The Elusive Curse of Oil. Review of Eco-
nomics and Statistics, 91 (3), 586–598.

Andrews, D. W., Ploberger, W. (1994). Optimal tests when a nuisance pa-
rameter is present only under the alternative. Econometrica: Journal of
the Econometric Society, 1383-1414.

Antonakakis, N., Cunado, J., Filis, G., de Gracia, F. P. (2017). Oil depen-
dence, quality of political institutions and economic growth: A panel VAR
approach. Resources Policy, 53, 147-163.

Arezki, R., Van der Ploeg F. (2011). Do natural Resources depress income
per capita? Review of Development Economics, 15 (3), 504-521.

Barro, R. J. (1991). Economic Growth in a Cross Section of Countries. The
Quarterly Journal of Economics, 106 (2), 407–443.

Barro, R., Sala-i-Martin, X. (2003). Economic growth. Cambridge, MA: The
MIT Press.

Belarbi, Y., Sami L., Souam S. (2016) The effects of institutions and natu-
ral resources in heterogeneous growth regimes. Middle East Development
Journal, 8 (2), 248-265.

Belke, A., Kronen, D. (2019). Exchange Rate Bands of Inaction and Hys-
teresis in EU Exports to the Global Economy: The Role of Uncertainty.
Journal of Economic Studies, 46 (2), 335-355.

Boschini, A. Pettersson, D., Roine J. (2007). Resource Curse or Not: A
Question of Appropriability. Scandinavian Journal of Economics, 109 (3),
593–617.
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T 10 20 50 100
N True Mean Std Mean Std Mean Std Mean Std

β1,1 −0.5 −0.5158 0.1554 −0.5053 0.0932 −0.4994 0.0583 −0.4975 0.0405
β1,2 0.6 0.6244 0.1512 0.6027 0.0962 0.6004 0.0571 0.6017 0.0396
β2,1 0.3 0.3444 0.2263 0.3177 0.1370 0.2987 0.0798 0.2980 0.0541

10 β2,2 −0.2 −0.2157 0.2276 −0.2130 0.1387 −0.1980 0.0785 −0.1971 0.0543
rL,1 0.25 0.1334 0.4536 0.2312 0.2417 0.2464 0.1105 0.2554 0.0583
rU,1 0.75 0.7656 0.3432 0.7551 0.1700 0.7483 0.0688 0.7494 0.0339
σ2 1 0.9183 0.1377 0.9680 0.1038 0.9937 0.0628 0.9968 0.0438
β1,1 −0.5 −0.5072 0.0981 −0.4971 0.0636 −0.4994 0.0406 −0.4987 0.0283
β1,2 0.6 0.6085 0.1002 0.5999 0.0659 0.5996 0.0408 0.5999 0.0280
β2,1 0.3 0.3073 0.1450 0.3002 0.0880 0.3015 0.0568 0.2964 0.0390

20 β2,2 −0.2 −0.2214 0.1467 −0.2013 0.0943 −0.1972 0.0573 −0.1987 0.0380
rL,1 0.25 0.2460 0.2664 0.2493 0.1504 0.2513 0.0598 0.2506 0.0287
rU,1 0.75 0.7571 0.2040 0.7499 0.0832 0.7486 0.0357 0.7498 0.0213
σ2 1 0.9650 0.1036 0.9842 0.0732 0.9970 0.0453 1.0003 0.0320
β1,1 −0.5 −0.4996 0.0613 −0.4997 0.0417 −0.4981 0.0257 −0.4977 0.0179
β1,2 0.6 0.5988 0.0584 0.6004 0.0419 0.5987 0.0252 0.5981 0.0175
β2,1 0.3 0.2938 0.0862 0.2916 0.0591 0.2961 0.0351 0.2952 0.0257

50 β2,2 −0.2 −0.2016 0.0880 −0.1960 0.0572 −0.1963 0.0345 −0.1969 0.0249
rL,1 0.25 0.2690 0.1415 0.2524 0.0751 0.2505 0.0249 0.2500 0.0158
rU,1 0.75 0.7534 0.0895 0.0645 0.0422 0.7497 0.0195 0.7499 0.0138
σ2 1 0.9900 0.0678 0.9988 0.0449 1.0021 0.0278 1.0028 0.0199
β1,1 −0.5 −0.4965 0.0411 −0.4970 0.0284 −0.4980 0.0185 −0.4976 0.0125
β1,2 0.6 0.5994 0.0421 0.5967 0.0291 0.5975 0.0174 0.5981 0.0127
β2,1 0.3 0.2887 0.0603 0.2959 0.0394 0.2950 0.0245 0.2961 0.0181

