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The 2020 Bilingual, Bi-Directional WebNLG+ Shared Task Overview and Evaluation Results (WebNLG+ 2020)

WebNLG+ offers two challenges: (i) mapping sets of RDF triples to English or Russian text (generation) and (ii) converting English or Russian text to sets of RDF triples (semantic parsing). Compared to the eponymous WebNLG challenge, WebNLG+ provides an extended dataset that enable the training, evaluation, and comparison of microplanners and semantic parsers. In this paper, we present the results of the generation and semantic parsing task for both English and Russian and provide a brief description of the participating systems.

Introduction

The motivation behind the WebNLG challenges is twofold. On the one hand, we seek to provide a common benchmark on which to evaluate and compare "micro-planners", i.e., Natural Language Generation (NLG) systems which can handle the full range of micro-planning tasks including document structuring, aggregation, regular expression generation, lexicalisation and surface realisation [START_REF] Reiter | Building natural language generation systems[END_REF]. On the other hand, we are interested in building connections with research from the semantic web community which explores the relationship between knowledge bases (KBs) and natural language. There is a clear parallel between open information extraction (Open IE) and RDF-based semantic parsing, and between RDFto-Text generation and KB verbalisation. Yet the interaction between NLP and Semantic Web research remains limited. By highlighting the NLP tasks involved in mapping RDF triples and natural language, we aim to stimulate cross-fertilisation between NLP and Semantic Web research.

WebNLG datasets align sets of RDF triples with text. While the 2017 WebNLG shared task required participating systems to generate English text from a set of DBpedia triples (Gardent et al., 2017b), the 2020 WebNLG+ challenge additionally includes generation into Russian and semantic parsing of English and Russian texts. Thus the WebNLG+ challenge encompasses four tasks: RDF-to-English, RDF-to-Russian, English-to-RDF and Russian-to-RDF.

Timeline. The training and development data was released on April 15, 2020, preliminary evaluation scripts on April, 30th and final evaluation scripts on May, 30th. The test data was made available on September, 13th and the deadline for submitting system results was September, 27th. Automatic evaluation results were announced on October, 9th and the first version of the human evaluation results on November, 20th. The final version of the human evaluation results were released on November, 26th. Results were first released anonymously so that participants had the opportunity to withdraw their systems.

In what follows, we summarise the main features of WebNLG+ 2020. Section 2 describes the datasets used for the challenge. Section 3 presents the participating systems. Section 4 introduces the evaluation methodology, Section 5 discusses the participants results in the automatic evaluation and Section 6 in the human evaluation. Finally, Section 7 depicts the correlations between automatic evaluation metrics and human ratings as well as Section 8 concludes with pointers for further developments.

Data

English WebNLG

The English challenge data uses the version 3.01 of the WebNLG corpus (Gardent et al., 2017a). This version has undergone some significant changes compared to the data used in WebNLG'2017. The training data in 2020 consists of 16 DBpedia categories:

• the 10 seen categories used in 2017: Airport, Astronaut, Building, City, ComicsCharacter, Food, Monument, SportsTeam, University, and WrittenWork;

• the 5 unseen categories of 2017 that became part of the seen data in 2020: Athlete, Artist, CelestialBody, MeanOfTransportation, Politician;

• one new category that was added to the training set (Company).

The following data improvements were also carried out: (i) around 5,600 texts were cleaned from misspellings, and missing triple verbalisations were added to some texts; (ii) information about tree shapes and shape types were added to each RDF tree; (iii) some properties were unified to ensure consistency across the corpus. Table 1 shows some dataset statistics. Training and developments sets were the same for the data-to-text (D2T) and semantic parsing (SP) tasks, unlike the test sets which are different for the two tracks. New test sets were also collected for English because the previous test set has been made public. Following the tradition of several test data types, introduced in the previous shared task (Gardent et al., 2017b), we kept them in this year edition and introduced one new type unseen entities. The three types of the test data are:

• seen categories: RDF triples based on the entities and categories seen in the training data (e.g., Alan Bean in the category Astronaut);

• unseen entities: RDF triples based on the categories seen in the training data, but not entities (e.g., Nie Haisheng in the category Astronaut);

• unseen categories: RDF triples based on the categories not present in the training data. Three unseen categories were introduced in this year edition: Film, Scientist, and Musical-Work. Out of 220 unique properties in the test set for the D2T task, 39 properties were never seen in the training and development data.

Statistics of the test splits are shown in Table 2. Unlike the test set, the development set included data from seen categories only. However, participants were notified about the inclusion of unseen data from the beginning of the challenge and had to model the unseen data scenario by their own means.

New data for WebNLG-3.0 was collected with Amazon Mechanical Turk, and some triple verbalisations (part of the Film category) were done by students. For crowdsourcing, we followed the same procedure as was followed for the collection of the initial WebNLG data (Gardent et al., 2017a), but without the verification step. Instead, after collection, a spellchecker and quality checks were run and, if problems were spotted, texts were edited manually. Quality checks mainly consisted in verifying if triple entities are present in texts. We collected around three references per RDF triple sets.

Russian WebNLG

Russian WebNLG was translated from English WebNLG for nine DBpedia categories: Airport, Astronaut, Building, CelestialBody, ComicsCharacter, Food, Monument, SportsTeam, and University. Table 3 shows some statistics of the Russian dataset. For the test set, only the data of the seen categories type is present, which makes the Russian track much easier to handle for participating systems.

Russian data also possesses some additional features compared to the English data: links between English and Russian entities from subjects and verbal objects of RDF triples were given. Some of them were extracted from DBpedia between En- glish and Russian entities by means of the property sameAs (e.g., (Spaniards, sameAs, испанцы)). For the entities without such a property, links were created manually. The links served as pointers for translators. During the test phase, those features were available for the RDF-to-text track. The Russian data creation followed the procedure below:

1. Russian WebNLG was translated from the English WebNLG version 2.0 with the MT system of [START_REF] Sennrich | The University of Edinburgh's Neural MT Systems for WMT17[END_REF], as described in [START_REF] Shimorina | Creating a corpus for Russian datato-text generation using neural machine translation and post-editing[END_REF].

2. It was then post-edited using crowdsourcing on the Yandex.Toloka platform in two steps:

• we asked people to post-edit Russian texts given original English texts and provided them with some pointers for translation of entities (the links described above). Crowdworkers were asked to use the pointers as much as possible.

• given the post-edited sentences, we asked people to check if the text was translated properly (in terms of grammar, spelling, etc.) and if the entity translation was correct. If the translation was detected as erroneous, it was moved to the post-edit step again.

3.

Afterwards, some sanity checks and a spellchecker were run to ensure data quality. All the detected cases were then manually verified by experts (Russian native speakers), and they edited the texts one more time if needed.

Based on this procedure, we assume that the Russian data is of a decent quality. However, based on manual inspections, some texts may still be lacking in terms of fluency and correctness. Note also that the Russian version was derived from the English WebNLG version 2.0, where some errors in semantic content realisation were present.

Participating Systems

The WebNLG+ data was downloaded more than 100 times, 17 teams submitted 48 system runs.

From this sample, two teams withdrew their results, which gave us 15 participating teams with 46 runs for automatic evaluation (Table 4). For human evaluation, we evaluated 14 teams for English and 6 teams for Russian. Only one team participated in all four tasks (bt5). Two participants (Amazon AI (Shanghai) and CycleGT) submitted models for both generation and semantic parsing but only for English. All other submissions focused on generation, one only for Russian (med), five for English only (TGen, UPC-POE, RALI-Université de Montréal, ORANGE-NLG, NILC) and four for both Russian and English (cuni-ufal, FBConvAI, Huawei Noah's Ark Lab, OSU Neural NLG).

In what follows, we summarise the primary submissions of the 15 participating teams.

Monolingual, Mono-Task,

Template-based Approaches Among all system submissions, two of them used templates: RALI-Université de Montréal and DANGNT-SGU.

