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Abstract. Color-texture image segmentation remains a challenging problem due to extensive color-texture1

variability. Thus, the limited prior knowledge that is expressed by pairwise constraints can be exploited2

to guide the segmentation process. In this paper, we propose a new semi-supervised method by combining3

constrained feature selection and spectral clustering to perform color-texture image segmentation. The4

pairwise constraints are used by the constrained feature selection to choose the most relevant features among5

an available set of color and texture features. For this purpose, a new constraint score is developed to evaluate6

a subset of features at one time. A specific constrained spectral clustering algorithm involving the pairwise7

constraints is then applied to regroup the pixels into clusters. Experimental results on four benchmark8

datasets show that the proposed constraint score outperforms the main state-of-the-art constraint scores and9

that our semi-supervised segmentation method is competitive compared with supervised, semi-supervised10

and unsupervised state-of-the-art segmentation methods.11

Keywords: Color texture segmentation, pairwise constraints, constrained feature selection, constrained spec-12

tral clustering.13

*Ludovic Macaire, ludovic.macaire@univ-lille.fr14

1 Introduction15

Color-texture image segmentation is one of the fundamental low-level problems in computer16

vision.1 Specifically, it aims to segment a color-texture image into disjointed homogeneous17

regions in terms of colors and textures. Although a wide variety techniques have been18

developed, color-texture image segmentation remains an open and challenging problem in19

computer vision due to the high variability of color textures. Color-texture segmentation20

by pixel classification is divided into two main steps. First, the color and texture features21

that characterize pixels must be selected in order to build a discriminating feature space.22

Second, a classification procedure analyzes pixel distribution in the feature space in order to23

assign each pixel to a class. Depending on the availability of the labeled pixels, color-texture24

image segmentation can be performed in a supervised, unsupervised, or semi-supervised25
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learning context. Deep learning approaches such as convolutional neural networks (CNNs)1

have shown good performance for supervised color-texture segmentation.2 However, these2

algorithms require a large labeled pixel subset whose construction is time-consuming. Deep3

CNNs have also been recently developed for unsupervised color-texture image segmentation.24

But, the training step of these CNNs is supervised and requires a dictionary of labeled5

textures. In contrast, the unsupervised segmentation methods based on clustering models6

such as slope difference distribution clustering, k-means, mean-shift, and spectral clustering7

can classify pixels without any prior knowledge about the classes.3–5 Besides the afore8

mentioned methods, several techniques have been applied for unsupervised color-texture9

segmentation.6–8 However, the parameters of unsupervised algorithms must be carefully10

tuned in order to yield satisfactory accuracy.11

To overcome problems caused by supervised and unsupervised algorithms, weakly super-12

vised or semi-supervised segmentation algorithms use limited amounts of supervised infor-13

mation. The prior knowledge is then expressed by a few labeled pixels or by a few links14

between pixels. A must-link constraint specifies that two pixels must belong to the same15

class, whereas a cannot-link constraint specifies that two pixels must belong to different16

classes. These pairwise constraints can be obtained from the available labeled pixels. Con-17

versely, the labels of pixels cannot be deduced from the pairwise constraints. The labeled18

pixels or the pairwise constraints can be interactively given by a user. Semi-supervised al-19

gorithms aim to classify pixels by propagating the labels9 or by incorporating the pairwise20

constraints into popular clustering algorithms such as k-means, estimation-maximization,21

hierarchical clustering10 and spectral clustering.1122

Spectral clustering, which is based on graph theory, computes the Laplacian matrix from23
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a similarity matrix between pixels and analyzes the distribution of pixels that are projected1

into a low-dimensional subspace composed of the eigenvectors of the Laplacian matrix. A2

trivial way to integrate pairwise constraints in spectral clustering is to enforce the similar-3

ities between pixels to 1 and 0 for must-link and cannot-link constraints, respectively.12,134

As the number of given pairwise constraints is low, they can be propagated across the simi-5

larity matrix.14–16 Propagation rules use Gaussian processes17,18 or the similarities between6

constrained and unconstrained pixels.19 Han et al.20 proposed the propagation of pair-7

wise constraints only on a randomly selected subset of pixels. The selectively propagated8

constraints were then used to adjust the weights of the similarity matrix. Constrained spec-9

tral clustering can be also formulated as a constrained optimization problem, where only10

linear equality constraints (analogous to must-link constraints) are exploited for image seg-11

mentation.21 Another formulation of constrained spectral clustering under general convex12

constraints has been developed for gray level image segmentation.2213

These constrained spectral clustering methods are based on a pixel similarity that is14

computed using Euclidean distance in the original feature space. Nevertheless, using all15

the features may bias the pairwise similarity computation and thus degrade the clustering16

performance. Indeed, they would provide irrelevant, redundant, and even contradictory17

information. To compute relevant similarity, the Mahalanobis distance is modified so that18

it minimizes the distance between the must-link pixels and maximizes the distance between19

the cannot-link pixels.23,24 Furthermore, the constraints can be propagated to the nearest20

neighborhood pixels that are found in the discriminating feature sub-spaces, rather than21

those that are identified in the original feature space.15 However, the random forest procedure22

used for this purpose, requires a time consuming training step.23
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In this paper, we propose an original approach for color-texture segmentation based on1

constrained spectral clustering. Specifically, it consists of propagating the pairwise con-2

straints in order to select the most relevant features. Rather than computing a score for3

each color-texture feature, we propose a new constraint score that evaluates the relevance4

of a subset of color-texture features. Thus, the similarity matrix that is computed in this5

selected subspace is truer to the data structure and respects as much as possible the given6

must-link and cannot-link constraints.7

We develop an efficient color-texture image segmentation that combines constrained fea-8

ture selection and spectral clustering (CFS-SC). Its main contributions are as follows:9

- Pairwise must-link and cannot-link constraints are involved in feature selection to10

improve the color-texture image segmentation performance using spectral clustering.11

- A new similarity-based constraint score is proposed to select the optimal number of12

relevant features.13

The rest of this paper is organized as follows. Section 2 introduces the related work,14

including a brief overview of the constrained spectral clustering and primary state-of-the-15

art semi-supervised constraint scores. Our proposed color-texture image segmentation is16

detailed in Sec. 3. Section 4 provides experimental segmentation results achieved with four17

benchmark datasets. Finally, our conclusions are given in Sec. 5.18

2 Related work19

In this section, we first introduce spectral clustering and detail how to include the constraints20

for spectral clustering and feature selection.21
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2.1 Spectral clustering1

Let X be the set of n sample pixels represented by the matrix X = [x1, x2, . . . , xn] ∈ Rn×d,2

where xi = [xi1, xi2, . . . , xir, . . . , xid]
T ∈ Rd represents the i-th pixel of X, and xir,(r =3

1, . . . , d), the r-th feature value of the i-th pixel. Let Fd = {f1, f2, . . . , fr, . . . , fd} be the set of4

d features that is represented by XT = [f1, f2, . . . , fr, . . . , fd], where fr = [x1r, x2r, . . . , xnr] ∈ Rn
5

is the r-th feature vector.6

Spectral clustering represents dataset X by an un-directed weighted similarity graph7

G = (V,E,W) in which each sample pixel corresponds to a node. V is a non-empty set that8

contains all nodes, and E is the set of edges between any two nodes in V . Each edge in E9

is weighted by a similarity value wij (i, j = 1, 2, . . . , n) between two nodes. The similarity10

matrix W that gathers similarities between all pairs of nodes is positive semi-definite and11

symmetric. Generally, the similarity wij between two pixels xi and xj is computed by the12

following Gaussian kernel function11
13

wij = exp
(

− δ2(xi, xj)

2σ2

)
i, j = 1, 2, . . . , n (1)

where σ is a scaling parameter and δ(xi, xj) is the Euclidean distance between the two pixels14

xi and xj.15

Spectral clustering is an unsupervised classification method that computes the eigen16

spectrum of the Laplacian matrix, which is deduced from the similarity matrix W, to separate17

the dataset into clusters. The most commonly used un-normalized Laplacian matrix is18