100 β2,2 −0.2 −0.1931 0.0612 −0.1945 0.0376 −0.1953 0.0253 −0.1957 0.0183
rL,1 0.25 0.2620 0.0914 0.2525 0.0350 0.2495 0.0158 0.2499 0.0129
rU,1 0.75 0.7505 0.0419 0.7501 0.0240 0.7498 0.0150 0.7497 0.0133
σ2 1 1.0017 0.0471 1.0047 0.0330 1.0040 0.0204 1.0034 0.0142

Table 10: Results of a simulation study for a two-regime BTPD model with εi,t ∼ N (0, 1) ,
Xi,t ∼ N (0, I2) and qi,t ∼ N (0, 2).
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T 10 20 50 100
N True Mean Std Mean Std Mean Std Mean Std

β1,1 0.3 0.2987 0.1620 0.3039 0.1064 0.3011 0.0636 0.3000 0.0441
β1,2 −0.2 −0.2061 0.1632 −0.1991 0.1066 −0.1994 0.0619 −0.1996 0.0425
β1,3 1.5 1.4981 0.1602 1.5020 0.1090 1.4943 0.0608 1.5017 0.0425
β1,4 1.3 1.3092 0.1659 1.3000 0.1108 1.3005 0.0630 1.2985 0.0442
β1,5 −0.2 −0.1907 0.1582 −0.1999 0.1126 −0.2063 0.0608 −0.1988 0.0465
β2,1 0.5 0.4927 0.3071 0.5033 0.1650 0.5040 0.1023 0.4964 0.0715

10 β2,2 0.2 0.2244 0.3066 0.1985 0.1635 0.2004 0.1020 0.1981 0.0711
β2,3 0.9 0.9115 0.3241 0.9073 0.1570 0.9023 0.0997 0.9036 0.0719
β2,4 −0.8 −0.7849 0.3284 −0.7999 0.1590 −0.7912 0.1053 −0.7887 0.0711
β2,5 −0.5 −0.5081 0.3167 −0.5070 0.1518 −0.5029 0.1058 −0.4980 0.0715
rL,1 0.25 0.2120 0.2550 0.2432 0.1525 0.2487 0.0575 0.2514 0.0285
rU,1 0.75 0.7500 0.1396 0.7414 0.0971 0.7506 0.0263 0.7495 0.0168
σ2 1.33 1.1623 0.1356 1.3147 0.0708 1.3180 0.0607 1.3301 0.0407
β1,1 0.3 0.3065 0.1078 0.3061 0.0671 0.3006 0.0435 0.3008 0.0310
β1,2 −0.2 −0.1980 0.1085 −0.1970 0.0726 −0.1989 0.0427 −0.1976 0.0309
β1,3 1.5 1.4997 0.1056 1.4970 0.0708 1.4982 0.0449 1.4983 0.0298
β1,4 1.3 1.2981 0.1083 1.2942 0.0744 1.2995 0.0441 1.2950 0.0313
β1,5 −0.2 −0.2005 0.1064 −0.2032 0.0712 −0.2002 0.0428 −0.2024 0.0311
β2,1 0.5 0.5026 0.1887 0.4998 0.1231 0.4991 0.0711 0.5003 0.0508