RALI-Université de Montréal. Lapalme (2020) implements a symbolic approach which captures the various substeps of NLG programmatically.

The input set of RDF triples is partitioned and ordered into sentence sized subsets. Each subset is then transformed into a sentence using Python procedures designed to encode 200 manually defined sentence templates. Aggregation is handled by combining templates and referring expression generation by using names for first occurrences and pronouns for subsequent occurrences (within a template). The REAL surface realiser is used to map the resulting sequence of sentence templates to sentences.

DANGNT-SGU. [START_REF] Tran | Webnlg 2020 challenge: Semantic template mining for generating references from rdf[END_REF] derive delexicalised templates from the data by replacing RDF subjects and objects with placeholders and identifying their text counterparts using the Jaro-Winkler similarlity metrics.

3.2 Mono-lingual, Mono-task, Neural Approaches med. [START_REF] Blinov | Semantic triples verbalization with generative pre-training model[END_REF] focuses on generation into Russian. They used the pre-trained Russian GPT-2 language model [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] augmented with a classification head and fine-tuned on the WebNLG+ RDF-to-Russian dataset. The author experimented with various sampling methods and 2020) explore data augmentation for RDF-to-English generation. They pre-train BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pretraining for natural language generation, translation, and comprehension[END_REF] first on a corpus of Wikipedia sentences (57 million sentences) and second on a noisy RDF/English text corpus they created using Open Information Extraction on the collected sentences. For fine-tuning, they experiment with curriculum learning based on the size (number of triples) of the input. They find that pre-training and data augmentation does help improve results. Conversely, they found that curriculum learning leads to a drop in performance.

TGen. [START_REF] Kertkeidkachorn | Text-to-text pre-training model with plan selection for rdf-to-text generation[END_REF] introduce a pipeline model which first orders the input triples (plan selection) and second verbalises the resulting sequence of triples (verbalisation). Verbalisation is done using the T5 transformerbased encoder-decoder model [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] trained through an unsupervised multi-tasking (span masking) on the Colossal Clean Crawled Corpus (C4) and fine-tuning on the RDF-to-English dataset. The Plan Selection model is learned using a ranking loss on a corpus which aligns each set of RDF triples with its possible linearisations and the corresponding texts (using the verbaliser) and where the plan which yields the text with the highest BLEU score is labelled as correct. For fine-tuning, they compare monolingual models, bilingual models multi-tasked on both languages and then fine-tuned for one and the same bilingual models fine tuned on a corpus derived from the WebNLG+ data by aligning English and Russian sentences and entities. They find that the later model provides significant improvements on unseen relations.

Evaluation Methodology

4.1 RDF-to-Text (Generation) Automatic Metrics. The participating systems were automatically evaluated with some of the most popular traditional and novel text generation met-rics. In the former group, we compared the textual outputs of the participating systems with their corresponding gold-standards using BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF], regular and with the Smoothing Function 3 proposed in (Chen and Cherry, 2014) (e.g., BLEU NLTK); METEOR [START_REF] Lavie | METEOR: An automatic metric for MT evaluation with high levels of correlation with human judgments[END_REF]; TER [START_REF] Snover | A study of translation edit rate with targeted human annotation[END_REF] and chrF++ [START_REF] Popović | chrF++: words helping character n-grams[END_REF] (with word bigrams, character 6grams and β = 2). Regarding the novel metrics, we computed BERTScore [START_REF] Zhang | Bertscore: Evaluating text generation with bert[END_REF] for English and Russian outputs and BLEURT (Sellam et al., 2020) (with bleurt-base-128 version) for the English ones. The main difference between traditional and novel metrics is that the former measures the similarity between hypothesis and references using a discrete representation of their tokens, whereas the latter methods use a vector representation of these units. As an outcome of this shared task, we aim to investigate which one out these two kinds better correlate with human ratings.

For both considered languages, the participating systems were automatically evaluated in a multireference scenario. Each English hypothesis was compared with a maximum of 5 references, and each Russian one with a maximum of 7 references. On average, English data has 2.89 references per test instance, and Russian data has 2.52 references per instance. We requested the participants to provide their hypothesis in the detokenised and truecased form. Thus, the metrics were computed over the truecased format of the inputs. For the traditional metrics (e.g., BLEU, METEOR, chrF++, etc.), we tokenised the texts using the NLTK framework [START_REF] Loper | NLTK: the natural language toolkit[END_REF] for English, and razdel 2 for Russian. Novel metrics as BERTScore and BLEURT provide their own tokenisers.

Human Evaluation. We have conducted a human evaluation of all submitted systems for the RDF-to-Text task for both English and Russian data. In case of multiple submissions per participant for a single task, we asked to indicate the primary submission for human evaluation. Thus, we had fourteen submissions for English data and six submissions for Russian data. We have also evaluated baseline outputs and ground-truth references of both English and Russian data.

For both English and Russian data, we sampled 10% of RDF-text pairs from the respective test set 2 https://github.com/natasha/razdel for human evaluation in a random stratified fashion. Specifically, we sampled 178 triples from the English test set and 110 triples from the Russian test set. As Table 5 shows, we randomly chose samples based on the number of triples in a single data item. We also controlled for the type of the triples: our English data for human evaluation contained 54/37/87 samples for seen categories, unseen entities and unseen categories respectively. Russian data had triples of the first type only (seen categories). For each sample, we collected judgements from three different annotators. Our human annotators were recruited through the crowd-sourcing platform Amazon Mechanical Turk (MTurk) for English data and Yandex.Toloka for Russian data.

They were asked to evaluate each sample based on the following criteria:

1. Data Coverage: Does the text include descriptions of all predicates presented in the data?

2. Relevance: Does the text describe only such predicates (with related subjects and objects), which are found in the data?

3. Correctness: When describing predicates which are found in the data, does the text mention correct the objects and adequately introduces the subject for this specific predicate?

4. Text Structure: Is the text grammatical, wellstructured, written in acceptable English language?

5. Fluency: Is it possible to say that the text progresses naturally, forms a coherent whole and it is easy to understand the text?

Example tasks presented to the annotators (with criteria descriptions and examples of the data) are shown in the Appendix A for English and Appendix B for Russian. As can be seen from these examples, each annotator saw the following elements when working on our task: (i) the set of instructions with descriptions of each criterion, (ii) data (a collection of RDF triples), (iii) a system output (a text). Under each criterion description, a slider for the scale from 0 to 100 was given. Human annotators were required to use the slider and the scale to indicate the extent to which they agree with the statement about the specific measure. Each annotator was presented with a single evaluation sample per page. The full set of instructions is available in the GitHub challenge evaluation repository3 .

Our English tasks were available for annotators from English-speaking countries (the US, the UK, Australia, Ireland, Canada), who have completed more than 5,000 tasks on MTurk and had the approval rate of at least 95%. If a sample had 1, 2 or 3 RDF triples, we paid 0.15$ for the annotation of that sample. For triples of other sizes (4-7), we paid 0.20$ due to the higher task complexity. Our Russian tasks were available for the Russian-speaking annotators from Russia, Ukraine, Belarus and Kazakhstan. We paid the same amount of money for completing the Russian data annotation task as for the English data collection.

To ensure the quality in annotators' judgements, we conducted a round of qualification tasks. Only workers who have completed these tasks were allowed to participate in our primary tasks. The qualification tasks were created manually and included two examples of RDF-text pairs per single task. These tasks contained multiple instances of several types:

• The text correctly depicts and describes all information from the data (expected rating: high for all criteria).

• The text does not meet requirements for a single criterion (expected rating: low for the specific criterion).

• The text has many flaws across the majority of criteria (expected rating: low for most of the criteria).

A single annotator was qualified to work on the actual tasks if, given the results of qualification round (i) both qualification samples were evaluated as expected, (ii) evaluation of one qualification sample was slightly varied from what is expected. In all other cases, the annotator was not given access to our tasks. We also removed all annotators who were rating English ground-truth texts with low scores across multiple criteria. For Russian data, we manually controlled for this aspect since not all ground-truth texts are of high quality.