L = D − W while the most used normalized Laplacian matrices are LSym = D−1/2LD−1/2
19

and LAsym = D−1L.5,11 D ∈ Rn×n is the diagonal degree matrix whose elements are dii =20
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∑n
j=1 wij. To identify k clusters, the data are mapped onto a low-dimensional space that1

is based on the k-dominant eigenvectors corresponding to the smallest eigenvalues of the2

Laplacian matrix. Finally, an unsupervised clustering algorithm such as k-means identifies3

the k clusters of so mapped data.5,114

2.2 Constraint spectral clustering5

In the semi-supervised learning context, the prior knowledge is expressed by a small number6

of labeled pixels or pairwise constraints. In this paper, we consider that few labeled pixels7

(prototypes) characterize the k classes ωl, l = 1, . . . , k of the input image I. These prototypes8

can be interactively selected by the user or randomly selected from the ground truth. Let9

X l (X l ⊂ X) be the subset of p prototypes associated with the class ωl. From the set of10

prototypes denoted as XP
(
XP =

∪
l=1,...,k

X l
)

, we can build the set M of (k · p · (p − 1))11

must-link pairs that are composed of two prototypes belonging to the same class:12

M =
{
(xi, xj) ∈ X2 | ∃ l = 1, . . . , k so that xi ∈ X l and xj ∈ X l

}
. (2)

We can also build the set C of (k · (k − 1) · p2) cannot-link pairs that are composed of two13

prototypes belonging to different classes:14

C =
{
(xi, xj) ∈ X2 | ∃ (l,m); l ̸= m; so that xi ∈ X l and xj ∈ Xm

}
. (3)

Of all possible pixel pairs that can be extracted from X, those belonging to M or C are15

called constrained pairs while the remaining pairs are called unconstrained pairs. Further-16

more, the pixels that are not prototypes are called unlabeled sample pixels, and are gathered17
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in subset XU = X/XP (with |XU | = n− (k · p)).1

A straightforward way to integrate must-link and cannot-link pairs in spectral clustering2

is computing the similarity matrix WM,C .10,12 For a given must-link pair (xi, xj) ∈ M , wM,C
ij3

is set to 1; for a given cannot-link pair (xi, xj) ∈ C, wM,C
ij is set to 0. Thus, the modified4

matrix WM,C is defined as follows:5

wM,C
ij =


1 if (xi, xj) ∈ M

0 if (xi, xj) ∈ C

exp
(
− δ2(xi,xj)

2σ2

)
otherwise.

i, j = 1, 2, . . . , n (4)

6

The next steps of constrained spectral clustering are not specific and are summarized in7

Algorithm 1.

Algorithm 1 Constrained spectral clustering algorithm.
Input: dataset X represented by X = [x1, x2, . . . , xn] ∈ Rn×d, number k of desired clusters,
set M of must-link constraints, and set C of cannot-link constraints.
1. Compute the similarity matrix WM,C defined by Eq. (4).
2. Compute the Laplacian matrix LM,C

Sym associated to WM,C .
3. Compute the spectrum of LM,C

Sym, and extract k dominant eigenvectors UM,C =

[u1, . . . , uk] ∈ Rn×k.
4. Construct the matrix TM,C ∈ Rn×k from UM,C by normalizing each row of UM,C to have

unit length
tij =

uij√∑k
j=1 u

2
ij

5. Consider each row of TM,C as a point, and cluster all points into k clusters by k-means
algorithm.

Output: k clusters of dataset X.
8

The performance achieved by constrained spectral clustering strongly depends on the9

pairwise similarities between the unconstrained pixels, which are based on the Euclidean10
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distance δ in the original d-dimensional feature space (see Eq. (4)). Nevertheless, using all1

of these features may bias the pairwise similarities. To deal with this problem, we propose to2

select the relevant subset of features among those available. In the semi-supervised context,3

many feature selection methods have been proposed to make full use of prior knowledge.25 In4

the next section, we focus on the constraint scores that are used by semi-supervised feature5

selection.6

2.3 State-of-the-art about semi-supervised constraint scores7

Feature selection based on semi-supervised constraint scores involves the analysis of both8

pairwise constraints and unlabeled sample pixels. Specifically, it considers both the discrim-9

inating power of the pairwise constraints and the local properties of the unlabeled sample10

pixels. In the context of spectral graph theory, the dataset X can be represented by the11

nearest neighbor graph GKNN whose node vi is connected to vj when xj is one of the K-12

nearest neighbors (KNNs) of xi, the distance being computed in the original d-dimensional13

feature space. The similarity matrix WKNN ∈ Rn×n is defined as follows:14

wKNN
ij =


wij if xi ∈ KNN(xj) or xj ∈ KNN(xi)

0 otherwise
(5)

The two graphs GM and GC can also be built from the sets of must-link constraints M15

and cannot-link constraints C. The corresponding similarity matrices WM ∈ Rn×n and16
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WC ∈ Rn×n are defined as follows:1

wM
ij =


1 if (xi, xj) ∈ M

0 otherwise
(6)

2

wC
ij =


1 if (xi, xj) ∈ C

0 otherwise.
(7)

Zhao et al.26 introduced the semi-supervised constraint score C1
r , which combines the3

similarity matrix WC constructed from the cannot-link constraints (Eq. (7)) and the similar-4

ity matrix WKNN1 ∈ Rn×n, which is built from the set of must-link constraints and unlabeled5

sample pixels as follows:6

wKNN1
ij =


γ if (xi, xj) ∈ M

1 if (xi ∈ XU or xj ∈ XU) and
(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(8)

where γ is a constant parameter. In our experiments, γ is set to 100 and K is set to 5 as in7

Ref. 26.8

The constraint score C1
r is defined as9

C1
r =

fTr LKNN1fr
fTr LCfr

(9)

where LKNN1 = DKNN1−WKNN1 is the un-normalized Laplacian matrix of WKNN1, and DKNN1
10

is the degree matrix computed from WKNN1.11
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Kalakech et al.27 proposed the semi-supervised constraint score C2
r that is less sensitive1

to the constraint sets2

C2
r =

f̃Tr L̃fr
f̃Tr Df̃r

· fTr LM fr
fTr LCfr

(10)

where f̄r =
∑n

i=1 xirdii∑n
i=1 dii

= fTr D1
1TD1 , f̃r = fr − f̄r, and 1 = [1, . . . , 1]T . L and D are deduced from the3

similarity matrix W (Eq. (1)). LM = DM − WM and DM =
∑n

j=1w
M
ij .4

Benabdeslem and Hindawi proposed another constraint score C3
r , which combines the5

similarity matrices WC and WKNN2.28 The similarity matrix WKNN2 is expressed as6

wKNN2
ij =


wij if

(
(xi, xj) ∈ M

)
or
(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(11)

The score C3
r is defined as follows:287

C3
r =

fTr LKNN2fr
fTr LCDKNN2fr

(12)

A second semi-supervised constrained Laplacian score, referred to C4
r , has been proposed8

by Benabdeslem and Hindawi in Ref. 29 as follows:9

C4
r =

fTr LKNN3fr
fTr LCDKNNfr

(13)

where the diagonal matrix DKNN is deduced from the similarity matrix WKNN (see Eq. (5)).10

The Laplacian matrix LKNN3 is computed from the similarity matrix WKNN3, which is defined11
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as follows:1

wKNN3
ij =



w2
ij + wij if

(
(xi, xj) ∈ C

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
w2

ij if
(
(xi, xj) ∈ M

)
and

(
xi /∈ KNN(xj) and xj /∈ KNN(xi)

)
wij if

(
xi ∈ XU or xj ∈ XU

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(14)