20 β2,2 0.2 0.1903 0.1841 0.1930 0.1275 0.1981 0.0752 0.2013 0.0500
β2,3 0.9 0.8912 0.1860 0.9080 0.1203 0.9073 0.0738 0.9059 0.0485
β2,4 −0.8 −0.7838 0.1888 −0.7819 0.1216 −0.7788 0.0723 −0.7866 0.0522
β2,5 −0.5 −0.4958 0.1926 −0.4988 0.1187 −0.4949 0.0718 −0.4969 0.0510
rL,1 0.25 0.2618 0.1600 0.2585 0.0936 0.2501 0.0286 0.2510 0.0155
rU,1 0.75 0.7513 0.0749 0.7506 0.0364 0.7503 0.0167 0.7501 0.0131
σ2 1.33 1.2754 0.1050 1.3174 0.0742 1.3390 0.0438 1.3413 0.0298
β1,1 0.3 0.3035 0.0655 0.2991 0.0440 0.2998 0.0280 0.2998 0.0188
β1,2 −0.2 −0.2000 0.0664 −0.1966 0.0439 −0.1985 0.0279 −0.1994 0.0194
β1,3 1.5 1.4927 0.0648 1.4962 0.0450 1.4983 0.0279 1.4978 0.0194
β1,4 1.3 1.2870 0.0661 1.2917 0.0444 1.2938 0.0278 1.2954 0.0208
β1,5 −0.2 −0.2000 0.0666 −0.1999 0.0448 −0.1993 0.0272 −0.2010 0.0188
β2,1 0.5 0.4998 0.1135 0.4955 0.0726 0.4982 0.0455 0.4985 0.0310

50 β2,2 0.2 0.1940 0.1109 0.1876 0.0748 0.1967 0.0465 0.1957 0.0326
β2,3 0.9 0.9119 0.1129 0.9065 0.0763 0.9047 0.0431 0.9057 0.0319
β2,4 −0.8 −0.7661 0.1182 −0.7733 0.0803 −0.7812 0.0472 −0.7845 0.0346
β2,5 −0.5 −0.4979 0.1133 −0.4946 0.0769 −0.4978 0.0453 −0.4987 0.0323
rL,1 0.25 0.2663 0.0902 0.2547 0.0369 0.2508 0.0135 0.2500 0.0104
rU,1 0.75 0.7519 0.0355 0.7509 0.0178 0.7510 0.0130 0.7498 0.0111
σ2 1.33 1.3465 0.0718 1.3502 0.0448 1.3490 0.0275 1.3489 0.0198

Table 11: Results of a simulation study for a two-regime BTPD model with εi,t ∼
U [−2, 2] , Xi,t ∼ N (0, I5) and qi,t ∼ N (0, 2).
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Figure 6: Empirical distributions of the estimator when β2,1 = 0.5. The samples are
generated from a three-regime BTPD, as defined in Table 11.
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Figure 7: Empirical distributions of the estimator when β1,1 = −0.5. The samples are
generated from a three-regime BTPD, as defined in Table 12.
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Figure 8: Empirical distributions of the estimator when β1,1 = 0.3. The samples are
generated from a three-regime BTPD, as defined in Table 13.
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T 10 20 50 100
N True Mean Std Mean Std Mean Std Mean Std

β1,1 0.3 0.3021 0.0453 0.3008 0.0320 0.2991 0.0203 0.3001 0.0140
β1,2 −0.2 −0.2003 0.0445 −0.1980 0.0316 −0.1989 0.0192 −0.1999 0.0134
β1,3 1.5 1.4976 0.0472 1.4977 0.0320 1.4977 0.0195 1.4989 0.0137
β1,4 1.3 1.2883 0.0501 1.2923 0.0317 1.2946 0.0204 1.2954 0.0137
β1,5 −0.2 −0.2004 0.0475 −0.2008 0.0313 −0.1999 0.0191 −0.2007 0.0139
β2,1 0.5 0.4960 0.0798 0.4962 0.0540 0.4966 0.0317 0.4981 0.0217

100 β2,2 0.2 0.1887 0.0774 0.1941 0.0521 0.1967 0.0306 0.1963 0.0226
β2,3 0.9 0.9183 0.0785 0.9089 0.0521 0.9054 0.0314 0.9038 0.0222
β2,4 −0.8 −0.7502 0.0829 −0.7666 0.0569 −0.7783 0.0363 −0.7825 0.0252
β2,5 −0.5 −0.4907 0.0773 −0.4964 0.0539 −0.4964 0.0318 −0.4976 0.0233
rL,1 0.25 0.2624 0.0512 0.2529 0.0224 0.2503 0.0107 0.2498 0.0087
rU,1 0.75 0.7505 0.0223 0.7506 0.0137 0.7498 0.0114 0.7493 0.0103
σ2 1.33 1.3711 0.0537 1.3620 0.0349 1.3545 0.0198 1.3510 0.0151

Table 11: Continued.
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T 10 20 50 100
N True Mean Std Mean Std Mean Std Mean Std

