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ABSTRACT
We present a semi-analytical model of satellite galaxies, SatGen, which can generate large statistical samples of satellite
populations for a host halo of desired mass, redshift, and assembly history. The model combines dark matter (DM) halo merger
trees, empirical relations for the galaxy–halo connection, and analytical prescriptions for tidal effects, dynamical friction, and
ram-pressure stripping. SatGen emulates cosmological zoom-in hydrosimulations in certain aspects. Satellites can reside in
cored or cuspy DM subhaloes, depending on the halo response to baryonic physics that can be formulated from hydrosimulations
and physical modelling. The subhalo profile and the stellar mass and size of a satellite evolve depending on its tidal mass-loss
and initial structure. The host galaxy can include a baryonic disc and a stellar bulge, each described by a density profile that
allows analytic satellite orbit integration. SatGen complements simulations by propagating the effect of halo response found in
simulated field galaxies to satellites (not properly resolved in simulations) and outperforms simulations by sampling the halo-to-
halo variance of satellite statistics and overcoming artificial disruption due to insufficient resolution. As a first application, we use
the model to study satellites of Milky Way (MW)- and M31-sized hosts, making it emulate simulations of bursty star formation and
of smooth star formation, respectively, and to experiment with a disc potential in the host halo. We find that our model reproduces
the observed satellite statistics reasonably well. Different physical recipes make a difference in satellite abundance and spatial dis-
tribution at the 25 per cent level, not large enough to be distinguished by current observations given the halo-to-halo variance. The
MW/M31 disc depletes satellites by ∼20 per cent and has a subtle effect of diversifying the internal structure of satellites, which
is important for alleviating certain small-scale problems. We discuss the conditions for a massive satellite to survive in MW/M31.

Key words: methods: numerical – galaxies: dwarf – galaxies: evolution – galaxies: haloes – galaxies: interactions – galaxies:
structure.

1 IN T RO D U C T I O N

In our modern understanding of the Universe, structures form hierar-
chically: Dark matter (DM) overdensities collapse into gravitation-
ally bound haloes, which merge to form larger haloes. The smaller
participant of a merger survives as substructure within the merger
remnant, experiencing tidal interactions, losing mass, and undergoing
structural change. Galaxies form inside DM haloes. When a halo
merger occurs, the less massive progenitor becomes a substructure
and the inhabiting galaxy becomes a satellite galaxy. Subhaloes and
satellites are therefore the building blocks of host haloes and central
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galaxies and serve as relics of structures that formed earlier, with their
demographics containing the information of the assembly history of
the host system as well as the Universe at large.

Apart from their cosmological significance, satellite galaxies are
interesting on their own, in the sense that galaxies of extreme
morphology are usually spotted in dense environments. For ex-
ample, among bright dwarfs (i.e. galaxies with a stellar mass of
m� ∼ 107−9 M�) in the Local Group or in galaxy clusters, galaxies
range from ultra-compact dwarfs (with half-stellar-mass radii of
leff ∼ 0.1 kpc, e.g. Drinkwater et al. 2003) to ultra-diffuse galaxies
(UDGs; with leff ∼ 5 kpc, e.g. van Dokkum et al. 2015), spanning
almost 2 dex in size. The environment may be the key to such
diversity: The central galaxy and the host halo can make a satellite
more diffuse or more compact through tidal effects depending on the
initial conditions, the time since the infall of the satellite, and the
orbit of the satellite.
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Subhaloes and satellites have been studied using numerical simula-
tions (e.g. Gao et al. 2004; Diemand et al. 2008; Springel et al. 2008;
Wu et al. 2013; Garrison-Kimmel et al. 2014a; Mao, Williamson
& Wechsler 2015; Sawala et al. 2015; Wetzel et al. 2016; Garrison-
Kimmel et al. 2019) and semi-analytical models (e.g. Taylor & Babul
2001; Benson et al. 2002a, b; Zentner & Bullock 2003; Zentner et al.
2005; Gan et al. 2010; Jiang & van den Bosch 2016; Nadler et al.
2019; Yang et al. 2020). Cosmological N-body simulations produce a
plethora of subhaloes compared to observed satellite galaxies. While
low-mass haloes (Mvir � 109 M�) are expected to be truly dark due
to the suppression of star formation by the cosmic UV background,
thereby alleviating this ‘missing satellite’ problem (e.g. Benson et al.
2002a, b; Hambrick et al. 2011), a more persistent challenge lies in
the overabundance of massive and dense subhaloes – they are too
big to fail forming stars (Boylan-Kolchin, Bullock & Kaplinghat
2011). The ‘too-big-to-fail’ problem (TBTF) is not only merely the
overabundance of massive satellites, but also highlights the lack
of structural diversity in the simulated satellite populations (e.g.
Jiang & van den Bosch 2015) – the simulated population of massive
satellites is dense in their centres, showing a narrow distribution of
maximum circular velocities (vmax), while the observed bright dwarf
satellites exhibit a larger variety of inner densities (Oman et al. 2015)
and a broad distribution of vmax. Hydrosimulations have shown that
including baryons can help us to reduce the abundance of massive
satellites (e.g. Zolotov et al. 2012; Brooks et al. 2013; Brooks &
Zolotov 2014), mostly because the central galaxies enhance the tidal
disruption of satellites (e.g. Garrison-Kimmel et al. 2019, but see
also Errani et al. 2017 and Garrison-Kimmel et al. 2017, which
use idealized N-body simulations with a galactic disc). However,
hydrosimulations still do not fully reproduce the structural diversity
of dwarf satellites (e.g. Garrison-Kimmel et al. 2019), missing the
most diffuse and most compact dwarf satellites seen around the Milky
Way (MW) and M31.

The limitations of cosmological simulations can be summarized
as follows. First, simulating a satellite population is computationally
expensive – it requires a large dynamical range in mass and in
spatial scale. State-of-the-art zoom-in simulations typically produce
of the order of ∼10 MW-like host systems (e.g. Sawala et al. 2015;
Garrison-Kimmel et al. 2019) or ∼1 cluster (e.g. Pillepich et al. 2019;
Tremmel et al. 2019), whereas quantifying the cosmic variance of
satellite statistics for a given host mass requires at least hundreds of
random realizations (Purcell & Zentner 2012; Jiang & van den Bosch
2015). Secondly, artificial disruption of satellites due to insufficient
resolution is still prevalent in modern simulations. It is alarming to
realize that, in the Bolshoi simulation (Klypin, Trujillo-Gomez &
Primack 2011), ∼60 per cent of subhaloes with infall mass larger
than 10 per cent of the instantaneous host halo mass cannot even
survive for one orbit (Jiang & van den Bosch 2017) and ∼13 per cent
of subhaloes are disrupted per Gyr (van den Bosch 2017), despite
the use of a sophisticated, phase-space-based halo finder (Behroozi,
Wechsler & Wu 2012). Similar results have been reported for zoom-in
simulations: About half of the subhaloes in the Aquarius simulations
have been disrupted, irrespective of their masses at infall (Han et al.
2016). Idealized simulations (of higher resolution than cosmological
ones) reveal that satellite disruption is mostly numerical in origin,
caused mainly due to inadequate force softening and a runaway
instability triggered by the amplification of discreteness noise in the
presence of a tidal field (van den Bosch & Ogiya 2018; van den
Bosch et al. 2018). Thirdly, halo-finding algorithms, especially those
based only on identifying instantaneous overdensities, have difficulty
in recovering subhaloes when they are located in dense region of the
host (Muldrew, Pearce & Power 2011; van den Bosch & Jiang 2016).

Semi-analytical models serve as complementary tools to simula-
tions in the study of satellite galaxies and outperform simulations
in terms of statistical power and numerical resolution. Such models
consist of halo merger trees and analytical prescriptions for satellite
evolution. Most of these models focus on the DM components,
using cuspy profiles (Navarro, Frenk & White 1997) to describe
both the host halo and the satellites, ignoring baryonic components
and processes. However, hydrosimulations have shown that baryonic
influence cannot be neglected for satellites. First, the DM profile of
satellites at infall is not necessarily cuspy. For example, supernovae-
driven gas outflows can create DM cores (e.g. Pontzen & Governato
2012) and systems with cored profiles follow different tidal evolution
paths than cuspy ones with the same initial orbit (e.g. Penarrubia
et al. 2010). Secondly, the central galaxy, e.g. an MW-like disc, can
significantly impact the spatial distribution of a satellite population
by reducing the survivability of the satellites that travel across the
disc-dominated region (e.g. Garrison-Kimmel et al. 2017). Finally
and obviously, to study the baryonic properties of satellite galaxies
instead of merely the statistics of DM subhaloes, the baryonic
components of a satellite and their evolution in a dense environment
must be considered. Hence, semi-analytical models of satellites are
urgently in the need of upgrades in order to catch up with recent
developments in cosmological simulations.

In this paper, we presentSatGen, a new semi-analytical model for
generating merger trees and evolving satellite populations, and then,
as a proof of concept for SatGen, we perform a study of satellite
statistics for MW/M31-like hosts. Compared to previous models,
SatGen improves on several important aspects. First, it considers
baryonic effects, both within the satellites and the host galaxy, on
the structure and survivability of subhaloes. Subhaloes in SatGen
can be described by profiles that have the flexibility to capture
DM cores and that have been widely used to describe subhaloes
in simulations, including a subclass of the αβγ profiles (Zhao 1996;
Dekel et al. 2017; Freundlich et al. 2020a, b) and the Einasto (1965)
profile. The initial structure of the subhaloes is based upon halo
response models extracted from state-of-the-art hydrosimulations
and analytical modelling; by changing the halo response model, the
user can make SatGen emulate different simulations. Host systems
in SatGen can be composed of (a combination of) a baryonic disc,
stellar bulge, and DM halo. Secondly, SatGen incorporates simple
recipes for the evolution of the stellar and gaseous components of
satellite galaxies. The structural evolution recipes of subhaloes and
stellar components are either analytical and physically motivated or
extracted from high-resolution idealized simulations, which makes
SatGen essentially free from the effects of numerical disruption
of satellites commonly seen in cosmological simulations. Finally, in
keeping with the most sophisticated previous models of this kind
(e.g. Taylor & Babul 2001; Benson et al. 2002a; Zentner et al. 2005),
SatGen follows the orbit of each satellite, while accounting for
dynamical friction (DF).

This paper is organized as follows. In Section 2, we describe the
model. In Section 3, we present satellite statistics of MW/M31-
sized systems, comparing model predictions with observations
(Section 3.1), as well as comparing model results using different
halo response models characteristic of different hydrosimulations
(Section 3.2). We also quantify the effect of a baryonic disc potential
on the abundance, spatial distribution, and internal structure of
satellites (Section 3.3). In Section 4, we explore the conditions
for a massive satellite to survive (or get disrupted) in an MW/M31
potential. In Section 5, we summarize the model and our findings.

Throughout, we use m and M to indicate satellite mass and host
mass, respectively. We use l and r to refer to satellite-centric radius
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SatGen 623

Figure 1. Schematic view of the SatGen model. Left: a halo merger tree, generated by sampling the EPS progenitor mass function, dN/dM1(M1, z1|M0, z0)
(see Section 2.1). Different colours differentiate branches of different levels – the main branch (i.e. the host-halo branch) is white; the branches of the first-order
satellites, i.e. the satellites that are directly accreted by the host system, are yellow; the branches of the second-order satellites, i.e. the satellites that directly
merge with first-order satellite progenitors and are brought into the host halo as sub-substructures, are cyan; and so on. Right: a zoom-in view of what happens
after a satellite is accreted. In this illustration, a first-order satellite orbits around a host composed of a smooth halo and a galactic disc (see Section 2.3 for
how we initialize the host). The satellite brings its own higher order substructure to the host, loses mass (see Section 2.5 for how we model tidal stripping),
releases higher order satellites, and evolves in structure (represented by the peak circular velocity, vmax, and the corresponding location, lmax), as illustrated
by the schematic plots of the circular velocity profiles at infall (see Section 2.3 for how we initialize subhalo structure at infall) and at a later epoch when it is
significantly stripped (see Section 2.6 for how the structural evolution is modelled). For such an eccentric orbit (see Section 2.3 for how we draw initial orbits),
tidal stripping is most efficient at the orbital pericentre, where the Hill surface is indicated by a yellow dotted circle and the tidal radius, lt, is marked (see
Section 2.5 for how we model tidal stripping). For such a major merger, orbital decay due to DF (Section 2.4) is significant, as illustrated by the dashed line. Not
shown here are the prescriptions for the initialization and the evolution of the stellar and gaseous components of the satellite (see Sections 2.3 and 2.6 for details).

and host-centric distance, respectively. Thus, a density profile written
as ρ(r) refers to that of the host system and written as ρ(l) refers to
that of the satellite. We define the virial radius of a distinct halo as
the radius within which the average density is � = 200 times the
critical density for closure. We adopt a flat Lambda cold dark matter
(�CDM) cosmology with the present-day matter density 	m = 0.3,
baryonic density 	b = 0.0465, dark energy density 	� = 0.7, a
power spectrum normalization σ 8 = 0.8, a power-law spectral index
of ns = 1, and a Hubble parameter of h = 0.7. All of these assumptions
can be changed easily in SatGen .

