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MULTIRESOLUTION-BASED MESH ADAPTATION AND ERROR
CONTROL FOR LATTICE BOLTZMANN METHODS WITH
APPLICATIONS TO HYPERBOLIC CONSERVATION LAWS

THOMAS BELLOTTI∗, LOÏC GOUARIN∗, BENJAMIN GRAILLE† , AND MARC MASSOT∗

Abstract. Lattice Boltzmann Methods (LBM) stand out for their simplicity and computational
efficiency while offering the possibility of simulating complex phenomena. While they are optimal
for Cartesian meshes, adapted meshes have traditionally been a stumbling block since it is difficult
to predict the right physics through various levels of meshes. In this work, we design a class of fully
adaptive LBM methods with dynamic mesh adaptation and error control relying on multiresolution
analysis. This wavelet-based approach allows to adapt the mesh based on the regularity of the
solution and leads to a very efficient compression of the solution without loosing its quality and with
the preservation of the properties of the original LBM method on the finest grid. This yields a general
approach for a large spectrum of schemes and allows precise error bounds, without the need for deep
modifications on the reference scheme. An error analysis is proposed. For the purpose of assessing the
approach, we conduct a series of test-cases for various schemes and scalar and systems of conservation
laws, where solutions with shocks are to be found and local mesh adaptation is especially relevant.
Theoretical estimates are retrieved while a reduced memory footprint is observed. It paves the way
to an implementation in a multi-dimensional framework and high computational efficiency of the
method for both parabolic and hyperbolic equations, which is the subject of a companion paper.

Key words. Lattice Boltzmann Method, multiresolution analysis, wavelets, dynamic mesh
adaptation, error control, hyperbolic conservation laws
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1. Introduction. A wide class of systems representing various complex phenom-
ena across different disciplines (fluid mechanics, combustion, atmospheric sciences,
plasma physics or biomedical engineering, see [22, 13, 17] and references therein for
a few examples) are modeled through PDEs, the solution of which can involve dy-
namically moving fronts, usually very localized in space. Among these PDEs, one
can find the fluid dynamics Euler equations, and more generally hyperbolic systems
of conservation laws, where shock wave solutions are to be found. For such solutions,
we need a good level of spatial detail where steep variations occur, whereas one can
accept a coarse space discretization where large plateaux are present. An effective way
of reducing the overall cost of a numerical solvers consists in devising a strategy to
dynamically adapt the spatial discretization to the solution as time advances, aiming
at performing less operations and limiting the memory footprint, while preserving a
proper resolution. Once a discretization in space is chosen, several strategies exist to
conduct mesh adaptation, ranging from patch-based and cell-based Adaptive Mesh
Refinement (AMR) to multiresolution (MR) techniques. Such strategies can make a
crucial difference in terms of time-to-solution and allow scientists to strongly reduce
computational cost or reach the solution of large 3D problems on standard machines.

The discretization of the original PDEs can be conducted relying on several meth-
ods: here we focus on Lattice Boltzmann schemes (LBM - Lattice Boltzmann Meth-
ods), a class of wide-spread numerical methods to approximate models which can have
spatially non-homogeneous solutions. Despite being present in the community since
the end of the eighties, they have gained a lot of attention in the last decade due to the
evolution of the computer architectures and body of literature on their mathematical
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analysis. Mesh-adaptation for LBM has been a stumbling block for quite some time
even if interesting pieces of solution have been provided. The key issue is related to
the difficulty of predicting the right physics through various levels of meshes. This
can also lead to delicate transmissions conditions for acoustic waves and has been a
relatively hot topic in the field.

The purpose of the present contribution is to design of a new numerical strategy
for LBM with dynamic mesh adaptation and error control based on multiresolution
analysis. The key issue is the ability to rely on the original LBM scheme on the finest
mesh without alteration while still reaching a controlled level of accuracy on the
compressed representation. This contribution focuses on setting the fundamentals of
the method, we concentrate on the one-dimensional framework and provide an error
analysis. We conduct a numerical assessment on various test-cases for hyperbolic
conservation laws (scalar and systems). We have chosen such a framework since it
is a very representative example of localized fronts with default of regularity, where
the MR can play a key role and where we can test a large variety of LBM schemes.
The method yields a very reduced memory footprint while preserving a given level
of accuracy. The proposed numerical strategy is versatile and can be extended in
a straightforward manner to parabolic and hyperbolic systems in multi-dimensions,
which is out of the scope of the present paper but is the subject of a companion
contribution [1]. Before entering the body of the contribution, let us describe the
state of the art.

1.1. Lattice Boltzmann methods and mesh adaptation. The lattice Boltz-
mann methods are relatively recent computational techniques for the numerical solu-
tion of PDEs, introduced at the end of the eighties by McNamara and Zanetti [41] and
by Higuera and Jimenez [33], and stemming from the “Lattice gas automata”. The
derivation of the method starts from Boltzmann equation, with a simplified collision
kernel1, and relies on the selection of a small set of discrete velocities compatible with
a given fixed-step lattice. This strategy is widely employed in many areas of com-
putational mathematics, with special mention to the Computational Fluid Dynamics
(CFD). In this context, the method has been used to simulate the Navier-Stokes sys-
tem at low Mach numbers [38] with more recent extensions to handle multi-phase
problems ([36] for a review), along with systems of hyperbolic conservation laws [29].
The advantages of the method are its dramatic simplicity2 and the ease of paralleliza-
tion. Still, stability, consistency and convergence remain open topics.

To the best of our knowledge, LBM strategies on adapted grids have been only
developed either on fixed grids, in the spirit of Filippova and Hänel [26] and of many
subsequent works, where more refined patches are placed according to an a priori
knowledge of the flow. Such fixed refinement zones also yield difficulties in aeroa-
coustics resolution related to the artificial transmission impedance of the refinement
interface [28, 25, 34]. Another strategy is to use an AMR approach [2] with some
heuristics to determine the need for refinement in certain areas. In this class, we find
the work of Fakhari and Lee [24] using the magnitude of the vorticity and its deriv-
atives as regularity indicator, while Eitel-Amor et al. [23] have employed a weighted
vorticity and the energy difference with respect to a free flow solution. Crouse et al.
[11] have used the weighted magnitude of the divergence of the velocity field. Finally,
Wu and Shu [48] have considered the difference between solutions at successive time

1Through the BGK approximation with single or multiple relaxation times.
2Since overall the strategy decomposes into a local collision and a stream along the characteristics

of the discrete velocities
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steps. Although these approaches have been certainly able to reduce the computa-
tional cost of the simulations, they still face several drawbacks which we summarize
as follows:

• Few available methods are time-adaptive: most of the time, one must con-
struct a fixed non-uniform mesh according to some a priori knowledge of the
solution. The refinement interface can then induce spurious effects on the nu-
merical simulations when fine-scale physics interfere with a coarse level of the
mesh. An example of such a situation is the resolution of acoustic waves lead-
ing to purely numerical transmission defaults. Consequently, this approach
is intrinsically problem-dependent and non-optimal for unsteady solutions.

• Most of the time the reference scheme has to be deeply manipulated at various
levels of grid to preserve the macroscopic parameters of the system.

• One must devise a heuristic, the dynamic mesh adaptation will rely on. As a
consequence, there is no control on the compression error.