We conducted two rounds of human evaluation for English data and have recruited 109 annotators. We have also imposed soft limitations on the number of samples an annotator is allowed to evaluate. In the first round, we allowed each worker to complete 150-170 tasks. In the second round, the range was changed to 130-150 tasks per annotator. Annotators from the first round (experienced annotators) were asked to participate in the second round. With this, we aimed at using their high level of expertise in our task to get better and more consistent judgements. For English data, we collected judgements from 109 annotators with 63 experienced annotators. Similarly, for Russian data, we recruited 37 annotators and each of them was allowed to submit 80-100 tasks in the first round and 120-140 tasks in the second round. We note that we softly controlled the number of possible task submissions per worker. We tracked the number of submitted tasks from each worker and restricted their access when the number had exceeded the limit. This update was performed every 5 minutes, and during this period, the worker could have submitted more tasks than allowed. Therefore, we do not set the maximally allowed number of submitted tasks per worker to a single number, but to a range of numbers instead. Fig. 1 demonstrates the distribution of task submissions for all our annotators. Also, we manually checked submissions from each annotator who participated in our tasks. We have noticed the following patterns in the behaviour of bad annotators: first, their submissions contained identical scores (e.g., all 0s, all 100s, all 50s, etc.) for all criteria across all RDF-text sets. Second, their scores for several criteria were not logically correct (e.g., a low score for Data Coverage given that the text covers all predicates from the data). Third, bad submissions were typically sent in a short amount of time (around 10-20 seconds to complete a single task), and all bad annotators were highly active in submitting many tasks. Based on these patterns, we manually judged workers as either spammers or not. For English data, we identified 21 bad annotators, submitting around 25% of all data for English evaluation. We recollected 20% of these annotations, ensuring that their quality is reliable, and removed the other 5% of data from the results. For Russian data, we identified four malicious annotators who submitted around 5% of all data. We recollected these judgements. 4Overall, we spent around 490 US dollars and 2,400 US dollars for human evaluation of Russian and English data, respectively.

Once the human evaluation was done, we preprocessed the ratings before computing the final human evaluation rankings for the systems:

• To diminish the differences between the scoring strategies of the distinct human raters, we normalized the scores of each participant by computing their z-scores (scores subtracted by the participant's overall mean score divided by their overall standard deviation).

• The standardised scores were averaged for each instance (as around 3 judgements were collected per instance), and then they were averaged across all sample instances (avg. z).

• We performed the Wilcoxon Rank-Sum Test to evaluate whether there is a statistically significant difference between the average evaluation scores of the systems. The result is shown as a system's rank, which was set measuring the pair-wise statistical tests between the averaged z-score results of a top-performing systems with the results of each of its lowerperforming ones.

• We computed final human evaluation results for (i) the whole set of sampled test set outputs per system, (ii) for outputs per each test set type (seen categories, unseen entities, unseen categories).

Baselines. We used the FORGe generator (Mille et al., 2019a) as a baseline, an all-purpose grammarand template-based generator that takes predicateargument structures as input. FORGe was adapted to triple-based inputs such as the E2E and several DBpedia-oriented datasets -including WebNLG and WebNLG+ -with the addition of a module for the mapping of RDF to predicate-argument (external module) and a module for aggregation. It consists of 16 graph-transduction grammars that perform the following tasks as a pipeline: (i) aggregation of predicate-argument templates, (ii) definition of sentence structure for each resulting aggregated graph, (iii) introduction of idiosyncratic words and syntactic relations, (iv) syntax-based sentence aggregation and referring expression generation, and (v) linearisation and inflection. The grammars currently contain about 2,000 active rules, most of which are language-and domain-independent. 5 For instance, the micro-planning grammars use features such as the presence of repeated substructures to package some triples together, but do not target specific elements. Similarly, the sentence structures are chosen by default according to the configuration of the packaged semantic graph.

For the adaptation of the generator to the WebNLG+ dataset, the following steps were required: (i) for each individual property, one predicate-argument template (in a PropBank-like fashion (Babko-Malaya, 2005)) was handcrafted, (ii) for each lexical unit used in the templates, a lexicon entry was added with the description of its subcategorisation pattern and minimal collocation information, (iii) each inflected form needed for the verbalisation was added to morphological dictionary, and (iv) the coverage of a few rules was extended to handle new configurations. Most of the templates, lexical units and full-fledged forms had already been established for the first edition of the WebNLG challenge. The training and development sets were used to see how the different properties are verbalised and to get inspiration for crafting the predicate-argument templates; basic templates were also added for each unseen property.

During the mapping from the RDF triples to the predicate-argument structures, we added information (in the form of feature-value pairs) obtained by querying DBpedia (class, number, cardinality, gender), removed all Wikipedia disambiguation information, i.e. what is in parentheses in the subject and object values, added generic processing rules to normalise numbers and dates, and split comma-separated object values. We also added rules specific to the WebNLG+ dataset to handle semantically overlapping triples (e.g. the triple about a person being deceased was removed when there was a triple about the death date). Before being sent to FORGe, the triples were ordered in a way that the ones with common subject and/or object are consecutive, the triples involving the most frequent entities being placed at the beginning. Since the semantic and syntactic aggregation grammars only group a triple/syntactic subtree with a (directly or indirectly) preceding element, this partially establishes the final order in which the triples are verbalised.

For English, the second baseline is the FORGe system as submitted at the WebNLG 2017 task (Mille et al., 2019b), which we run using the WebNLG+ predicate-argument templates, lexical and morphological resources. The second baseline does not have access to the improvements in terms of grammars (in particular about sentence structuring and triple-and syntax-based aggregations) that the first baseline has. For Russian, we generated English texts using the first baseline, and translated the outputs using Google Translate.

The motivation behind using a rule-based baseline is to be found in the 2017 task, in which FORGe got stable results in the human evaluations for the seen and unseen categories, with high scores according to all evaluation criteria. We expect the baseline to score reasonably high in terms of human assessments, in particular according to coverage, correctness and relevance, since there are no hallucinations in grammar-based systems, and we ensured that all the properties are covered. For fluency and text structure, we expect the scores to be lower, but to still provide a strong baseline.

Text-to-RDF (Semantic Parsing)

For the Semantic Parsing task, we did not conduct the human evaluation of the submitted systems. Thus, only automatic metrics were used to evaluate the performance.

Automatic Metrics. Precision, Recall, and F1 score metrics were calculated for the Text-to-RDF task. This calculation was based on the Named Entity Evaluation for SemEval 2013, Task 9.1 [START_REF] Segura-Bedmar | SemEval-2013 task 9 : Extraction of drug-drug interactions from biomedical texts (DDIExtraction 2013)[END_REF]. First, the triples were preprocessed: the snake cased subject and object, and camel cased predicate, were converted to regular strings. Then, the resulting strings were lowercased, quotation marks were removed, and if an object contained text between parentheses (e.g., "The Honeymoon Killers (American band)"), that was removed as well. After this pre-processing step, the evaluation script looked for the optimal alignment between each candidate and reference triple. Then, generated triples and gold standard triples were converted separately to a string with start and end index information. Furthermore, the subject, verb, and object information were saved as an entity for the evaluation. With this information, using metrics based on Named Entity Evaluation becomes possible. Four different ways to measure Precision, Recall, and F1 score were investigated (see also For development purposes, the evaluation script also provided information about the number of correct, incorrect, partial missed, spurious, possible, and actual matches for the four measures.

Baselines. A baseline was constructed by using Stanford CoreNLP's Open Information Extraction module [START_REF] Manning | The Stanford CoreNLP natural language processing toolkit[END_REF] on the texts in the test set. This module allows for the extraction of subjects, relations, and objects in a string without any training necessary. Extraction of these triples was limited to 10 per text, to avoid memory overflow errors when running the evaluation script. As this Open Information Extraction module was only developed for English, the Russian sentences were translated to English using DeepL,7 before extracting the RDF triples using Stanford CoreNLP's Open Information Extraction module.