2 M O D EL

The model builds upon halo merger trees. Combining these merger
trees with some empirical prescriptions from simulations, we obtain
the initial masses, profiles, and baryonic properties of satellites. Then,
we follow the orbits of the satellites, modelling tidal stripping and the
structural evolution of both the DM and baryonic components. The

SatGen code is made publicly available on GitHub.1 A schematic
view of the model is presented in Fig. 1. Below, we introduce each
model component in sufficient detail to reproduce the exercise in
Section 3, leaving more comprehensive details in the appendices.
Readers who want to see the results first with a basic idea of how
the model works can view Fig. 1 and read Section 2.8 for a quicker
overview and jump to Section 3.

2.1 Halo merger trees

SatGen generates halo merger trees using an algorithm (Parkinson,
Cole & Helly 2008) based on the extended Press-Schechter (EPS)
formalism (Lacey & Cole 1993). The EPS method provides the
expected number of progenitor haloes of mass M1 at redshift z1

1https://github.com/shergreen/SatGen
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624 F. Jiang et al.

for a target halo of mass M0 at redshift z0 < z1:

dN

dM1
(M1, z1|M0, z0)dM1 = M0

M1

�ω√
2π(�S)3/2

e− (�ω)2
2�S

∣∣∣∣ dS

dM

∣∣∣∣
M1

dM1,

(1)

where S ≡ σ 2(M) is the variance of the density field linearly
extrapolated to z = 0 and smoothed with a sharp k-space filter of
mass M, δ(z) is the critical overdensity for spherical collapse, �S =
σ 2(M1) − σ 2(M0), and �ω = δc(z1) − δc(z0).

However, it has been shown that merger trees constructed by
strictly sampling this progenitor mass distribution overpredict the
low-redshift merger rate compared to cosmological simulations (e.g.
Zhang, Fakhouri & Ma 2008; Jiang & van den Bosch 2014). In order
to achieve better agreement with simulations, we follow Parkinson
et al. (2008) by adding a corrective factor of the following form to
the right-hand side of equation (1):

G(M1|M0, z0) = G0

(
S1

S0

) γ1
2
(

ω2
0

S0

) γ2
2

, (2)

where S1 = σ 2(M1), S0 = σ 2(M0), ω0 = δ2(z0), and we adopt G0 =
0.6353, γ 1 = 0.1761, and γ 2 = 0.0411 following Benson (2017).

We construct merger trees using the time-stepping advocated in
appendix A of Parkinson et al. (2008), which corresponds to �z ∼
0.001.

In order to reduce memory usage, we follow Jiang & van den Bosch
(2016) and down-sample the temporal resolution of the trees by only
registering progenitor haloes every time-step of �t = 0.1tdyn(z),
where tdyn = √

3π/[16G�ρcrit(z)] is the instantaneous dynamical
time of DM haloes.

2.2 Profiles for DM haloes and baryonic discs

With SatGen, one has multiple choices for the profile of a DM
halo, including the Navarro et al. (1997, hereafter NFW) profile,
the Einasto (1965, hereafter Einasto) profile, and the Dekel et al.
(2017, hereafter Dekel-Zhao) profile, which is a subclass of the αβγ

profiles (Zhao 1996). Galactic discs and bulges can be described
by the Miyamoto & Nagai (1975, hereafter MN) profile and the
Einasto profile, respectively. One can set up a host system using
a combination of the aforementioned profiles, e.g. an NFW halo
plus an embedded MN disc. In Appendix A, we provide analytical
expressions for the profiles of density, enclosed mass, gravitational
potential, and velocity dispersion of all of the supported profiles.
Here, we describe the Dekel-Zhao halo profile and the MN profile,
which will be used in the experiments in Section 3.

2.2.1 Dekel et al. (2017)–Zhao (1996) halo profile

A Dekel-Zhao halo is defined by four parameters: the virial mass,
Mvir, a concentration parameter, c, the (negative of the) logarithmic
density slope in the centre, α = −dln ρ/dln r|r → 0, and the spherical
overdensity, �. The density profile is given by

ρ(r) = ρ0

xα(1 + x1/β )β(γ−α)
, β = 2, γ = 3 + β−1 = 3.5, (3)

where x ≡ r/rs is the radius scaled by an intermediate radius rs that
is related to rvir by the concentration parameter, rs = rvir/c, and ρ0 =
[c3(3 − α)/3/f(c, α)]�ρcrit, with f(x, α) = χ2(3 − α) and χ ≡ x1/2/(1 +
x1/2).

The Dekel-Zhao profile has only one more degree of freedom than
the NFW profile and it has three merits that make it ideal for use

in semi-analytical models. First, it can accurately describe haloes in
hydrosimulations (Dekel et al. 2017; Freundlich et al. 2020b), having
enough flexibility near the centre to accurately describe the cusp–
core transformation (Freundlich et al. 2020a). Secondly, it has an
outer slope of γ = 3.5, steeper than that of the NFW profile and thus
more appropriate for describing subhaloes that are stripped. Finally,
it has fully analytical expressions for the profiles of enclosed mass,
gravitational potential, and velocity dispersion, facilitating fast orbit
integration and making it more convenient to use than the Einasto
profile or other subclasses of the αβγ family (see more details in
Freundlich et al. 2020b).2 The mass inside radius r is given by

M(r) = Mvir
f (x, α)

f (c, α)
; (4)

the gravitational potential can be expressed as

�(r) = −V 2
vir

2c

f (c, α)

[
1 − χ2(2−α)

2(2 − α)
− 1 − χ2(2−α)+1

2(2 − α) + 1

]
, (5)

where Vvir is the virial velocity, and the one-dimensional isotropic
velocity dispersion σ (r) is given by

σ 2(r) = 2V 2
vir

c

f (c, α)

x3.5

χ2(3.5−α)

8∑
i=0

(−1)i8!

i!(8 − i)!

1 − χ4(1−α)+i

4(1 − α) + i
. (6)

Unlike the NFW profile, where the scale radius rs is the same as the
radius at which the logarithmic density slope equals −2 (hereafter
referred to as r2), in a Dekel-Zhao profile, the two radii are related
by r2 = [(2 − α)/1.5]2rs; that is, the conventional concentration
parameter, c2 = rvir/r2, is related to the Dekel-Zhao concentration
by

c2 =
(

1.5

2 − α

)2

c. (7)

The radius of peak circular velocity, rmax, is related to r2 by

rmax = 2.25r2 = (2 − α)2rs. (8)

The parameter α is the logarithmic density slope, −dln ρ/dln r, in the
asymptotic limit r → 0, which may fall well outside the radial range
of interest (for example, between 0.01rvir and rvir). For the slope in
the radial range of interest, the slope profile is given by

s(r) = −d ln ρ

d ln r
= α + 3.5

√
x

1 + √
x

. (9)

The slope at 0.01rvir, widely used in the context of the cusp–core
issue, is

s0.01 ≡ s(0.01rvir) = α + 0.35
√

c

1 + 0.1
√

c
. (10)

For s0.01 values that are commonly seen in simulations and observa-
tions (0–2) and for a typical concentration (e.g. c = 10), we have
α ∈ (−1.11, 1.53); that is, α can be negative for realistic profiles
(corresponding to a density that actually decreases towards the halo
centre) and thus s0.01 is a more physical quantity than α when it
comes to comparing the cuspiness of density profiles.

2In fact, a full family of profiles of the form of equation (3) with β = n and
γ = 3 + k/n (where k and n are integers) has fully analytical expressions
for the profiles of potential and velocity dispersion (Zhao 1996). The choice
of n = 2 and k = 1, as in the Dekel-Zhao profile, yields accurate enough
descriptions of haloes in hydrosimulations.
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2.2.2 Miyamoto & Nagai (1975) disc profile

An MN disc is specified by three parameters: the disc mass (Md),
a scale radius (a), and a scale height (b). The density and potential
profiles are given by

ρ(R, z) = Mdb
2

4π

aR2 + (a + 3ζ )(a + ζ )2

ζ 3[R2 + (a + ζ )2]5/2
(11)

and

�(R, z) = − GMd√
R2 + (a + ζ )2

, (12)

respectively, where ζ = √
z2 + b2 and R, φ, and z are the cylindrical

coordinates. For an axisymmetric disc whose distribution function
only depends on E and Lz, the radial and axial velocity dispersions
are equal: σ R = σ z ≡ σ . Further assuming that the disc is an isotropic

rotator, i.e. V
2
φ/(V 2

φ − σ 2) = 1, we have σ 2
φ = V 2

φ − V
2
φ = σ 2, and

σ 2 is given by Ciotti & Pellegrini (1996) by

σ 2(R, z) = GM2
d b2

8πρ(R, z)

(a + ζ )2

ζ 2[R2 + (a + ζ )2]3
. (13)

The net rotation, V φ , can therefore be expressed by

V
2
φ = V 2

circ + R

ρ

∂(ρσ 2)

∂R
= GM2

d ab2

4πρ

R2

ζ 3[R2 + (a + ζ )2]3
, (14)

where V 2
circ(R, z) = R∂�/∂R and (R/ρ)∂(ρσ 2)/∂R is the

asymmetric-drift term. Equations (13) and (14) are useful for
modelling DF (Section 2.4).

2.3 Initial conditions for satellite galaxies

The initial conditions for a satellite galaxy include (1) the properties
of the host system when the satellite enters the virial sphere, (2) the
orbit of the incoming satellite, and (3) the DM, stellar, and gaseous
properties of the incoming satellite. Here, we describe them one by
one.

2.3.1 Initial host profile

The host halo mass is known from the main branch (i.e. the branch
that tracks the most massive progenitor) of the merger tree. To fully
specify the host halo profile, we also need the structural parameter(s).
The halo concentration can be obtained from an empirical relation
calibrated via simulations (Zhao et al. 2009), which relates the main
branch merging history to the concentration parameter, c2, by

c2(Mvir, z) =
{

48 +
[

t(z)

t0.04(Mvir, z)

]8.4
}1/8

, (15)

where t(z) is the cosmic time at redshift z and t0.04 is the cosmic time
when the host halo has assembled 4 per cent of its instantaneous
mass, Mvir(z), which we extract from the halo’s merger tree as
described in Section 2.1. If the host system is only an NFW halo,
then concentration and mass completely specify it. For a more
complicated set-up, e.g. a Dekel-Zhao halo with an embedded MN
disc, one needs additional assumptions depending on the system of
interest (see e.g. Section 3 for more details for MW/M31 analogues).
The concentration c and the slope α of a Dekel-Zhao halo can be
obtained from equations (7), (10), and (15), with an assumption for
s0.01 that will be described in Section 2.3.3.

2.3.2 Initial orbit

The initial orbit of a satellite can be specified by four pieces of
information – the location of virial-crossing, orientation of the orbital
plane, orbital energy, and orbital circularity. We assume that the infall
locations are isotropically distributed on the virial sphere, and thus
randomly draw an azimuthal angle (φ) from [0, 2π ] and a cosine
polar angle (cos θ ) from [0, 1]. We parametrize the specific energy
of an orbit, E, by a unitless parameter, xcirc = rcirc(E)/rvir, which
is the radius of the circular orbit corresponding to the same orbital
energy, E, in units of the virial radius of the host halo (e.g. van den
Bosch 2017). Orbital circularity, ε = j/jcirc(E), is the ratio between
the specific orbital angular momentum and that of a circular orbit of
the same orbital energy. We assume xcirc = 1, typical of cosmological
orbits seen in simulations3 and draw ε from a distribution, dP/dε =
πsin (πε)/2, which approximates the ε distribution of infalling
satellites measured in cosmological simulations (e.g. Wetzel 2011;
Jiang et al. 2015; van den Bosch 2017).

For orbit integration (Section 2.4), we need to translate these
orbital parameters (φ, θ , xcirc, ε) to the position vector, r , and the
velocity vector, V . Since SatGen supports axisymmetric potentials,
we work in the cylindrical coordinate system, i.e. r = (R, φ, z) and
V = (VR, Vφ, Vz). The initial speed at virial-crossing (V) is given
by

V =
√

2[�(xcircrvir) − �(rvir)] + V 2
circ(xcircrvir), (16)

which is simply Vvir for xcirc = 1. Using the definition of ε, we can
derive the angle (θ̃ ) between V and r as follows:

θ̃ = π − arcsin

(
εxcirc

Vvir

V

)
. (17)

In order to fully specify the orientation of the orbital plane, we need
another angle for the velocity vector. We choose this angle to be the
azimuthal angle (φ̃) of V in the θ̂–φ̂–r̂ frame, and draw φ̃ randomly
from [0, 2π ]. Finally, we can specify all the phase-space coordinates
of the infalling satellite as follows:

R = rvir sin θ,

φ = φ,

z = rvir cos θ,

VR = V (sin θ̃ cos φ̃ cos θ + cos θ̃ sin θ ),

Vφ = V sin θ̃ sin φ̃,

Vz = V (cos θ̃ cos θ − sin θ̃ cos φ̃ sin θ ).

