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Abstract—This paper presents a three-dimensional multiscale
structure and object-oriented model to generate a synthetic
heart. This model consists of a series of elementary objects at
different resolution level from the macro- to the micro-scale.
Each object is described by a vector of attributes. The shapes
and size of the components of the tissue are inspired from
Synchrotron Radiation Phase micro-Computed Tomography (SR-
PCT) of human left ventricle wall samples. To enhance the
similarity between the model and the experimental data, we use a
Free-Form Deformation (FFD) technique to deform each object.
Our first results demonstrate that the model can simulate realistic
voxel-based elementary objects and simulate experimental data
and shapes. The hierarchical graph structure of the model that
includes inter level relationships has a strong potential interest.

Index Terms—multiscale modeling, cardiac tissue, geometric
model, deformable model, graph, feature vectors

I. Introduction

Cardiovascular diseases remain the main cause of death in
developed countries, which deprive yearly the lives of over 17
millions people all over the world (WHO). Advanced imaging
techniques have enhanced the clinical diagnosis accuracy of
cardiovascular diseases. A better knowledge of the 3D ar-
rangement of the structures present in the heart could help
overcoming some of the remaining limitations. A way to reach
that goal, consists in developing 3D models of the heart to
contribute to the understanding of the relationships between
the mechanical and hemodynamical functions as well as the
structural changes due to normal and pathological cardiac
remodeling. The heart is a complex, mobile and deformable
functional system and due to its complexity, most models focus
mainly on one aspect of it.
In the past years, 3D geometric and deformable models [1],

[2] have been proposed. Models also allowing the analysis of
cardiac movement [3], simulation of water diffusion [4] and
even computer clinical diagnosis [5].
Multiscale modeling fits biological tissue due to the inherent

hierarchical structure of its elementary objects and their cou-
pling from one scale to the next. Recently, various multiscale
models [6] have been proposed to study the structural rela-
tionships in a heart [7], [8], the cardiac electrophysiology [9]–
[12], its hemodynamics [13] or mechanical function [14], [15].
However, the cardiac structure is complex. It is composed of
a series of embedded multiscale elementary objects working
together. Data integration across spatial and functional scales is
the subject of significant research efforts, since the simulation
of a functional heart is one of the most intractable problems.

Most studies are often limited by the anisotropy and/or low
resolution of data as in Diffusion Tensor Imaging (DTI) [16]
or Polarized Light Imaging (PLI) [17]. The recent work of
our group [18]–[21] imaging human cardiac tissue with phase
contrast SR-PCT, provides some quantitative knowledge about
the 3D arrangement of the cellular and extra-cellular matrix
at a micrometric isotropic spatial resolution.
In this paper, we propose a three-dimensional multiscale

model made of a series of elementary objects of the heart,
crossing the scales from the global level (macro-scale) to the
tissue level (micro-scale). The paper is organized as follows.
First, we give the overall description of our multiscale model
with its hierarchical graph structure and the relationships
between its elementary objects described by geometric voxel-
based elementary models. Second, we introduce the transform
used to control the deformation process of the geometric
models at each scale. In the results part, we demonstrate some
initial results at the tissue scale involving virtual cells, bundles
(cellular matrix) and cleavage planes (extracellular matrix). A
discussion and a conclusion end the paper.

II. Multiscale Model

The proposed model contains the main anatomical elemen-
tary objects of the heart at five levels from the macro- to the
micro-scale. It includes the ventricles, atria, sheets, bundles
and myocytes as well as the extracellular matrix such as the
cleavage planes, endocardium, epicardium and perimysium.
The relations between the objects and the levels are presented
in Fig. 1. We consider each element of the heart as an object,
like a node in a net. These objects can be simply connected or
completely nested within each other. In the vertical direction
of the structure, an object belonging to level # contains the
object of level # + 1. Meanwhile, the spatial resolution varies
from centimeter to micrometer. In the horizontal direction, all
objects belonging to the same level are mutually connected.
This description generates a 3D hierarchical net structure. In
Fig. 1, the blue arrows demonstrate the affiliation while the
green ones indicate connectivity.

A. A hierarchical nested structure

Level 1 is the root (macro-scale) of the model. It includes
anatomical features as the epicardium, endocardium and my-
ocardium of each atrium and ventricle and the septum. The
global epicardial surface consists in four connected epicardial
sub-regions (objects). This level addresses functional issues



such as global shape deformation or cavities volume changes
along the cardiac cycle.