Results of Automatic Evaluation

In this section, we present the automatic scores on English and Russian datasets for both tasks, namely, RDF-to-text and Text-to-RDF. For English, we discuss the automatic scores, and make a distinction between results on (i) the entire dataset, (ii) seen semantic categories, (iii) seen semantic categories but unseen entities and (iv) unseen semantic categories. For Russian, the only reported results are for the entire dataset, as the test set only contained seen entities and categories.

RDF-to-text

English. Table 6 displays the results of the automatic evaluation of the RDF-to-text systems, ordered by METEOR scores on the entire test set. Most systems (10 out of 15) outperformed at least one of the baselines, which are highlighted in gray.

Following a popular trend in Natural Language Processing, fine-tuning large pre-trained language models, such as BART and T5, was a common strategy among the participants to achieve better results. From the 6 best ranked systems for instance, 4 made use of T5 (1st, 2nd, 4th and 5th), the third used BART whereas the sixth generates the texts using a multilingual version of the latter called mBART. In the comparison between rule-based and neural approaches, results of the latter were usually higher than the former. Out of the 4 rule-based systems (including the baselines), DANGNT-SGU was the one that ranked highest in the automatic evaluation, being in the 7th position.

Table 8 depicts the results distinguished by (i) trials from semantic categories seen during train-ing, (ii) trials from seen categories but with entities that were unseen during training and (iii) trials from categories fully unseen during training. We hypothesise that the difficulty increases along the different test sets: converting RDFs from semantic categories seen during training to texts is easier than generating from unseen semantic categories, where we want to evaluate how well the models can generalize. This hypothesis is indeed supported when looking at the number of systems that outperform the baselines (mostly based on their ME-TEOR scores). 12 out of 15 systems were better than both baselines in the seen categories, whereas only 10 outperform the baselines in the fully unseen categories.

Across the three kinds of evaluation, the top performing systems were basically the same, except for NUIG-DSI which took the second position in the unseen entities, showing a better generalisation capability in comparison to the other top 5 systems. Conversely, ORANGE-NLG and NILC were ranked better when generating text for RDFs seen during training, but performed poorly when information not seen during training was present in the input RDF triples.

Russian. Table 9 shows the automatic evaluation results for the entire test set. Out of the 6 RDF-totext systems for Russian, 5 are bilingual and were also submitted for the English variation of the task. These system were also the top performing ones, ranked higher than the unique monolingual systems for Russian. From the bilingual approaches, 2 are based on a T5 fine-tuned language model and 2 on the BART language model. In the comparison among them, bt5 showed a superior performance in terms of METEOR and chrF++, however, on the other metrics cuni-ufal performed better. Our baseline was the system which had the lowest scores. Such results were expected due to its out- puts were obtained by simply automatically translating the texts generated by the English baseline.

5.2 Text-to-RDF English. Table 10a shows the results for the entire test set. bt5 and Amazon AI (Shanghai) achieved similar results. bt5 achieved higher scores than Amazon AI (Shanghai) on the more liberal Ent Type and Partial measurement types, while Amazon AI showed better results on the stricter Exact and Strict matches.

Table 11 depicts the results distinguished by (1) trials from categories seen during training, (2) trials from seen categories but with unseen entities during training and (3) trials from domains fully unseen during training. For the seen categories, bt5 demonstrated superior performance, achieving higher F1 scores across all metrics in comparison to the other participants.

On unseen categories, Amazon AI (Shanghai) took the first place on this test set showing a generalisation capability for handling unseen categories. Amazon AI (Shanghai) achieved nearly 0.66 F1 across all metrics while the second-best performing system, bt5, achieved 0.60 on average. CycleGT performed slightly better than the baseline but still improved over the baseline results.

Amazon AI (Shanghai) also took first place on the unseen entities set and achieved nearly 0.75 F1 across all metrics while the second-best performing system, bt5, achieved 0.64 on average. Similar to the unseen categories, CycleGT also achieved a slight improvement over the baseline for the unseen entities. The results of all systems on this test set show a similar tendency as the unseen categories test set, but, overall, the scores were higher than on unseen categories. The results on the unseen test sets suggest that the bt5 and Amazon AI (Shanghai) models were reasonably capable of generalising the position of the entities in the text. This is further corroborated by the relatively small drop of those models between the seen and unseen test sets. However, the differing nature of the entities across categories made generalisation more difficult.

Russian. Table 10b shows the results on the entire test set, which was comprised of seen categories only. bt5 was the only system to perform this task and achieved impressive F1 results in comparison to the baseline on all metrics. It also achieved even higher scores than the bt5 system obtained on the English seen categories test set. 

Results of Human Evaluation

In this section, we describe the results of the human evaluation conducted on a sample of the outputs of RDF-to-text system submissions for both English and Russian data. For English we evaluate systems' performance for (i) the full sampled test subset, (ii) subsets of each of the triple categories (seen categories, unseen entities, unseen categories). For Russian, we provide results for the full sampled test subset only. The final results for all test data types are shown in Table 12 for English systems.

In Table 13 we evaluate systems for each of the test data types separately for the English data. Table 14 shows results for Russian system submissions.

English. Table 12 shows the results of the human evaluation for the RDF-to-text task for English system submissions. We first look at the differences between the results of the human and automatic evaluation: although the Fluency and Text Structure ratings of the rule-based systems (RALI-Université-Montréal, DANGNT-SGU, Baseline-FORGE2020) ranked similar to the automatic metrics in the lower part of the leaderboard, their human ratings for Data Coverage, Relevance and Correctness were among the highest.

Regarding Text Structure and Fluency, results of neural approaches as FBConvAI, AmazonAI (Shanghai) and OSU Neural NLG were rated surprisingly high, sharing the same ranking cluster with the groundtruth references (WebNLG-2020-REF). As expected, in terms of Data Coverage and Relevance, the rule-based participating systems (RALI-Université-Montréal, DANGNT-SGU) performed quite strongly, being in the same cluster as the references.

In fact, the relation between Fluency and Data Coverage is noticeably different: although systems based on fine-tuned T5 and BART language models ranked on the top for Fluency (Amazon AI, FBConvAI, OSU Neural NLG), the ones based on the latter language model (BART, FBConvAI) suffered a drop in performance in terms of Data Coverage, whereas the ones based on the former (T5) performed similarly to the rule-based approaches.

Table 13 depicts the human ratings for the RDFto-text task in English, discriminated by three types of data: seen categories, unseen entities and unseen categories. Across the three different types of data, it is possible to notice some of the tendencies that were also found for the automatic evaluation. For instance, the difference in performance between the three kinds of data from models like NILC and ORANGE-NLG, which introduce good results for trials from semantic categories seen during training, but fail to generalise to new entities and semantic categories. For unseen categories which were not presented during training, most of the models were not able to outperform the ground-truth references (WebNLG-2020-REF) across multiple criteria.

Note that the scores for unseen categories are generally lower for all systems compared to the scores for seen categories and unseen entities.

Overall, while rule-based systems (RALI-Université-Montréal, DANGNT-SGU) perform well for the criteria which evaluate connection between RDF triple and the text (Data Coverage, Relevance, Correctness), for the categories which evaluate naturalness and Russian. Table 14 shows the results of the human evaluation for the RDF-to-text systems in Russian. Similar to the automatic evaluation, the top-performing systems in all ratings are bt5, cuni-ufal and FBConvAI. Also, the ratings for the first two systems were significantly better than the ones for the ground-truth references for Relevance, Text Structure and Fluency. bt5 also ranked higher than the references for Correctness. As described in Section 2.2, Russian data might have issues with fluency and correctness, so we attribute the lower ratings for references to the quality of the data. Interestingly, Huawei Noah's Ark Lab performed much worse on the human evaluation across all criteria compared to their automatic evaluation metric scores.