(18)

2.3.3 Initial subhalo density profiles

In cosmological N-body simulations, halo density profiles are well
approximated by NFW profiles. Therefore, if SatGen is used to
emulate an N-body simulation, in order to initialize a subhalo profile
we only need to compute the concentration parameter c2 using
equation (15).

To emulate hydrosimulations, we need to account for the fact that
haloes react to baryonic processes that cause their profiles to deviate

3To be more accurate, one can draw xcirc from orbital energy distributions
extracted from simulations (e.g. van den Bosch 2017), which show a median
value around xcirc ∼ 1. We opt to keep it simple and use xcirc = 1 in this work.
After all, the correlation between initial orbital parameters and initial satellite
properties is not clear yet. In an upcoming work (Green et al., in preparation),
we expand SatGen to draw orbits according to a distribution extracted from
cosmological simulations, following Li et al. (2020).
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Figure 2. Halo response to baryonic processes, in terms of the logarithmic
DM density slope measured at ∼1 per cent of the virial radius, s0.01, and
the ratio between the hydrosimulation concentration and the corresponding
DM-only concentration, c2/c2,DMO, as functions of the SHMR, X = M�/Mvir.
We use these relations to initialize the structure of host haloes and subhaloes
(see Section 2.3.3). The black and orange lines represent the bursty-feedback
model of the NIHAO simulations (Tollet et al. 2016; Freundlich et al. 2020b)
and the smooth-feedback model of the APOSTLE and Auriga simulations
(Bose et al. 2019), respectively, with the shaded bands indicating the 1σ

Gaussian scatter. The two feedback schemes differ most in the bright-dwarf
regime (0.0008 � X � 0.02), with the bursty model causing DM cores
(s0.01 ≈ 0–0.5) and concentrations lower than those in the DM-only case. At
the massive end (X � 0.02), the two models converge to yield haloes that are
more cuspy and concentrated than those in the DM-only case, manifesting
adiabatic contraction of haloes in response to baryonic potential.

from NFW. The halo response to baryonic processes is mass depen-
dent (e.g. Di Cintio et al. 2014a; Dutton et al. 2016; Tollet et al. 2016;
Freundlich et al. 2020b): Qualitatively, low-mass haloes (�1011 M�)
are susceptible to supernovae-driven gas outflows, becoming less
concentrated and developing a flatter core; in contrast, massive
haloes (>1012 M�) tend to contract as cold gas condenses in the
centre, becoming cuspier. The halo response strength depends on the
subgrid physics adopted in the simulations. This is especially relevant
for massive dwarf galaxies (Mvir ∼ 1010.5 M�). Notably, simulations
featuring bursty star formation, and thus strong episodic supernova
outflows, yield a strong halo response, whereas simulations with
smooth, continuous star formation exhibit a negligible halo response
in the dwarf regime (Bose et al. 2019; Dutton et al. 2019). The nature
of the star formation burstiness, and thus the strength of the halo
response, is closely related to the subgrid recipe for star formation
and is still highly uncertain and under debate.

Following Di Cintio et al. (2014a, b) and Tollet et al. (2016), we
parametrize the halo response with two relations: (1) the ratio of
the hydrosimulation concentration and the corresponding DM-only
concentration, c2/c2,DMO as a function of the stellar-to-halo-mass
ratio (SHMR), X = M�/Mvir, and (2) the logarithmic DM density
slope measured at ∼1 per cent of the virial radius, s0.01, as a function
of the SHMR. Specifically, as illustrated in Fig. 2, the concentration

ratio can be expressed by

c2

c2,DMO
= a0 + a1X

b1 − a2X
b2 , (19)

where the constants ai and bi are simulation specific and are chosen
according to the simulation that one wishes SatGen to emulate. For
example, we find that (a0, a1, a2) = (1.14, 186, 1) and (b1, b2) =
(1.37, 0.142) describe the halo response of the NIHAO (Wang et al.
2015) simulations accurately (Freundlich et al. 2020b). For these
parameters, c2/c2,DMO approaches unity at M�/Mvir < 10−4, where star
formation is weak and feedback effects are minimal (typical of low-
mass haloes), is less than unity (∼0.7) at M�/Mvir ∼ 10−2.5 (typical
of massive dwarf galaxies where feedback effects are maximal),
and becomes >1 at M�/Mvir > 10−2 (where adiabatic contraction
dominates). Similarly, the inner density slope s0.01 can be expressed
as

s0.01 ≡ −d ln ρ

d ln r
|0.01rvir = log

[
n1

(
1 + X

X1

)−ξ1

+
(

X

X0

)ξ0
]

+ n0,

(20)

where the constants Xi, ni, and ξ i are, again, chosen to reflect the
simulation subgrid physics of interest (Tollet et al. 2016). For the
NIHAO simulations, we find that (n0, n1) = (1.45, 1), (ξ 1, ξ 0) =
(2.14, 0.21), and (X0, X1) = (2.54 × 10−3, 9.87 × 10−4), with a
similar scatter as for equation (45) of Freundlich et al. (2020b).
This describes the phenomenon that DM cores form if X ∼ 10−3–
10−2, cusps remain present for smaller X, and baryons deepen the
gravitational potential at larger X. We add random Gaussian noise
with σ = 0.1 and 0.18 to the c2/c2,DMO and s0.01 values, respectively,
based on Freundlich et al. (2020b) and Tollet et al. (2016). We
note that the aforementioned halo response is likely quite generic
for simulations featuring bursty star formation and episodic strong
feedback, such as the FIRE simulations (Hopkins et al. 2014, 2018).
We also note that, while we do not explicitly model the contraction of
DM haloes in response to baryon potential using adiabatic invariants
(e.g. Gnedin et al. 2004), the adiabatic contraction is implicitly
captured by the halo-response relations. Adiabatic contraction is
overwhelmed by SN feedback in dwarf galaxies, but is obvious in
massive systems (X � 0.02) where the two halo-response relations
converge, as shown in Fig. 2. As such, halo contraction is only a
function of the SHMR, and we have neglected the dependence of
halo contraction on the compactness of the baryon distribution.

We use the Dekel-Zhao profile to describe subhaloes affected by
feedback. From equation (3), we can show that the slope at r → 0
(α) and the slope at r = 0.01rvir (s0.01) are related by

α = s0.01(1 + 0.1
√

c) − 0.35
√

c. (21)

Using equations (7), (15), (20), and (21) and an SHMR, we can
completely specify a Dekel-Zhao subhalo at infall.4

We emphasize that one of the goals of SatGen is to quantify
the influence of different halo response models on satellite statistics,
and thus to distinguish the underlying subgrid recipes adopted in
simulations using observed satellite statistics. More specifically, the
logic is the following. On the theory side, while it is computationally
expensive to run simulations with adequate resolution for studying
satellite galaxies, it is relatively cheap to simulate a suite of field
galaxies that cover a wide range in mass and SHMR. These types
of simulation suites, e.g. FIRE/FIRE-II (Hopkins et al. 2014, 2018),

4For Einasto profiles, an expression analogous to equation (21) between the
Einasto shape index and s0.01 can be derived. See Appendix A for details.
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NIHAO (Wang et al. 2015), APOSTLE (Sawala et al. 2015), and
Auriga (Grand et al. 2017), provide us with halo response templates,
(c2/c2,DMO)(X) and s0.01(X) (e.g. Tollet et al. 2016; Bose et al. 2019),
which are used as inputs for the SatGen model. SatGen then
propagates the difference in halo response to satellite structures
because, as will be detailed in Section 2.6, satellites of different
initial structures evolve differently in response to tidal effects. In
this way, SatGen produces satellites as would be produced by high-
resolution simulations using the corresponding subgrid recipe. On the
observational side, galaxy structure and halo structure measurements
are usually performed on galaxies of known distances, which are
typically satellites. By propagating the baryonic effects obtained
from zoom-in simulations of centrals on to satellite populations,
SatGen facilitates the comparison between theory and observation.

2.3.4 Initial baryonic properties

Apart from subhalo properties, we also model the stellar mass,
stellar size, and gas distribution. We assign a stellar mass to an
infalling satellite using the SHMR from halo abundance matching.
In particular, we use the expression of stellar mass (M�) as a function
of halo mass (Mvir) and redshift z by Rodriguez-Puebla et al. (2017),
assuming a scatter of 0.15 dex in M� at a given Mvir. Abundance
matching also provides insight into how the galaxy size is related to
the host halo structure – Kravtsov (2013) and Somerville et al. (2018)
found that galaxy size scales linearly with host halo virial radius,
reff ∼ 0.02rvir, insensitive to morphology. Jiang et al. (2019b) verified
this relation in two different suites of cosmological hydrosimulations,
finding that the proportionality constant does not reflect halo spin but
strongly correlates with halo concentration, c2. In particular,

reff = 0.02(c2/10)−0.07rvir. (22)

The dependence on halo concentration introduces a redshift and
assembly history dependence into the galaxy size. We adopt this
relation in order to initialize the satellite’s stellar size, assuming a
lognormal scatter with σ = 0.15 dex in reff at fixed rvir, as found by
Jiang et al. (2019b). Note that we track the evolution in the satellite’s
stellar half-mass radius without making any specific assumptions
about the underlying density profile of the stars.

Following Zinger et al. (2018), we assume that the circumgalactic
medium (CGM) of a galaxy is in hydrostatic equilibrium with the
host halo and, to a good approximation, follows the halo profile
according to

ρgas(r) = fgasρ(r), (23)

where fgas is the ratio of the total CGM gas mass to virial mass. For
incoming satellites, we can write

fgas = fbar

1 − fbar
− M�

Mvir
, (24)

where the baryonic fraction, fbar, is given by Okamoto, Gao & Theuns
(2008) as

fbar(Mvir, z) = 	b

	m

{
1 + 0.587

[
Mvir

Mc(z)

]−2
}−3/2

, (25)

where Mc(z) is the mass below which galaxies are strongly affected
by photoionization. We adopt Mc(z) from the numerical values
given by Okamoto et al. (2008). This recipe implicitly assumes that
supernova feedback does not remove hot gas from the halo.

The prescriptions in Sections 2.3.3 and 2.3.4 apply both to the
central host and to the satellites at the moment of infall.

2.4 Orbit integration and DF

We follow the orbits by treating satellites as point masses. At each
time-step, SatGen solves the equations of motion in the cylindrical
frame using an order 4(5) Runge–Kutta method.5 We solve

r̈ = −∇� + aDF, (26)

where r = (R, φ, z) is the position vector, � is the gravitational
potential, and aDF is the acceleration due to DF, which is modelled
using the Chandrasekhar (1943) formula

aDF = −4πG2m
∑

i

ln �i ρi(r)F (< Vrel,i)
V rel,i

V 3
rel,i

. (27)

Here, the summation is over all of the components of the host system
(e.g. i = halo, disc, and bulge, following Taylor & Babul 2001 and
Penarrubia et al. 2010), m is the instantaneous satellite mass, ln �i is
the Coulomb logarithm, V rel,i is the relative velocity of the satellite
with respect to the streaming motion of the particles of component
i, and F(< Vrel,i) is the fraction of local host particles contributing to
DF. For simplicity, we assume that the velocity distributions of all of
the host components are Maxwellian and isotropic such that

F (< Vrel,i) = erf(Xi) − 2Xi√
π

e−X2
i , (28)

where Xi ≡ Vrel,i/(
√

2σi), with σi(r) the one-dimensional velocity
dispersion of component i.6

The Coulomb logarithm and the relative velocity depend on the
host component of interest. For spherical components such as the halo
or bulge, we adopt ln �i = ξ ln (Mi/m), where the factor ln (Mi/m) is
a widely used form for the Coulomb logarithm (e.g. Gan et al. 2010),
with Mi and m the host mass and satellite mass, respectively, and ξ a
fudge factor that accounts for the weakening of orbital decay when
the density profile is cored (e.g. Read et al. 2006a). Orbital decay
becomes completely stalled where the host density profile is flat, i.e.
if s = −dln ρ/dln r = 0, whereas orbital decay continues where the
profile is cuspy, i.e. if s � 1. For simplicity, we assume ξ = min (s,
1). For discs, we use ln � = 0.5, following Penarrubia et al. (2010).

For spherical components, we use the orbital velocity V for V rel,i ;
i.e. we ignore the net spin of a halo or a bulge. Discs, however, have
net rotation, so we use V rel,d = V − V φ φ̂, where the mean rotation
V φ is given by equation (14).

We caution that our DF treatment is only approximate, and, as with
any other attempt of modelling subhalo orbit with the Chandrasekhar
(1943) formula, it carries a few conceptual inaccuracies. For instance,
the Chandrasekhar (1943) formula assumed point masses moving in
medium of uniform density, whereas a subhalo has an extended
mass distribution and the host density along its orbit is not constant.