In this work, we propose a strategy to fill these gaps by introducing a time adap-
tive numerical approach, designed to work for any LBM scheme without need for
manipulations, which grants a precise bound on the compression error.

1.2. Multiresolution analysis. Multiresolution analysis has proved to be a
general tool to analyze the local regularity of a signal in a rigorous setting, based on
its decomposition on a wavelet basis. It has been introduced in the seminal works by
Daubechies [12], Mallat [40] and Cohen et al. [7]. The possibility of applying this
mechanism to reduce the computational cost of a numerical method was studied a
few years later by Harten [31, 32, 3] in the context of Finite Volumes methods for
conservation laws. The principle was to use multiresolution to reduce the number of
computations to evaluate fluxes at the interfaces, claiming that they constitute the
majority of the computational cost. However, this approach still computes the solu-
tion on the full uniform mesh. The possibilities offered by multiresolution had been
further exploited by Cohen et al. [8] who, in the footsteps of Harten, have developed
fully adaptive schemes with solutions updated only on the reduced grid. Thus, mul-
tiresolution is not only a way of computing a large number of fluxes more cheaply,
but also a manner to compute fewer of them. Both these strategies grant better time-
performances than traditional approaches on uniform grids in addition to a precise
control on the additional error, unlike most of the AMR techniques. This strategy has
been lately used to tackle various kinds of problems with Finite Volumes methods. We
mention parabolic conservation laws by Roussel et al. [45], the compressible Navier-
Stokes equations in Bramkamp et al. [4], the shallow water equations by Lamby et
al. [39], multi-component flows by Coquel et al. [10], degenerate parabolic equations
by Burger et al. [5] and finally the Euler system with a local time-stepping technique
again by Coquel et al. [9]. Furthermore, this technique has been included in later
works to address more complex problems, such as flames [44, 18, 13] or by coupling
it with other numerical strategies: we mention the works of Duarte et al. [19, 22, 17]
and N’Guessan et al. [43]. We are not aware of the use of such procedure to conduct
mesh adaptation and error control on LBM schemes. We decided to adopt a volumet-
ric vision for MR because since it is naturally conservative, even if a whole body of
literature exists about point-wise multiresolution [30, 6, 27].

1.3. Paper organization. We present the formalism of LBM schemes and Mul-
tiresolution analysis in section 2 and 3; the fundamentals of the proposed numerical
strategy and theoretical error analysis is presented in section 4. Section 5 is dedicated
to numerical verifications on scalar and hyperbolic systems of conservation laws with
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a variety of LBM schemes, before concluding in section 6.

2. Lattice Boltzmann schemes. Consider a uni-dimensional bounded domain
Ω = [a, b] with a < b and the maximum level of allowed refinement J ∈ N. The domain

is discretized by a partition of 2J with measure ∆xJ = 2−J(b−a) forming a collection
LJ := (IJ,k)k=0,...,2J−1 called lattice. Once we consider a function f(t, x) of time and
space, we define – in a Finite Volumes fashion – its spatial averages on each cell

Fk(t) =
1

|IJ,k|

∫
IJ,k

f(t, x)dx, t ≥ 0, k = 0, . . . , 2J − 1.

Henceforth, every discretized quantity shall be interpreted as a mean value of an
underlying integrable function over the cell it refers to. In all the work, we consider
a finite temporal horizon t ∈ [0, T ] with T > 0. The time is discretized, as we shall
see in a moment, in equally spaced time steps with step ∆t > 0. Without loss of
generality, we assume that T has been chosen so that N := T/∆t ∈ N. Thus we

indicate tn := n∆t for n = 0, . . . , N and Fnk ' Fk(tn) for k = 0, . . . , 2J − 1 and
n = 0, . . . , N . From now on ‖·‖`p shall denote the weighted `p norm for p ∈ [1,∞]

over R2J with weight ∆xJ .

2.1. The d’Humières formalism. We consider lattice Boltzmann schemes un-
der the so-called d’Humières formalism [15]. Let λ > 0 be a lattice velocity, so that
the time step ∆t can be defined using the acoustic scaling3 ∆t = ∆xJ/λ. Moreover,
consider a set of discrete velocities {vh}h=0,...,q−1, where q ∈ N, compatible with the
lattice velocity λ in the sense that wh := vh/λ ∈ Z for h = 0, . . . , q − 1. At time

tn, we indicate with Fh,nk the density of the population moving with velocity vh at

the cell k = 0, . . . , 2J − 1 for every h = 0, . . . , q − 1. In order to recover the so-called
moments, we consider an invertible matrix M ∈ Rq×q defining the change of variables
to pass from the space of the population densities towards the space of moments by
(M0, . . . ,Mq−1)T = M(F 0, . . . , F q−1), where we do not indicate the space at the
time coordinates because the change of basis is completely local.

The lattice Boltzmann scheme can be divided into two phases: collision phase
and stream phase. We indicate its action as

(Fh,n+1
k )

k=0,...,2J−1
h=0,...,q−1

= L(Fh,nk )
k=0,...,2J−1
h=0,...,q−1

,

for any n = 0, . . . , N − 1. The operator L is constructed as follows.

2.1.1. Collision phase. Let us consider a cell k = 0, . . . , 2J − 1, then the col-
lision phase is a local linear relaxation of the non-conserved moments towards their
equilibrium, namely

Mh,n?
k = Mh,n

k , h = 0, . . . , qcons − 1,

Mh,n?
k = (1− sh)Mh,n

k + shMh,eq(M0,n
k , . . . ,Mqcons−1,n

k ), h = qcons, . . . , q − 1,

where qcons < q is the number of conserved moments and where sh and Mh,eq are
respectively the relaxation parameter and the equilibrium of the hth moment, which is
a non-linear function of the conserved moments. These quantities are set relying either
on a Chapman-Enskog expansion or on the theory of equivalent equations introduced
by Dubois [20] in order to be consistent with the equations we want to solve.

3Still, the strategy of this work equally works for a parabolic scaling such as ∆t ∼ (∆xJ )2 [1].
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2.1.2. Stream phase. Again on a cell k = 0, . . . , 2J − 1, the stream phase is
given by

Fh,n+1
k = Fh,n?

k−wh , h = 0, . . . , q − 1.

As we shall be interested in considering all the populations together, in the sequel,

the weighted `p norm are extended from R2J to Rq2J in the usual way.

3. Adaptive multiresolution. Following the approach by [8, 16], the starting
point of the multiresolution analysis is to consider a hierarchy of L + 1 with L ∈ N
nested uni-variate lattices Lj with j = J − L, . . . , J , given by

Lj := (Ij,k)k=0,...,Nj−1, with Ij,k := [(b− a)2−jk + a, (b− a)2−j(k + 1) + a],

for j = J, . . . , J , where we have set J := J − L and Nj := 2j for j = J, . . . , J . They
form a sequence of progressively finer nested lattices as we observe that each cell Ij,k
(called “father”) includes its two “children” Ij+1,2k and Ij+1,2k+1 (called “brothers”)
rendering a tree-like structure. As done before, given a function f(t, x), we have to
understand things in the following way

fnj,k ≈
1

|Ij,k|

∫
Ij,k

f(tn, x)dx,

for n = 0, . . . , N , j = J, . . . , J and k = 0, . . . , Nj − 1. In the remaining part of this
Section, since time is of no importance, we do not mention the dependence of any
quantity on it for the sake of clarity.