Correlation between Automatic and Human Evaluation Metrics

Tables 15a and15b describe the sentence-level Pearson correlations of the evaluation metrics for the RDF-to-text task in English and Russian, respectively. Novel learned metrics, such as BERTScore and BLEURT, seem to correlate more with the human evaluation ratings than traditional token-and character-overlapping metrics, such as BLEU, METEOR, chrF++ and TER. For the English evaluation, BLEURT, the newest metric, was the one that best correlated with the human evaluation ratings, especially with Correctness and Fluency. For Russian, BERTScore was the automatic metric that best correlated with the human ratings, except for Data Coverage, with which chrF++ correlated the most. This latter was one of the character-and n-gram metrics that correlates more with human ratings.

This report described the data, participating systems, results and findings of the 2020 Bilingual, Bi-Directional WebNLG+ shared task. The shared task of this year involved two tasks: RDF-to-text and Text-to-RDF. In the following sections, we describe the main findings for each task conducted on this version of the shared task.

RDF-to-text

Similar to the WebNLG challenge of 2017, the RDF-to-text task consisted of verbalising sets of RDF triples. Different from the last version of this shared task, the task in this year was introduced in two languages: English and Russian. In total, we received 14 submissions for English and 6 for Russian.

Neural vs. Rule-based approaches. Looking at the results for the automatic and human evaluation, we could notice some differences between rulebased and neural approaches for data-to-text generation. The former models seem to automatically generate text comparable in quality with human texts in terms of adequacy, i.e., the generated texts express exactly the communicative goals contained in the input tripleset. On the other hand, novel neural approaches produce text comparable to human texts in terms of fluency.

Fine-tuned Large Language Models. Following a popular trend in Natural Language Processing, many of the participating neural approaches use fine-tuned large pre-trained language models, such as BART and T5. These systems, such as Amazon AI, FBConvAI, OSU Neural NLG and bt5 were among the top-ranked systems and were rated high in terms of fluency and structure of the generated texts. T5 and BART were the large language models most frequently used by the participating systems. When comparing the use of both models, they seem to perform similarly in terms of fluency. However, the systems based on BART suffered a drop in performance in terms of data coverage. In contrast, the ones based on the T5 performed similarly to the rule-based approaches.

Memorisation vs. Generalisation. We evaluated the RDF-to-text systems in distinct data settings in order to verbalise (i) trials from semantic categories seen during training, (ii) trials from seen categories but with entities that were unseen during training and (iii) trials from categories fully unseen during training. We hypothesise that the former setting is the easiest, since the generation models would just have to memorise the content seen during training. On the other hand, in the latter the models would have to generalize the content learnt during training to unseen data. In fact, results confirmed that converting RDF triples from semantic categories seen during training to texts is easier than generating from unseen entities and semantic categories.

Automatic vs. Human Evaluation Metrics.

We evaluated the participating systems using several traditional automated (e.g. BLEU, METEOR) metrics as well as novel learning-based evaluation ones (e.g. BERTScore, BLEURT) for text generation. The inclusion of all these metrics allowed us to investigate which metrics show stronger correlations with human ratings. We have observed that novel embedding-based metrics, such as BERTScore and BLEURT, achieved higher correlations with human ratings than traditional tokenoverlapping ones, such as BLEU and METEOR.

Parity with Human-Written References. Several systems achieved high performance in human evaluation across all the measured criteria and ended up in the same cluster with human references. Could we say that automatic systems generated almost human-like texts and "solved" the data-to-text WebNLG task? Those conclusions should be made with caution since the WebNLG dataset has its limitations. First, its vocabulary is relatively restricted; second, the dataset has a template-based structure where properties are lexicalised in a similar manner across texts. Given those drawbacks, the next edition of the shared task should aim for more complex and naturally occurring texts verbalising RDF triples. Specifically, for Russian, we will need to collect better data to measure parity with automatic systems.

Overall, modelling language is always a moving target. So we should strive for better and versatile datasets and evaluation settings.

Text-to-RDF

The Text-to-RDF task was a new challenge for WebNLG. Natural language texts had to be converted to RDF triples from the Semantic Web. Similar to RDF-to-text, this task was introduced in two languages: English and Russian. In total, three teams participated in the task. One team participated in both the English and Russian version of the task, whereas two participated only in the English version.

The evaluation was only performed using automatic metrics (F1, Precision, Recall) on four different levels (Exact, Ent Type, Partial, Strict). The results on these metrics for English submissions show that all of them were able to outperform the baseline based on Stanford CoreNLP's Open Information Extraction module [START_REF] Manning | The Stanford CoreNLP natural language processing toolkit[END_REF]. In particular, Amazon AI (Shanghai) and bt5 performed well compared to this baseline. At the same time, when comparing the results per data type, a drop in performance was observed for all systems when tested for the sets with unseen categories and unseen entities, indicating that all submitted semantic parsing systems struggle with generalisation to unseen entities and categories. However, note that the scores for Amazon AI (Shanghai) and bt5 still stayed relatively high when being tested on the unseen categories and unseen entities.

Only bt5 participated in the Russian version of the task and achieved very high scores compared to the baseline. However, we emphasise that the Russian test set included only seen entities and categories. Hence, it is not clear how well the Russian bt5 system would be able to generalize to unseen entities and categories.

Figure 1 :

 1 Figure 1: Annotator statistics: # of annotators vs. # of tasks submitted per annotator.
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 1 WebNLG 3.0 English data statistics. Properties: the number of unique DBpedia properties.

		Train	Dev Test (D2T) Test (SP)
	RDF triple sets 13,211 1,667	1,779	752
	Texts	35,426 4,464	5,150	2,155
	Properties	372	290	220	201

Table 2 :

 2 Number of RDF triple sets and texts by test set type for data-to-text and semantic parsing respectively.

Table 3 :

 3 WebNLG 3.0 Russian data statistics. Properties: the number of unique DBpedia properties.
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 4 WebNLG+ 2020 Participants.

with data augmentation. For data augmentation, they use the Baidu SKE dataset (194,747 RDF/Chinese text pairs) and automatically translate its text part into Russian. ORANGE-NLG.

Montella et al. (

Table 5 :

 5 The number of samples per triple set size from the test set for both languages.
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 7 

	): 6
	1. Strict: Exact match of the candidate triple
	element with the reference triple element is
	required. And the element type (subject, pred-
	icate, object) should match with the reference.
	2. Exact: Exact match of the candidate triple
	element with the reference triple element is
	required, and the element type (subject, predi-
	cate, object) is irrelevant.
	3. Partial: The candidate triple element should
	match at least partially with the reference
	triple element, and the element type (subject,
	predicate, object) is irrelevant.

Table 6 :

 6 Automatic Evaluation results for English RDF-to-text system submissions on the full test set. The teams are sorted by METEOR scores. Two baseline systems (from the previous and current WebNLG challenges) are coloured in grey. * indicates late submission.