5We use the ‘dopri5’ integrator as implemented in scipy.integrate.ode.
6In principle, for a composite potential in Jeans equilibrium and with
isotropic velocity distribution, the ‘one-dimensional velocity dispersion
of component i’ (σ i) is not well defined, because the velocity disper-
sion should be calculated as a quantity for the whole system using
the Jeans equation, which gives (e.g. for spherical systems): σ 2(r) =
G/[

∑
i ρi (r)]

∫ r

∞
∑

i ρi (r ′)[
∑

i Mi (r ′)/r ′2]dr ′ � σ 2
i (r). However, in prac-

tice, we find that using the σ i of each component as if they were in equilibrium
separately in isolation yields little difference in terms of the rate of orbital
decay compared to using the overall σ (r). This is mainly because Vrel,i is
usually larger than σ (r), so F(< Vrel,i) is often not far from its maximum
value of unity. Additionally, satellite mass-loss and the choice of ln � both
have larger impacts on DF than the detailed choice of σ . Therefore, we opt
to use the σ i of individual components, following Taylor & Babul (2001).
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The aforementioned choices of the Coulomb logarithm are therefore
empirical corrections when extending the formula to applications
beyond its assumptions. More fundamentally, Chandrasekhar (1943)
considers DF to be a local effect due to the trailing gravitational wake,
while DF is actually a global effect due to a response density that can
operate at long distances (e.g. Weinberg 1989). However, we have
verified that the impact on satellite statistics due to this approximation
is rather limited. Notably, for the experiments in Section 3, we found
that setting the disc DF term to zero only yields an ∼1 per cent
increase in the number of surviving satellites, and changing the whole
aDF by a factor of 2 results in only an ∼10 per cent change in the
abundance of satellites.

2.5 Tidal stripping and ram-pressure stripping

Satellites lose DM mass and stellar mass to tides, and they lose
gaseous mass to ram pressure when their orbits bring them close
enough to the centre of the host system.

We estimate the instantaneous tidal radius of the satellite, lt, at
each point along its orbit by solving

lt = r

⎡
⎣ m(lt)/M(r)

2 − d ln M(r)
d ln r

+ V 2
t (r)

V 2
circ(r)

⎤
⎦

1/3

(29)

(e.g. King 1962; Taylor & Babul 2001; Zentner & Bullock 2003),
where m(l) and M(r) are the enclosed mass profiles of the satellite
and host, respectively, and Vt(r) = |r̂ × V | is the instantaneous
tangential speed. The first two terms in the denominator represent
the gravitational tidal force – obviously, tidal stripping depends on
the local mass profile of the host (see Dekel, Devor & Hetzroni 2003,
for a thorough discussion). The third term represents the differential
centrifugal force across the satellite due to its orbital motion about
the halo centre.

Although the tidal radius is widely used to model tidal stripping, it
is an ill-defined concept for several reasons (e.g. van den Bosch et al.
2018). For example, the Hill surface is not spherical or infinitesimally
thin (Read et al. 2006b; Tollet et al. 2017). Because of this, we express
the instantaneous mass-loss rate as

ṁ = −Am(> lt)

tdyn(r)
, (30)

where we have introduced a fudge parameter A as the stripping
efficiency to encapsulate uncertainties in the definition of the tidal
radius. As such, the time-scale on which stripping occurs is the local
dynamical time tdyn(r) = √

3π/16Gρ(r) divided by A [with ρ(r)
the average density of the host system within radius r, including the
baryonic components]. We calibrate the mass-loss rate model using
high-resolution idealized simulations and find A ≈ 0.55 (Green
et al., in preparation).7 The mass evolution over a time-step �t is
then given by

m(t + �t) = m(t) + ṁ�t. (31)

7In several previous studies (e.g. Zentner & Bullock 2003; Zentner et al.
2005; Pullen, Benson & Moustakas 2014; van den Bosch et al. 2018), the
stripping time is assumed to be the instantaneous orbital time divided by a
fudge factor, i.e. (2πr/Vt)/A, with A = 1–6 across the studies. Our choice
of A = 0.55 corresponds roughly to A ∼ 1.65 for a typical cosmological
orbit, bracketed by literature values but on the inefficient-stripping end. The
stripping efficiency parameter may weakly depend on the density profile used
for describing the evolved subhaloes.

Similarly, if a higher order satellite (see Fig. 1 for definition) stays
outside the tidal radius of the hosting satellite for more than a time
of tdyn(l)/A, where tdyn(l) is the local dynamical time of the hosting
satellite, it is released to the lower order host, picking up a new orbital
velocity that is the superposition of its velocity with respect to the
previous hosting satellite and the velocity of the hosting satellite with
respect to the lower order host.

Analogous to how the tidal radius is defined, a ram pressure radius
(lRP) can be defined as the satellite-centric distance where the self-
gravitational restoring force per unit area balances the ram pressure
exerted by the gaseous host halo. We compute lRP at each point along
the orbit by solving

κ
Gm(lRP)ρgas(lRP)

lRP
= ρgas(r)V (r)2, (32)

where κ is a factor of order unity (Zinger et al. 2018; κ = 0.5–
2, depending on assumptions made in calculating the gravitational
restoring force), and we take for simplicity κ = 1. The mass-loss rate
of the gaseous halo is given by

ṁgas = −mgas[> min(lt, lRP)]

2tdyn(r)
. (33)

In practice, min (lt, lRP) = lRP in most cases, i.e. ram-pressure
stripping is usually more efficient than tidal stripping for gas.

2.6 Evolution of satellite structure

Satellites react to two competing tidal effects: tidal stripping, which
takes mass away and makes satellite smaller, and tidal heating, which
injects orbital kinetic energy into the satellite, causing it to expand.
While tidal stripping can be analytically estimated (Section 2.5), the
effect of heating, or the net structural response to both tidal effects,
is not easily captured by analytical arguments. Several studies have
resorted to using idealized simulations to tabulate satellite structural
evolution due to the tidal field as a function of the mass that has been
lost (Hayashi et al. 2003; Penarrubia, Navarro & McConnachie 2008;
Penarrubia et al. 2010; Errani, Penarrubia & Tormen 2015; Errani,
Penarrubia & Walker 2018; Green & van den Bosch 2019).8 Notably,
Hayashi et al. (2003) and Penarrubia et al. (2008, 2010) found
that subhalo density profiles depend solely on the density profile
at infall and the total amount of mass lost thereafter. In particular,
they describe the evolution of the maximum circular velocity (vmax)
and the radius at which the circular velocity reaches the maximum
(lmax) using a generic function

g(x) =
(

2

1 + x

)μ

xη, (34)

where g(x) = vmax(t)/vmax(0) or lmax(t)/lmax(0), x is the bound mass
fraction [m(t)/m(0)], and μ and η are the best-fitting parameters
calibrated against idealized simulations. Penarrubia et al. (2010)
found that μ and η depend on the initial inner logarithmic density
slope of the satellite, s0.01 (see Appendix B for their values).
These relations, also known as tidal evolution tracks, are scale-free,
independent of the orbital parameters, and only marginally sensitive
to the initial concentration of the subhaloes (Green & van den Bosch
2019), which we ignore here.

8However, see also Du et al. (in preparation), which studies the tidal heating of
subhaloes using idealized N-body simulations and derives analytical formulae
that accurately approximate the effects of tidal heating on subhalo density
profiles. See also the analytic model for the structural response of systems to
mass-loss by Drakos, Taylor & Benson (2017, 2020).
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Errani et al. (2018) extended tidal tracks to describe the evolu-
tion of the stellar mass (m�) and half-stellar-mass radius (leff). In
particular, they found that

g̃(x) =
(

1 + xs

x + xs

)μ

xη, (35)

where g̃(x) = m�(t)/m�(0) or leff(t)/leff(0) and x = mmax(t)/mmax(0),
with mmax the subhalo mass within the maximum-circular-velocity
radius, m(lmax). Here, the parameters μ, η, and xs depend not only
on the initial density slope, s0.01(0), but also on how compact the
stellar component initially is with respect to the hosting subhalo,
measured by leff(0)/lmax(0). Note that by using these tidal tracks,
we do not assume density profiles for stellar mass or explicitly
model tidal stripping of stars; instead, we updated the evolved stellar
mass and half-mass radius assuming that they are coupled to the
evolution of the subhaloes through m(lmax). We list the parameter
values in Appendix B, but summarize the tidal tracks qualitatively
here as follows: Satellite size generally increases with subhalo mass-
loss, which manifests due to tidal heating and the re-virialization
response to tidal stripping and heating; only cuspy satellites (α � 1)
can become more compact, and the size decrease occurs only after
significant subhalo mass-loss.

With the tidal tracks described by equations (34) and (35), the
formula for tidal stripping, equations (29)–(31), and the initial profile
as set up in Section 2.3, we can completely specify the evolved
subhalo profile, the stellar mass, and the stellar size at each time-step
along the orbit. For this, a conversion between vmax and lmax and the
parameters that are directly used to define a subhalo density profile,
e.g. the concentration c and overdensity �, is needed. We provide
details on such a conversion in Appendix B. For the gas distribution,
we assume that the remaining gas follows the evolved subhalo profile
as in equation (23), with fgas = mgas(t)/m(t).

2.7 Improvements compared to previous models

SatGen combines the wisdom of earlier models and improves
in important ways. Most previous models have focused on DM
subhaloes (Taylor & Babul 2001; Zentner & Bullock 2003; Zentner
et al. 2005; Gan et al. 2010; Penarrubia et al. 2010; Jiang & van
den Bosch 2016), whereas SatGen takes baryonic properties into
consideration. A couple of models have included certain details of
baryonic processes (Carleton et al. 2019; Nadler et al. 2019), but
SatGen is more thorough.

For example, the model by Nadler et al. (2019) considers the
stellar component. It initializes the satellite stellar size in the same
way as SatGen, but for the size evolution it only considers size
decrease due to tidal stripping and neglects expansion due to tidal
heating, which is a process that is essential for producing UDGs in
dense environments (Carleton et al. 2019; Jiang et al. 2019a). Also,
tidal stripping in this model is treated in an orbit-averaged sense, as
in van den Bosch, Tormen & Giocoli (2005) and Jiang & van den
Bosch (2016). This treatment washes out detailed mass and structural
evolution along the orbits.

The model by Carleton et al. (2019) uses the same tidal tracks
as used in SatGen ; however, it applies abrupt tidal truncation to
satellites at orbital pericentres such that pericentres are the only
locations where the satellites lose mass. This is not accurate for
circular orbits or any orbits with ε � 0.5. In addition, the Carleton
et al. (2019) model relies on cosmological N-body simulations for
merger trees, orbits, and initial conditions. In contrast, SatGen can
generate larger samples using the EPS formalism, which is useful

for studying the halo-to-halo variance of satellite properties, and can
follow the orbits self-consistently.

We caution that, while SatGen can incorporate MN disc poten-
tials and thus allow for potential wells that are axisymmetric overall,
it neglects the triaxiality of DM haloes that could have a significant
effect on satellite orbits (e.g. Kravtsov, Gnedin & Klypin 2004).

2.8 Illustration and workflow

We present an idealized example of a massive satellite orbiting
an MW-sized halo in Appendix C in order to provide an intuitive
illustration (Fig. C1) of the orbit integration and satellite evolution
prescriptions described in Sections 2.2–2.6.

When using SatGen for a cosmological set-up, we summarize
the workflow as follows:

1. Starting with a target halo of a given mass and redshift, draw
halo merger trees according to Section 2.1.

2. Initialize host and satellite properties according to Section 2.3,
using density profiles introduced in Section 2.2 and Appendix A, and
considering halo response models that are characteristic of certain
cosmological hydrosimulations.

3. Evolve the satellites: integrate the orbit according to Section 2.4
and update the masses and profiles of the satellites and the host for
every time-step of �t = 0.1tdyn(z), according to Section 2.6.

This procedure is somewhat similar to that of zoom-in simulations,
in the sense that both SatGen and zoom-in simulations start with
a target halo and then trace the progenitors back in time, finally
evolving forward in time to refine the small-scale structures.

3 SATELLI TES OF MW/ M3 1 -SI ZED HOST
H A L O E S

For a proof-of-concept application, we use SatGen to generate
satellite galaxies for MW/M31-sized host systems, studying baryonic
effects on satellite statistics including subhalo abundance, spatial
distribution, and internal structures. In particular, we highlight the
impact of two separate baryonic effects. The first is the impact that
(supernova) feedback can have on the central density profile of the
(sub)haloes hosting satellites. We refer to this as the internal effect
due to baryons. The second is the impact that the baryonic disc of
the host system has on the orbital and tidal evolution of satellites. In
what follows, we refer to these as the internal and external baryonic
effects, respectively.