3.1. Projection and prediction operator. The projection and the prediction
operators allow one to navigate in the ladder of nested lattices up and down. We start
from the projection operator, which takes information at a certain level of resolution
j+ 1 and transforms it into information on a coarser level j as illustrated in Figure 1.

j

j + 1

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Fig. 1. Illustration of the action of the projection operator. The cell average on the cell at
level j is reconstructed by taking the average of the values on its two children at level j + 1.

Definition 3.1 (Projection operator). The projection operator P∨ : R2 → R is
defined by

fhj,k = P∨
((
fhj+1,2k+δ

)
δ=0,1

)
=

1

2

(
fhj+1,2k + fhj+1,2k+1

)
,

for every h = 0, . . . , q − 1, j = J, . . . , J and k = 0, . . . , Nj − 1.

The opposite happens for the prediction operator (Figure 2), taking information
on a certain level j and trying to recover an estimation of the values on a finer level
j+ 1. It seems that we have an infinity of possible choices and this is indeed the case.
However, we impose, following Cohen et al. [8], some reasonable rigidity on the choice
of the operator.
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j

j + 1

1/8 1 −1/8

2k

k − 1 k k + 1

Fig. 2. Illustration of the action of the prediction operator taking γ = 1. The cell average on
the cell at level j+ 1 is reconstructed by taking the values j of the father and his two neighbors with
suitable weights.

Definition 3.2 (Prediction operator). The prediction operator P∧ : R1+w → R2,
giving approximated values (denoted by a hat) of means at a fine level from data on a
coarse level, that is (

f
∧
h
j+1,2k+δ

)
δ=0,1

= P∧
(

(fj,π)π∈R(j,k)

)
,

for h = 0, . . . , q − 1, j = J, . . . , J − 1 and k = 0, . . . , Nj − 1, where
• The operator is local, namely the outcome depends on the value on 1+w cells

at level j with indices belonging to R(j, k) geometrically close to Ij+1,2k+δ

with δ = 0, 1.
• The operator is consistent with the projection operator, namely

P∨

((
f
∧
h
j+1,2k+δ

)
δ=0,1

)
= fhj,k,

for h = 0, . . . , q − 1, j = J, . . . , J − 1 and k = 0, . . . , Nj − 1.

Remark 1 (Consequences of the definition). By the previous definition the father
belongs to the prediction stencil of its sons (this is the 1 in the 1 + w). Also observe
that this definition does not impose to consider linear operators, even if it is the choice
for this and many preceding works [31, 32, 8, 16, 43, 42].

In particular, let γ ∈ N and consider for any h = 0, . . . , q − 1, j = J, . . . , J − 1
and k = 0, . . . , Nj − 1

f
∧
h
j+1,2k+δ = fhj,k + (−1)δ

γ∑
α=1

cα
(
fhj,k+α − fhj,k−α

)
, δ = 0, 1,

corresponding to the polynomial centered interpolations, which are exact for the av-
erages of polynomials up to degree 2γ, being accurate at order µ := 2γ + 1. Some
coefficients are given by (see [16, 47, 42] and references therein):

• γ = 1, with c1 = −1/8.
• γ = 2, with c1 = −22/128 and c2 = 3/128.
• γ = 3, with c1 = −201/1024, c2 = 11/256 and c3 = 5/1024.

3.2. Details and smoothness estimation. Intuitively, the more the predicted
value is far from the actual value on the considered cell, the more we can assume that
the function locally lacks in smoothness due to the fact that it is far from behaving
polynomially. This is what is quantified by the notion of detail:

Definition 3.3 (Detail). The details are defined as

dhj,k := fhj,k − f
∧
h
j,k,
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for h = 0, . . . , q − 1, j = J + 1, . . . , J .

The details are redundant between brothers Ij+1,2k and Ij+1,2k+1 sharing the
same father Ij,k. This is a trivial consequence of the consistency of P∧ and reads

(3.1) dhj+1,2k = −dhj+1,2k+1,

for h = 0, . . . , q − 1, j = J, . . . , J − 1 and k = 0, . . . , Nj−1 − 1. For this reason, we
have to avoid the redundancy by considering only one detail between two brothers:
we chose to keep only the one of the son with even indices dhj+1,2k

4. Thus we introduce
the sets of indices

∇J :=
{

(J, k) : k = 0, . . . , NJ − 1
}
,

∇j := {(j, k) : k = 0, . . . , Nj − 1 and k even} , j = J + 1, . . . , J.

Hence we have constructed the multiresolution MR transform acting as follows

(3.2) fh
J

MR−−−−−→←−−−−−
MR−1

(
fhJ ,d

h
J+1, . . . ,d

h
J

)
,

for every h = 0, . . . , q − 1, where

fhj :=
(
fhj,k
)
k=0,...,Nj−1

, j = J, . . . , J,

dhj :=
(
dhj,k
)

(j,k)∈∇j , j = J + 1, . . . , J.

One easily checks that each side of (3.2) contains the same number of elements,
because we have eliminated the redundancy of the details. The details are a regularity
indicator of the encoded function, as stated by the following Proposition

Proposition 3.4 (Details decay). Consider a cell Ij,k for j = J + 1, . . . , J and

a population h = 0, . . . , q − 1 assuming that fh ∈ W ν
∞(Σ̃j,k) for some ν ≥ 0, where

Σ̃j,k is the support of the dual wavelet (see [16]) generated by the prediction operator
P∧ over the cell Ij,k and

W ν
p (I) := {φ : φ(η) ∈ Lp(I), 0 ≤ η ≤ ν}, ‖φ‖W ν

p (I) := ‖φ‖Lp(I) + |φ|W ν
p (I),

where the semi-norm is |φ|W ν
p (I) := ‖φ(ν)‖Lp(I). Then, we have the following decay

estimate for the details

(3.3) |dhj,k| . 2−jmin (ν,µ)|fh|
W

min (ν,µ)
∞ (Σ̃j,k)

.

Proof. Consider min(ν, µ) = µ without loss of generality. Having adopted a volu-
metric approach, the L1 normalization is the natural one for the dual wavelet. Thus,
the conjugate exponent is p = ∞. Since fh ∈ Wµ

∞(Σ̃j,k), De Vore and Sharpley
[14] show that there exists a polynomial π ∈ Πµ−1 such that ‖fh − π‖L∞(Σ̃j,k) .

|Σ̃j,k|µ|fh|Wµ
∞(Σ̃j,k), where the constant depends only on µ. Using the cancellation

4The opposite is perfectly fine.
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property of the dual wavelet, the Hölder inequality, the normalization, the previous
inequality and the fact that |Σ̃j,k| . 2−j

|dhj,k| : = |〈fh, ψ̃j,k〉| = |〈fh − π, ψ̃j,k〉| ≤ ‖fh − π‖L∞(Σ̃j,k)‖ψ̃j,k‖L1(Σ̃j,k)

. |Σ̃j,k|µ|fh|Wµ
∞(Σ̃j,k) . 2−jµ|fh|Wµ

∞(Σ̃j,k),

where ψ̃j,k is the dual wavelet generated by P∧ on the cell Ij,k.

Remark 2. Since the spaces Wµ
∞ are algebræ, we can infer the regularity of the

densities f from the expected regularity of the moments, in particular the conserved
ones.