	Team Name	BLEU	BLEU METEOR chrF++ TER NLTK	BERT BERT BERT BLEURT Precision Recall F1
	Amazon AI (Shanghai)	0.540 0.535	0.417	0.690 0.406 0.960 0.957 0.958	0.620
	OSU Neural NLG	0.535 0.532	0.414	0.688 0.416 0.958 0.955 0.956	0.610
	FBConvAI *	0.527 0.523	0.413	0.686 0.423 0.957 0.955 0.956	0.600
	bt5		0.517 0.517	0.411	0.679 0.435 0.955 0.954 0.954	0.600
	NUIG-DSI		0.517 0.514	0.403	0.669 0.417 0.959 0.954 0.956	0.610
	cuni-ufal		0.503 0.500	0.398	0.666 0.435 0.954 0.950 0.951	0.570
	DANGNT-SGU	0.407 0.405	0.393	0.646 0.511 0.940 0.946 0.943	0.450
	CycleGT		0.446 0.432	0.387	0.637 0.479 0.949 0.949 0.948	0.540
	RALI-Université de Montréal 0.403 0.393	0.386	0.634 0.504 0.944 0.944 0.944	0.450
	TGen		0.509 0.482	0.384	0.636 0.454 0.952 0.947 0.949	0.540
	Baseline-FORGE2020	0.406 0.396	0.373	0.621 0.517 0.946 0.941 0.943	0.470
	Huawei Noah's Ark Lab	0.396 0.387	0.372	0.613 0.536 0.935 0.937 0.935	0.370
	Baseline-FORGE2017	0.379 0.371	0.364	0.606 0.553 0.933 0.935 0.930	0.420
	NILC		0.320 0.313	0.350	0.545 0.629 0.920 0.922 0.920	0.400
	ORANGE-NLG	0.384 0.377	0.343	0.584 0.587 0.927 0.922 0.924	0.330
	UPC-POE		0.391 0.379	0.337	0.579 0.564 0.933 0.927 0.929	0.370
	Gold Gold	Pred Pred	Type Partial Exact Strict
	entity string entity string			
	SUB Bionico		MIS MIS MIS MIS
		OBJ Granola	SPU SPU SPU SPU
	PRED place	PRED birth place COR PAR INC INC
	SUB Bionico OBJ Bionico	INC COR COR INC
	PRED architect PRED architect	COR COR COR COR
	SUB Capers OBJ Super Capers INC PAR INC INC

4. Type:

The candidate triple element should match at least partially with the reference triple element, and the element type (subject, predicate, object) should match with the reference.

Table 7 :

 7 Examples of possible error types for semantic parsing, and how these are interpreted by the measures. COR = correct, INC = incorrect, PAR = partial, MIS = missed, SPU = spurious.
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	Seen Categories

Automatic Evaluation results for the RDF-to-text task for English on seen categories, unseen entities, and unseen categories. * indicates late submission.

Table 9 :

 9 Automatic Evaluation results for Russian RDF-to-text system submissions on the full test set. The systems are sorted by METEOR score and the baseline system is coloured in grey. * indicates late submission.

	Team Name	BLEU	BLEU METEOR chrF++ TER NLTK	BERT BERT BERT Precision Recall F1
	bt5	0.516 0.521	0.676	0.683	0.420	0.909	0.907 0.907
	cuni-ufal	0.529 0.532	0.672	0.677	0.398	0.914	0.905 0.909
	Huawei Noah's Ark Lab 0.468 0.468	0.632	0.637	0.456	0.899	0.890 0.893
	FBConvAI *	0.453 0.451	0.617	0.641	0.452	0.903	0.894 0.898
	OSU Neural NLG	0.473 0.477	0.616	0.622	0.453	0.897	0.882 0.888
	med	0.431 0.430	0.576	0.595	0.487	0.898	0.873 0.884
	Baseline-FORGE2020	0.255 0.256	0.467	0.514	0.665	0.841	0.835 0.837

Table 10 :

 10 Automatic Evaluation results for Text-to-RDF (Semantic Parsing) task for both languages represented with Macro scores.

	Team Name	Match	F1 Precision Recall
	Amazon AI (Shanghai) Exact	0.689	0.689	0.690
	Amazon AI (Shanghai) Ent Type 0.700	0.699	0.701
	Amazon AI (Shanghai) Partial	0.696	0.696	0.698
	Amazon AI (Shanghai) Strict	0.686	0.686	0.687
	bt5	Exact	0.682	0.670	0.701
	bt5	Ent Type 0.737	0.721	0.762
	bt5	Partial	0.713	0.700	0.736
	bt5	Strict	0.675	0.663	0.695
	CycleGT	Exact	0.342	0.338	0.349
	CycleGT	Ent Type 0.343	0.335	0.356
	CycleGT	Partial	0.360	0.355	0.372
	CycleGT	Strict	0.309	0.306	0.315
	Baseline	Exact	0.158	0.154	0.164
	Baseline	Ent Type 0.193	0.187	0.202
	Baseline	Partial	0.200	0.194	0.211
	Baseline	Strict	0.127	0.125	0.130
		(a) English submissions	
	Team Name Match	F1 Precision Recall
	bt5	Exact	0.911	0.907	0.917
	bt5	Ent Type 0.923	0.918	0.930
	bt5	Partial	0.917	0.913	0.924
	bt5	Strict	0.911	0.907	0.917
	Baseline	Exact	0.119	0.113	0.129
	Baseline	Ent Type 0.147	0.137	0.163
	Baseline	Partial	0.156	0.146	0.172
	Baseline	Strict	0.087	0.083	0.094
		(b) Russian submissions	

Table 11 :

 11 Text-to-RDF (Semantic Parsing) results per test data type for English: we show Macro scores for seen categories, unseen categories and unseen entities.

		Seen Categories
	Team Name	Match	F1 Precision Recall
	bt5	Exact	0.877 0.875 0.880
	bt5	Ent Type 0.888 0.885 0.891
	bt5	Partial	0.883 0.881 0.886
	bt5	Strict	0.877 0.875 0.880
	Amazon AI (Shanghai) Exact	0.693 0.693 0.694
	Amazon AI (Shanghai) Ent Type 0.718 0.718 0.718
	Amazon AI (Shanghai) Partial	0.707 0.707 0.707
	Amazon AI (Shanghai) Strict	0.693 0.692 0.693
	CycleGT	Exact	0.548 0.541 0.560
	CycleGT	Ent Type 0.618 0.599 0.648
	CycleGT	Partial	0.585 0.572 0.607
	CycleGT	Strict	0.545 0.538 0.558
	Baseline	Exact	0.165 0.163 0.170
	Baseline	Ent Type 0.211 0.205 0.221
	Baseline	Partial	0.211 0.205 0.221
	Baseline	Strict	0.140 0.139 0.143
		Unseen Categories
	Amazon AI (Shanghai) Exact	0.658 0.657 0.660
	Amazon AI (Shanghai) Ent Type 0.661 0.660 0.663
	Amazon AI (Shanghai) Partial	0.662 0.661 0.663
	Amazon AI (Shanghai) Strict	0.655 0.655 0.657
	bt5	Exact	0.551 0.540 0.568
	bt5	Ent Type 0.653 0.636 0.679
	bt5	Partial	0.609 0.595 0.631
	bt5	Strict	0.539 0.528 0.555
	CycleGT	Exact	0.223 0.222 0.227
	CycleGT	Ent Type 0.195 0.193 0.200
	CycleGT	Partial	0.234 0.233 0.240
	CycleGT	Strict	0.181 0.179 0.183
	Baseline	Exact	0.140 0.137 0.146
	Baseline	Ent Type 0.179 0.172 0.188
	Baseline	Partial	0.188 0.182 0.199
	Baseline	Strict	0.105 0.103 0.108
		Unseen Entities
	Amazon AI (Shanghai) Exact	0.746 0.746 0.747
	Amazon AI (Shanghai) Ent Type 0.751 0.750 0.753
	Amazon AI (Shanghai) Partial	0.751 0.751 0.753
	Amazon AI (Shanghai) Strict	0.740 0.739 0.741
	bt5	Exact	0.649 0.617 0.701
	bt5	Ent Type 0.675 0.640 0.731
	bt5	Partial	0.664 0.631 0.718
	bt5	Strict	0.645 0.614 0.697
	CycleGT	Exact	0.239 0.238 0.247
	CycleGT	Ent Type 0.185 0.183 0.188
	CycleGT	Partial	0.243 0.242 0.252
	CycleGT	Strict	0.179 0.178 0.182
	Baseline	Exact	0.184 0.178 0.194
	Baseline	Ent Type 0.196 0.190 0.205
	Baseline	Partial	0.210 0.202 0.224
	Baseline	Strict	0.152 0.149 0.157

Table 12 :

 12 Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Human Evaluation results for English: scores for all test data types. The systems are sorted by averaged Fluency raw scores. The colour intensity signifies final ranking in terms of averaged raw scores: more intense colour reflects higher performance for the specific criterion. * indicates late submission.