3.1 Model set-up and satellite statistics

We consider two different halo response models, which are represen-
tative of simulations of bursty star formation and strong supernova
feedback, such as NIHAO (Wang et al. 2015) and FIRE (Hopkins
et al. 2014, 2018), and of simulations of non-bursty star formation
and weaker feedback, such as APOSTLE (Sawala et al. 2015) and
Auriga (Grand et al. 2017). We denote these two models as the
NIHAO emulator and APOSTLE emulator, respectively, and tabulate
the parameters of their halo response curves, as in equations (19) and
(20), in Table 1.

For each emulator, we randomly generate 100 merger trees
for MW- and M31-sized haloes (Mvir = 1012−12.3 M� at z = 0),
recording progenitor haloes down to 107.5 M� up to z = 20. We
initialize the satellites and hosts as described in Section 2.3 – at

MNRAS 502, 621–641 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/1/621/6066532 by IN
IST-C

N
R

S IN
SU

 user on 05 M
ay 2023



630 F. Jiang et al.

Table 1. Halo response relations adopted by the two simulation emulators
considered in Section 3.

NIHAO emulator a APOSTLE emulator b

Equation (19) For concentration
a0 1.14 1
a1 186 186
a2 1 0
b1 1.37 –
b2 0.142 –

Equation (20) For inner density slope
n0 1.45 1.45
n1 1 1
X0 2.54 × 10−3 2.54 × 10−3

X1 9.87 × 10−4 –
ξ0 0.21 0.21
ξ1 2.14 0

aFreundlich et al. (2020b).
bThe APOSTLE emulator of the inner density slope is directly based on
Bose et al. (2019), whereas the behaviour of the concentration ratio is our
speculation, from setting the a2 term of equation (20) that is responsible for
core formation in the bright-dwarf regime to zero.

this stage, the halo response relations are taken into account.9 We
then evolve the satellites, considering two cases. In one case, the
host potential is just a DM halo following the Dekel-Zhao profile,
as determined by the merger tree and the initialization procedure. In
the other case, the host potential consists of both the DM halo and a
galactic disc. The disc mass is set to be 0.1 times the instantaneous
halo mass, i.e. Md(z) = 0.1Mvir(z). The disc follows an MN profile
with b/a = 1/25. The disc size, a, is determined using the half-mass
radius, reff, as given by equation (22), and the relation between the
MN a and reff, as given by equation (A30). Our discs are similar to
those of Penarrubia et al. (2010) in terms of mass and axial ratio.
While approximately mimicking the cold discs of the MW or M31,
these parameters are chosen mainly for illustration purposes and are
not intended to reproduce the actual discs in the MW or M31 in any
detail. In fact, they are on the massive side of the observationally
inferred values (e.g. Sofue 2013).

In total, we have four suites of simulations for a total of 400
MW/M31 sized haloes – we have two suites for each simulation
emulator and, for each emulator, we consider the case with and
without the embedded galactic disc. The merger trees and initial
satellite structures of the with-disc and no-disc models are identical.
This enables us to quantify the disc effect.

Fig. 3 presents the cumulative subhalo mass functions, N(> m),
subhalo vmax functions, N(> vmax), and satellite galactocentric-
distance distributions, N(< r), for all of the surviving satellites in the
four suites at z = 0. Here, we define ‘surviving’ as having subhalo
mass larger than 106 M� and have verified that our results are not
sensitive to this arbitrary mass threshold. Lines represent the median
mass, vmax, or distance at fixed number N, and the shaded bands
indicate the 3–97 percentiles, reflecting the halo-to-halo variance
due to random assembly histories. We overplot the vmax functions
from the FIRE and APOSTLE simulations, finding that the SatGen
predictions are in reasonable agreement with the simulation results.
We emphasize that this agreement is achieved without tuning any of
the model parameters. We think that given the differences among the

9For this proof-of-concept study, we opt to only follow the DM and stellar
components, ignoring the gaseous components.

simulations, the halo-to-halo scatter, and the concern on the reliability
of the simulation results due to numerical disruption (van den Bosch
et al. 2018), there is no need to fine-tune the model to match the
simulations in detail.

The census of bright satellites (m� > 105 M�) of MW and M31
is relatively complete (e.g. Tollerud et al. 2008), so we use them
as our observational benchmarks. Fig. 4 presents the SatGen vmax

functions and radial distributions for the massive surviving satellites
with m� > 105 M� at z = 0, and compares them with those of the
McConnachie (2012) observational sample of MW/M31 satellites.
We find that the model predictions agree well with those of the actual
MW/M31 satellites. Notably, the median radial distribution from the
NIHAO emulator agrees with the MW and M31 observations at
percent level out to ∼150 kpc from the Galactic Centre, and even the
observational results at the outskirts are well within the halo-to-halo
variance of the model predictions.

The halo-to-halo variance of satellite statistics is large and cor-
relates with the growth history and structure of the host system.
For example, the right-hand panel of Fig. 4 compares the median
N(< r) of massive surviving satellites for host systems of the lowest
and highest 25 per cent present-day concentration (at z = 0). On
average, high-concentration hosts have fewer massive satellites,
consistent with previous studies (e.g. Lu et al. 2016). Although, not
shown here, within each concentration bin the halo-to-halo scatter
is still significant, resulting from the details of merging histories
and satellite orbits. We will quantify the halo-to-halo scatter more
systematically in a future work.

3.2 Effects of different baryonic physics

In SatGen, the effect of different subgrid baryonic physics is
captured by the halo response relations (Section 2.3). Among high-
resolution cosmological simulations, NIHAO and FIRE feature
bursty star formation histories and thus strong, episodic supernova
outflows. This causes DM cusp-to-core transformations for massive
dwarfs (Mvir ∼ 1010.5 M� or M�/Mvir ∼ 10−3). Along with core
formation, the overall density profile also becomes less concen-
trated. The APOSTLE and Auriga simulations, on the other hand,
have relatively smooth and continuous star formation histories and
therefore fewer intense episodes of supernova feedback. The DM
haloes remain cuspy throughout the mass range simulated (Bose
et al. 2019). Cuspy, concentrated systems, once becoming satellites,
are more resistant to tidal stripping. This is taken into consideration
by the tidal evolution tracks described in Section 2.6.

Therefore, as we can anticipate, an APOSTLE-like halo response
would yield higher satellite counts than the more bursty NIHAO
model. This is clearly shown by Figs 3 and 4. We note that this effect
is more pronounced for massive satellites (as in Fig. 4) than that
for the entire surviving population, which is dominated by low-mass
systems (as in Fig. 3). Specifically, the NIHAO emulator produces
20 per cent fewer massive satellites than the APOSTLE emulator,
while the difference in the abundance of all surviving satellites (m >

106 M�) is only ∼7 per cent. This is largely due to the fact that
the two halo response relations mainly differ in the massive-dwarf
regime, converging at the low-mass end. The relative importance
of the halo response versus the baryonic disc of the host, in terms
of its influence on satellite abundance, also depends on the sample
selection – for the whole population of surviving satellites, the disc
effect is dominant, whereas for the massive dwarf subset, the disc
effect is comparable to the halo response effect, both contributing to
an ∼20–25 per cent difference.
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disc
disc

Figure 3. Satellite statistics predicted by SatGen in bursty- and smooth-feedback schemes, which emulate NIHAO/FIRE and APOSTLE/Auriga simulations,
respectively – the cumulative subhalo mass function N(> m) (left), subhalo vmax function N(> vmax) (middle), and radial distribution N(< r) (right) of all of the
surviving satellites in MW/M31-sized hosts (where ‘surviving’ means m > 106 M� at z = 0 and ‘MW/M31-sized’ means that the present-day host halo mass is
in the range of M0 = 1012−12.3 M�; see Section 3.1 for details). Thick lines represent the median model predictions, with solid and dashed lines differentiating
the cases with and without a disc potential. The colours differentiate results from the NIHAO emulator (black) and the APOSTLE emulator. Shaded bands
indicate halo-to-halo variance (3–97 percentiles). The thin lines in the middle panel are APOSTLE and FIRE simulation results for the vmax function (Sawala
et al. 2015; Garrison-Kimmel et al. 2017). Halo response differences result in a relatively minor effect: The NIHAO-like feedback yields ∼5 per cent fewer
satellites than the APOSTLE-like model. A baryonic disc reduces the abundance of surviving satellites within 300 (100) kpc by ∼20 per cent (30 per cent).
Both baryonic effects are weak compared to the halo-to-halo variance.

disc
disc

Figure 4. Subhalo vmax functions and radial distributions of massive satellites (m� > 105 M�), comparing model predictions for MW/M31-sized host haloes
(lines) and observations of the actual MW/M31 (symbols). The shaded areas indicate halo-to-halo variance (3–97 percentiles, for the models with discs). The
flattening of the vmax function at the low mass compared to the middle panel of Fig. 3 is simply due to the stellar mass cut. The smooth feedback on average
yields ∼25 per cent more massive satellites than the NIHAO-like feedback, illustrating that cuspier and denser satellites are more resistant to tidal stripping and
heating. The bursty-feedback prediction of the median radial distribution agrees well with the observations out to ∼150 kpc. Satellite statistics correlate with
the growth history and the structure of the host system: e.g. for the bursty-feedback models with disc, the thin cyan and magenta lines represent the median N(<
r) of satellites in host systems of the lowest 25 per cent concentration and highest 25 per cent concentration, respectively. On average, low-concentration hosts
have more satellites.

The rotation curves (RCs), Vcirc(r), of massive satellites in the
bursty-feedback models exhibit a blend of rising ones and flatter
ones in the radius range of 0.3–3 kpc, as shown in Fig. 5. Rising RCs
in this radius range correspond to cored density profiles, while the
ones that are flat in this radius range are rising at smaller radii, which
correspond to cuspy density profiles. Not shown here, the RCs of
the massive satellites in the smooth-feedback models are generally
all flat in this radius range. Hence, the bursty model yields more
structural diversity for massive satellites.

Fig. 4 shows that the halo-to-halo variance is dramatic, especially
in the satellite spatial distributions. This highlights the importance
of having a large sample if we hope to distinguish between feedback

models. Hydrosimulation suites that consist of of-the-order-of 10
MW/M31 analogues would struggle in revealing the aforementioned
differences (Samuel et al. 2020). Similarly, on the observational side,
surveys of more MW/M31 analogues are needed. Recent observa-
tional studies (e.g. Greco et al. 2018; Bennet et al. 2019; Carlsten
et al. 2020) have increased the sample of satellite populations of
MW-mass systems to of the order of 10. The SAGA survey (Geha
et al. 2017), which will contain ∼100 MW-like systems when
completed, will start to be a useful observational benchmark for
differentiating feedback models based on the demographics of their
satellite galaxies. We will present a more systematic comparison with
observations in a future work.
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632 F. Jiang et al.

Figure 5. Examples of RCs of massive satellites (m� > 105 M�) of MW-sized (Mvir = 1012−12.15 M�) and M31-sized (Mvir = 1012.15−12.3 M�) host haloes at
z = 0, from the NIHAO-emulating (i.e. bursty-feedback) models. Each row is a random realization (indicated as ‘Tree i’), with the left-hand side and right-hand
side panels having exactly the same merger history but differing in whether a baryonic disc is included (right) or ignored (left) when evolving the satellites
(see Section 3.1 for details about the disc set-up). Symbols with error bars are kinematic data from the MW and M31 satellites compiled from the literature,
where the red symbols are compiled by Garrison-Kimmel et al. (2019) using the references therein and the brown, pink, and purple symbols and the associated
colour bands are RCs of the Sagittarius dwarf, SMC, and LMC, respectively (Cote, Carignan & Freeman 2000; Bekki & Stanimirovic 2009; van der Marel &
Kallivayalil 2014). Overall, the model RCs are in reasonable agreement with the observed kinematics, especially in the cases with a baryonic disc. The disc has
a weak but noticeable effect of increasing the diversity of the RCs, as can be most clearly seen in Tree 7, Tree 20, and Tree 30.

3.3 Effect of the disc potential

As we can expect, injecting a baryonic disc into the host galaxy
has the effect of depleting satellites. This is simply because the disc
is an extra source of tidal field and DF in addition to the smooth
host halo. This satellite-depletion effect has been discussed by, e.g.
Penarrubia et al. (2010) and Garrison-Kimmel et al. (2017), using
semi-analytical models and simulations. Here, we report consistent
results. As shown in the right-hand panel of Fig. 3, adding a disc
reduces the abundance of surviving satellites by ∼20 per cent. This
effect is stronger towards the centre of the host and is not very
sensitive to the halo response model. While it is intuitive that the
disc makes a difference at small radii through tidal interactions with
the satellites, it seems intriguing that it is also able to impact N(<
r) at large radii. This is partially due to the cumulative nature of the
distribution, in the sense that every occurrence of high-eccentricity
orbit that has the pericentre close enough to the disc would contribute
to the difference of N(< r) at large radii. This could also be partially
attributed to the fact that many outer satellites are recently accreted
and on their first orbit – the disc makes the overall potential deeper,
thus accelerating the infall and depleting the outermost part relative
to the no-disc case, since both cases have matched merger trees and
initial orbits.