β1,1 0.3 0.3351 0.2801 0.3101 0.1814 0.3067 0.0916 0.3031 0.0591
β1,2 −0.2 −0.1205 0.3100 −0.1743 0.1895 −0.1937 0.0971 −0.1932 0.0616
β2,1 0.5 0.4980 0.6182 0.5102 0.1978 0.5005 0.0617 0.4965 0.0380
β2,2 0.2 0.0744 0.6573 0.1836 0.2236 0.2023 0.0697 0.1970 0.0371
β3,1 0.3 0.2909 0.2510 0.2991 0.0936 0.3009 0.0423 0.3012 0.0279

10 β3,2 −0.4 −0.4013 0.2327 −0.4049 0.0876 −0.4019 0.0428 −0.3976 0.0288
rL,1 0.3 0.4915 0.2479 0.3717 0.1539 0.3113 0.0473 0.3021 0.0200
rU,1 0.5 0.6898 0.3283 0.5591 0.1950 0.5112 0.1015 0.5037 0.0708
rL,2 0.8 0.9627 0.4588 0.8361 0.2258 0.8029 0.0740 0.8013 0.0264
rU,2 1 1.3702 0.7407 1.0975 0.3838 1.0079 0.1130 0.9989 0.0338
σ2 2 1.7494 0.2777 1.9023 0.1952 1.9825 0.1291 2.0028 0.0941
β1,1 0.3 0.3062 0.1772 0.2978 0.1130 0.3058 0.0622 0.3056 0.0415
β1,2 −0.2 −0.1582 0.2048 −0.1851 0.1171 −0.1949 0.0616 −0.1937 0.0414
β2,1 0.5 0.5055 0.2046 0.5053 0.0725 0.4996 0.0391 0.4973 0.0254
β2,2 0.2 0.1654 0.2611 0.2014 0.0812 0.1958 0.0404 0.1933 0.0263
β3,1 0.3 0.2979 0.0868 0.3007 0.0485 0.3002 0.0275 0.3012 0.0191

20 β3,2 −0.4 −0.4000 0.1132 −0.4008 0.0493 −0.3991 0.0280 −0.3970 0.0204
rL,1 0.3 0.3907 0.1623 0.3188 0.0593 0.3036 0.0249 0.3021 0.0156
rU,1 0.5 0.5842 0.2107 0.5097 0.1122 0.5001 0.0739 0.4962 0.0452
rL,2 0.8 0.8492 0.2269 0.8014 0.0616 0.8042 0.0387 0.8001 0.0205
rU,2 1 1.1171 0.4104 1.0073 0.1334 1.0007 0.0565 1.0002 0.0249
σ2 2 1.8779 0.1899 1.9556 0.1500 2.0205 0.0631 2.0056 0.0611
β1,1 0.3 0.3001 0.1040 0.3038 0.0529 0.3075 0.0363 0.3032 0.0293
β1,2 −0.2 −0.2095 0.0946 −0.2022 0.0587 −0.1980 0.0359 −0.1874 0.0239
β2,1 0.5 0.4972 0.0599 0.4975 0.0381 0.4973 0.0252 0.4953 0.0174
β2,2 0.2 0.2042 0.0575 0.1977 0.0391 0.1914 0.0267 0.1898 0.0181
β3,1 0.3 0.3004 0.0418 0.3081 0.0273 0.3011 0.0171 0.3005 0.0116

50 β3,2 −0.4 −0.3953 0.0492 −0.3974 0.0298 −0.4000 0.0177 −0.3980 0.0116
rL,1 0.3 0.3114 0.0445 0.2985 0.0180 0.2998 0.0153 0.3027 0.0161
rU,1 0.5 0.4856 0.0812 0.4962 0.0692 0.4991 0.0387 0.4961 0.0267
rL,2 0.8 0.7951 0.0394 0.8004 0.0292 0.7998 0.0199 0.8000 0.0189
rU,2 1 0.9911 0.0577 0.9976 0.0347 0.9993 0.0212 1.0005 0.0196
σ2 2 1.9701 0.1322 1.9811 0.1026 2.0239 0.0608 2.0303 0.0394
β1,1 0.3 0.2999 0.0539 0.3050 0.0493 0.3098 0.0272 0.3097 0.0217
β1,2 −0.2 −0.1907 0.0639 −0.1931 0.0487 −0.1881 0.0292 −0.1831 0.0203
β2,1 0.5 0.4992 0.0357 0.4929 0.0251 0.4927 0.0155 0.4954 0.0114
β2,2 0.2 0.1993 0.0385 0.1979 0.0259 0.1924 0.0144 0.1912 0.0127
β3,1 0.3 0.2984 0.0292 0.3000 0.0202 0.3023 0.0117 0.3008 0.0073