Recently, Yang et al.30,31 introduced the new semi-supervised constraint score C5
r , which2

takes advantage of the local geometrical structure of unlabeled data samples as well as the3

constraint information deduced from prototypes as follows:4

C5
r =

2(fr)TLKNN4fr
(̃fr)TDKNN4̃fr + 2(̃fPr )TLP f̃Pr − (̃fPr )TDP f̃Pr

(15)

The similarity matrix WKNN4 is expressed as5

wKNN4
ij =



1 if
(
(xi, xj) ∈ M

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
λ if

(
(xi, xj) ∈ M

)
and

(
xi /∈ KNN(xj) and xj /∈ KNN(xi)

)
(1− γ)wij if

(
(xi, xj) ∈ C

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
wij if

(
xi ∈ XU or xj ∈ XU

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(16)

where γ and λ are the parameters set to the empirical values of 0.9 and 0.5, respectively.30,316

The cells of WP are set to 1/|X l| when two data samples are prototypes that belong to the7
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same class and to 0, otherwise1

wP
ij =


1/|X l| if xi ∈ X l and xj ∈ X l

0 otherwise
(17)

Note that f̃Pr = fPr − f̄Pr . LP = DP − WP is the un-normalized Laplacian matrix of WP , and2

DP is the degree matrix computed from WP .3

4

Because feature scores are based on the similarity matrices that are computed in the5

original d-dimensional feature space, they may be corrupted by irrelevant features. Further-6

more, as features are ranked according to their individual scores, the selected features can7

be correlated and may lead to low pixel classification performance.8

3 Proposed color-texture image segmentation9

This section details our CFS-SC method for semi-supervised color-texture image segmen-10

tation. The prior knowledge provided by a user is expressed by a small number of labeled11

pixels that represent the prototypes of each color-texture class. The binary similarities be-12

tween the prototypes are integrated into a matrix that quantifies the pairwise similarities of13

the pixels, and pixel spectral clustering that analyzes similarity matrix is used to perform14

semi-supervised segmentation.15

Because some color and texture features may be irrelevant or redundant, the computation16

of pairwise similarities, which is based on the Euclidean distance in the full feature space, is17

biased. Thus, the segmentation performance from spectral pixel clustering can be degraded.18

To circumvent this problem, a new constrained feature selection is included in the color-19
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Fig 1 Flowchart of the proposed color-texture image segmentation (CFS-SC).

texture image segmentation that is outlined in Fig. 1. The proposed constrained feature1

selection and spectral clustering is first applied to a limited number of sampled pixels.2

3.1 Pixel sampling procedure3

Spectral clustering is based on Laplacian matrix eigen-decomposition, whose computational4

complexity is O(n3), where n is the number of pixels that are sampled from the color image5

I, whose size is N pixels. From I, we build the subset X = {x1, x2, . . . , xn} of n sample6

pixels. This set includes the subset XP of the (k · p) prototypes and the subset XU of7

the (n − (k · p)) unlabeled sample pixels that are picked up thanks to a regular hexagonal8

grid. Once the subset X has been classified by constrained spectral clustering, a specific9

13



Fig 2 Illustration of local Haralick texture feature computing.

classification step assigns the remaining (N − n) out-of-sample pixels that are represented1

by the subset Y = {y1, y2, . . . , y(N−n)}.2

3.2 Color and texture features3

To segment the color-texture image, the pixels are characterized by both Haralick features4

(spatial features)32 and Gabor features (spectral features).33,34 Haralick texture features5

describe correlation between neighboring pixels and are computed from co-occurrence ma-6

trices. In a color image I, each pixel x is represented by three color components R,G, and7

B. Six co-occurrence matrices (three between-component matrices MR,R[x] , MG,G[x], and8

MB,B[x], and three within-component matrices MR,G[x], MR,B[x], and MG,B[x] ) are lo-9

cally computed for each pixel x by considering all co-occurrences in a window with a size of10

(2ω + 1) × (2ω + 1) centered on pixel x (see Fig. 2) (ω is set to 11 for our experiments).11

Overall, 84 Haralick features are extracted from six co-occurrence matrices.3212

Gabor features are powerful texture descriptors generated from the convolution of Ga-13

bor filters. The impulse response of a Gabor filter with specific parameters (scale γ and14

14



orientation θ) depends on spatial coordinates (u, v) and is expressed as1

g(u, v; γ, θ) = exp
− 1

2

(
u′2
σu2+

v′2
σv2

)
expj2πγu′ (18)

with u′ = u cos θ+v sin θ and v′ = −u sin θ+v sin θ. γ is the central frequency of the filter and2

σu and σv are the space constants of the Gaussian envelope along the horizontal and vertical3

axes, respectively. A bank of Gabor filters, tuned with several scales (frequencies) and4

orientations, are designed to characterize different textures at different scales and orientations5

in the input image.33 Seven scales (γ⋆ = 2
√
2, 4

√
2, 8

√
2, 16

√
2, 32

√
2, 64

√
2, and 128

√
2),6

and four orientations (θ⋆ = 0°, °45°, 90°, and 135°) are considered as in Ref. 33 for each7

one of three color components R,G, and B (with ⋆ = R,G, or B). As magnitude response8

of each filter corresponds to a feature, 84 Gabor features are computed at each pixel.9

Besides texture features, color features are represented by color components. Two device-10

depend color spaces, namely (R,G,B) and (H,S, V ), and two device-independent color11

spaces, namely (X,Y, Z) and (L∗, a∗, b∗) are considered in this paper. The conversion from12

standard (R,G,B) to (H,S, V ), (X,Y, Z) and (L∗, a∗, b∗) color spaces is performed using13

CIE standard illuminant D65 as reference white.3514

Finally each pixel is characterized by a set of d = 180 features (84 Haralick texture15

features, 84 Gabor texture features, and 12 color features) Fm = {f1, . . . , fd}. Each of the16

d = 180 pixel features is normalized between 0 and 1 to ensure that the scales of all features17

are equal.18

15



3.3 Proposed constrained feature selection1

Among extracted features, some of them are irrelevant for the faithful computation of pair-2

wise similarities. Therefore, analyzing all of these features could degrade the clustering3

performance. To avoid this problem, we propose applying a constrained feature selection4

using constraint feature scores to select the most relevant features among the d available5

features.25 As mentioned in Section 2, the state-of-the-art feature scores based on the simi-6

larity matrices evaluate the features one by one and ignore any correlation between features.7

Thus, clustering algorithms that operate in a subspace of individually relevant features do8

not necessarily provide favorable results.29 In this section, we propose a new constraint score9

that estimates the relevance of a subset of features, making it possible to identify an optimal10

number of relevant features.11

3.3.1 Proposed constraint score12

The proposed constraint score, denoted εSS(Fm), uses the similarity matrices to evaluate the13

relevance of a subset of m features Fm = {f1, . . . , fm} (m = 1, 2, . . . , d) and exploits both14

the pairwise constraint sets and the distribution of unlabeled sample pixels in the Fm feature15

space.16

The relevance of Fm is evaluated by means of the distance between a target similarity17

matrix ŴSS, which is defined from the given constraints, and the similarity matrix W(Fm)18

computed with the subset Fm of features. The score εSS(Fm), which should be as low as19

possible, is expressed as follows:20

εSS(Fm) = ∥W(Fm)− ŴSS∥2 (19)

16



where ∥ · ∥2 is the Euclidean norm. Thus, εSS(Fm) can be rewritten as1

εSS(Fm) =
n∑

i=1

n∑
j=1

(
wij(Fm)− ŵSS

ij

)2
(20)

W(Fm) ∈ Rn×n is the similarity matrix computed on the sample pixel set X that is charac-2

terized by the subset of features Fm3

wij(Fm) = exp
(

−
δ2
(
x(m)
i , x(m)

j

)
2σ2

)
i, j = 1, 2, . . . , n (21)

where δ(x(m)
i , x(m)

j ) is the Euclidean distance between two sample pixels xi and xj character-4

ized by the subset of m features Fm.5

ŴSS ∈ Rn×n is the target matrix whose cells correspond to must-link pairs and are set6

to 1, while cells corresponding to the cannot-link pairs are set to 0. ŴSS is then a binary7

matrix defined as follows:8

ŵSS
ij =


1 if (xi, xj) ∈ MSS

0 otherwise.
(22)