In addition to depleting satellites, the disc also plays a secondary
role of diversifying satellite structure. This is a subtle, but important,
effect for reconciling the small-scale issues. Notably, the TBTF can
be formulated as a tension between the narrow vmax distribution
of subhaloes from �CDM models and the relatively broad vmax

distribution of the observed massive satellites (e.g. Jiang & van den
Bosch 2015). The cusp–core issue is a tension that arises due to
the fact that the observationally inferred DM inner slopes are quite
diverse (e.g. Oman et al. 2015) whereas the �CDM subhalo inner
slopes (in DM-only simulations) are almost exclusively cuspy; that
is, both the TBTF and the cusp–core issues boil down to a structural
diversity issue.

A commonly used diagnostic for TBTF is the comparison of the
RCs of massive satellites predicted by the model versus the circular
velocities at certain radii observed for MW/M31 massive satellites,
usually vcirc(leff). Fig. 5 presents such examples from our NIHAO-
emulating models. Overall, the agreement between the models and
the data is decent, but we focus on comparing the results from the
(merger tree-matched) models with and without the disc. We can see
that the spread of the RCs is marginally larger in the models with a
disc. This is especially clear in, e.g. Tree 7, Tree 20, and Tree
30. In the few cases, such as Tree 67 and Tree 68, where the
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Figure 6. Effect of a disc potential on satellite structure – vmax as a function
of minimum galactocentric distance, rmin, for surviving massive satellites
(m� > 105 M�) in MW-sized hosts (Mvir = 1012−12.15 M�) and in M31-
sized hosts (Mvir = 1012.15−12.3 M�). Each panel shows the satellites in a
pair of realizations with an identical, random merger tree evolved with and
without a disc. Short black lines connect satellites shared in common (solid
symbols) by the models with and without the disc, highlighting the change in
vmax. Open symbols represent the massive satellites that only belong to the
disc models or the no-disc models. The numbers quoted in the lower right-
hand corners of each panel are the numbers of surviving massive satellites.
Focusing on the common satellites, we find that the disc generally decreases
their vmax and rmin. The vmax change is more pronounced for those satellites
with smaller rmin.

RCs in the no-disc models appear to be more scattered, the visual
impression is actually misled by the fact that there are more satellites
in the no-disc model. For an abundance-matched comparison, the
RCs in the no-disc model are always more narrowly crowded and
less diverse.

To better show the disc’s role in broadening the structural diversity,
we examine in Fig. 6 the vmax change as a function of the minimum
host-centric distance, rmin, for individual massive (m� > 105 M�)
satellites in the merger tree-matched models with and without the
disc. We can see that the disc decreases the vmax values by up
to 50 per cent, depending on rmin. Generally, the closer a satellite
gets to the host centre, the more that vmax decreases with respect to
the no-disc case. The disc also marginally decreases the minimum
galactocentric distances, as can be expected.

Fig. 7 extends the analysis to the full ensemble, showing the
median ratios of subhalo mass (mwith disc/mno disc), maximum circular

velocity (mwith disc/mno disc), subhalo concentration (c2,with disc/c2,no disc),
and logarithmic inner density slope (s38,with disc/s38,no disc), as functions
of the minimum host-centric distance measured in the simulations
with disc, rmin, of massive surviving satellites in all of the 100
realizations. Here, for the density slope we follow the convention
in observational studies to measure it at fixed physical aperture (as
opposed to a relative aperture of 0.01lvir that is convenient for theo-
retical studies) – in particular, we use the average slope between l =
0.3 kpc and 0.8 kpc, s38 ≡ − ln[ρ(0.8 kpc)/ρ(0.3 kpc)]/ ln(0.8/0.3),
following Relatores et al. (2019). On average, the disc decreases the
subhalo mass by up to 60 per cent, vmax by 20 per cent, concentration
by 5 per cent, and steepens the density slope by 8 per cent. Satellites
need to reach small galactocentric distances to experience these
changes: Those not having been within 50 kpc of the Galactic Centre
are barely affected.

We emphasize again that both the internal and external baryonic
effects contribute an ∼25 per cent effect on the abundance and
structure of satellite galaxies. The halo-to-halo variance due to
different merging histories easily overwhelms these baryonic effects,
unless large samples are utilized.

4 D I SCUSSI ON: SURVI VA L V ERSUS
DISRUPTION

It is natural to wonder what determines the fate of a satellite –
under what internal and external conditions will a satellite survive,
and under what conditions will it be disrupted? With the relatively
large statistical samples provided by SatGen, we can address these
questions quantitatively.

Fig. 8 compares the distributions of surviving satellites (m >

106 M�) and of disrupted satellites (m < 106 M�) in the space
spanned by the minimum galactocentric distance (rmin) versus virial
mass at infall (macc), concentration at infall (c2,acc), and logarithmic
inner density slope at infall (s0.01,acc). In the first row of Fig. 8, we
include satellites accreted throughout cosmic history, whereas in the
second and third rows of Fig. 8, we consider satellites accreted at low
redshift (zacc < 1) and higher redshift (zacc = 1–2), separately. We
focus only on the NIHAO emulator results, but compare the models
with and without the galactic disc potential.

There are several features worth mentioning. First, disruption
occurs throughout the infall mass range. At the most massive end
(macc � 1011 M�), disruption actually dominates over survival. This
can be clearly seen via the macc distributions of satellites accreted after
z = 1 (the top panel of the second row, first column, of Fig. 8). This
massive-end bump highlights the strong satellite mass dependence
of DF: Only massive satellites with m/M � 0.1 undergo significant
orbital decay. We caution that we have arbitrarily defined ‘disruption’
as subhalo mass dropping below 106 M�. This mass threshold is
comparable or slightly better than the mass resolution of state-of-
the-art zoom-in simulations of MW-sized haloes, where the DM
particle mass is a few times 104 M� (e.g. Wetzel et al. 2016) and
at least 100 particles are needed to resolve a substructure. Hence,
our disruption threshold is comparable to that in high-resolution
simulations. However, we emphasize that mass dropping below
an arbitrary threshold does not necessarily correspond to physical
disruption, and we refer interested readers to van den Bosch et al.
(2018) for a thorough discussion.

Secondly, surviving satellites were more concentrated and more
cuspy at accretion. Specifically, if we focus on massive satellites with
macc > 1010 M�, the surviving ones have a median concentration of
c2,acc ≈ 11 and a median inner slope of s0.01,acc ≈ 0.8, while the
disrupted ones have a median concentration of c2,acc ≈ 5 and a median
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Figure 7. The median ratios of subhalo mass, vmax, concentration, and inner density slope (s38; see Section 3.3 for definition) between the models with and
without the disc potential, all as a function of the minimum galactocentric distance (as measured in models with the disc), for all of the shared massive surviving
satellites (m� > 105 M�) in all of the 100 random realizations. Darker and lighter shaded bands indicate 16–84 and 3–97 percentiles, respectively. On average,
the disc potential decreases satellite mass, vmax, and concentration, and increases the density slope – all in all, the disc increases satellite structural diversity.

slope of s0.01,acc ≈ 0.7. At face value, the concentration trend seems to
have a simple interpretation: Denser haloes are more resistant to tidal
disruption. While this statement is true on its own, it is actually not
the main factor at play here. The time spent in the host halo is more
important for the disruption of a subhalo than properties of the initial
density profile. This can be seen from the second and third rows of
Fig. 8: Selecting satellites by infall redshift significantly reduces the
difference in c2,acc between the disrupted and surviving populations.
Halo concentration at fixed mass anticorrelates with redshift (e.g.
Dutton & Maccio 2014), so the satellites that were accreted earlier
(and thus exposed for a longer time to the tidal field of the host) natu-
rally tend to have lower concentrations. However, the inner cuspiness
is almost independent of redshift. In fact, taking zacc bins makes the
slope difference more pronounced: For zacc ∈ [1, 2), the surviving
satellites have s0.01,acc ≈ 1, and the disrupted ones have s0.01,acc ≈ 0.6.

Thirdly, the disc significantly changes the minimum galactocentric
distance at which disruption takes place. In particular, without a disc
potential, satellites can travel to as close as rmin � 1 kpc from the
Galactic Centre before becoming disrupted, whereas with a disc,
most disruption events occur outside 1 kpc, with a median rmin of
4 kpc. This again illustrates the disruptive role of the galactic disc.
Massive surviving satellites can seldom travel within 10 kpc of the
Galactic Centre. In this way, the Solar neighbourhood is shielded
against massive satellites.

5 C O N C L U S I O N

In this paper, we presented a new semi-analytical model (SatGen )
for generating satellite galaxy populations. The model is devised
to generate statistical samples of satellite galaxy populations for
desired host properties, emulating zoom-in cosmological simulations
and outperforming simulations in statistical power. It combines
halo merger trees, empirical relations that describe the galaxy–
halo connection, and analytical prescriptions for satellite evolution,
incorporating new developments in these areas. Its improvements
and features can be summarized as follows:

(i) It uses the Parkinson et al. (2008) algorithm to generate halo
merger trees, with parameters recently re-calibrated by Benson
(2017). It can also be applied to merger trees from N-body
simulations.

(ii) It supports halo density profiles that are more flexible than
the NFW profile, including the Einasto profile and the Dekel-Zhao
profile, the latter of which has useful analytical properties. It also
uses the MN profile for describing discs.

(iii) It can be used to emulate hydrosimulations with different
subgrid baryonic physics via an empirical treatment of the halo
response to star formation and feedback, as extracted from zoom-
in hydrosimulations of field galaxies.

(iv) It makes use of stellar-mass–halo-mass relations from halo
abundance matching, as well as galaxy-size–halo-size relations
extracted from hydrosimulations, in order to initialize the baryonic
properties.

(v) It supports satellite orbit integration in composite host poten-
tials, consisting of (combinations of) a DM halo, baryonic disc, and
stellar bulge.

(vi) It uses tidal evolution tracks obtained from high-resolution
idealized simulations from Penarrubia et al. (2008, 2010) and Errani
et al. (2015, 2018), following the structural evolution of satellites.
This, together with the halo response relations, enables SatGen
to propagate the baryonic effects seen in hydrosimulations to the
satellite populations – a task that is difficult for simulations because
of the high numerical resolution required.

We presented a proof-of-concept application of SatGen . We
generated samples much larger than state-of-the-art zoom-in simu-
lations for MW and M31 at comparable numerical resolution. We
experimented with different halo response models, using SatGen
to emulate simulations with bursty star formation and strong feed-
back (e.g. NIHAO and FIRE) and simulations with smoother star
formation, and thus negligible halo response, in massive dwarfs (e.g.
APOSTLE and Auriga). We also experimented with models with and
without a galactic disc potential in order to quantify the influence of
the disc on satellite statistics. In other words, we explored the internal
(halo response) and external (host-disc) baryonic effects on satellite
properties. The conclusions of this study are as follows:

(i) We find that the model predictions of the vmax function, RCs,
and spatial distributions of bright satellites with m� > 105 M� are
in good agreement with observations. This is achieved without fine-
tuning model parameters.

(ii) Different halo response models yield slightly different satellite
abundances: On average, the NIHAO emulator yields 25 per cent less
satellites with m� > 105 M� within 300 kpc of the Galactic Centre
than the APOSTLE emulator. The effect is smaller if we include all
of the surviving satellites, illustrating the fact that the difference in
the halo response is most prominent for massive dwarfs. Given the
large halo-to-halo variance as revealed by the model, and given the
limited observational sample, it currently remains difficult to use the
observed satellite spatial distribution to distinguish between the two
feedback patterns.
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Figure 8. Comparison of disrupted satellites (m < 106 M�) and surviving satellites (m > 106 M�) in terms of their minimum host-centric distance versus
mass, concentration, and inner slope at accretion, for the NIHAO-emulating models. The first row shows the results for satellites accreted throughout cosmic
history. The second and third rows show results for satellites accreted at low redshift (0 ≤ zacc < 1) and higher redshift (1 ≤ zacc < 2), respectively. The top
and side panels show the 1D marginalized histograms. Surviving satellites are shown as filled histograms, while disrupted ones are shown as empty steps. The
middle column (rmin versus c2,acc) and right-hand column (rmin versus s0.01,acc) focus only on satellites with macc > 1010 M�. Key takeaways: (1) Disruption
occurs throughout the mass range, with a hump at the massive end, illustrating that massive satellites experience stronger DF. (2) Surviving satellites have higher
concentration and cuspier density profiles at infall. However, the concentration trend largely reflects a progenitor bias (namely that concentration anticorrelates
with redshift) and is significantly reduced if focusing on satellites accreted in the same redshift range. (3) The disc potential causes disruption to occur at larger
galactocentric distances.
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(iii) Adding a disc potential to the host causes, on average, a
20 per cent (30 per cent) reduction in satellite number count within
300 (100) kpc. In addition to satellite depletion, the disc slightly
increases the structural diversity of massive satellite dwarfs. On
average, a disc decreases the satellite vmax by up to 20 per cent
and concentration by up to 5 per cent, and increases the density
slope measured at the fixed physical aperture of 0.3–0.8 kpc by up to
8 per cent, depending on the minimum galactocentric distance that
the satellite can reach. This helps with alleviating the small-scale
problems of �CDM.