100 β3,2 −0.4 −0.3969 0.0268 −0.3973 0.0228 −0.3986 0.0140 −0.3967 0.0096
rL,1 0.3 0.3014 0.0211 0.3016 0.0195 0.3031 0.0159 0.3060 0.0158
rU,1 0.5 0.5052 0.0737 0.5012 0.0353 0.4984 0.0222 0.5022 0.0164
rL,2 0.8 0.8011 0.0260 0.8030 0.0200 0.7987 0.0212 0.8011 0.0200
rU,2 1 1.0082 0.0394 1.0018 0.0252 0.9986 0.0205 1.0002 0.0166
σ2 2 2.0036 0.0904 2.0251 0.0692 2.0331 0.0399 2.0378 0.0298

Table 12: Results of a simulation study for a three-regime BTPD model with εi,t ∼
N (0, 2) , log (Xi,t) ∼ N (0, I2) and log (qi,t) ∼ N (0, 2).
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T 10 20 50 100
N True Mean Std Mean Std Mean Std Mean Std

β1,1 −0.5 −0.5145 0.1988 −0.5122 0.1108 −0.4998 0.0646 −0.5044 0.0478
β1,2 0.6 0.6179 0.1899 0.6062 0.1145 0.6012 0.0673 0.5963 0.0450
β1,3 1.2 1.2051 0.1992 1.1917 0.1074 1.2026 0.0663 1.2036 0.0434
β1,4 1.5 1.5021 0.1869 1.5027 0.1119 1.5011 0.0701 1.5032 0.0480
β1,5 0.2 0.2114 0.1945 0.2004 0.1150 0.1988 0.0648 0.1922 0.0459
β2,1 0.3 0.2764 0.5906 0.3053 0.1967 0.2904 0.1077 0.2932 0.0723
β2,2 −0.2 −0.1877 0.5329 −0.2029 0.1941 −0.1946 0.1078 −0.1890 0.0636
β2,3 1.5 1.5075 0.8154 1.4991 0.1918 1.4905 0.1075 1.4853 0.0645
β2,4 0.9 0.9473 0.5113 0.8804 0.1985 0.9000 0.1130 0.8963 0.0663

10 β2,5 −0.7 −0.6928 0.6169 −0.7005 0.2058 −0.6988 0.1081 −0.6954 0.0752
β3,1 −0.4 −0.4005 0.2695 −0.4002 0.1427 −0.3967 0.0852 −0.3798 0.0597
β3,2 −0.3 −0.3103 0.2699 −0.2951 0.1493 −0.2982 0.0868 −0.3004 0.0703
β3,3 0.9 0.9090 0.2625 0.9052 0.1529 0.8989 0.0850 0.9111 0.0623
β3,4 −0.5 −0.5024 0.2800 −0.5035 0.1482 −0.4922 0.0871 −0.4864 0.0588
β3,5 −0.8 −0.8176 0.2673 −0.7993 0.1499 −0.7996 0.0875 −0.8070 0.0591
rL,1 −0.2 −0.3261 0.3386 −0.2104 0.1183 −0.2023 0.0575 −0.1920 0.0365
rU,1 0.1 0.0700 0.2503 0.1021 0.1049 0.0965 0.0571 0.0953 0.0370
rL,2 0.6 0.4744 0.2554 0.5554 0.1360 0.5914 0.0711 0.5952 0.0509
rU,2 0.8 0.8441 0.2732 0.8194 0.1099 0.7993 0.0518 0.8022 0.0440
σ2 1 0.7856 0.1295 0.9113 0.0982 0.9857 0.0639 1.0107 0.0457
β1,1 −0.5 −0.5085 0.1174 −0.4987 0.0746 −0.4966 0.0488 −0.4958 0.0325
β1,2 0.6 0.5997 0.1196 0.5974 0.0735 0.5969 0.0462 0.5946 0.0326
β1,3 1.2 1.2010 0.1130 1.1998 0.0795 1.2010 0.0464 1.2011 0.0330
β1,4 1.5 1.4981 0.1145 1.4983 0.0747 1.4969 0.0455 1.4971 0.0325
β1,5 0.2 0.1999 0.1116 0.1980 0.0772 0.1941 0.0483 0.1955 0.0334
β2,1 0.3 0.3175 0.2106 0.2955 0.1271 0.2822 0.0737 0.2784 0.0548
β2,2 −0.2 −0.2036 0.2019 −0.1986 0.1207 −0.1912 0.0735 −0.1881 0.0517
β2,3 1.5 1.4954 0.2039 1.4944 0.1194 1.4888 0.0749 1.4885 0.0512
β2,4 0.9 0.9015 0.2133 0.8987 0.1282 0.8912 0.0759 0.8920 0.0559