The cell ŵSS
ij is set to 1 when (xi, xj) belongs to MSS (0 otherwise), which is a new set of9

must-link pairs that results from the propagation of prototype subsets X l, l = 1, . . . , k to10

unlabeled sample pixels11

MSS =
{
(xi, xj) ∈ X2 | ∃ l = 1, . . . , k so that NP (xi) ∈ X l and NP (xj) ∈ X l

}
(23)

17



The nearest prototype NP (xi) is the prototype whose distance in the original d-dimensional1

feature space from a sample pixel xi ∈ X is the smallest2

NP (xi) = argmin
z ∈

∪
l=1,...,k

Xl

(
δ2(xi, z)

)
. (24)

Thus, the pair (xi, xj) belongs to MSS when the nearest prototypes of xi and xj both belong3

to the subset X l of prototypes that is associated to the class ωl. Because NP (xi) is xi4

when xi belongs to prototype subset X l, set M is included in MSS (M ⊂ MSS). Thus, MSS
5

increases the contribution of the pairwise constraints M for semi-supervised feature selection.6

Finally, εSS(Fm) makes it possible to assess the ability of the feature subset to preserve the7

pairwise constraint sets M and C, and the extended pairwise constraints provided by MSS.8

These extended pairwise constraints should represent the geometric structure of the classes9

well.10

3.3.2 Feature selection procedure11

Because the score εSS evaluates the relevance of a subset of features simultaneously, we use a12

simple sequential forward feature selection technique.36 To evaluate the relative relevance of13

d features, we first consider each feature one by one (m = 1). The feature fr,which minimizes14

εSS(F1) with F1 = {fr}, is selected and combined with each of the remaining d− 1 features15

to form (d − 1) feature subsets, denoted as F2. The corresponding d − 1 scores εSS(F2)16

are then computed, and the pair of features that minimizes εSS(F2) is retained. When m17

features among the d features have been selected, the (m + 1)-th feature that minimizes18

εSS(Fm+1) when combined with the m previously chosen features, is selected. This sub-19
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optimal procedure is iterated until d features have been ordered. Finally, the subset Fm̂ that1

corresponds to the minimum of εSS(Fm) is selected (see Algorithm 2).2

Algorithm 2 Feature selection procedure.
Input: Set of d feature Fd = {f1, . . . , fr, . . . , fd}.
1. Create empty set of features F0 = {∅}.
2. For m = 1 to d

a. Select the most relevant feature f+
r

f+
r = argmin

fr ∈ Fd\Fm−1

(
εSS(Fm−1 ∪ {fr})

)
.

b. Update Fm = Fm−1 ∪ {f+
r }.

3. Select the number m̂ of features such that
m̂ = argmin

m=1,2,...,d

(
εSS(Fm)

)
.

Output: Subset of m̂ relevant features Fm̂.

3.4 Constrained spectral clustering3

Once the subset Fm̂ of relevant features has been selected, the set of n sample pixels X4

is classified by the constrained spectral clustering algorithm (see Algorithm 1). For this5

purpose, we propose to replace the k-means algorithm with the nearest neighbor algorithm,6

which uses the available k prototype subsets X l, l = 1, . . . , k. Moreover, the matrix WM,C
7

of Eq. (4) is computed in the m̂-dimensional feature space and becomes8

wM,C
ij (Fm̂) =


1 if

(
xi, xj

)
∈ M

0 if
(
xi, xj

)
∈ C

exp
(
− δ2(x(m̂)

i ,x(m̂)
j )

2σ2

)
otherwise.

i, j = 1, 2, . . . , n (25)

3.5 Out-of-sample classification9

The last step of the proposed image segmentation is to assign the subset Y of (N−n) out-of-10

sample pixels to clusters that have been previously determined by the constrained spectral11
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clustering. Generally, this procedure is performed by assigning each out-of-sample pixel yi1

to the class of its nearest sample pixels xi ∈ X in the m̂-dimensional feature space.23 In this2

paper, we propose to classify the out-of-sample pixels in this low-dimensional space, where3

the k clusters of sample pixels have been determined.4

For this purpose, we propose to embed out-of-sample pixels yi onto the k-dimensional5

subspace that is formed by the k-dominant eigenvectors ul, which correspond to the k smallest6

eigenvalues λl of the Laplacian matrix LM,C
Sym computed on the set X of sample pixels.37 The7

projection of out-of-sample pixel yi on the lth k-dominant eigenvector is defined as follows:8

zl(yi) =
1

(1− λl)

n∑
j=1

uljw̃
(m̂)(yi, xj) l = 1, . . . , k (26)

where w̃(m̂)(yi, xj) is the equivalent normalized similarity between the out-of-sample yi and9

the sample pixel xj.10

w̃(m̂)(yi, xj) =
1

n

w(m̂)(yi, xj)√
E
[
w(m̂)(yi, x)

]
E
[
w(m̂)(xj, x′

)]
)

(27)

E[·] represents the average operator such that E
[
w(m̂)(yi, x)

]
= 1

n

∑n
j w

(m̂)(yi, xj). The11

similarity w(m̂)(yi, xj) between two pixels yi and xj is defined as follows:12

w(m̂)(yi, xj) = exp
(
−

δ2
(
y(m̂)
i , x(m̂)

j

)
2σ2

)
(28)

The embedded out-of-sample pixel yi onto the k-dimensional subspace is normalized to have13
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the unit length1

z̃l(yi) =
zl(yi)√∑k
j=1 zj(yi)

2

l = 1, . . . , k. (29)

Following this, each out-of-sample pixel yi is assigned to the cluster of the nearest sample2

pixel of z̃(yi) in the k-dimensional subspace.3

4

As in Ref. 2, a refinement procedure can be applied to further improve the segmentation5

accuracy. This procedure consists of keeping all regions larger than 0.5% of N while all other6

regions are relabeled with the class index corresponding to the largest adjacent region.7

Finally, all steps of the proposed CFS-SC method for color-texture image segmentation are8

summarized in Algorithm 3.9

4 Experimental results10

In this section, we evaluate our CFS-SC method for color-texture image segmentation. We11

first evaluate the performance of the proposed semi-supervised feature score εSS. For this12

purpose, we consider two color-texture images from the Prague texture segmentation bench-13

mark.38 Next, we present segmentation results obtained by the proposed algorithm and we14

compare them with those obtained by several state-of-the-art algorithms on four benchmark15

datasets of color and grayscale textures.16

4.1 Evaluation of the semi-supervised constrained feature selection17

To evaluate the performance of the proposed constraint score εSS, we compare it with the18

state-of-the-art constraint scores C1, C2, C3, C4, and C5 (see section 2.3). The scaling19

parameter σ used to compute similarity matrices is set to 1 for all experiments. Feature20
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Algorithm 3 Color-texture image segmentation by CFS-SC method.
Input: - Image parameters: Image I, number k of pixel classes;

- Feature extraction parameters: Haralick parameter (ω), Gabor parameters (θ, γ);
- Constrained feature selection and spectral clustering parameters : number n of sample
pixels, number p of prototypes by class.

3.1 Sampling and pairwise constraint set generation

1. Extract n sample pixels X from I and regroup remaining out-of-sample pixels in the
subset Y .

2. Select p pixel prototypes by class and generate the sets of pairwise constraints M and
C.

3. Compute d color texture features for each sample pixel of X.

3.2 Constrained feature selection and spectral clustering of sample pixel set X

4. Select m̂ most relevant features Fm̂ using our constrained feature selection (see Algo-
rithm 2).

5. Construct the similarity matrix WM,C(Fm̂) ∈ Rn×n from X using Eq. (25).
6. Compute the normalized Laplacian matrix LM,C

Sym associated to WM,C(Fm̂).
7. Compute the spectrum of LM,C

sym , and find k dominant eigenvectors UM,C =
[u1, . . . , uk] ∈ Rn×k corresponding to k smallest eigenvalues λM,C = [λ1, . . . , λk] ∈ Rk.