Level 2 is focused on the cardiac tissue. It concerns the
extracellular matrix (ECM) with the sheets and cleavage planes
in relation with the laminar structure and the mechanical
properties of the tissue.

Level 3 mainly deals with the cellular matrix (CM) with its
bundles of myocytes embedded in the ECM. The local twist
and sliding of the ECM and CM arising at levels 2 and 3
contribute to the global deformation of the myocardium.

Level 4 is the cellular level at the scale of individual
myocytes.

Level 5 (micro-scale) corresponds to the leafs of the graph
model described by voxels.

B. An object-oriented description
Each level # contains a series of objects described by a

feature vector + of parameters (Fig. 2). This vector contains
intrinsic, physical and extrinsic parameters, inspired from
anatomical knowledge and statistical measurements. Among
those features, we find the location, affiliation, shape, con-
nectivity and physical parameters as electrical or acoustical
impedance, involved in diverse imaging techniques. A vector +
of attributes is defined as + (G, H, I; ;, A, \, q; 039 ...; ...) where
(G, H, I) stands for the coordinates of the center of the myocyte,
; its length and A its radius if the geometric model of the my-
ocyte is a cylinder. The angles \, q define the 3D orientation of
the main axis of the cylinder (myocyte) and 039 describes the

properties of adjacency with neighbouring structures. Fig. 3
illustrates an example of the software structure associated
to the elementary object "myocyte". Besides the attributes,
functions can be called to achieve different purposes. Each
object at level # inherits the attributes from its parents of
level # − 1.

C. Voxel-Based Models
We use the voxel as basic unit. Indeed, voxel-based models

are well adapted to represent the complex structures of the
human anatomy. Moreover, they are flexible and able to scale
in size and deform to match any required dimension or
deformation [22]. To set up voxel-based models, we first need
to identify the boundaries between the objects contained in the
model. Second, we need to label all voxels belonging to the
same organ with a unique identification. Thus, each voxel is
identified and distinguished from the others. Voxels belonging
to the same object are part of the same class.

III. Deformable Geometric Model
The heart is a functional elastic organ, which undergoes

large overall deformations of the shape and subtle internal
3D rearrangements of the tissue along the successive cardiac
cycles. Thus, geometric models for each elementary object
must account for deformation. This explains why, after setting
the basic geometric models, we immediately introduce their
deformable properties. Among various possible approaches,
we select the Free-Form Deformation (FFD) technique because

Fig. 1. Structure of the multiscale model. LA: Left Atrium. RA: Right Atrium. LV: Left Ventricle. RV: Right Ventricle. L1-L5: Levels corresponding to the
scales of the model.



Fig. 2. Structure of each elementary object.

Fig. 3. Elementary object-myocyte with its attributes.

of its many advantages. We introduce FFD at each level of the
model. In this section, we brief recall the principle of FFD.

A. Free-Form Deformation

The Free-Form Deformation is a deformation technique
proposed by Thomas W. Sederberg to deform solid geometric
models [23]. The FFD re-defines the location of a geomet-
ric object in a local coordinate system and uses a set of
control points and a set of Bernstein polynomials to build a
relationship between the objects and the control points. This
relationship is represented by a tri-variate tensor product of
polynomials which is an important notion in approximation
theory and guarantees the smoothness in the deformation.
When the locations of the control points are moved, the shape
of the object is changed as well. The free-form movements of
the controls points result in the deformation of the shape.

The FFD technique is a useful and frequently used deforma-
tion method because of its several important properties. FFD
does not require any specific type or shape for the objects. It is
possible to control the volume of the objects during the FFD
process. The parametric objects remain parametric after FFD.
It is possible to apply several FFDs on an object in a piece-wise
manner with the cross-boundary derivative continuity being
maintained.