(iv) The fate of a massive satellite galaxy (macc > 1010 M�)
depends on how close it gets to the Galactic Centre: The surviving
satellites seldom reach within 10 kpc of the centre, whereas the
disrupted ones have a minimum galactocentric distance of rmin ∼
4 kpc (or �1 kpc if there was no galactic disc). The fate also depends
on the initial structure at infall: More concentrated and cuspier haloes
are more likely to survive. However, the concentration trend is largely
due to a progenitor bias, in the sense that satellites that have been
exposed to the tidal field for a longer time, i.e. those that were
accreted earlier, have lower concentration at accretion because of the
anticorrelation between halo concentration and redshift.

Overall, we have shown that SatGen can emulate numerical
simulations of very high resolution decently, capturing the bulk
of the baryonic effects on the abundance, spatial distribution, and
internal structure of satellites. Thanks to the tidal evolution recipes
that are extracted from high-resolution idealized simulations, it
avoids the numerical artefacts of overstripping. Simulating a sta-
tistically large sample of MW/M31-sized systems, not to mention
galaxy groups or clusters, while retaining the resolution for satellite
dwarfs is computationally challenging for numerical simulations.
Therefore, the SatGen model complements simulations nicely in
terms of statistical power. In an upcoming work (Jiang et al., in
preparation), we use SatGen to study satellites of group-sized
hosts and explore the conditions for forming UDGs and compact
dwarf satellites. The SatGen code is made publicly available at
https://github.com/shergreen/SatGen.
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A. V., Di Cintio A., 2019b, MNRAS, 487, 5272
King I., 1962, AJ, 67, 471
Klypin A. A., Trujillo-Gomez S., Primack J., 2011, ApJ, 740, 102
Kravtsov A. V., 2013, ApJ, 764, L31
Kravtsov A. V., Gnedin O. Y., Klypin A. A., 2004, ApJ, 609, 482
Lacey C., Cole S., 1993, MNRAS, 262, 627
Li Z.-Z., Zhao D.-H., Jing Y. P., Han J., Dong F.-Y., 2020, preprint

(arXiv:2008.05710)
Lokas E. L., Mamon G. A., 2001, MNRAS, 321, 155
Lu Y., Benson A., Mao Y.-Y., Tonnesen S., Peter A. H. G., Wetzel A. R.,

Boylan-Kolchin M., Wechsler R. H., 2016, ApJ, 830, 59
McConnachie A. W., 2012, AJ, 144, 4
Mao Y.-Y., Williamson M., Wechsler R. H., 2015, ApJ, 810, 21
Miyamoto M., Nagai R., 1975, PASJ, 27, 533
Muldrew S. I., Pearce F. R., Power C., 2011, MNRAS, 410, 2617
Nadler E. O., Mao Y.-Y., Green G. M., Wechsler R. H., 2019, ApJ, 873, 34
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Okamoto T., Gao L., Theuns T., 2008, MNRAS, 390, 920
Oman K. A. et al., 2015, MNRAS, 452, 3650
Parkinson H., Cole S., Helly J., 2008, MNRAS, 383, 557
Penarrubia J., Navarro J. F., McConnachie A. W., 2008, ApJ, 673, 226
Penarrubia J., Benson A. J., Walker M. G., Gilmore G., McConnachie A. W.,

Mayer L., 2010, MNRAS, 406, 1290
Pillepich A. et al., 2019, MNRAS, 490, 3196
Pontzen A., Governato F., 2012, MNRAS, 421, 3464
Pullen A. R., Benson A. J., Moustakas L. A., 2014, ApJ, 792, 24
Purcell C. W., Zentner A. R., 2012, J. Cosmol. Astropart. Phys., 2012, 007
Read J. I., Goerdt T., Moore B., Pontzen A. P., Stadel J., Lake G., 2006a,

MNRAS, 373, 1451
Read J. I., Wilkinson M. I., Evans N. W., Gilmore G., Kleyna J. T., 2006b,

MNRAS, 367, 387
Relatores N. C. et al., 2019, ApJ, 887, 94
Retana-Montenegro E., Hese E. v., Gentile G., Baes M., Frutos-Alfaro F.,

2012, A&A, 540, A70
Rodriguez-Puebla A., Primack J. R., Avila-Reese V., Faber S. M., 2017,

MNRAS, 470, 651
Samuel J. et al., 2020, MNRAS, 491, 1471
Sawala T. et al., 2015, MNRAS, 457, 1931
Sofue Y., 2013, MNRAS, 65, 118
Somerville R. S. et al., 2018, MNRAS, 473, 2714
Springel V. et al., 2008, MNRAS, 391, 1685
Taylor J. E., Babul A., 2001, ApJ, 559, 716
Tollerud E. J., Bullock J. S., Strigari L. E., Willman B., 2008, ApJ, 688, 277
Tollet E. et al., 2016, MNRAS, 456, 3542
Tollet E., Cattaneo A., Mamon G. A., Moutard T., van den Bosch F. C., 2017,

MNRAS, 471, 4170
Tremmel M. et al., 2019, MNRAS, 483, 3336
van den Bosch F. C., 2017, MNRAS, 468, 885
van den Bosch F. C., Jiang F., 2016, MNRAS, 458, 2870
van den Bosch F. C., Ogiya G., 2018, MNRAS, 475, 4066
van den Bosch F. C., Tormen G., Giocoli C., 2005, MNRAS, 359, 1029
van den Bosch F. C., Ogiya G., Hahn O., Burkert A., 2018, MNRAS, 474,

3043
van Dokkum P. G., Abraham R., Merritt A., Zhang J., Geha M., Conroy C.,

2015, ApJ, 798, L45
van der Marel R. P., Kallivayalil N., 2014, ApJ, 781, 121
Wang L., Dutton A. A., Stinson G. S., Maccio A. V., Penzo C., Kang X.,

Keller B. W., Wadsley J., 2015, MNRAS, 454, 83
Weinberg M. D., 1989, MNRAS, 239, 549

Wetzel A. R., 2011, MNRAS, 412, 49
Wetzel A. R., Hopkins P. F., Kim J.-h., Faucher-Giguere C.-A., Keres D.,

Quataert E., 2016, ApJ, 827, L23
Wu H.-Y., Hahn O., Wechsler R. H., Behroozi P. S., Mao Y.-Y., 2013, ApJ,

767, 23
Yang S., Du X., Benson A. J., Pullen A. R., Peter A. H. G., 2020, preprint

(arXiv:2003.10646)
Zentner A. R., Bullock J. S., 2003, ApJ, 598, 49
Zentner A. R., Berlind A. A., Bullock J. S., Kravtsov A. V., Wechsler R. H.,

2005, ApJ, 624, 505
Zhang J., Fakhouri O., Ma C.-P., 2008, MNRAS, 389, 1521
Zhao H., 1996, MNRAS, 278, 488
Zhao D. H., Jing Y. P., Mo H. J., B”orner G., 2009, ApJ, 707, 354
Zinger E., Dekel A., Kravtsov A. V., Nagai D., 2018, MNRAS, 475, 3654
Zolotov A. et al., 2012, ApJ, 761, 71

APPENDI X A : A NA LY TI CS O F PRO FI LES

Here, we provide the analytical expressions for the profiles of density
(ρ), enclosed mass (M), gravitational potential (�), the R-component
and z-component of gravitational acceleration in the cylindrical co-
ordinate system (fR, fz), and the one-dimensional velocity dispersion
for an isotropic velocity distribution (σ ), as well as a few convenient
relations among the parameters, for each of the potential well classes
supported in SatGen .

A1 NFW

We specify an NFW profile using the virial mass, Mvir, the concen-
tration parameter, c2 (or the corresponding scale radius rs = rvir/c2),
and the average spherical overdensity, �.

ρ(r) = ρ0

x (1 + x)2 , where x = r

rs
and ρ0 = c3

2

3f (c2)
�ρcrit, (A1)

with f(x) = ln (1 + x) − x/(1 + x).

M(r) = Mvir
f (x)

f (c2)
. (A2)

�(r) = �0
ln(1 + x)

x
, where �0 = −4πGρ0r

2
s . (A3)

fR = −∂�

∂R
= �0

f (x)

x

R

r2
and fz = −∂�

∂z
= �0

f (x)

x

z

r2
,

(A4)

where r = √
R2 + z2.

σ 2(r) = V 2
vir

c

f (c)
x(1 + x)2

∫ ∞

x

f (x ′)
x ′3(1 + x ′)2

dx ′

≈ V 2
max

(
1.4393x0.354

1 + 1.1756x0.725

)2

, (A5)

where the second line is an approximation accurate to 1 per cent
for x = 0.01–100 (Zentner & Bullock 2003; see also an analytical
solution involving non-elementary functions by Lokas & Mamon
2001).

The location of the peak circular velocity, rmax, is related to the
scale radius, rs, by

rmax ≈ 2.163rs, (A6)

where rs is the location at which the logarithmic density slope is 2,
r2.
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A2 Dekel-Zhao

We specify a Dekel-Zhao profile using the virial mass, Mvir, a
concentration parameter, c (or the corresponding scale radius rs =
rvir/c), the innermost logarithmic density slope, α ≡ −dln ρ/ln r|r → 0,
and the average spherical overdensity, �.

ρ(r) = ρ0

xα(1 + x1/2)2(3.5−α)
,

where x = r

rs
and ρ0 = c3(3 − α)

3f (c, α)
�ρcrit, (A7)

with f(x, α) = χ2(3 − α) and χ = x1/2/(1 + x1/2).

M(r) = Mvir
f (x, α)

f (c, α)
. (A8)

�(r) = −V 2
vir

2c

f (c, α)

[
1 − χ2(2−α)

2(2 − α)
− 1 − χ2(2−α)+1

2(2 − α) + 1

]
. (A9)

fR(R, z) = (2 − α)[2(2 − α) + 1]�0
f (x, α)

x

R

r2
and

fz(R, z) = (2 − α)[2(2 − α) + 1]�0
f (x, α)

x

z

r2
,

where �0 = − 4πGρ0r
2
s

(3 − α)(2 − α)[2(2 − α) + 1]
. (A10)

σ 2(r) = V 2
vir

c

f (c, α)

x3.5

χ2(3.5−α)

∫ ∞

x

χ (x ′)4(3−α)+1

x ′5.5
dx ′

= 2V 2
vir

c

f (c, α)

x3.5

χ2(3.5−α)

8∑
i=0

(−1)i8!

i!(8 − i)!

1 − χ4(1−α)+i

4(1 − α) + i
. (A11)

In Fig. A1, we compare the density profiles and circular velocity
profiles of Dekel-Zhao with the NFW and Einasto profiles for
representative parameter values, highlighting its flexibility in de-
scribing cusps and cores. We refer interested readers to Freundlich
et al. (2020b) for the analytical expressions and plots of the Dekel-
Zhao profile for gravitational lensing-related quantities, including
the surface density, deflection angle, shear, and magnification.

Unlike NFW, for which rs = r2, the Dekel-Zhao scale radius is
related to r2 by

r2 = rs

(
2 − α

1.5

)2

, (A12)

such that the relation between the Dekel-Zhao concentration (c) and
the conventional concentration (c2) is

c2 = rvir

r2
=

(
1.5

2 − α

)2

c. (A13)

The location of peak circular velocity, rmax, is related to r2 by

rmax = 2.25r2 = (2 − α)2rs. (A14)

The profile of the logarithmic density slope is

s(r) = −d ln ρ

d ln r
= α + 3.5

√
x

1 + √
x

. (A15)

The slope at 0.01rvir is

s0.01 ≡ s(0.01rvir) = α + 0.35
√

c

1 + 0.1
√

c
. (A16)

For s0.01 values that are commonly seen in simulations and observa-
tions (0–2) and for a typical concentration (e.g. c = 10), we have α

∈ (−1.11, 1.53); that is, α can be negative for realistic profiles, and
thus s0.01 is a more physically meaningful quantity than α when it
comes to comparing the cuspiness of density profiles.

Figure A1. Illustration of the Dekel-Zhao profile – density profiles (upper
panel) and circular velocity profiles (lower panel). The solid black line is an
NFW profile with c2 = 10, for reference. The solid red and green lines are
Dekel-Zhao and Einasto profiles of (c, α) = (10, 0.5) and (c2, n) = (10, 5.3),
respectively, which match the NFW profile closely. The dashed and dash–
dotted red lines are Dekel-Zhao profiles with different innermost slopes α

and the same concentration c = 10. The dashed and dash–dotted green lines
are Einasto profiles with different shape indices n and the same concentration
c2 = 10. Note that the Dekel-Zhao and Einasto both have just one more degree
of freedom compared to the NFW profile, but the former is more flexible in
the inner part, while the latter is more flexible in terms of the ‘curvature’ of
the logarithmic density profile around the scale radius.