8. Construct the matrix TM,C ∈ Rn×k from UM,C by normalizing each row of UM,C to
have unit length

tij =
uij√∑k
j=1 u

2
ij

9. Handle each row of TM,C as a point, and regroup them into k clusters using the nearest
neighbor algorithm with the p prototypes of each class.

3.3 Segmentation by classification of the out-of-sample pixel set Y

10. For each out-of-sample pixel yi:

- Compute m̂ most relevant features.
- Compute the normalized kernel W̃ defined by Eq. (28).
- Compute the embedded point z(yi) defined by Eq. (26).
- Compute the normalized embedded point z̃(yi) using Eq. (29).
- Assign yi to the cluster of the nearest sample point, among TM,C , of z̃(yi).

11. Refinement procedure (optional).

Output: Segmented image.

selection procedures are performed on the sample pixel set X, and repeated over 100 runs. At1

each feature selection run, the (k ·p) prototype pixels with p ranging from 2 to 5 are randomly2
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(a) (b)

Fig 3 Two test color-texture images from the Prague dataset (first row) and their corresponding ground
truth images (bottom row): (a) image 7_1_1 and (b) image 17_1_1.

selected from the ground truth of an image. Following this, the sets of pairwise constraints are1

derived using Eqs. (2), (3), and (23). These same prototype pixels are used for the feature2

selection and the constrained spectral clustering to evaluate the relevance of the selected3

features. The sampling procedure described in Section 3.1 extracts the n− (k · p) unlabeled4

sample pixels from each image. Several numbers of sample pixels (n = 200, 300, and 400)5

are tested to study the influence on the quality of feature selection. Furthermore, two6

images with 6 and 9 textures from the Prague dataset are used to illustrate our experiments7

regarding parameter adjustment (see Fig. 3).8

4.1.1 Constraint scores with respect to number of features9

The performance obtained by the proposed constraint score εSS is compared with that10

reached by the constraint scores Cc (c = 1, . . . , 5). Figure 4 illustrates the variation of11

the constraint scores εSS, C1, C2, C3, C4, and C5 with respect to the number m of features12

when the number p of prototypes is set to 5 and the number n of sample pixels is set to 300.13

The curves of εSS are quasi convex, whereas those of scores Cc (c = 1, . . . , 5) monotonically14
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Fig 4 Constraint scores versus number m of selected features for the two test images: (a) image 7_1_1 and
(b) image 17_1_1.

increase with respect to the number m of features. Similar results are observed for other1

numbers of prototypes and sample pixels (these results are omitted from this paper to avoid2

excessive length). We can conclude that only εSS presents a minimum value that can be3

considered as the optimal number of features.4
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4.1.2 Accuracy of unlabeled pixels1

The performance of the constraint score εSS is evaluated according to the classification2

accuracy of the set XU of unlabeled sample pixels, which is obtained by the constrained3

spectral clustering described in Sec. 3.4. First, we study the influence of the number p4

of prototypes by class and the number n of sample pixels on the accuracy achieved with5

εSS. Next, we compare the accuracy obtained using our constraint score with those obtained6

using state-of-the-art constraint scores.7

Accuracy versus number p of prototypes. The number p of prototypes by class is related8

to the number of pairwise constraints and may modify the classification result provided by9

the constrained spectral clustering. To stay in the semi-supervised learning context, we have10

chosen small values for p ranging from 2 to 5. Figure 5 shows the variation of the average11

accuracy of XU classification obtained with εSS over 100 runs according to the number p of12

prototypes and the number n of sample pixels. As expected, the curves of this figure show13

that, for a given number n of sample pixels, the accuracy achieved with our constraint score14

increases with respect to the number p of prototypes by class.15

Accuracy versus number n of sample pixels. The number n of sample pixels is related to the16

spatial sampling of the image. On the one hand, n must be large enough to reach a satisfying17

spatial definition of the detected regions. On other hand, n must be small enough to reduce18

the computational complexity of the constrained spectral clustering of the unlabeled sample19

pixels. To satisfy a trade-off between the spatial definition and complexity, the n range is20

[200 − 400], which corresponds on average to 0.10% of the number N of pixels. To show21
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Fig 5 Accuracy versus number m of features obtained using the proposed semi-supervised constraint scores
on test images for different numbers of n and p. Left column: image 7_1_1 and right column: image
17_1_1. (a)-(b) n = 200, (c)-(d) n = 300, and (e)-(f) n = 400.
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Fig 6 Accuracy versus number m of features obtained using the proposed semi-supervised constraint score
on the two test images for different numbers n of sample pixels: (a) image 7_1_1 and (b) image 17_1_1.

the influence of this parameter, Fig. 6 displays the average accuracy of XU classification1

obtained with εSS over 100 runs when the number p of prototypes is set to 5. The curves of2

accuracy obtained with n = 200, 300, and 400 overlap, which means that the classification3

accuracy of unlabeled pixels does not significantly vary when the n range is [200− 400].4

4.1.3 Optimal number of selected features5

As indicated in Sec. 4.1.1, the curve of constraint score εSS versus the number of features6

presents a minimum that can be considered as the optimal number of features. To validate7

this assertion, we simultaneously display in Fig. 7 the curves of εSS and the accuracy versus8

the number of features achieved when n is set to 300 and p is set to 5. We can see that the9

accuracy Tc(m̂) obtained with the subset of features Fm̂ that corresponds to the minimum10

of εSS coincides with or is close to the maximum value of the accuracy Tc(m
∗).11
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Fig 7 Accuracy-score εSS versus number m of selected features for the test images: (a) image 7_1_1 and
(b) image 17_1_1.

4.1.4 Comparison with the state-of-the-art constraint scores1

We compare the accuracy achieved by our constraint score with those obtained by the2

state-of-the-art constraint scores, according to the number of features and the number of3

prototypes. Figure 8 displays the average accuracy of the XU classification for εSS and4

Cc (c = 1, . . . , 5) obtained over 100 runs when the number p of prototypes is set to 5 and5

the number n of sample pixels is set to 300 (i.e. the middle of the range [200− 400]). This6

figure indicates that our constraint score εSS provides higher accuracy than those achieved7

with the state-of-the-art constraint scores Cc (c = 1, . . . , 5).8

In order to compare the performance of our constraint score with the state-of-the-art9

scores according to the number of pairwise constraints, the number of selected features for10

each score is set to half of all features (i.e. m = 90). Figure 9 shows the average accuracy11

obtained over 100 runs by the constraint scores versus number p of prototypes when n is set12

to 300. The accuracy obtained with εSS is higher than those obtained with Cc (c = 1, . . . , 5)13

for any value of p.14
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Fig 8 Accuracy versus number m of features for the two test images: (a) image 7_1_1 and (b) image
17_1_1.