			DATA COVERAGE		RELEVANCE		CORRECTNESS	TEXT STRUCTURE		FLUENCY
	TEAM NAME Rank Avg. Z FBConvAI * 2 0.151	93.169	2	0.117	93.898	1	0.206	92.700	1	0.319	93.089	1	0.327	90.837
	AmazonAI (Shanghai)	1	0.222	94.393	1	0.214	95.196	1	0.248	93.531	1	0.305	92.951	1	0.326	90.286
	OSU Neural NLG	1	0.235	95.123	1	0.163	94.615	1	0.224	93.409	1	0.289	92.438	1	0.323	90.066
	WebNLG-2020-REF	1	0.251	95.442	1	0.139	94.392	1	0.256	94.149	1	0.254	92.105	1	0.279	89.846
	NUIG-DSI	2	0.116	92.063	1	0.161	94.061	1	0.189	92.053	1	0.258	91.588	2	0.233	88.898
	bt5	2	0.161	93.836	1	0.184	95.220	1	0.224	93.583	1	0.236	91.914	2	0.218	88.688
	cuni-ufal	2	0.155	93.291	1	0.164	94.555	1	0.161	91.587	1	0.208	90.752	2	0.185	87.642
	TGen	3	-0.075	88.176	1	0.132	92.640	2	0.074	88.626	1	0.168	89.041	2	0.182	86.163
	CycleGT	3	0.023	91.231	1	0.125	93.370	2	0.071	89.846	2	0.045	87.879	3	0.072	84.820
	Baseline-FORGE2020	1	0.170	92.892	1	0.161	93.784	1	0.190	91.794	2	0.039	87.400	3	0.011	82.430
	Baseline-FORGE2017	2	0.127	92.066	2	0.113	92.588	2	0.13	90.138	2	-0.064	85.737	4	-0.143	80.941
	DANGNT-SGU	1	0.259	95.315	1	0.185	94.856	1	0.179	92.489	3	-0.203	83.501	4	-0.161	78.594
	RALI-Université de Montréal	1	0.272	95.204	1	0.171	94.810	1	0.163	92.128	3	-0.285	81.835	4	-0.241	77.759
	ORANGE-NLG	5	-0.554	79.959	4	-0.710	79.887	4	-0.668	74.977	3	-0.338	80.462	5	-0.332	75.675
	Huawei Noah's Ark Lab	4	-0.310	84.743	3	-0.425	85.265	3	-0.389	80.760	3	-0.373	80.219	5	-0.369	75.205
	NILC	4	-0.477	81.605	3	-0.499	83.522	3	-0.589	76.702	3	-0.402	80.463	5	-0.408	74.851
	UPC-POE	6	-0.782	75.845	4	-0.531	82.051	4	-0.701	74.374	4	-0.456	78.503	5	-0.508	72.280

  Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw

			Data Coverage		Relevance			Correctness		Text Structure		Fluency	
	Team Name Rank Avg. Z FBConvAI * 1 0.178	93.543	2	0.112	93.111	1	0.261	93.472	1	0.326	92.966	1	0.358	91.654
	bt5	1	0.196	94.460	1	0.222	95.167	1	0.312	94.843	1	0.264	91.846	1	0.280	89.892
	cuni-ufal	1	0.257	94.941	1	0.203	94.870	1	0.273	93.886	1	0.263	91.429	1	0.281	89.454
	OSU Neural NLG	1	0.176	94.287	2	0.084	93.373	1	0.233	94.015	1	0.239	91.599	1	0.253	88.651
	NUIG-DSI	2	0.059	91.253	1	0.178	94.512	2	0.162	92.494	1	0.234	90.744	1	0.180	88.611
	WebNLG-2020-REF	1	0.264	95.491	1	0.135	94.142	1	0.236	93.355	1	0.198	91.225	1	0.225	88.136
	AmazonAI (Shanghai)	1	0.258	94.090	1	0.170	93.586	1	0.295	93.691	1	0.293	91.154	1	0.308	87.750
	NILC	1	0.225	94.448	1	0.266	96.269	1	0.212	93.071	1	0.212	91.225	2	0.155	87.306
	ORANGE-NLG	2	0.109	92.593	2	0.112	93.673	2	0.145	91.478	2	0.074	88.034	2	0.112	85.302
	Huawei	2	0.101	92.173	2	0.011	92.222	2	0.080	90.269	2	0.067	88.380	2	0.064	85.111
	CycleGT	3	-0.137	88.386	1	0.125	92.120	2	0.062	88.633	3	-0.121	84.262	2	-0.036	83.287
	TGen	3	-0.394	81.670	2	0.074	91.099	2	-0.028	86.793	2	0.034	86.886	2	0.005	83.037
	Baseline-FORGE2020	1	0.280	95.296	1	0.153	94.568	1	0.226	93.593	2	0.074	87.040	2	0.030	82.664
	UPC-POE	4	-0.404	82.173	2	-0.019	90.503	3	-0.115	84.858	2	0.096	87.309	2	-0.077	80.577
	DANGNT-SGU	1	0.239	94.367	1	0.164	93.596	2	0.140	90.772	3	-0.132	84.691	3	-0.159	79.559
	RALI-Université de Montréal	1	0.274	93.846	1	0.148	93.049	2	0.198	91.423	3	-0.170	82.614	3	-0.157	79.238
	Baseline-FORGE2017	2	0.065	90.253	2	-0.043	89.568	2	0.042	87.608	3	-0.160	82.892	3	-0.406	75.037
						(a) Seen categories							
			Data Coverage		Relevance			Correctness		Text Structure		Fluency	
	Team Name	Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
	AmazonAI (Shanghai)	1	0.291	95.532	1	0.272	96.329	1	0.293	94.703	1	0.348	94.288	1	0.452	93.365
	TGen	1	0.209	93.649	1	0.234	95.356	1	0.230	91.883	1	0.347	92.347	1	0.448	91.869
	FBConvAI *	2	0.139	93.536	2	0.169	95.644	1	0.201	94.000	1	0.334	94.405	1	0.365	91.599
	OSU Neural NLG	1	0.158	94.203	1	0.253	95.662	1	0.178	92.338	1	0.292	92.482	1	0.385	91.293
	WebNLG-2020-REF	1	0.283	95.991	1	0.315	97.117	1	0.268	95.171	1	0.281	93.189	1	0.285	90.788
	bt5	1	0.158	93.734	2	0.146	95.351	1	0.154	93.239	1	0.263	91.766	1	0.318	89.595
	NUIG-DSI	1	0.165	91.752	1	0.181	93.694	1	0.260	92.446	1	0.358	93.041	1	0.303	89.577
	CycleGT	2	0.094	92.703	1	0.181	95.198	1	0.171	92.541	1	0.233	92.036	1	0.286	89.189
	cuni-ufal	1	0.206	93.937	1	0.213	94.995	1	0.149	91.086	1	0.314	93.243	2	0.098	86.559
	Baseline-FORGE2017	1	0.196	92.207	1	0.266	93.797	1	0.317	91.302	2	0.003	85.644	2	0.039	83.604
	RALI-Université de Montréal	1	0.317	95.775	1	0.194	95.338	1	0.215	93.333	2	-0.088	86.559	2	-0.019	83.140
	Baseline-FORGE2020	1	0.161	93.360	1	0.271	96.099	1	0.199	92.635	2	-0.011	88.243	2	0.025	82.126
	Huawei Noah's Ark Lab	2	-0.259	85.041	3	-0.366	85.559	2	-0.242	84.126	2	-0.204	83.383	2	-0.221	79.315
	DANGNT-SGU	1	0.230	95.329	1	0.249	96.658	1	0.160	93.459	2	-0.245	81.977	2	-0.116	78.599
	ORANGE-NLG	3	-0.624	78.149	3	-0.697	78.950	3	-0.738	71.342	2	-0.285	80.505	3	-0.263	74.586
	NILC	3	-0.343	84.896	3	-0.299	88.230	2	-0.563	78.315	3	-0.629	78.550	3	-0.492	74.360
	UPC-POE	4	-0.982	72.928	3	-0.497	82.950	3	-0.678	75.032	3	-0.482	77.829	3	-0.383	74.095
						(b) Unseen entities							
			Data Coverage		Relevance			Correctness		Text Structure		Fluency	
	Team Name	Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
	AmazonAI (Shanghai)	1	0.170	94.098	1	0.215	95.713	1	0.201	92.933	1	0.295	93.498	1	0.284	90.550
	WebNLG-2020-REF	1	0.230	95.178	2	0.066	93.389	1	0.263	94.207	1	0.277	92.190	1	0.310	90.508
	OSU Neural NLG	1	0.303	96.033	1	0.173	94.941	1	0.237	93.489	1	0.319	92.941	1	0.340	90.423
	FBConvAI *	2	0.140	92.780	2	0.098	93.644	1	0.173	91.669	1	0.308	92.605	1	0.293	90.006
	NUIG-DSI	2	0.130	92.697	2	0.142	93.937	1	0.175	91.613	1	0.230	91.494	1	0.237	88.787
	bt5	2	0.140	93.492	1	0.177	95.197	1	0.200	92.948	1	0.207	92.019	2	0.137	87.556
	cuni-ufal	2	0.069	91.992	2	0.119	94.172	2	0.096	90.374	2	0.129	89.272	1	0.163	86.979
	TGen	3	0.002	89.887	2	0.125	92.443	2	0.071	88.379	1	0.175	88.973	1	0.177	85.676
	CycleGT	2	0.092	92.372	2	0.102	93.368	2	0.035	89.452	2	0.069	88.356	2	0.048	83.914
	Baseline-FORGE2017	2	0.137	93.130	2	0.145	93.948	2	0.105	91.213	2	-0.032	87.542	2	-0.057	83.473
	Baseline-FORGE2020	2	0.106	91.201	2	0.120	92.312	1	0.163	90.320	2	0.039	87.264	2	-0.007	82.414
	DANGNT-SGU	1	0.284	95.897	1	0.172	94.872	1	0.210	93.142	3	-0.229	83.410	3	-0.182	77.992
	RALI-Université de Montréal	1	0.253	95.805	1	0.176	95.678	1	0.119	92.054	3	-0.441	79.343	3	-0.387	74.554
	ORANGE-NLG	5	-0.935	72.887	4	-1.225	71.728	4	-1.143	66.280	4	-0.617	75.743	4	-0.637	70.163
	NILC	5	-0.970	72.234	4	-1.060	73.609	4	-1.098	65.856	4	-0.685	74.598	4	-0.721	67.330
	Huawei Noah's Ark Lab	4	-0.586	80.004	3	-0.721	80.822	3	-0.743	73.427	4	-0.718	73.808	4	-0.700	67.308
	UPC-POE	5	-0.932	73.157	3	-0.863	76.423	4	-1.075	67.586	4	-0.786	73.324	4	-0.828	66.358
						(c) Unseen categories							