This inequality5 states that the details become small when the function is locally
smooth and also that they decrease with the level j if functions are slightly more than
just bounded.

3.3. Tree structure and grading. We introduce the set of all indices given by

∇ :=
J⋃
j=J

∇j .

In order to guarantee the feasibility of all the operations involved with the multires-
olution and because it naturally provides a multi-level covering of the domain Ω, we
want that our structure Λ ⊂ ∇ represents a graded tree.

Definition 3.5 (Tree). Let Λ ⊂ ∇ be a set of indices. We say that Λ represents
a tree if

1. The coarsest level wholly belongs to the structure: ∇J ⊂ Λ.
2. There is no orphan cell: if (j, k) ∈ Λ, then (j − 1, k/2) ∈ Λ, for j = J +

1, . . . , J6.

Since we have discarded from ∇ the cells having redundant detail, given a tree Λ ⊂ ∇,
we consider the complete tree R(Λ) obtained by adding the discarded cell with a
brother in Λ. With our choice, it is

R(Λ) = ∇J ∪
{

(j, k), (j, k + 1) : (j, k) ∈ Λ for j = J + 1, . . . , J
}
.

Remark that Λ $ R(Λ) 6⊂ ∇. We also introduce the set of leaves L(Λ) ⊂ Λ ⊂ ∇ of
a tree Λ which is the set of cells without a son. As usual, we introduce the set of
complete leaves S(Λ) which is given by

S(Λ) = {(J, k) : (J, k) ∈ L(Λ)} ∪ {(j, k), (j, k + 1) : (j, k) ∈ L(Λ) and j > J} .
As observed by [8], the tree structure and the nesting allow us to conclude that S(Λ)
is a multi-level partition of the domain Ω. Moreover L(Λ) $ S(Λ) 6⊂ ∇. We are ready
to provide the definition of graded tree.

Definition 3.6 (Graded tree). Let Λ ⊂ ∇ be a tree, then it is graded with respect
to the prediction operator P∧ if the prediction stencil to predict over cells belonging
to R(Λ) r∇J also belongs to R(Λ). With our prediction operator, this means that

If (j, k) ∈ R(Λ) r∇J , then (j − 1, bk/2c+ δ) ∈ R(Λ), δ = −γ, . . . , γ,
5The interested reader can find a related numerical study in the Supplementary material.
6We are sure that k/2 is integer because we have only kept even cells
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or equivalently, since we have removed redundant odd details

If (j, k) ∈ Λ r∇J , then (j − 1, k/2 + δ) ∈ R(Λ), δ = −γ, . . . , γ.

Thus, given a tree Λ ⊂ ∇, we denote the operator yielding the smallest graded
tree containing Λ as G(Λ). The grading property is important because it guarantees
that we can implement the isomorphism between(

fhj,k
)

(j,k)∈S(Λ)
−−−−−→←−−−−−

(
fhJ ,

(
dhj,k
)

(j,k)∈Λr∇J

)
,

for every h = 0, . . . , q − 1 in an efficient manner [8]. This means that it is the same
to know the means on the complete leaves S(Λ) of a graded tree Λ or knowing the
averages on ∇J ⊂ Λ plus the details of Λ r ∇J . In this work, we choose to store
information on the complete leaves S(Λ).

Let now Λ ⊂ ∇ be a graded tree and assume to know (fhj,k)(j,k)∈S(Λ) or equiva-

lently (fhJ , (d
h
j,k)(j,k)∈Λr∇J ) for every h = 0, . . . , q− 1. From this information, we can

build the reconstruction

f
∧∧
h
J

:=
(
f
∧∧
h
J,k

)
k=0,...,NJ−1

,

for h = 0, . . . , q − 1, where the double hat represents the recursive application of
the prediction operator P∧ without adding the details (indeed, not available) until
reaching the complete leaves S(Λ) on which information is stored.

3.4. Compressing information. Take a graded tree Λ ⊂ ∇, then we consider
the thresholding (or coarsening) operator given by

Tε(Λ) := ∇J ∪
{

(j, k) ∈ Λ r∇J : max
h=0,...,q−1

|dhj,k| ≥ εj
}
⊂ ∇,

where the details concern (fhj,k)(j,k)∈S(Λ) for h = 0, . . . , q − 1. This operator is con-
structed to work with the same discretization for all the fields spanned by h. It can
be shown [8, 16] that

Proposition 3.7. Let ε > 0 and consider a graded tree Λ ⊂ ∇ with data known
on its complete leaves S(Λ). Consider the choice of level-wise thresholds

εj = 2j−Jε, j = J + 1, . . . , J,

and consider p ∈ [0,∞]. Then there exists a constant CMR = CMR(γ, p) > 0 indepen-
dent of L such that ∥∥∥f∧∧hJ −AG◦Tε(Λ)f

∧∧
h
J

∥∥∥
`p
≤ CMRε,

for every h = 0, . . . , q − 1, where AΛ := MR−1TΛMR, where TΛ is the operator
putting the details corresponding to indices which do not belong to Λ to zero.

A similar estimate clearly holds when gathering all the populations spanning
h = 0, . . . , q− 1. It means that we can discard cells with small details still being able
to reconstruct at the finest level J within a given precision controlled by ε. We can
then rely on this machinery in order to conduct a compression process and build a
numerical strategy based on LBM schemes.
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4. Adaptive MR-LBM scheme and error control. So far, the procedure
based on the multiresolution is static with respect to the evolution of time. Since
we want to utilize this strategy to build a reliable fully adaptive lattice Boltzmann
solver for time dependent problems, it is of the foremost importance to define a way
of evolving the compressed mesh so that it correctly represents the solution both
at current time tn and at the successive time tn+1, constructing it without a priori
knowing the new solution.

4.1. Mesh adaptation strategy and time-stepping. We are given an adap-
tive graded tree Λn ⊂ ∇ and a solution (fh,nj,k )(j,k)∈S(Λn) for h = 0, . . . , q − 1 defined
on the complete leaves of Λn for the discrete time tn.

4.1.1. Mesh adaptation. Starting from this level of information, which yields
(fh,nJ , (dh,nj,k )(j,k)∈Λnr∇J ) using P∧ and P∨, we want to create a new mesh Λn+1

used to compute the new solution at time tn+1 on S(Λn+1). The procedure can be
schematized as follows

Λn+1 := G ◦ Hε ◦ Tε(Λn),

where the details used by Hε (still to be defined) and Tε are those of the old solution,

namely (dh,nj,k )(j,k)∈Λnr∇J . In the previous expression, we have:
• Tε is the thresholding operator we have previously defined. It can only merge

fine cells on the tree to form coarser ones (coarsen).
• Hε is the enlargement operator. It breaks cells to form finer ones (refines)

and is constructed to slightly enlarge the structure in order to accommodate
the slowly evolving solution at the new time tn+1.

• G is the grading operator, which can also refine.
Once we have Λn+1, we adapt the solution from S(Λn) to S(Λn+1). When passing
from Λn to Λn+1, if cells are coarsened, we have to merge their data with the pro-
jection operator P∨. On the other hand, when finer cells are added by Hε or G, the
missing information is reconstructed using the prediction operator P∧. We are left
with the old solution at time tn on the complete leaves of the new mesh S(Λn+1):

(fh,nj,k )(j,k)∈S(Λn+1) for h = 0, . . . , q − 1.