Fig 9 Accuracy versus number p of prototypes when m = 90 features have been selected and n = 300 on
the two test images: (a) image 7_1_1 and (b) image 17_1_1.
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4.2 Segmentation results on Prague dataset1

Here, we present the results obtained by our proposed semi-supervised segmentation method2

with (CFS-SC) and without refinement (CFS-SC-nr; see Algorithm 3) on the Prague dataset3

and compare them with those of several state-of-the-art segmentation methods. The Prague4

dataset, known to be difficult to segment, contains 80 texture mosaics synthetically generated5

from 114 color-texture images in 10 categories (see ground truth in Ref. 39). The texture6

class number in each of the images, which are sized at 512× 512 pixels, ranges from 3 to 12.7

The assessment of segmentation performance is based on the conventional measures pro-8

vided by the Prague texture segmentation website,39 which include:9

region-based criteria: correct segmentation (CS), over-segmentation (OS), under-segmentation10

(US), missed error (ME), noise error (NE);11

pixel-wise based criteria: omission error (O), commission error (C), class accuracy (CA), re-12

call (CO), precision (CC), type I error (I.), type II error (II.), mean class accuracy estimate13

(EA), mapping score (MS), root mean square proportion estimation error (RM), comparison14

index (CI);15

consistency-error criteria: global consistency error (GCE) and local consistency error (LCE);16

clustering comparison criteria: Mirkin metric (dM), Van Dongen metric (dD), variation of17

information (dVI).18

The best score is displayed as bold in each table.19

The methods involved in comparison include:20

Six unsupervised algorithms: 1) the texNcut algorithm that is based on spectral cluster-21

ing algorithm5 and which uses texture features computed on super-pixels, 2) the variational22
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multi-phase segmentation framework (PCA-MS)40 that uses a filter bank for feature extrac-1

tion, 3) the model-based learning of local image features (MLLIF)7 that learns features from2

images without ground truth segmentation, 4) the factorization-based texture segmentation3

(FSEG) algorithm41 that characterizes pixels by local LoG/Gabor spectrum features, 5) the4

unsupervised fully convolutional network for texture (FCNTunsup) algorithm, and 6) the5

dictionary learning based sparse representation (DLSRC)42 that extracts the features from6

wavelet transform and co-occurrence matrices.7

Four semi-supervised algorithms: 1) the weakly-supervised sparse coding geometric priori8

(WSSCGP)9 that requires a small amount of prototypes to perform segmentation. WSS-9

CGP adopts the same local LoG/Gabor spectrum features than FSEG, 2) FSEG+, which10

is a semi-supervised version of FSEG in which the same prototypes used in WSSCGP are11

integrated in FSEG,9 3) our proposed semi-supervised method using only the constrained12

spectral clustering (CSC), without feature selection procedure, i.e., with 180 features, and13

4) our proposed semi-supervised method CFS-SC.14

Eight supervised algorithms: 1) the MRF algorithm based on a Markov random field pixel15

classification model,43 2) the COF algorithm that uses the co-occurrence features and the16

nearest neighbor classifier,39 3) Con-Col algorithm,39 4) the supervised fully convolutional17

network for texture (FCNTsup) algorithm,2 5) the empirical wavelet transform based fully18

convolutional network for texture (EWT-FCNT)2 that combines the empirical wavelet trans-19

form with FCNTsup, 6) U-Net,44 7) Deep Visual Model (DA),45 and 8) the pyramid scene20

parsing network (PSP-Net).4621

The results of supervised algorithms (Table 2) were obtained using the normal Prague22

dataset, which contains 20 test images.39 The results of semi-supervised and unsupervised23
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algorithms (Table 1) were obtained over the large Prague dataset (80 test images), which1

includes the 20 test images of the normal Prague dataset.392

The segmentation results of FCNT, texNcut, FSEG, MRF, COF, and Con-Col were3

reported on the Prague benchmark website.39 Those of DLSRC, WSSCGP, and FSEG+
4

were described in Ref. 9 and in Ref. 7 for MLLIF. The results of EWT-FCNT, U-Net, DA,5

and PSP-Net were taken from Ref. 2, and those of PCA-MS from Ref. 40. The majority of6

these methods involved a refinement step to improve their performances, except for texNcut,7

MRF, COF, and Con-Col. It is important to note that our methods CSC and CFS-SC were8

run with n = 300 sample pixels and p = 5 prototypes for each texture class, while FSEG+
9

and WSSCG used 81 prototypes per class. These prototypes are included in square regions10

of (9× 9) whose centers are marked by the user inside each texture region.11

Next, we examine tables 1 and 2 according to three general comparisons.12

4.2.1 Comparison with unsupervised algorithms13

In Table 1 we can see that all semi-supervised algorithms, except FSEG+, outperformed14

the unsupervised algorithms. Moreover, our proposed methods with (CFS-SC) and without15

refinement (CFS-SC-nr) exhibited the best results for all the criteria except for GCE and16

LCE.17

4.2.2 Comparison with semi-supervised algorithms18

To assess the relevance of the proposed semi-supervised feature selection on the segmenta-19

tion performance, we compare the segmentation accuracy benchmark results obtained by our20

method with feature selection (CFS-SC) and without feature selection (CSC). The results in21
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Table 1 Results of unsupervised and semi-supervised methods on the large Prague dataset (80 test images).
The arrows ↑ | ↓ denote the required criterion direction. Here, ’nr’ means no segmentation refinement.

Method
Unsupervised Semi-supervised

FCNT DLS tex PCA MLL FSEG FSEG+ WSS CSC CSC CFS CFS
unsup RC Ncut MS IF CGP nr SC-nr SC

↑ CS 79.34 77.46 72.54 72.27 77.73 69.18 75.97 84.18 79.73 82.97 93.82 94.74
↓ OS 13.67 28.40 10.92 18.33 15.92 14.69 3.38 10.95 0.14 0.14 0.00 0.00
↓ US 6.25 0.00 9.61 9.41 6.31 13.64 5.53 0.00 0.00 0.00 0.00 0.00
↓ ME 3.80 7.13 10.25 4.19 3.93 5.13 11.82 6.90 14.64 11.92 1.98 1.41
↓ NE 3.80 7.39 9.83 3.92 3.92 4.63 11.49 7.04 15.48 12.34 2.59 1.85
↓ O 6.47 8.58 7.33 7.25 7.68 9.25 9.12 6.84 8.59 7.32 4.35 3.70
↓ C 22.88 29.48 8.17 6.44 24.24 12.55 9.34 7.09 7.33 6.02 3.87 3.39
↑ CA 84.17 83.41 80.58 81.13 82.80 78.22 80.26 87.05 84.33 86.01 91.89 92.62
↑ CO 87.97 87.36 86.89 85.96 86.89 84.44 88.09 91.58 90.50 91.68 95.51 95.98
↑ CC 94.15 95.16 88.28 91.24 93.65 87.38 88.19 94.85 91.92 92.92 95.94 96.31
↓ I. 12.03 12.64 13.11 14.04 13.11 15.56 11.91 8.42 9.50 8.32 4.49 4.02
↓ II. 1.42 1.19 2.36 1.59 1.50 2.53 2.47 1.28 1.79 1.64 0.75 0.71
↑ EA 88.97 89.70 86.39 87.08 88.03 84.24 87.40 92.53 90.69 91.76 95.61 96.04
↑ MS 85.23 84.74 80.33 81.84 83.93 78.81 82.46 88.63 85.75 87.51 93.27 93.97
↓ RM 3.12 2.42 3.69 5.11 3.27 4.74 2.99 1.89 1.99 1.91 0.81 0.77
↑ CI 89.91 90.44 86.97 87.81 89.03 85.03 87.76 92.86 90.94 92.02 95.67 96.09
↓ GCE 6.46 9.56 11.92 8.35 7.40 9.35 15.08 10.21 14.62 12.86 8.00 7.26
↓ LCE 4.75 7.17 6.85 5.61 5.62 6.08 11.71 7.71 11.52 9.79 6.28 5.59
↓ dD 7.79 9.08 9.18 9.06 8.57 10.01 10.34 7.21 9.28 8.12 4.48 4.02
↓ dM 4.88 5.40 6.03 5.89 5.30 7.01 6.59 4.40 5.57 4.95 2.66 2.41
↓ dVI 14.75 15.18 14.19 14.54 14.88 14.33 14.32 14.52 14.43 14.32 14.18 14.13

Table 1 clearly show the benefit provided by the proposed feature selection on the segmen-1

tation. When we compare the semi-supervised methods, we observe that the performance2

of the proposed semi-supervised method (CFS-SC), even without refinement, is superior to3

that of FSEG+ and WSSCGP.4

33



Table 2 Results of our method CFS-SC and supervised methods on the normal Prague dataset (20 test
images). The arrows ↑ | ↓ denote the required criterion direction. Here, ’nr’ means no segmentation
refinement.

