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The aim of this supplementary material is twofold. One one side, in Section 1, we
confirm that the estimates on the details decay hold, from an empirical point of view.
This is an important fact since they are used throughout the work, in particular to
devise the refinement operator Hε. On the other side, in Section 2, we present and
comment additional plots which were left due to space limitations in the main body
of the paper. Moreover, we investigate the possible limitations of using the leaves
collision instead of of the reconstructed collision, showing that the latter is needed
only on manufactured pathological cases.

1. Quality of decay estimates to deduce the magnitude of the details.
In this section, we want to verify by numerical experiences that the inequality:

(1.1) |dij,k| . 2−jmin (ν,µ)|f i|
W

min (ν,µ)
∞ (Σ̃j,k)

.

is indeed sharp and can be used to predict the magnitude of details which are not
available with a good fidelity. In this inequality, ν is the local Sobolev regularity of
f i, meaning that it belongs to W ν

∞ is a neighborhood of the cell Ij,k and µ = 2γ + 1,
where γ ≥ 0 is the size of the prediction stencil. Take four test fields, γ = 1 (thus
µ = 3) and a domain Ω = [−3, 3]:

f0(x) = e−20x2

, f1(x) = (1 + x)χ[−1,0](x) + (1− x)χ[0,1](x),(1.2)

f2(x) =
√
xχ[0,1](x) +

(
3

2
− x

2

)
χ[1,3], f3(x) =

1 + x

2
χ[−1,1](x),

which have different regularities, namely: f0 ∈W∞∞ (Ω) (hence ν =∞), f1 ∈W 1
∞(Ω)

(hence ν = 1), f2 ∈ W 1/2
∞ (Ω) (hence ν = 1/2) and f3 ∈ W 0

∞(Ω) (hence ν = 0). We
consider the detail dij := maxk |dij,k| for the cell where the Sobolev norm is attained,
thus maximal, at level j and we look for the ratio with the detail at the finer level
j + 1.

We obtain what is presented in Table 1, showing a very fine agreement with (1.1),
meaning that we correctly recover dij/d

i
j+1 = 2min(µ,ν). We remark that for the most

regular function, the size of the details is limited by the choice of prediction operator (µ
in this case), whereas for less regular choices, it is the regularity of the function which
determines the decay ratio (respectively ν = 1, 1/2 and 0). This confirm the validity
of employing (1.1) to devise refinement/coarsening criteria based on multiresolution
as we did.

2. Verifications. In this section, concerning the D1Q2 scheme for the solution
of a scalar conservation law, we introduce some supplementary figures about the
test cases where the leaves collision proved to be effective, namely I, II, III, IV.
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Table 1
Empirical detail decay for γ = 1 for the test cases given by (1.2), measuring the maximum of

the detail.

j i = 0 i = 1 i = 2 i = 3

d0j d0j/d
0
j+1 d1j d1j/d

1
j+1 d2j d2j/d

2
j+1 d3j d3j/d

3
j+1

16 4.65e-13 – 3.81e-6 – 4.72e-4 − 1.25e-1 –
15 3.72e-12 8.00 7.63e-6 2.00 6.57e-4 1.39 1.25e-1 1.00
14 2.98e-11 8.00 1.53e-5 2.00 9.23e-4 1.41 1.25e-1 1.00
13 2.38e-10 8.00 3.05e-5 2.00 1.30e-3 1.41 1.25e-1 1.00
12 1.91e-9 8.00 6.10e-5 2.00 1.84e-3 1.41 1.25e-1 1.00
11 1.52e-8 8.00 1.22e-4 2.00 2.60e-3 1.41 1.25e-1 1.00
10 1.22e-7 8.00 2.44e-4 2.00 3.68e-3 1.41 1.25e-1 1.00
9 9.75e-7 8.00 4.88e-4 2.00 5.21e-3 1.41 1.25e-1 1.00
8 7.79e-6 7.99 9.77e-4 2.00 7.37e-3 1.41 1.25e-1 1.00
7 6.22e-5 7.99 1.95e-3 2.00 1.04e-2 1.41 1.25e-1 1.00
6 4.90e-4 7.88 3.91e-3 2.00 1.47e-2 1.41 1.26e-1 1.00
5 3.60e-3 7.35 7.81e-3 2.00 2.08e-2 1.41 1.27e-1 1.01
4 1.96e-2 5.43 1.56e-2 2.00 2.95e-2 1.41 1.29e-1 1.02
3 1.26e-1 6.43 3.13e-2 2.00 4.17e-2 1.41 1.33e-1 1.03

Theor. 8 Theor. 2 Theor.
√
2 Theor. 1

Furthermore, we fully describe V, which is constructed in order to warn about the
use of the leaves collision.