Based on the above statements, we use the FFD technique
to transform the shapes of each elementary object making the
heart from the macro- to the micro-scale. A local coordinate
system ((, ),*) ∈ R3 is defined at the origin of the rectangular
box containing the data. The dimension of the domain is
defined by the coordinate range (min-max) in the 3 directions.
In this local coordinate system, the original location of data
- within the domain can be expressed as:

- = -0 + B ®( + C ®) + D ®* (1)

where -0 states for the origin of the rectangular box and
the coordinates (B, C, D) of any point inside the data can be
calculated by:

(B, C, D)=
( ®)× ®* (-−-0)
®) × ®* · ®(

,
®(× ®* (-−-0)
®( × ®* · ®)

,
®(× ®) (-−-0)
®( × ®) · ®*

)
(2)

with B ∈ [0, 1], C ∈ [0, 1], D ∈ [0, 1], where "×" and "·"
denote the outer and inner products of vectors.

The second step consists in immersing the data into a 3D
grid of control points % of size (; + 1) × (< + 1) × (= + 1).
Then, the coordinates of each control point %8 9: is given by:

%8 9: = -0 +
8

;
®( + 9

<
®) + :

=
®* (3)

where 8, 9 , : being the index of the control point in the (, )
and * directions, respectively.
The displacement of the control points deforms the object,

while the trivariate tensor product Bernstein polynomial de-
fines the deformation function:
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(4)
with %8 9: the moved control points and �8

;
, � 9

<, �:
= the 1D

Bernstein polynomial.

B. High-Resolution Geometric Model
We consider the cell (myocyte) as an elementary object

of our cardiac tissue model, represented by a cylinder. From
histological studies [24] and SR-PCT [18], [20], [21] we
know that the myocytes are organised in "bundles" containing
a limited number of myocytes. We define the "bundle" as
a geometric object containing a limited series of myocytes.
The shape of a bundle of myocytes, in a biological tissue,
could be compared to a "rugby" ball with a thinner section
at its extremities. To build such a realistic bundle, we start
from a cylindrical bundle model (initial object) containing a
limited series of parallel myocytes (cylinders) and we define
a morphing transform to go from this initial shape to the final
ellipsoidal shape.
We use a cylinder of radius '1 and length !1 to simulate

a bundle (5).
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At first, the objective form is supposed to be a truncated
ellipsoid cylinder, whose original equation is:
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2 <1, 'G >0, 'H >0, '/ >0 (6)

with the circular section of the cylinder lying in the (G, H) plane
and the height in the I direction. The cylinder is centered in
(0, 0, 0). The 3D transform to go from a cylinder to an ellipsoid
is not straightforward, so we decide to deform the initial
cylinder layer by layer along the I direction. This strategy
allows us to precisely handle and control the parameters of
the output truncated ellipsoid. We now define the deformation
of a circle of radius '1 towards an ellipse of equation:

G2

'2
G

+ H
2

'2
H

= 1 − I2

'2
I

< 1 (7)

We can rewrite this equation as:

G2

('G2)
2 +

H2(
'H2

)2 = 1 (8)

where 2 =

√
1 − :2/'2

I is the weighting coefficient of the
radius along the x and y directions. It means that the radius
of the :-th layer is 2 times the radius of the 0-th layer. Thus,
we can calculate the weighting parameters CG and CH of the
deformation used to modify the original radius of the circle as
well as the coordinates of the control points along the G and
H direction:

CG =
'G2

'1

, CH =
'H2

'1

(9)

In a realistic tissue, the bundle’s shape is more like a twisted
noisy truncated ellipsoid. We adapt the model to create such an
effect. We keep a layer-by-layer process. We define a rotation
and add a Gaussian noise to the control points controlling each
layer. The rotation degree �I in function of I is defined as:

�I = �A>C0C8>= × I (10)

where �A>C0C8>= is an arbitrary angle. We define a Gaussian
model of noise of mean

(
`G , `H

)
and standard deviation(

fG , fH

)
to perturb the location of each control point belong-

ing to the layer (G, H)2? . The noisy locations of the control
point (G, H)2?= are given by:
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(
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Fig. 4. Simulation of a myocyte with (a) the intercalated discs, (b) the cell,
(c) the perimysium and (d) the whole myocyte.