Method
Supervised Semi-supervised

MRF COF Con FCNT FCNT EWT U-Net DA PSP CFS CFS
Col sup-nr sup FCNT Net SC-nr SC

↑ CS 46.11 52.48 84.57 87.52 96.01 98.45 96.71 94.18 96.45 94.03 94.97
↓ OS 0.81 0.00 0.00 0.00 1.56 0.00 1.71 0.00 0.17 0.00 0.00
↓ US 4.18 1.94 1.70 0.00 1.20 0.00 0.00 1.18 0.41 0.00 0.00
↓ ME 44.82 41.55 9.50 6.70 0.78 0.37 0.68 3.42 1.23 1.63 1.09
↓ NE 45.29 40.97 10.22 6.90 0.89 0.46 0.48 3.24 1.12 2.32 1.58
↓ O 14.52 20.74 7.00 7.46 2.72 0.93 0.72 3.13 2.75 4.42 3.83
↓ C 16.77 22.10 5.34 6.16 2.29 1.04 0.70 1.32 2.39 4.45 3.80
↑ CA 65.42 67.01 86.21 87.08 93.95 97.67 95.86 94.53 93.89 91.85 92.61
↑ CO 76.19 77.86 92.02 92.61 96.73 98.78 96.91 96.23 96.06 95.49 95.97
↑ CC 80.30 78.34 92.68 93.26 97.02 98.81 97.38 97.01 96.41 95.91 96.29
↓ I. 23.81 22.14 7.98 7.39 3.27 1.22 3.09 3.77 3.94 4.51 4.03
↓ II. 4.82 4.40 1.70 1.49 0.68 0.25 0.41 0.58 0.69 0.79 0.76
↑ EA 75.40 76.21 91.72 92.68 96.68 98.77 97.01 96.24 96.08 95.59 96.04
↑ MS 64.29 66.79 88.03 88.92 95.10 98.17 95.37 94.35 94.08 93.24 93.96
↓ RM 6.43 4.47 2.08 1.38 0.86 0.24 0.61 1.07 0.70 0.79 0.70
↑ CI 76.69 77.05 92.02 92.81 96.77 98.78 97.08 96.41 96.15 95.65 96.08
↓ GCE 25.79 23.94 11.76 12.54 5.55 2.33 2.13 3.50 4.67 8.07 7.30
↓ LCE 20.68 19.69 8.61 9.94 3.75 1.68 1.46 2.47 3.52 6.40 5.75
↓ dD 20.35 17.86 7.50 - 3.06 1.21 1.45 2.41 2.59 4.50 4.02
↓ dM 13.25 10.62 4.69 - 1.96 0.74 0.77 1.35 1.56 2.76 2.48
↓ dVI 14.51 14.22 13.99 - 13.80 13.68 13.68 13.71 13.77 14.01 13.96

4.2.3 Comparison with supervised algorithms1

Although the prior knowledge used by the supervised methods is more important than that2

used by our semi-supervised method, we can observe in Table 2 that our proposed method,3

both with and without refinement, largely outperformed the classical supervised methods4
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(MFR, COF, and Con-Col). The methods based on the deep learning (FCNTsup, DA, U-Net,1

PSP-Net, and EWT-FCNT) outperform CFS-SC for most criteria. However, our method2

CFS-SC is competitive with deep learning methods except EWT-FCNT that provides ex-3

ceptional results due to expensive learning step. For example, the CFS-SC does not provide4

under-segmentation nor over-segmentation (US and OS measures are equal to 0) compared5

to deep learning methods. It is also noticeable that our method CFS-SC without refinement6

outperformed the FCNTsup without refinement.7

8

For a visual comparison, Fig. 10 shows some segmentation results obtained by our CFS-9

SC method, WSSCGP, and by four top-performing methods whose segmented images were10

available in Ref. 39. For clarity, the black lines highlight the boundaries of segmented tex-11

ture regions. Overall, CFS-SC, FCNTsup, and EWT-FCNT approaches provide satisfactory12

visual segmentation results that are close to the ground truth.13

4.3 Segmentation results on Histology dataset14

The Histology dataset47,48 contains 36 color images of size 128 × 128 pixels that represent15

two types of tissue. The ground truth images were determined by professional pathologists16

through visual inspection. We use the same setup as for the Prague texture experiment ex-17

cept for the Haralick parameter ω that we set to 5. To assess the performance of our methods18

CFS-SC and CSC without and with refinement, we compare their results with several meth-19

ods including, FSEG+, WSSCGP, DLSRC, and FSEG as well as an another unsupervised20

method, called occlusion of random textures segmentation method (ORTSEG).48 The quan-21

titative evaluation is based on the same measures used for the Prague dataset. Table 322
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Fig 10 Exemplary segmentation results on the Prague color benchmark. From top to bottom: Original
images, ground truth, FCNTsup, EWT-FCNT, FCNTunsup, texNcut, WSSCGP, CFS-SC-nr, and CFS-SC.

36



shows that the proposed algorithm, even without refinement, largely outperforms the other1

methods. Fig. 11 displays the segmentation results achieved on some images of Histology2

dataset. To highlight the accuracy of segmentation results, the boundaries of detected re-3

gions are embedded in the original images. We clearly observe that the boundaries between4

the two tissues are better detected by our method and close to the ground truth.5

Table 3 Results on the Histology dataset. The arrows ↑ | ↓ denote the required criterion direction and the
best score is marked in boldface. Here, ’nr’ means no segmentation refinement.

Method
Unsupervised Semi-supervised

DLS ORT FSEG FSEG+ WSS CSC CFS CFS
RC SEG CGP SC-nr SC

↑ CS 82.98 72.53 38.98 82.06 86.90 82.54 96.93 97.07
↓ OS 3.34 1.71 35.95 1.78 3.29 0.00 0.00 0.00
↓ US 2.82 2.78 0.00 10.25 1.94 0.00 0.00 0.00
↓ ME 9.69 20.09 19.96 7.67 5.95 11.33 0.00 0.00
↓ NE 11.49 20.31 21.05 8.25 7.02 11.99 0.00 0.00
↓ O 7.64 10.17 24.77 13.71 6.70 8.69 3.26 3.10
↓ C 6.96 10.57 24.23 7.42 6.21 9.62 3.47 3.31
↑ CA 86.80 81.81 67.17 84.90 87.69 84.71 94.12 94.37
↑ CO 91.44 88.84 72.38 90.70 92.07 91.20 96.93 97.07
↑ CC 94.96 91.27 92.27 92.02 95.28 91.99 97.00 97.14
↓ I. 8.56 11.16 27.62 9.30 7.93 8.80 3.07 2.93
↓ II. 5.08 8.98 6.99 11.40 5.07 8.57 3.45 3.27
↑ EA 92.60 88.71 78.78 90.66 93.15 91.21 96.94 97.08
↑ MS 87.17 83.43 67.63 86.05 88.11 86.8 95.40 95.61
↓ RM 6.55 9.93 17.29 7.42 5.82 5.22 1.06 1.13
↑ CI 92.89 89.37 80.49 91.00 93.40 91.4 96.95 97.09
↓ GCE 10.42 12.36 14.10 9.64 9.73 13.65 5.77 5.52
↓ LCE 6.77 7.23 11.24 6.12 6.48 9.68 4.82 4.51
↓ dD 7.54 9.73 18.55 7.65 6.90 8.66 3.07 2.93
↓ dM 12.88 17.19 26.18 14.00 11.99 14.96 5.90 5.65
↓ dVI 5.88 5.64 7.23 5.61 5.85 5.68 5.43 5.42
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Fig 11 Exemplary segmentation results on the Histology dataset. From top to bottom: Original images,
ground truth, FSEG, ORTSEG, WSSCGP, and CSC-FS.
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4.4 Segmentation results on Outex dataset1