A3 Einasto

We define an Einasto profile using the virial mass, Mvir, the concen-
tration parameter, c2 (or the corresponding scale radius rs = rvir/c2),
the shape index, n (or equivalently α = 1/n), and the average spherical
overdensity, �.

ρ(r) = ρ0e−x(r),

where x = 2n

(
r

rs

) 1
n

and ρ0 = Mvir

4πh3nγ [3n, x(rvir)]
, (A17)

with h = rs/(2n)n and γ (a, x) is the non-normalized lower incomplete
gamma function. Here, we have adopted the notations in Retana-
Montenegro et al. (2012) for compact expressions.

M(r) = Mtotγ̃ (3n, x), with Mtot = 4πρ0h
3n�(3n), (A18)
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where �(a) and γ̃ (a, x) = γ (a, x)/�(a) are the gamma function and
the normalized lower incomplete gamma function, respectively.

�(r) = −GMtot

h

[
γ̃ (3n, x)

xn
+ �(2n, x)

�(3n)

]
, (A19)

where �(a, x) is the non-normalized upper incomplete gamma
function.

fR(R, z) = −GMtotγ̃ (3n, x)
R

r3
and

fz(R, z) = −GMtotγ̃ (3n, x)
z

r3
. (A20)

σ 2(r) = GMtot

h
nex

∫ ∞

x

γ̃ (3n, x ′)
ex′

x ′(n + 1)
dx ′. (A21)

Like the NFW profile, the Einasto scale radius, rs, is the same as r2,
where the logarithmic density slope is 2. The radius of peak circular
velocity is related to rs by

rmax ≈ 1.715α−0.001 83(α + 0.0817)−0.179 488rs (A22)

(Garrison-Kimmel et al. 2014b). The profile of the logarithmic
density slope is

s(r) = −d ln ρ

d ln r
= x(r)

n
, (A23)

so

s0.01 = 2(0.01c2)
1
n . (A24)

A4 MN

We define an MN profile using the disc mass, Md, a scale radius, a,
and a scale height, b.

ρ(R, z) = Mdb
2

4π

aR2 + (a + 3ζ )(a + ζ )2

ζ 3[R2 + (a + ζ )2]5/2
, (A25)

where ζ = √
z2 + b2.

M(r) = Mdr
3

[r2 + (a + b)2]1.5
, where r =

√
R2 + z2. (A26)

�(R, z) = − GMd√
R2 + (a + ζ )2

. (A27)

fR(R, z) = − GMd

[R2 + (a + ζ )2]1.5
R and

fz(R, z) = − GMd

[R2 + (a + ζ )2]1.5

a + ζ

ζ
z. (A28)

σ 2(R, z) = GM2
d b2

8πρ(R, z)

(a + ζ )2

ζ 2[R2 + (a + ζ )2]3
. (A29)

The relation between half-mass radius, reff, and the scale lengths, (a,
b), is

a = 0.766421

1 + b/a
reff . (A30)

A P P E N D I X B: ST RU C T U R E O F E VO LV E D
SATELLITES

B1 Tidal evolution tracks

We use the tidal evolution tracks of Penarrubia et al. (2010) for
determining the profiles of evolved subhaloes and those of Errani
et al. (2018) for updating the stellar masses and half-stellar-mass
radii. These tidal tracks can be expressed with the universal functional
form of

g(x) =
(

1 + xs

x + xs

)μ

xη, (B1)

where, for the DM subhalo, g represents vmax(t)/vmax(0) or
lmax(t)/lmax(0), and x stands for the bound mass fraction m(t)/m(0). For
the stellar component, g represents m�(t)/m�(0) or leff(t)/leff(0), and x
stands for mmax(t)/mmax(0), with mmax = m(lmax). The parameters
μ and η depend on the initial logarithmic density slope, s0.01

(≡ −d ln ρ/d ln r|r=0.01rvir ), and xs depends on the initial stellar size
with respect to the initial radius of peak circular velocity of the
hosting subhalo, leff(0)/lmax(0). Penarrubia et al. (2010) and Errani
et al. (2018) obtained best-fitting parameters for different initial
structures [s0.01 = 0, 0.5, 1, and 1.5 and leff(0)/lmax(0) = 0.05 and 0.1]
by calibrating the model against idealized N-body simulations, which
we summarize here in Table B1. For the initial structures not listed
in the table but within the range of the tabulated initial structures, we
use cubic spline interpolation to get the parameters. For the initial
structures beyond the tabulated range, we do not extrapolate, but use
the nearest neighbours in the table.

Fig. B1 illustrates these tidal tracks. Note that stellar mass-
loss is marginal when the subhalo mass within lmax decreases by
�90 per cent, especially when the initial stellar mass distribution is
compact [e.g. when leff(0)/lmax(0) = 0.05]. Also note that, generally,
satellite size increases with subhalo mass-loss, which manifests due
to tidal heating and re-virialization in response to tidal stripping and
heating. Only cuspy satellites (α� 1) become more compact in stellar
size, and the size decrease occurs only after significant subhalo mass-
loss, when mmax(lmax) decreases by �99 per cent. This is, however,
a viable channel for making compact bright dwarfs (m� ∼ 107–9 and
leff � 1 kpc) from massive cuspy galaxies.

B2 Evolved subhalo profiles

The parameters that we use to define the subhalo profiles – e.g. for the
Dekel-Zhao profile – c, α, and �, are not directly provided by the tidal
tracks. We need to translate (vmax, lmax) to (c, α, �) in order to update
the profiles of evolved subhaloes. Note that the evolved subhaloes
have higher overdensities (�) compared to distinct haloes, which
have � = 200.

Since the number of parameters (c, α, �) exceeds that of the
constraints (vmax, lmax), we need an additional assumption. We
follow Penarrubia et al. (2010) to assume that the innermost slope
α is constant. One can analytically show that the innermost part
of a subhalo is adiabatically shielded against tidal shocks (Gnedin,
Hernquist & Ostriker 1999). In addition, several numerical studies
have shown that the logarithmic density slope at l → 0 barely changes
even if the subhalo is stripped down to 0.1 per cent of its initial mass
(Penarrubia et al. 2010; van den Bosch & Ogiya 2018; van den
Bosch et al. 2018). Under this assumption, we can express c and �

in terms of vmax and lmax. We use two relations, dv2
circ/dl|lmax = 0 and

v2
max = v2

circ(lmax), which give

c = (2 − α)2 lvir

lmax
(B2)

and

v2
max = Gmvir

lmax

f [(2 − α)2, α]

f (c, α)
, (B3)

where f(x, α) = χ2(3 − α) and χ = x1/2/(1 + x1/2). Combining these
two relations, we can express the evolved virial mass (lvir) and
thus the evolved overdensity (�) in terms of mvir, α, vmax, and
lmax as

� = 3mvir

4πl3
virρcrit(z)

, (B4)
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640 F. Jiang et al.

Table B1. Tidal evolution tracks of the functional form g(x) = [(1 + xs)/(x + xs)]μxη , compiled from Penarrubia et al. (2010) and Errani et al. (2018) – for
subhaloes, g represents vmax(t)/vmax(0) or lmax(t)/lmax(0) and x stands for the bound mass fraction, m(t)/m(0); for stellar components, g represents m�(t)/m�(0)
or leff(t)/leff(0), and x stands for mmax(t)/mmax(0), where mmax = m(lmax). The parameter values in brackets are from linear interpolation/extrapolation.

Figure B1. Tidal evolution tracks, compiled from Penarrubia et al. (2010) and Errani et al. (2018) – instantaneous subhalo vmax and lmax in units of their initial
values, both as functions of the instantaneous bound mass fraction, m(t)/m(0) (left); instantaneous stellar mass, m, and half-stellar-mass radius, leff, in units
of their initial values, both as functions of the instantaneous ratio between the subhalo mass within lmax [i.e. mmax ≡ m(lmax)] and the initial value of mmax.
The tracks depend on the initial inner density slope (s0.01), and for the stellar component, also depend on the initial compactness of the stellar distribution [as
parameterized by leff(0)/lmax(0)].

and

lvir = lmax

(2 − α)2

χ2
c

(1 − χc)2
, with χc =

(
Gmvir

lmaxv2
max

) 1
2(3−α)

(
2 − α

3 − α

)
.

(B5)

Using equations (B2), (B4), and (B5), we can update an evolved

Dekel-Zhao subhalo according to the mass mvir(t) from the tidal
stripping recipe in Section 2.5 and the evolved structure, lmax and
vmax, from the tidal tracks.

One can derive equivalent expressions for the Einasto profile,
linking the Einasto concentration, c2, the shape index, n, and the
overdensity, �, to vmax, lmax, and an inner slope, s(10−3lvir) =
2(10−3c)1/n, which is assumed to be constant. We omit the derivations
here.
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APPEN D IX C : ILLUSTRATION: EVOLUTION
OF ONE SATELLITE IN A C ONSTANT
POTENTIAL

As an illustration of what has been described in Sections 2.2–2.6,
Fig. C1 presents the evolution of a satellite in a fixed host potential
consisting of a Dekel-Zhao halo and an MN disc. The satellite initially
has a halo mass of mvir = 1011 M� and is described by a Dekel-Zhao
profile with c = 20 and α = 0, which corresponds to a conventional
concentration of c2 = 11.25 and an inner density slope of s0.01 ≈
1.08. It is also initialized with a stellar mass of m� = 109 M� and
a half-stellar-mass radius of leff = 1.6 kpc. The central galaxy has a
halo of Mvir = 1012 M�, c = 10, and α = 0.5 (i.e. c2 = 10 and s0.01 =
1.22), as well as a disc of mass Md = 1010.7 M� with a scale size of
a = 5 kpc and a scale height of b = 1 kpc. The satellite is released
from an off-disc-plane position, (R, z) = (55, 30), with an initial
velocity that is approximately the local circular velocity in the φ̂

direction. All of these are arbitrary choices for illustration purposes.

As can be expected, this massive satellite, with a satellite-to-central
mass ratio of ∼0.1, experiences strong DF. In about two initial, local
dynamical times (∼1 Gyr), its orbital radius decays from the initial
∼60 to �20 kpc, where it experiences strong tidal stripping, with the
instantaneous tidal radius dropping below 10 per cent of its initial
virial radius. Tidal stripping, heating, and the re-virialization of the
satellite are captured by the tidal evolutionary tracks, such that after
the ∼1 Gyr evolution, first, the density profile becomes shallower at
0.01lvir; secondly, the maximum circular velocity, vmax, drops from
∼90 to ∼60 kpc Gyr−1, and the vmax location, lmax, decreases from
20 to 8 kpc; finally, the half-stellar-mass radius increases from 1.6 to
2.5 kpc.

Afterwards, the strong mass-loss weakens the DF force and the
influence of the disc begins to kick in: The DF force from the disc
works to drag the satellite into co-rotation, such that after traversing
the disc plane several times, the satellite gradually settles into a stable
orbit with a radius between 15 and 20 kpc.

(a)

(c) (e)

(g)

(h)

(i)

(f )

(b)

(d)

Figure C1. Illustration of satellite evolution in SatGen : an idealized case where a satellite with an initial halo mass of mvir = 1011 M� described by a
Dekel-Zhao profile with c = 20 and α = 0 (i.e. c2 = 11.25 and s0.01 ≈ 1.1) orbits around a central galaxy consisting of a halo of Mvir = 1012 M�, c = 10,
and α = 0.5 (i.e. c2 = 10 and s0.01 = 1.22) and a disc of mass Md = 1010.7 M� with a scale size of a = 5 kpc and a scale height of b = 1 kpc. The satellite is
released from (R, z) = (55, 30) with a φ̂-direction velocity of approximately the local circular velocity of the host potential and is evolved for 5 Gyr, during
which the host potential is fixed (see the text for more details). Panels (a)–(d) show the orbit in 3D and in the x–y, y–z, and x–z planes, respectively. Panels
(e)–(f) show the density profile and circular velocity profile at different epochs, as indicated. The initial virial radius of the satellite is marked by the vertical
dotted line. Panels (g)–(i) show the instantaneous values of a few quantities of the satellite as functions of time – (g) orbital radius and orbital velocity; (h) tidal
radius, half-stellar-mass radius, and logarithmic density slope at 0.01lvir(t) (the horizontal dotted line indicates 10 per cent of the initial virial radius; once the
tidal radius drops below this line, the stellar mass-loss becomes significant); (i) subhalo mass, stellar mass, and the subhalo mass-loss rate. As a massive satellite,
it experiences strong DF such that its orbit decays by roughly two-thirds in radius in ∼2 initial, local dynamical times or ∼1 Gyr [Panel (e)]. It experiences
tidal stripping and structural evolution along the way: Notably, the maximum circular velocity decreased by roughly one third [Panel (f): the solid lines show
the vcirc(l) profiles]; the half-stellar-mass radius increased by 50 per cent [Panel (h), dash–dotted line]; the inner density slope (s0.01) decreased from 1.1 to 0.3
[Panel (h), blue line]. Afterwards, the disc dominates the dynamics, working to drag the satellite into co-rotation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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