4.1.2. Time-stepping. We denote the operator associated with the adaptive
MR-LBM scheme by LnA (described in the sequel), with explicit dependence on the
time tn since acting only on data defined on the time varying S(Λn+1). It gives the
approximate solution at time tn+1 on the same hybrid grid. This is(

fh,n+1
j,k

)
(j,k)∈S(Λn+1)
h=0,...,q−1

= LnA

(
fh,nj,k

)
(j,k)∈S(Λn+1)
h=0,...,q−1

.

4.2. Construction of the enlargement operator Hε. We still have to define
the enlargement operator Hε, which is based on the following principles:

• We must ensure that the propagation of information at finite speed via the
stencil of the lattice Boltzmann operator L (and thus also LnA) is correctly
handled. Thus, setting σ = maxh=0,...,q−1 |wh|, we enforce that:

If (j, k) ∈ R(Tε(Λn)), then (j, k+ δ) ∈ R(Hε ◦ Tε(Λn)), δ = −σ, . . . , σ,

• We must detect the shock formation possibly induced by the non linearity of
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the collisional part of L (or LnA). Consider µ ≥ 0 to be tuned, then

If (j, k) ∈ Tε(Λn), J < j < J, and max
h=0,...,q−1

|dh,nj,k | ≥ 2µ+1εj ,

then (j + 1, 2k + δ) ∈ R(Hε ◦ Tε(Λn)), δ = 0, 1, 2, 3.(4.1)

The rationale is the following: assume that the function fh(tn+1, x) corre-

sponding to (fh,n+1
j,k )(j,k)∈S(Λn+1) is such that fh(tn+1, ·) ∈ W ν

∞(Σ̃j,k) for
some ν ≥ 0. Set µ = min (ν, µ). Since this solution is unknown at the stage
at which we are utilizing Hε, we assume that the solution varies slowly from
tn to tn+1, so that we claim

|dh,n+1
j,k | ≈ |dh,nj,k | ≈ 2−jµ|fh(tn, ·)|Wµ

∞(Σ̃j,k)

using (3.3) and for the details which may not be available in the structure

|dh,n+1
j+1,2k| ≈ |d

h,n
j+1,2k| ≈ 2−(j+1)µ|fh(tn, ·)|Wµ

∞(Σ̃j+1,2k),

≤ 2−(j+1)µ|fh(tn, ·)|Wµ
∞(Σ̃j,k),

using the nesting of the lattices. As a consequence, we have

(4.2) |dh,n+1
j+1,2k| ≈ 2−µ|dh,nj,k |.

According to the analysis to construct the truncation operator Tε(Λn+1)7, we

would have kept Ij+1,2k and Ij+1,2k+1 if |dh,n+1
j+1,2k| ≥ εj+1 = 2εj and a priori

also Ij+1,2k+2 and Ij+1,2k+3, because their father has a detail with the same
absolute value of its brother. This comes back, using the previous estimate,
at doing so whenever |dh,nj,k | ≥ 2µ+1εj . Since the local regularity ν of the
solution at each time step is unknown, µ = min(ν, µ) is a parameter of the
simulation to be set.

Modulo this operation on the mesh, which slightly enlarges the set of kept cells,
we claim that the following heuristics, inspired by the works of Harten [31], holds:

Assumption 1 (Harten heuristics). The tree Tε(Λn) has been enlarged into a
graded tree Λn+1 = G ◦ Hε ◦ Tε(Λn) such that for the chosen p ∈ [1,∞]∥∥∥f∧∧nJ −AΛn+1f

∧∧
n
J

∥∥∥
`p
≤ CMRε,

∥∥∥Lf
∧∧
n
J
−AΛn+1(Lf

∧∧
n
J

)
∥∥∥
`p
≤ CMRε.

The first assumption inequality is naturally fulfilled using the fact that Tε(Λn) ⊂
Λn+1. The second inequality is verified upon having enlarged the mesh using Hε,
which has been built considering how the scheme operator L acts on the solution. It
basically means that the mesh is suitable for well representing the solution obtained
by applying the reference scheme to the adaptive solution at the previous time step
tn reconstructed on the finest level.

4.3. Construction of the adaptive MR-LBM scheme. We now present how
to construct the adaptive MR-LBM scheme LnA from the reference scheme L.

7n+ 1 because we are trying to anticipate the evolution of the solution.
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4.3.1. Collision. In this part, the change of variable via M is understood. We
reconstruct the data on the finest mesh LJ , we perform the collision and then project
back on the complete leaves S(Λn+1). Let (j, k) ∈ S(Λn+1), then

mh,n?
j,k = mh,n

j,k , h = 0, . . . , qcons − 1,

mh,n?
j,k = (1− sh)mh,n

j,k +
sh

2J−j

2J−j−1∑
δ=0

Mh,eq
(
m
∧∧0,n

J,k2J−j+δ
, . . . ,m

∧∧qcons−1,n

J,k2J−j+δ

)
,(4.3)

for h = qcons, . . . , q − 1.

Remark 3. As observed by [35] for the source terms of Finite Volumes schemes,
this strategy yields can be really computationally costly and is mostly of theoretical
interest. We shall discuss this fact and introduce an alternative approach in the sequel.

The first term on the right is taken on the complete leaf because it is linear, thus the
reconstructed values simplify when taking the projection operator.

4.3.2. Stream. For the sake of notation, let us introduce the sign of each velocity
given by σh := wh/|wh| ∈ {−1, 0, 1} for h = 0, . . . , q− 1 fixed in the sequel. Consider
a complete leaf (j, k) ∈ S(Λn+1). Consider all the cells of LJ inside Ij,k with indices

(J, k2J−j + δ) with δ = 0, . . . , 2J−j − 1. Perform the advection on them

fh,n+1

J,k2J−j+δ
= fh,n?

J,k2J−j+δ−wh , for δ = 0, . . . , 2J−j − 1.

The problem is that the data on the right hand side are usually unavailable since since
their cell does not belong to S(Λn+1). Despite this, we can reconstruct, yielding

fh,n+1

J,k2J−j+δ
≈ f
∧∧
h,n?

J,k2J−j+δ−wh , for δ = 0, . . . , 2J−j − 1.

We want to update the solution on S(Λn+1), that is why we project using J − j times
the projection operator P∨

(4.4) fh,n+1

J,k2J−j+δ
≈ 1

2J−j

2J−j−1∑
δ=0

f
∧∧
h,n?

J,k2J−j+δ−wh .

Indeed, only the terms referring to the virtual cells close to the boundary of the
leaf are actually needed. After tedious but straightforward computations, setting
η(h, δ) := (1/2− δ)σh − 1/2 ∈ Z for δ = 1, . . . , |wh|, we come to

(4.5) fh,n+1

J,k2J−j+δ
≈ fh,n?

J,k2J−j+δ
+

σh

2J−j

|wh|∑
δ=0

(
f
∧∧
h,n?

J,k2J−j+η(h,δ)
− f
∧∧
h,n?

J,(k+1)2J−j+η(h,δ)

)
.

Remark 4. Since the reconstruction operator ∧∧ which utilizes P∧ until reaching
available values on S(Λn+1) does not depend on the details (they are not available)
one might use cheaper interpolation to perform this operation, as hinted by [8]. Such
an approach is used in many works, but at the cost of the error control provided by
the MR machinery.

