Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS

Frédéric Pignon^{1*}, Mathilde Challamel¹, Antoine De Geyer¹, Mohamad Elchamaa¹, Enrico F. Semeraro¹, Nicolas Hengl¹, Bruno Jean², Jean-Luc Putaux², Erwan Gicquel³, Julien Bras³, Sylvain Prevost⁴, Michael Sztucki⁴, Theyencheri Narayanan⁴ and Henda Djeridi⁵

Supplementary Material

Figure S1. Calculation from Son (2007) of mean shear rate $\dot{\gamma}_y$, apparent shear rate $\dot{\gamma}_a$ of a rectangular die and the wall shear rate $\dot{\gamma}_w$ taking into account the shear thinning behavior (shear thinning index n) of the CNCs according to the three different regimes of the flow curve for the two CNC concentrations C = 9 wt% and C = 10 wt%. n1, n2, n3 values of shear thinning index according to regimes I, II and III, respectively (C = 9 wt%: n1 = 0.0940, n2 = 0.9626, n3 = 0.6401, and C = 10 wt%: n1 = 0.1857, n2 = 0.8686, n3 = 0.6228).

Figure S2. a,b) TEM images of negatively stained preparations of CNCs.

Figure S3. SALS pattern of a CNC suspension at rest, $q_P = 0.00238 \text{ nm}^{-1}$ and determination of the corresponding pitch distance P = 5279 nm. $C = 9 \text{ wt\%} (\phi = 5.82 \text{ vol\%})$ with 0.01 mol L⁻¹ NaCl at $T = 25 ^{\circ}$ C.

Figure S4. In situ SALS pattern of a CNC suspension under shear in regime II at a shear rate = 13.3 s⁻¹ and time t = 14.5 s. C = 9 wt% ($\phi = 5.82$ vol%) with 0.01 mol L⁻¹ NaCl at T = 25 °C.

Figure S5. Azimuthally averaged I(*q*) a) (plotted over a wide range of *q*) and sector averaged I_v(*q*) b) (plotted on a narrow *q* range) of the Rheo-SAXS measurements from a CNC suspension under steadystate flow, for successive steps of applied shear rates. C = 9 wt% ($\phi = 5.82$ vol%) with 0.01 mol L⁻¹ NaCl at T = 24.5 °C.

Figure S6. 2D-SAXS patterns from CNC suspension under steady-state flow for successive steps of applied shear rates, in radial (Ra) and tangential (Ta) positions, corresponding to observation planes (z, v) and (z, grad v). (a) C = 1.35 wt%, D = 2 m, and (b) C = 6 wt%, D = 10 m, 0.01 mol L⁻¹ NaCl, T = 24.5 °C.

Figure S7. 2D-SAXS patterns from CNC suspension under steady-state flow for successive steps of applied shear rates, in radial (Ra) and tangential (Ta) positions, corresponding to observation planes (*z*, *v*) and (*z*, *grad v*). C = 9 wt%, D = 10 m, 0.01 mol L⁻¹ NaCl, T = 24.5 °C. Notice that the first 2D-SAXS pattern at rest (shear rate = 0 s⁻¹) in Ra is slightly anisotropic, while not completely relaxed after a precedent step applied at high shear rate of 1000 s⁻¹.

Figure S8. SALS patterns and corresponding calculated anisotropy parameter as a function of *q* of the CNC suspensions at rest and under shear in steady state for different increasing shear rate belonging to regime I, II and III and pertaining to procedure P2. C = 9 wt% ($\phi = 5.82$ vol%) with 0.01 mol L⁻¹ NaCl at T = 25 °C.

Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation 8 probed by SAXS and SALS, Pignon et al. Carbohydrate Polymers ref : CARBPOL-D-20-05500

Figure S9. SALS patterns and corresponding calculated anisotropy parameter as a function of q of the CNC suspensions under shear in steady state for different increasing shear rate belonging to regime II and III and pertaining to procedure P2. (C = 10 wt%, ($\phi = 6.49 \text{ vol\%}$) with 0.01 mol L⁻¹ NaCl at T = 25 °C. vol%.

Figure S10. Transient state relaxation of the CNC suspensions under *in situ* SALS. Scattering patterns and corresponding I_v a) and I_h b) sector averaged of the scattered intensity as a function of time, pertaining to procedure P3 with initial shear rates belonging to regime III at 1068 s⁻¹. t = 0 s correspond to the cessation of flow. C = 9 wt% ($\phi = 5.82$ vol%) with 0.01 mol L⁻¹ NaCl at T = 25 °C.

Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation 10 probed by SAXS and SALS, Pignon et al. Carbohydrate Polymers ref : CARBPOL-D-20-05500

Figure S11. Transient state relaxation of the CNC suspensions under *in situ* SALS. Scattering patterns and corresponding radial averaged of the scattered intensity as a function of time, pertaining to procedure P3 with initial shear rates belonging to regime III at 1068 s⁻¹. t = 0 s correspond to the cessation of flow. C = 10 wt% ($\phi = 6.49$ vol%) with 0.01mol L⁻¹ NaCl at T = 25 °C.

Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation 11 probed by SAXS and SALS, Pignon et al. Carbohydrate Polymers ref : CARBPOL-D-20-05500