20 β2,5 −0.7 −0.7032 0.2040 −0.6916 0.1199 −0.6912 0.0761 −0.6893 0.0519
β3,1 −0.4 −0.4027 0.1621 −0.3989 0.0990 −0.3948 0.0589 −0.3952 0.0418
β3,2 −0.3 −0.3020 0.1498 −0.3001 0.1000 −0.2983 0.0609 −0.2987 0.0426
β3,3 0.9 0.8952 0.1543 0.8997 0.1017 0.9013 0.0613 0.9070 0.0424
β3,4 −0.5 −0.4977 0.1511 −0.4932 0.0980 −0.4893 0.0634 −0.4888 0.0455
β3,5 −0.8 −0.7923 0.1426 −0.7987 0.0976 −0.8000 0.0577 −0.7985 0.0427
rL,1 −0.2 −0.2199 0.1308 −0.2028 0.0702 −0.1994 0.0413 −0.1999 0.0333
rU,1 0.1 0.0975 0.1201 0.0991 0.0648 0.0995 0.0378 0.0965 0.0308
rL,2 0.6 0.5516 0.1420 0.5883 0.0824 0.6000 0.0518 0.6014 0.0396
rU,2 0.8 0.8152 0.1166 0.8062 0.0602 0.8026 0.0409 0.7989 0.0367
σ2 1 0.9103 0.1024 0.9736 0.0720 1.0117 0.0488 1.0220 0.0350

Table 13: Results of a simulation study for a three-regime BTPD model with εi,t ∼
N (0, 1) , Xi,t ∼ N (0, I5) and qi,t ∼ N (0, 2).
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T 10 20 50 100
N True Mean Std Mean Std Mean Std Mean Std

β1,1 −0.5 −0.5187 0.0661 −0.4942 0.0477 −0.4940 0.0293 −0.4982 0.0189
β1,2 0.6 0.6032 0.0705 0.5993 0.0446 0.5949 0.0315 0.5954 0.0195
β1,3 1.2 1.1992 0.0686 1.1982 0.0483 1.2048 0.0290 1.2040 0.0232
β1,4 1.5 1.4961 0.0658 1.4964 0.0523 1.4937 0.0324 1.5012 0.0182
β1,5 0.2 0.2149 0.0740 0.1987 0.0416 0.1956 0.0323 0.1971 0.0212
β2,1 0.3 0.2820 0.1035 0.2908 0.0768 0.2779 0.0485 0.2723 0.0367
β2,2 −0.2 −0.1894 0.1131 −0.1877 0.0785 −0.1954 0.0507 −0.1926 0.0351
β2,3 1.5 1.4794 0.1140 1.4852 0.0707 1.4835 0.0466 1.4829 0.0316
β2,4 0.9 0.9172 0.1141 0.8904 0.0779 0.8851 0.0515 0.8791 0.0427