4.4. Error analysis. The major interest of adaptive meshes generated by mul-
tiresolution is that we can recover a precise error control on the additional error when
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solving PDEs on them. Fixing a given `p norm for p ∈ [1,∞], we want to control the

additional error ‖F n − f
∧∧
n‖`p , where F n is the solution of the reference scheme given

by F n+1 = LF n and computations start from the same initial datum on the finest
grid, that is Λ0 = ∇. In the following analysis, the assumptions are the following

• H1 - Harten heuristics. At each step, the tree Tε(Λn) has been enlarged
into a graded tree Λn+1 so that∥∥∥f∧∧nJ −AΛn+1f

∧∧
n
J

∥∥∥
`p
≤ CMRε,

∥∥∥Lf
∧∧
n
J
−AΛn+1(Lf

∧∧
n
J

)
∥∥∥
`p
≤ CMRε.

• H2 - Continuity of L. There exists a constant CL = 1 + C̃L with C̃L ≥ 0
such that

‖LF −LG‖`p ≤ CL ‖F −G‖`p , ∀F ,G ∈ RqNJ .

Remark 5. The following procedure can be easily adapted to the context where
the continuity of the scheme is measured using a `2-weighted norm as by [37]. It is
sufficient to consider p = 2 and to observe that the corresponding norm (measuring
the properties pertaining to the multiresolution) can be bounded by the `2-weighted
norm.

Thus we prove the following statement which gives a control on the error intro-
duced by the MR-LBM adaptive scheme:

Proposition 4.1 (Additional error estimate). Under the Assumptions (H1) and
(H2), the additional error satisfies the following upper bounds

∥∥∥F n − f
∧∧
n
∥∥∥
`p
≤ CMR ε×


n+ 1, if C̃L = 0,

1 +
eC̃Ln − 1

C̃L
, if C̃L > 0.

Proof. Start by observing that as stated by (5.3) in [8], by (H1) we can claim that

(4.6) f
∧∧
n+1 = (AΛn+1 ◦L)f

∧∧
n.

Hence by the triangle inequality

‖F n − f
∧∧
n‖`p ≤ ‖LF n−1 −Lf

∧∧
n−1‖`p + ‖Lf

∧∧
n−1 − f

∧∧
n‖`p ,

≤ (1 + C̃L)‖F n−1 − f
∧∧
n−1‖`p + ‖Lf

∧∧
n−1 − (AΛn ◦L)f

∧∧
n−1‖`p ,

≤ (1 + C̃L)‖F n−1 − f
∧∧
n−1‖`p + CMRε,

employing in this order Assumption (H2), (4.6) and Assumption (H1). We have to
distinguish two cases and apply the inequality recursively

• C̃L = 0, thus ‖F n−f
∧∧
n‖`p ≤ ‖F n−1−f

∧∧
n−1‖`p +CMRε ≤ · · · ≤ CMR(n+ 1)ε.

• C̃L > 0. We obtain, using that (1 + C̃)n ≤ eC̃n if C̃ > 0

‖F n − f
∧∧
n‖`p ≤ (1 + C̃L)‖F n−1 − f

∧∧
n−1‖`p + CMRε ≤ . . .

≤ CMRε

n−1∑
i=0

(1 + C̃L)i + CMRε = CMR

(
1 +

(1 + C̃L)n − 1

C̃L

)
ε

≤ CMR

(
1 +

eC̃Ln − 1

C̃L

)
ε.
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J

Fig. 3. Schematic illustration of the basic features of the adaptive numerical scheme as it is
currently used in the paper, meaning with the “leaves collision” (4.7).

Therefore, regardless of continuity constant of the reference scheme, the additional
error is bounded linearly with ε. According to the value of constant, we can prove
that it accumulates either at most linearly in time or exponentially.

4.5. Conclusion, discussion and implementation. As we observed with Re-
mark 3, the collision given by (4.3) (called “reconstructed collision”) is used in the
theoretical analysis but remains limiting in practice, especially in the multidimensional
context [1]. Therefore, we propose the so-called “leaves collision” (see Figure 3), using
data available on the complete leaves S(Λn+1). This reads, for (j, k) ∈ S(Λn+1)

mh,n?
j,k = mh,n

j,k , h = 0, . . . , qcons − 1,

mh,n?
j,k = (1− sh)mh,n

j,k + shMh,eq
(
m0,n
j,k , . . . ,m

q−1,n
j,k

)
, h = qcons, . . . , q − 1.(4.7)

This is significantly cheaper than (4.3) because there is no need to reconstruct a piece-
wise constant representation of the solution on the full finest level. Moreover, in the
case where the equilibria are linear, we are still able to prove Proposition 4.1 and we
might argue that in practice it is still verified for non-linear cases. We shall validate
this claim with simulations and provide an ad-hoc pathological example where the
Proposition 4.1 does not hold, with full discussion in the Supplementary material.

For the stream phase, even if we reconstruct at the finest level, the computation
can be done at minimal expenses because we are capable of passing from (4.4) to (4.5)
by linearity. Using cheaper reconstruction operators as hinted by Remark 4 cannot
yield the control by Proposition 4.1 and we have verified that it frequently generates
low-quality results. This is the subject of a future contribution.

The algorithms are sequentially implemented in C++ using a code called SAMURAI8

(Structured Adaptive mesh and MUlti-Resolution based on Algebra of Intervals)
which is currently under development and that can handle general problems involving
dynamically refined meshes (both MR and AMR). The central features of SAMURAI

are its data structure based on intervals of contiguous cells along each axis and an
ensemble of set operations to quickly and easily perform inter-level operations.

5. Verifications. In this Section, we concentrate on two main aspects, namely:
• The fulfillment of the theoretical estimate by Proposition 4.19 The errors are

measured on the conserved moments. In particular, we look at:

Eh,n := ‖Mh,ex(tn)−Mh,n‖`1 , eh,n := ‖Mh,n −m
∧∧h,n

J
‖`1 ,

8Code, test cases and documentation available at https://github.com/hpc-maths/samurai.
9Even when we are not able to verify the continuity property of the reference scheme.
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for h = 0, . . . , qcons − 1, which are respectively the error of the reference
method against the exact solution and the difference between the adaptive
solution and the reference solution.

• The gain in terms of computational time induced by the use of multires-
olution. In this work, we use the compression factor, which is given by
100 × (1 − ](S(Λn))/NJ), as a measure of computational efficiency, know-
ing that the real one is strongly dependent on the implementation and data
structure and will be studied in future works.

Unless otherwise stated, the test are carried using the “leaves collision”. An exception
to this rule is presented in details in the Supplementary material.

5.1. D1Q2 for a scalar conservation law: advection and Burgers equa-
tions.

5.1.1. The problem and the scheme. We aim at approximating the weak
entropic solution (see Serre [46]) of the initial-value problem:

(5.1)

{
∂tρ+ ∂x(ϕ(ρ)) = 0, t ∈ [0, T ], x ∈ R,
ρ(t = 0, x) = ρ0(x), x ∈ R.

with ϕ ∈ C∞(R) a flux and ρ0 ∈ L∞(R). This problem is the advection equation with
constant velocity for ϕ(ξ) = cξ with velocity c ∈ R and the inviscid Burgers equation
for ϕ(ξ) = ξ2/2. The D1Q2 scheme is obtained by selecting q = 2 and qcons = 1 with
velocities v0 = λ, v1 = −λ and change of basis

M =

(
1 1
λ −λ

)
.