Our proposed method CFS-SC is designed to segment color-texture images, but it is also2

suitable for grayscale texture segmentation. To assess its performance for grayscale textures,3

we apply it on the popular texture dataset Outex (US_00000 test suite)49 and compare its4

results with those of state-of-the art algorithms: ORTSEG, PCA-MS, FSEG, EWT-FCNT,5

U-Net, DA, PSP-Net, and WSSCGP. This dataset contains 100 composite texture images of6

size 512 × 512 pixels, each one being a composite of five training textures. They are generated7

by mixing twelve different texture images with different rotations according to the regions8

depicted by the ground truth.49 For convenience, we analyze only the texture features that9

are computed from the gray level images. The size of neighborhood ω used for computing10

the Haralick features is set to 5. To quantitatively assess segmentation performance, we use11

the same measures as in Ref. 2 : recall (CO), normalized variation of information (NVOI),12

swapped directional hamming distance (SDHD), Van Dongen distance (VD), swapped seg-13

mentation covering (SSC), bipartite graph matching (BGM) and bidirectional consistency14

error (BCE).50 All these measures provide a number between 0% and 100%, the latter corre-15

sponding to perfect segmentation. Fig. 12 shows some segmentation results obtained on the16

Outex dataset. A visual inspection illustrates the efficacy of the proposed method (CFS-SC)17

compared with the other segmentation methods. Table 4 gives quantitative measurements for18

the Outex dataset based on the previously mentioned mesures. We clearly observe that the19

proposed algorithm (with and without refinement) largely outperforms the two unsupervised20

algorithms (PCA-MS, FSEG), the semi-supervised algorithm (WSSCGP) and especially the21

three supervised methods (U-Net, DA, PSP-Net). However, CFS-SC provides lower results22
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than EWT-FCNT whose expensive learning reaches impressive performance.1

Table 4 Results on the Outex dataset. Each row corresponds to a segmentation quality measure and the
best score is marked in boldface. Here, ’nr’ means no segmentation refinement.

Method
Unsupervised Supervised Semi-supervised

ORT FSEG PCA EWT U-Net DA PSP WSS CFS CFS
SEG MS FCNT Net CGP SC-nr SC

NVOI 77.99 73.65 83.86 96.52 72.83 70.70 86.00 85.41 87.88 88.70
SSC 70.88 62.23 84.32 98.27 64.25 60.65 84.22 89.11 92.42 93.01
SDHD 80.64 65.08 89.67 99.13 71.40 67.77 88.00 94.71 96.02 96.34
BGM 76.42 64.97 89.24 99.13 70.85 67.27 87.83 93.59 96.02 96.34
VD 83.87 80.60 91.39 99.13 80.47 78.75 91.64 94.15 96.02 96.34
BCE 69.50 61.08 82.45 98.02 61.89 58.58 82.63 86.64 91.19 91.77
CO 76.42 64.97 89.24 98.36 70.28 67.28 86.72 93.59 96.02 96.34

4.5 Segmentation results on Berkeley dataset2

To study the efficiency of our proposed method, we applied CFS-SC on some natural images3

selected from the Berkeley database.51 To evaluate segmentation performances, three quanti-4

tative measures, namely, F-measure,51 probabilistic rand index (PRI),50 and recall (CO), are5

computed. The values of F-measure and PRI fall in [0,1], and the larger, the better. These6

images, displayed on Fig. 13, are often considered because they include some uncertain and7

complex color-texture patterns. We compare our method CFS-SC with robust self-sparse8

fuzzy clustering algorithm (RSSFCA) that is a very recent image segmentation method.529

Fig. 13 shows that the obtained segmentation results from a qualitative and quantitative10

point of view are better than those of RSSFCA and close to ground truth.11
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Fig 12 Exemplary segmentation results on the Outex dataset. From top to bottom: Original images, Ground
truth, PSP-Net, U-Net, EWT-FCNT, PCA-MS, FSEG, WSSCGP, and CFS-SC.
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Fig 13 Segmentation results on some images of the Berkeley database. The values of CO, F-measure, and
PRI for each result are presented in parentheses.
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4.6 Processing time1

To provide an overview on the computational requirements of the proposed CFS-SC algo-2

rithm, we estimated its processing time on an Intel Core i7 3.60GHz computer with 8GB3

RAM. Table 5 displaysthe average computing time of FSEG, WSSCGP, and CFS-SC for the4

tree datasets, i.e. according to size and type (color or grayscale) of image. The processing5

time of these methods can be divided into two parts: the processing times consumed by fea-6

ture extraction step and by the other steps (feature selection and pixel classification steps).7

From this table, we can see that the processing time required by the CFS-SC algorithm is8

the highest. For example, it was about 518 seconds for a (512× 512) image. This relatively9

long processing time led us revisit each step of our algorithm. The majority of this time was10

consumed by the feature extraction step (486 seconds) and more precisely by the Haralick11

feature extraction (403 seconds). The remaining time (34 seconds) was mainly shared by the12

three basic procedures of our CFS-SC algorithm; namely, the constrained feature selection13

(20.7 seconds), the constrained spectral clustering (0.033 seconds), and the classification of14

out-of-sample pixels (11.01 seconds). Apart from the feature extraction step, the algorithm15

runs relatively quickly. It should be emphasized that it is always possible to reduce the16

computational time for feature extraction step and that the computational time cannot be17

considered as a crucial drawback,given the appreciable segmentation results achieved by the18

CFS-SC algorithm on all the tested datasets.19

5 Conclusion20

In this paper, we proposed an efficient semi-supervised approach for color-texture image21

segmentation. The proposed method combines the constrained feature selection and the22
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Table 5 The average computing time (second) per image of FSEG, WSSCGP, and CFS-SC on the tree
datasets. (FE: Feature extraction, OS: Other steps.)

Methods
Prague (512× 512) Histology (128× 128) Outex (512× 512)

color image color image grayscale image
FE OS Total FE OS Total FE OS Total

FSEG 0.41 0.67 1.08 0.02 0.04 0.06 0.14 0.41 0.55
WSSCGP 0.90 31.92 32.82 0.06 0.61 1.21 0.72 26.63 27.35
CFS-SC 486 31.74 517.74 26.89 18.21 45.10 67.87 10.69 78.56

constrained spectral clustering. A new constraint score is developed in order to select a1

subset of features at one time. As the proposed score evaluates the similarity between the2

sample pixels in the examined feature subspace, the selected features are better analyzed3

by constrained spectral clustering. Experiments on four benchmark datasets showed that4

the proposed constraint score outperforms the main state-of-the-art constraint scores in the5

semi-supervised learning context. Moreover, the result demonstrated that the proposed con-6

strained feature selection and the constrained spectral clustering algorithm is very effective7

for color-texture image segmentation.8

Finally, classical color-texture features and a simple sampling technique were used to9

conduct the experiments presented in this paper. It may to be advantageous to integrate10

other powerful texture descriptors, such as LBP, wavelets, or pre-trained CNNs, with a more11

elaborate sampling technique to further improve the segmentation accuracy. Moreover, we12

have considered that the prior knowledge is represented by class prototypes from which the13

pairwise constraints are deduced. All available constraints contribute to efficient feature14

selection and spectral clustering. In future work, we intend to generalize our method to15

prior knowledge that is only formalized by constraints.16
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dataset (20 test images). The arrows ↑ | ↓ denote the required criterion8

direction. Here, ’nr’ means no segmentation refinement.9

3 Results on the Histology dataset. The arrows ↑ | ↓ denote the required10

criterion direction and the best score is marked in boldface. Here, ’nr’ means11

no segmentation refinement.12

4 Results on the Outex dataset. Each row corresponds to a segmentation qual-13

ity measure and the best score is marked in boldface. Here, ’nr’ means no14

segmentation refinement.15

5 The average computing time (second) per image of FSEG, WSSCGP, and16

CFS-SC on the tree datasets. (FE: Feature extraction, OS: Other steps.)17
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