2.1. D1Q2 for a scalar conservation law: advection and Burgers equa-
tions.

2.1.1. Tests I, II, III, IV. The information we have not included in the main
body of the paper, namely the time behavior of e0,n and of E0,n/e0,n is provided in
Figure 1.

It is interesting to observe that the error e0,n accumulates linearly in time as
expected. In some cases (especially for IV) some oscillations are present due to the
oscillations of the solution close to the shock when using a relaxation parameter
s > 1. Concerning the ratio E0,n/e0,n, one should remark that we have a boundary
layer close to the initial time n = 0, tending to small values for the regular solutions (I
and III) and to very large values (+∞) for the solutions with shocks (II and IV). This
can be understood by the fact that at the beginning, when working with Riemann
problems, we have added enough security cells around the shock with Hε and G in
order to make the adaptive MR-LBM scheme “degenerating” to the reference scheme,
thus e0,n � E0,n for small n. On the other hand, for smooth initial data, there are
many unrefined areas where either the approximation made during the stream phase
(whatever the collision kernel, linear or non-linear) or the leaves collision phase (for
non-linear collision kernels) generate, from the very beginning, an adaptive MR-LBM
scheme which is quite different from the reference scheme. Therefore, for small n, we
have either e0,n ∼ E0,n or maybe also e0,n � E0,n. Still, even in these cases (I and
III), as long as the time grows, we are capable of largely outperforming against the
reference scheme, yielding e0,n � E0,n for large n.

To go further in the study, we have considered the test case III performing the
collision using the reconstructed collision procedure. The result is given in Figure
2. Compared to the leaves collision (third row in Figure 1), the error e0,n is just
divided by a factor 2 and the boundary layer close to n for E0,n/e0,n is still present
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Fig. 1. Behavior of e0,n as function of the time (left) and the ratio E0,n/e0,n as function of
the time (right), for test (from top to bottom) I, II, III and IV.
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Fig. 2. Behavior of e0,n as function of the time (left) and the ratio E0,n/e0,n as function of
the time (right) for test III simulated using the reconstructed collision.

with values close to zero. This shows that this phenomenon is mostly inherent to the
approximations made during the reconstruction employed in stream phase and in the
collision phase, regardless of the fact that we use a leaves collision or a reconstructed
collision. Indeed, we have exactly the same behavior once considering the leaves and
the reconstructed collision for a linear collision kernel. The more the initial datum
is regular, the more we can imagine this initial boundary layer tending to zero to be
important.

The conclusion is that in most of the cases, both for linear and non-linear collision
phases, the leaves collision is a reliable and cheaper alternative to the reconstructed
collision. It has a minimal impact on the quality of the solution but results in a
significant gain in terms of algorithmic efficiency.

2.1.2. Test V. In this section, we consider the Burgers equation with initial
datum given by the hat-like function

(2.1) ρ0(x) = (1 + x)χx<0(x) + (1− x)χx≥0(x).

This test is really interesting because we have constructed it ad-hoc to constitue a
pathological case where the theoretical bound on the additional error by ε are not valid
when employing the cheaper “leaves collision” in lieu of the “reconstructed collision”.
This is due to the fact that the solution is piece-wise linear for every time – especially
at initial time – and we know that the prediction operator with γ = 1 is exact on each
linear branch of the solution.

Remark that the weak solution blows up at time T ? = 1 and we take µ = 0
in order to be sure of correctly capture the jump in the solution after this event.
Moreover, the final time is taken to T = 1.3 to observe the blowup. The results
in term of additional error e0,n, ratio of additional and reference error E0,n/e0,n as
functions of time; trend of e0,N and the compression factor as function of ε are given
in Figure 3.

Attentively looking at Figure 3, one remarks three notable facts which shall not
be surprising once considering how we fabricated the solution. The first is that the
temporal trend of e0,n changes at the blowup time T ? = 1. This is coherent with
the fact that the solution changes its regularity from W 1

∞ to W 0
∞ (consider the effect

of the details which has been fully studied in Section 1), whereas the threshold ε to
which details are compared whilst applying Tε and Hε is kept fixed in time. Second,
the ratio E0,n/e0,n shows a time boundary layer close to n = 0 tending towards small

4



0 200 400 600

n

0

1

2

3

e0
,n

×10−4

s =0.75

s =1.00

s =1.25

s =1.50

s =1.75

0 200 400 600

n

100

101

102

103

E
0
,n
/
e0
,n

10−10 10−7 10−4 10−1

ε

10−10

10−7

10−4

10−1

e0
,N

10−10 10−7 10−4 10−1

ε

60

70

80

90

100

C
om

p
re

ss
io

n
(%

)