With the theory of equivalent equations [20], Graille [29] has shown that the equivalent
equation for this scheme is (5.1) up to first order in ∆t upon selecting M1,eq = ϕ(M0).

Example 1. In the case of advection equation with λ ≥ c > 0, we have an explicit
expression for the optimal continuity constant of the scheme for the `1 norm, namely
CL = 1 if s ≤ 2/(1 + c/λ) or CL = s (1 + c/λ)− 1 otherwise.

Table 1
Test cases for one scalar conservation law with choice of flux, initial datum, expected regularity

of the solution, choice of the regularity parameter µ and final time of the simulation.

Flux ϕ Initial datum ρ0 Type of solution µ T Test

ϕ(u) =
3

4
u

ρ0(x) = e−20x2
Strong C∞ ∞ 0.4 I

ρ0(x) = χ|x|≤1/2(x) Weak L∞ 0 0.4 II

ϕ(u) =
u2

2

ρ0(x) = (1 + tanh(100x))/2 Strong C∞ ∞ 0.4 III
ρ0(x) = χ|x|≤1/2(x) Weak L∞ 0 0.7 IV

ρ0(x) = (1 + x)χx<0(x) + (1− x)χx≥0(x) Weak L∞ 0 1.3 V

5.1.2. Results. For this test case, we consider Ω = [−3, 3], J = 2, J = 9, γ = 1
and ε = 1e − 4 unless otherwise said. Concerning the lattice Boltzmann scheme, we
fix λ = 1 and we vary the relaxation parameter. The tests we perform are resumed on
Table 1. In order not to overcharge the paper with plots, we just provide the values
for the ratio E0,N/e0,N at final time T on Table 2. The time evolution of e0,n as well
as that of E0,n/e0,n can be found in the supplementary material. The evolution of
the additional error of the adaptive MR-LBM method and the compression factor as
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Fig. 4. Behavior of e0,N as function of ε (left) and compression factor at the final time as
function of ε (right), for test (from top to bottom) I, II, III and IV. The dot-dashed line gives the
reference e0,N = ε. 16
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Fig. 5. Example of solution of the D1Q2 for the Test IV, considering n = 358, s = 1.5 and
ε = 10−4. On the left, levels of the computational mesh. On the right, solution on the leaves of the
tree.

Table 2
Value of the ratio E0,N/e0,N at final for each test case for one scalar conservation law. The

time variation of this quantities can be found in the supplementary material.

E0,N/e0,N

s I II III IV V
0.75 9.97e+01 1.86e+03 5.93e+01 3.50e+02 8.78e+02
1.00 5.94e+01 2.31e+03 3.71e+01 3.41e+02 1.01e+03
1.25 3.52e+01 2.62e+03 2.29e+01 3.93e+02 9.89e+02
1.50 1.94e+01 2.44e+03 1.31e+01 9.72e+01 1.05e+03
1.75 8.34e+00 1.21e+03 5.71e+00 2.90e+02 1.14e+03

function of ε are given of Figure 4, except for test number V, which is discussed in
more detail in the supplementary material. We formulate the following remarks:

I. We observe that with this choice of ε we successfully keep the additional error
by the adaptive MR-LBM scheme e0,n about 10-100 times smaller than the
error of the reference scheme E0,n, with important compression rates around
95% for the chosen ε. We remark the fairly correct linear behavior in terms
of ε. We have verified that the additional error increases linearly10 in time
even when we can only prove an exponential bound11 by Proposition 4.1.

II. The error of the adaptive MR-LBM method is about three orders of magni-
tude smaller than the error of the reference scheme. Due to the presence of
large plateaux, the compression factor is really interesting for a large range of
ε, being always over 90%. The trend of e0,N as function of ε agrees with the
theory and can be bound linearly in time.

III. Again, we observe that this choice of ε grants additional errors which are
between 5 and 50 times smaller than the error of the reference method, still
preserving excellent compression rates. The behavior as ε tends to zero is
respected and the expected linear temporal trend is obtained.

IV. For illustrative purposes the weak solution of the problem is shown on Figure
5). The adaptive method largely beats the traditional method by three orders
of magnitude, with less efficient compression compared to (II) due to the
formation of a rarefaction fan.12. The estimate in ε is sharply met and the

10See supplementary material.
11I.e. s > 8/7.
12This rarefaction is straight-shaped but multiresolution refines at the extremal kinks of the slope.
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additional error increases linearly in time for every choice of s13.
V. The outcome of this test is presented and fully discussed in the Supplemen-

tary material and provides a pathological example where the reconstructed
collision is needed to correctly retrieve the theoretical estimates.

Overall, we can conclude that the adaptive MR-LBM for a scalar conservation law
grants an error control by a threshold ε and succeeds in keeping the additional error
e0,n way smaller than the reference error E0,n (see Table 2) especially when weak
solutions are involved. The “leaves collision” does not impact these characteristics
except in a specifically designed pathological case.

5.2. D1Q3 and D1Q5 for two conservation laws: the shallow water sys-
tem.

5.2.1. The problem and the scheme. We aim at approximating the weak
entropic solution of the shallow water system, where h represent the height of a fluid
and u is its horizontal velocity:

(5.2)


∂th+ ∂x(hu) = 0, t ∈ [0, T ], x ∈ R,
∂t(hu) + ∂x(hu2 + gh2/2) = 0, t ∈ [0, T ], x ∈ R,
h(t = 0, x) = h0(x), x ∈ R,
u(t = 0, x) = u0(x), x ∈ R,

where g > 0 is the gravitational acceleration exerted on the fluid and h0, u0 ∈ L∞(R).
Two possible lattice Boltzmann schemes with two conserved moments are:

• D1Q3, obtained selecting q = 3 and qcons = 2 with discrete velocities v0 = 0,
v1 = λ, v2 = −λ and the change of basis:

M =

1 1 1
0 λ −λ
0 λ2 λ2

 .

Selecting M2,eq = (M1)2/M0 + g(M0)2/2 the scheme is consistent up to first
order in ∆t with (5.2).

• D1Q5, obtained taking q = 5 and qcons = 2 with the choice of velocities
v0 = 0, v1 = λ, v2 = −λ, v3 = 2λ, v4 = −2λ, along with the matrix:

M =


1 1 1 1 1
0 λ −λ 2λ −2λ
0 λ2 λ2 4λ2 4λ2

0 λ3 −λ3 8λ3 −8λ3

0 λ4 λ4 16λ4 16λ4

 .

We select the equilibri in the following way:

M2,eq =
(M1)2

M0
+
g

2
(M0)2, M3,eq = αλ2M1, M4,eq = βλ2M2,eq,

where α and β are real parameters to be set in order to keep the scheme
stable. With this choice the equivalent equations are consistent with (5.2) up
to first order being close to those of the D1Q3 scheme.

Moreover the D1Q2 creates a stair-shaped rarefaction, which triggers refinement.
13Sometimes with strong oscillations due to the oscillations of the scheme.
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Fig. 6. Example of solution of the D1Q5 for the shallow water problem with n = 300, s = 1.6
and ε = 10−4. On the left, levels of the computational mesh. On the right, solution on the leaves of
the tree.
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Fig. 7. D1Q3 for the shallow water system with Riemann initial datum. The dot-dashed line
gives the reference e0,N = ε. For the sake of avoiding redundancy, we present only one moment.