50 β2,5 −0.7 −0.6903 0.1113 −0.6899 0.0843 −0.6814 0.0489 −0.6852 0.0311
β3,1 −0.4 −0.4019 0.0869 −0.4007 0.0612 −0.3995 0.0394 −0.3950 0.0249
β3,2 −0.3 −0.2962 0.0893 −0.2922 0.0561 −0.2961 0.0397 −0.3010 0.0297
β3,3 0.9 0.8996 0.0911 0.8911 0.0631 0.9055 0.0366 0.9033 0.0243
β3,4 −0.5 −0.4858 0.0862 −0.4896 0.0676 −0.4864 0.0438 −0.4903 0.0309
β3,5 −0.8 −0.8103 0.0844 −0.7983 0.0578 −0.8072 0.0402 −0.7995 0.0260
rL,1 −0.2 −0.2127 0.0746 −0.1955 0.0383 −0.1959 0.0290 −0.2016 0.0288
rU,1 0.1 0.0833 0.0595 0.0947 0.0369 0.0998 0.0301 0.0939 0.0270
rL,2 0.6 0.5825 0.0672 0.6019 0.0554 0.5975 0.0383 0.6067 0.0357
rU,2 0.8 0.7958 0.0590 0.8021 0.0413 0.8049 0.0388 0.8053 0.0362
σ2 1 0.9924 0.0679 1.0151 0.0532 1.0249 0.0283 1.0350 0.0241
β1,1 −0.5 −0.4995 0.0476 −0.4956 0.0365 −0.4974 0.0196 −0.4966 0.0152
β1,2 0.6 0.6047 0.0536 0.5988 0.0366 0.5959 0.0213 0.5952 0.0164
β1,3 1.2 1.2025 0.0461 1.2089 0.0348 1.2000 0.0196 1.2004 0.0148
β1,4 1.5 1.5037 0.0440 1.4923 0.0312 1.5009 0.0202 1.4969 0.0160
β1,5 0.2 0.2027 0.0478 0.1903 0.0308 0.1960 0.0197 0.1935 0.0141
β2,1 0.3 0.2765 0.0786 0.2823 0.0478 0.2786 0.0351 0.2685 0.0274
β2,2 −0.2 −0.2053 0.0771 −0.1985 0.0521 −0.1957 0.0341 −0.1926 0.0252
β2,3 1.5 1.4926 0.0757 1.4927 0.0516 1.4847 0.0385 1.4808 0.0221
β2,4 0.9 0.8907 0.0840 0.8781 0.0576 0.8897 0.0372 0.8757 0.0358

100 β2,5 −0.7 −0.6883 0.0839 −0.7034 0.0521 −0.6877 0.0356 −0.6934 0.0235
β3,1 −0.4 −0.3979 0.0669 −0.3938 0.0387 −0.3928 0.0270 −0.3882 0.0201
β3,2 −0.3 −0.3031 0.0699 −0.3013 0.0421 −0.2987 0.0243 −0.3010 0.0183
β3,3 0.9 0.9037 0.0656 0.9089 0.0419 0.9066 0.0284 0.9066 0.0215
β3,4 −0.5 −0.4908 0.0610 −0.4918 0.0441 −0.4826 0.0341 −0.4845 0.0263
β3,5 −0.8 −0.7883 0.0626 −0.7939 0.0436 −0.7995 0.0233 −0.8005 0.0195
rL,1 −0.2 −0.1938 0.0404 −0.1978 0.0321 −0.1997 0.0289 −0.1899 0.0250
rU,1 0.1 0.0949 0.0392 0.0990 0.0353 0.0989 0.0261 0.0910 0.0192
rL,2 0.6 0.6041 0.0486 0.6012 0.0392 0.6031 0.0371 0.6112 0.0346
rU,2 0.8 0.8049 0.0422 0.8067 0.0359 0.8034 0.0348 0.8056 0.0332
σ2 1 1.0047 0.0479 1.0211 0.0307 1.0331 0.0249 1.0365 0.0179

Table 13: Continued.
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Empirical size
True model and H0 H1 N α T = 10 T = 20 T = 50 T = 100

0.01 6 9 8 9
10 0.05 53 44 56 50

0.10 103 94 98 98
0.01 9 17 14 10

Linear Two-regime BTPD 20 0.05 54 54 53 47
0.10 101 89 96 95
0.01 13 12 12 10

50 0.05 49 51 44 49
0.10 104 98 87 90

Empirical power
True model and H1 H0 N α T = 10 T = 20 T = 50 T = 100

0.01 829 1000 1000 1000
10 0.05 935 1000 1000 1000

0.10 968 1000 1000 1000
0.01 1000 1000 1000 1000

Two-regime BTPD Linear 20 0.05 1000 1000 1000 1000
0.10 1000 1000 1000 1000
0.01 1000 1000 1000 1000

50 0.05 1000 1000 1000 1000
0.10 1000 1000 1000 1000

Table 14: Rejection frequencies from the bootstrap-based test for linearity.
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