Fig. 3. Test V using the leaves collision as in the rest of the paper. On the top line, we have
the additional error e0,n (left) and the ratio of the errors E0,n/e0,n (right) as functions of time.
On the bottom line, e0,N (left) and the compression factor at the final time as functions of ε. The
dot-dashed line gives the reference e0,N = ε.

values. This means that at the very beginning of the simulation, the error of the
reference scheme is comparable (or smaller) to that of the adaptive MR-LBM scheme,
as we already observed for case I and III in the previous section. This fact shall be
explained in a moment and we will not come to the same conclusions as in the previous
section concerning the dominant causes of this phenomenon. Lastly, we observe that
after an initial decrease, e0,N stagnates as ε decreases as well as the compression
factor. This is in contradiction with the theoretical estimates which give e0,N . ε.
However, one should not forget that we have used the “leaves collision” instead of the
“reconstructed collision” and this test case has been built on purpose to obtain this.

We now provide a full explanation for these remarks, as well as an additional
test. Since the initial solution is piece-wise linear, the multiresolution analysis and
the grading of the tree put more and more cells close to the kinks (located at x =
−1, 0, 1) as ε decreases, until reaching a point where the prediction (and thus the
reconstruction) is exact and no more cell have to be added. As the reconstruction
process pertains to the advection phase, from a certain ε and at the beginning of
the simulation, the advection is exact. This is false for the collision, because of the
non-linearity of the collision operator (generated by the non-linear flux ϕ(u) = u2/2
pertaining to the Burgers equation). Along the sloped sides of the hat (between [−1, 0]
and [0, 1]), the collision on the leaves adds, at the very beginning of the simulation,
an error which is the same for all the ε smaller than a certain threshold – because the
initial grid is indeed the same – and which remains for the whole simulation, yielding
the saturation. We have observed exactly the same saturation as ε decreases just
compressing the mesh by multiresolution, performing the evaluation of the function
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Fig. 4. Test V, using the reconstructed collision, contrarily to the rest of the paper. On the
top line, we have the additional error e0,n (left) and the ratio of the errors E0,n/e0,n (right) as
functions of time. On the bottom line, e0,N (left) and the compression factor at the final time as
functions of ε. The dot-dashed line gives the reference e0,N = ε.

ϕ(u) on the leaves and measuring the error compared to the evaluation of the function
ϕ(u) on the full mesh at the finest level.

To corroborate our observation, we use the reconstructed collision: in this case,
we recover the right estimate in ε, see Figure 4. This happens because the reconstruc-
tion at the finest level is exact on the slopes of the hat and thus the collision has been
evaluated at the right resolution. Moreover, the behavior of the initial boundary on
the plot concerning E0,n/e0,n has been reversed, yielding large values E0,n/e0,n � 1
for small n. This is coherent with the other simulations with weak solutions (Fig-
ure 1), where at the beginning, the error e0,n is largely negligible compared to E0,n

but is different for what happened for the regular test III, where switching from the
leaves collision to the reconstructed collision did not change this initial boundary
layer. Therefore, we can claim that in the setting of test V, the dominant phenom-
enon causing the initial boundary layer close to 0 is the leaves collision, and not a
combination of stream phase and the collision phase (no matter how it is done) as for
test III. Indeed, if we compare the first plot between Figure 3 and Figure 4, we notice
that the tangent to the curve in the origin is way less steep in the latter case than in
the former. On the other hand, for the test III in Figure 1 and 2, the tangent to e0,n

close to n = 0 behaves gently both in the case of leaves collision and reconstructed
collision.

Coming back to test V, in the case of leaves collision the error e0,n is about one
order of magnitude larger than in the case of reconstructed collision. This was not the
case in the previous section, where we had only a factor 2 between the errors using
the leaves collision and the reconstructed collision.
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To conclude, we have devised a particular case where the “reconstructed collision”
is needed instead of the “leaves collision” to recover the theoretical estimates. Of
course, this does not prevent us from having very interesting ratios E0,n/e0,n far from
n = 0 for both cases. Moreover, making the comparison between test III and V,
between which the only things which changes is the initial datum, it seems clear that
the reliability of the leaves collision is not so much a matter of how much the collision
kernel is non-linear, but mostly a question of what is the initial datum. In the vast
majority of the cases, the leaves collision is largely sufficient and does not prevent one
from observing the theoretical behavior.
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