5.2.2. Results. As initial datum, we consider the Riemann problem given by
(h0, u0)(x) = (2, 0)χx<0(x) + (1, 0)χx>0(x), with a lattice velocity λ = 2, a final
time T = 0.2 and a domain Ω = [−1, 1]. The result is shown in Figure 7: for both
the conserved moments, the behavior of the additional error in time is supra-linear,
being very small at the very beginning because the method adds enough security cells
around the shock and information propagates relatively slowly. Moreover, we remark
that the error is larger for smaller s due to the larger diffusivity of the numerical
scheme. The additional error is between four and six orders of magnitude smaller
than the error of the reference method, reaching very interesting compression factors.
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Fig. 8. D1Q5 for the shallow water system with Riemann initial datum. The dot-dashed line
gives the reference e0,N = ε. For the sake of avoiding redundancy, we present only one moment.

The estimates in terms of ε are correctly followed.
For the D1Q5, we use exactly the same setting except for taking α = β = 1 and

setting s3 = s4 = 1. We obtain what is shown in Figures 6 and 8.14 The time behavior
of the additional error is again supra-linear and now the difference between different
relaxation parameters is less evident. The ratio with the error of the reference scheme
is between 104 and 106. The bound in ε is very well fulfilled. This example shows that
our adaptive strategy works really well even for schemes with an extended advection
stencil.

5.3. D1Q
3
2 for the Euler system. We consider the full Euler system

(5.3)



∂tρ+ ∂x(ρu) = 0, t ∈ [0, T ], x ∈ R,
∂t(ρu) + ∂x(ρu2 + p) = 0, t ∈ [0, T ], x ∈ R,
∂tE + ∂x(Eu+ pu) = 0, t ∈ [0, T ], x ∈ R,
ρ(t = 0, x) = ρ0(x), x ∈ R,
u(t = 0, x) = u0(x), x ∈ R,
E(t = 0, x) = E0(x), x ∈ R,

where ρ is the density, u the velocity of the flow, p the pressure and E the total energy.
The pressure and the energy are linked by the pressure law E = ρu2/2 + p/(γ − 1).
For this work, we consider the Sod shock problem, choosing γ = 1.4 and considering

14We are limited to s = 1.6 due to stability issues which are inherent to the reference scheme.
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Fig. 9. Example of solution of the vectorial D1Q2 for the Sod problem with n = 600, s = 1.75
and ε = 10−3. On the left, levels of the computational mesh. On the right, solution on the leaves of
the tree.

the Riemann initial datum given by:

(ρ0, u0, E0)(x) = (1.000, 0.000, 2.500)χx<0(x) + (0.125, 0.000, 0.250)χx>0(x),

generating a solution with a left-moving rarefaction, a right-moving contact disconti-
nuity and a right-moving shock. We employ a vectorial scheme [29, 21] rather than
a scalar one for it adds the necessary numerical diffusion, enhancing stability and it
makes easy to conserve E without further manipulation. The scheme is the juxtapo-
sition of three D1Q2 for the quantities ρ, ρu and E, coupled through their equilibri:

M1,eq = M2, M3,eq =

(
3

2
− γ

2

)
(M2)2

M0
+ (γ − 1)M4,

M5,eq = γ
M4M2

M0
+

1− γ
2

(M2)3

(M0)2
.

This scheme is consistent up to first order with (5.3) as shown by Graille [29].

5.3.1. Results. We consider a domain Ω = [−1, 1] and all the other parameters
as in the previous examples, except the lattice velocity taken to be λ = 3 and the final
time T = 0.4. All the relaxation parameters are taken equal. The result is given in
Figures 9 and 10: the additional error behaves fairly linearly in time for every choice
of relaxation parameter and becomes smaller as s approaches 2, due to the reduced
numerical diffusion. We are capable of keeping the additional error between three and
four order of magnitudes smaller than to the error of the reference scheme for each of
the conserved moments. The behavior in ε is respected. This shows that our strategy
is well suited to handle the simulation of systems of conservation laws using vectorial
schemes.

6. Conclusions. In this paper, we have presented a class of new fully adaptive
lattice Boltzmann schemes based on multiresolution to perform the adaptation of the
spatial grid with error control. To the best of our knowledge, no previous research has
been conducted to couple multiresolution and LBM methods. The most important
features are that there is no need to devise ad-hoc refinement/coarsening criteria:
mesh adaptation is naturally handled using multiresolution by analyzing the regu-
larity of the solution. Therefore, no previous knowledge of the solution15 is needed

15Other than the regularity guess µ, which can be set to a small value for precaution.
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Fig. 10. Vectorial D1Q2 for the Sod problem. The dot-dashed line gives the reference e2,N = ε.
For the sake of compactness, we show only one moment.

because the numerical mesh is automatically evolved. Eventually, under reasonable
assumptions on the reference scheme, we are able to prove precise error controls on
the additional error introduced by the non-uniform mesh, which are driven by a single
adjustable tolerance ε. The numerical method has been extensively tested, showing
that the theoretical predictions are fully met, even for settings for which we expect
less predictable behaviors. We have shown that, by tuning ε according to the desired
precision, one is capable of keeping the additional error several orders of magnitude
below that of the reference method with respect to the exact solution, still achieving
excellent compression factors. We have also demonstrated that the optimized “leaves
collision” is an efficient alternative to the “reconstructed collision”, except in patho-
logical cases. The question on how the choice of prediction operator could modify
the physics approximated by the MR-LBM adaptive scheme will be the object of a
forthcoming contribution.

The major improvement our method needs to undergo is its generalization to
the multi-dimensional framework (spatial dimension d). We provide answers to this
question in a companion contribution [1]. The following points have been taken into
consideration:

• The projection operator is straightforwardly generalized as a mean on the
children. The prediction operator is constructed by tensor product as hinted
by Bihari and Harten [3].

• The decay estimates for the details (3.3) are still valid without having to ad-
just them with d. Consequently (4.2) remains valid. However, one shall cope
with the fact that details of two brothers no longer have the same modulus.

• One must modify the choice of εj according to d, as the number of elements
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in a tree is now bounded by 2dJ . We consider εj = 2d(j−J)ε. Hence, we need

to slightly modify (4.1) which becomes |dh,nj,k | ≥ 2µ+dεj .
• The stream phase given by (4.5) and the way of recovering it remain essen-

tially the same.
In [1], we employ the MR-LBM adaptive scheme to simulate both hyperbolic (Euler)
and parabolic (incompressible Navier-Stokes) systems, because the accuracy of our
reconstruction is enough to correctly cope with the physics of such systems.

Finally, the optimisation of the implementation is a crucial subject when dealing
with multidimensional problems. In this work, we have restricted purposefully the
measure of the computational gain with respect to the uniform mesh by merely looking
at the compression factor. This is far from realistic if the implementation does not
perform the operations involved in multiresolution in a clever way or if the problem
is too small to observe a real gain. We believe that the choice of the underlying data
structure has a huge impact on this matter: we are currently developing the library
SAMURAI with the purpose of providing an innovative interval-based data structure to
enhance performances and simplify the parallelization of the whole process. This is
the subject of our current research.
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discussions on multiresolution. Thomas Bellotti is supported by a PhD funding (year
2019) from the Ecole polytechnique.
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