IV. Results

We model three high-resolution geometric objects which
shapes and size are inspired from human cardiac tissue data
imaged in phase contrast (SR-PCT). The data provide from the
left ventricle wall of two healthy adult hearts. Each sample of
size 6 × 6 × ×15<<3 and 6 × 6 × ×20<<3 are reconstructed
in 3D at an isotropic spatial resolution of 3.5 × 3.5 × 3.5`<3

[21], [25].
First, we simulate a myocyte that is the basic tissue unit of

our model. We define its geometric shape as a simple cylinder
with ! = 100`< and an elliptic section of long axis '; =

18`< and short axis 'B = 9`<. We create the 3D voxel based
model with a resolution of 0.25 `m/voxel with angles of 30>
against I axis and 60> against the G − H plane. We divide
a myocyte into three parts: the cell, the perimysium and the
intercalated discs as shown in Fig. 4. As the results show, we
can process each part separately and combine them afterwards.
Second, we simulate the geometric model of a bundle. Based

on this validated FFD pipeline, we perform a simulation of
a bundle with several myocytes inside. We use a Voronoi
diagram to generate compact myocytes in a bundle. For the
FFD, we use a grid of 5 × 5 control points on each layer of
the cylinder and calculate the local coordinates of the control
points. The initial bundle has '1 = 30`< and !1 = 40`<
with 7 myocytes generated inside. We generate an image with a
resolution of 0.25 `m/pixel in each direction. The object shape



(a) (b)

(c) (d)

Fig. 5. Deformation from a bundle to a twisted truncated ellipsoid with noise.
(a) the original bundle with 7 myocytes. (b) the result of the deformation
which is a twisted truncated ellipsoid with noise. (c) the initial 40th layer of
the cylinder with the 5×5 control points. (d) the deformed 40th layer with the
moved, rotated and noisy control points.

is also a truncated ellipsoid with 'G = 12.5`<, 'H = 8.75`<
and 'I = 22.5`< respectively. We also add a rotation (Eq. 10)
and a Gaussian noise (Eq. 11) on each layer of the bundle,
where �A>C0C8>= = 1◦/`<, `G = 0, `H = 0, fG = 3`< and
fH = 3`<. From the results (Fig. 5), we see that the section at
each layer is correctly transformed into an ellipse and because
'I > !1/2, the ellipsoid is truncated at its two extremities in
the I axis. We can clearly see that the deformed shape is the
expected one and the free-form deformation keeps the gaps
separating the myocytes.

After that, we use FFD to deform and merge cleavage planes
as shown in Fig. 6. We start by simulating cleavage planes as
some planes with thickness and putting some bundles between
them. Through FFD, we can curve the cleavage planes with
any curvatures as well as the bundles in them. Based on that,
we use FFD to achieve merging and branching of cleavages
planes. From these preliminary results, we confirm that the
FFD technique is useful and effective to deform the cleavage
planes and manipulate such complex biological shapes.

V. Discussion
In this paper, we build a geometric model coupled with FFD

to deform it in several situations. However, during the FFD,
the volume control is a challenge. In extreme deformation
situations, the transformation is not isovolumic as for branch-
ing cleavage planes, which is a limitation. Because we use a
voxel-based model and use the amount of voxels to denote

(a) (b)

(c) (d)

Fig. 6. Deformation of cleavage planes with bundles. (a) the original cleavage
with bundles. (b) the curved cleavage planes with bundles. (c) the curved
cleavage planes with bundles embedded myocytes (d) the merged cleavage
planes with bundles.

the volume of an object, we cannot use the original Jacobian
matrix to control the volume change during the deformation.
Therefore, in our future work, we will use counting functions
to control the volume change in order to finish the deformation
under monitoring.
In our proposed multiscale model, we build five levels of

elementary objects with the most basic unit being voxels. Thus,
we will process the enormous amount of data and the trivial
procedure.
Because it is a multiscale model, the shift between different

scales is difficult to deal with. Since we currently have built
models of single objects, the connection and arrangement of
several objects will be the focus of our next step.

VI. Conclusion

We propose a multiscale synthetic model of the heart
for virtual imaging. Our voxel-based model contains several
elementary objects from macro- to micro-scale and necessary
parameters to describe them. Currently we have built the
structure of this model and geometric models for each elemen-
tary object. We introduce FFD into our model so that it can
simulaterealistic data and the deformation during the cycle. In
the future work, we will introduce statistics of the parameters,
functional and dynamic information into our model in order
to make it more realistic for virtual imaging. Moreover, the
injection of experimental data as PLI [17] and SR-PCT [25],
will increase the realistic rendering of the generated dataset.
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