Table 13 :

 13 Human Evaluation results for English for each test data type. The systems are sorted by averaged Fluency raw scores. The colour intensity signifies final ranking in terms of averaged raw scores: more intense colour reflects higher performance for the specific criterion. * indicates late submission.

			DATA COVERAGE		RELEVANCE		CORRECTNESS	TEXT STRUCTURE		FLUENCY
	TEAM NAME	Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw Rank Avg. Z Avg. Raw
	bt5	1	0.312	95.630	1	0.174	95.385	1	0.340	95.594	1	0.219	95.745	1	0.232	93.088
	cuni-ufal	1	0.203	93.155	1	0.077	93.306	2	0.101	90.382	1	0.218	96.073	1	0.213	92.921
	FBConvAI *	1	0.133	92.339	2	0.027	93.491	2	0.080	90.779	2	0.079	93.764	2	0.063	90.248
	WebNLG-2020-REF	1	0.230	94.000	2	0.065	93.636	2	0.109	90.630	2	-0.005	92.082	2	0.022	89.021
	OSU Neural NLG	2	-0.422	82.836	2	-0.182	90.433	3	-0.181	84.830	2	0.019	92.958	2	-0.050	88.558
	med	3	-0.467	82.230	2	-0.022	92.224	2	0.021	88.585	2	-0.077	91.309	2	-0.060	88.252
	Huawei Noah's Ark Lab	2	-0.189	86.448	2	-0.060	91.761	2	-0.084	87.033	3	-0.183	89.515	3	-0.174	85.679
	Baseline-FORGE2020	1	0.200	93.191	2	-0.079	91.294	4	-0.387	80.830	3	-0.270	87.645	3	-0.247	84.691

Table 14 :

 14 Human Evaluation results for Russian RDF-to-text system submissions. The systems are sorted by averaged Fluency raw scores. The colour intensity signifies final ranking in terms of averaged raw scores: more intense colour reflects higher performance for the specific criterion. * indicates late submission.

	Measure		1		2	3		4	5	6	7	8	9	10	11
	1. BLEU NLTK	1.00									
	2. METEOR	0.81	1.00							
	3. chrF++	0.89	0.85	1.00						
	4. TER	-0.87 -0.78 -0.85		1.00				
	5. BERTScore F1	0.73	0.69	0.79 -0.74 1.00			
	6. BLEURT	0.69	0.68	0.75 -0.77 0.76 1.00		
	7. Correctness	0.35	0.29	0.41 -0.39 0.46 0.55 1.00	
	8. Data Coverage	0.27	0.27	0.38 -0.31 0.39 0.49 0.71 1.00
	9. Fluency	0.38	0.31	0.4 -0.43 0.46 0.54 0.62 0.49 1.00
	10. Relevance	0.28	0.22	0.33 -0.32 0.38 0.47 0.72	0.7 0.51 1.00
	11. Text Structure	0.35	0.28	0.36 -0.39 0.44 0.51 0.56 0.45	0.8 0.51 1.00
							(a) English				
	Measure			1		2	3	4	5	6	7	8	9	10
	1. BLEU NLTK		1.00								
	2. METEOR		0.91	1.00						
	3. chrF++		0.92	0.92 1.00					
	4. TER		-0.91 -0.91 -0.9	1.00				
	5. BERTScore F1	0.83	0.83 0.93 -0.88 1.00			
	6. Correctness		0.23	0.23 0.31 -0.24 0.31 1.00		
	7. Data Coverage	0.20		0.2 0.32 -0.22 0.29 0.50 1.00	
	8. Fluency		0.17	0.17 0.20 -0.22 0.26 0.42 0.31 1.00
	9. Relevance		0.14	0.14 0.17 -0.15 0.17 0.56 0.50 0.28 1.00
	10. Text Structure	0.16	0.16 0.19 -0.18 0.21 0.43 0.27 0.74 0.24 1.00
							(b) Russian			

Table 15 :

 15 Pearson correlations for RDF-to-text task for both languages. All of them were statistically significant with p-value < 0.01.

	grammaticality (Text Structure, Fluency) they
	score lower than neural approaches.

For versioning see here: https://gitlab.com/ shimorina/webnlg-dataset

https://github.com/WebNLG/ GenerationEval/tree/humaneval/human_ evaluation/en/hit_properties (a) English data: MTurk (b) Russian data: Yandex.Toloka

The results of the human evaluation in this report are the final results. Please note that the system description papers might report/analyse non-filtered results (e.g. human evaluation results based on the annotators' data which has not been manually inspected), if not stated otherwise.

4 rules have been specifically designed to cope with some particular WebNLG and WebNLG+ inputs.

See Batista (2018) for a more detailed explanation of the different measures.

https://www.deepl.com/en/translator
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Appendix A Example task for human evaluation experiments on MTurk