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Introduction

Color-texture image segmentation is one of the fundamental low-level problems in computer vision. [START_REF] Jain | Color image segmentation techniques: A survey[END_REF] Specifically, it aims to segment a color-texture image into disjointed homogeneous regions in terms of colors and textures. Although a wide variety techniques have been developed, color-texture image segmentation remains an open and challenging problem in computer vision due to the high variability of color textures. Color-texture segmentation by pixel classification is divided into two main steps. First, the color and texture features that characterize pixels must be selected in order to build a discriminating feature space.

Second, a classification procedure analyzes pixel distribution in the feature space in order to assign each pixel to a class. Depending on the availability of the labeled pixels, color-texture image segmentation can be performed in a supervised, unsupervised, or semi-supervised learning context. Deep learning approaches such as convolutional neural networks (CNNs) have shown good performance for supervised color-texture segmentation. [START_REF] Huang | Empirical curvelet based fully convolutional network for supervised texture image segmentation[END_REF] However, these algorithms require a large labeled pixel subset whose construction is time-consuming. Deep CNNs have also been recently developed for unsupervised color-texture image segmentation. [START_REF] Huang | Empirical curvelet based fully convolutional network for supervised texture image segmentation[END_REF] But, the training step of these CNNs is supervised and requires a dictionary of labeled textures. In contrast, the unsupervised segmentation methods based on clustering models such as slope difference distribution clustering, k-means, mean-shift, and spectral clustering can classify pixels without any prior knowledge about the classes. [START_REF] Wang | Image segmentation by combining the global and local properties[END_REF][START_REF] Tao | Color image segmentation based on mean shift and normalized cuts[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF] Besides the afore mentioned methods, several techniques have been applied for unsupervised color-texture segmentation. [START_REF] Ilea | Image segmentation based on the integration of colour-texture descriptors a review[END_REF][START_REF] Kiechle | Model-based learning of local image features for unsupervised texture segmentation[END_REF][START_REF] Haindl | A competition in unsupervised color image segmentation[END_REF] However, the parameters of unsupervised algorithms must be carefully tuned in order to yield satisfactory accuracy.

To overcome problems caused by supervised and unsupervised algorithms, weakly supervised or semi-supervised segmentation algorithms use limited amounts of supervised information. The prior knowledge is then expressed by a few labeled pixels or by a few links between pixels. A must-link constraint specifies that two pixels must belong to the same class, whereas a cannot-link constraint specifies that two pixels must belong to different classes. These pairwise constraints can be obtained from the available labeled pixels. Conversely, the labels of pixels cannot be deduced from the pairwise constraints. The labeled pixels or the pairwise constraints can be interactively given by a user. Semi-supervised algorithms aim to classify pixels by propagating the labels [START_REF] Quan | Weakly-supervised sparse coding with geometric prior for interactive texture segmentation[END_REF] or by incorporating the pairwise constraints into popular clustering algorithms such as k-means, estimation-maximization, hierarchical clustering 10 and spectral clustering. [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] Spectral clustering, which is based on graph theory, computes the Laplacian matrix from a similarity matrix between pixels and analyzes the distribution of pixels that are projected into a low-dimensional subspace composed of the eigenvectors of the Laplacian matrix. A trivial way to integrate pairwise constraints in spectral clustering is to enforce the similarities between pixels to 1 and 0 for must-link and cannot-link constraints, respectively. [START_REF] Kamvar | Spectral learning[END_REF][START_REF] Ahn | Face and hair region labeling using semi-supervised spectral clustering-based multiple segmentations[END_REF] As the number of given pairwise constraints is low, they can be propagated across the similarity matrix. [START_REF] Chen | Spectral clustering: a semi-supervised approach[END_REF][START_REF] Zhu | Constrained clustering with imperfect oracles[END_REF][START_REF] Xia | Oriented grouping-constrained spectral clustering for medical imaging segmentation[END_REF] Propagation rules use Gaussian processes [START_REF] Sourati | Accelerated learning-based interactive image segmentation using pairwise constraints[END_REF][START_REF] Lu | Constrained spectral clustering through affinity propagation[END_REF] or the similarities between constrained and unconstrained pixels. [START_REF] He | Constrained clustering with local constraint propagation[END_REF] Han et al. [START_REF] Han | Segmentation with selectively propagated constraints[END_REF] proposed the propagation of pairwise constraints only on a randomly selected subset of pixels. The selectively propagated constraints were then used to adjust the weights of the similarity matrix. Constrained spectral clustering can be also formulated as a constrained optimization problem, where only linear equality constraints (analogous to must-link constraints) are exploited for image segmentation. [START_REF] Yu | Segmentation given partial grouping constraints[END_REF] Another formulation of constrained spectral clustering under general convex constraints has been developed for gray level image segmentation. [START_REF] Ghanem | Dinkelbach ncut: An efficient framework for solving normalized cuts problems with priors and convex constraints[END_REF] These constrained spectral clustering methods are based on a pixel similarity that is computed using Euclidean distance in the original feature space. Nevertheless, using all the features may bias the pairwise similarity computation and thus degrade the clustering performance. Indeed, they would provide irrelevant, redundant, and even contradictory information. To compute relevant similarity, the Mahalanobis distance is modified so that it minimizes the distance between the must-link pixels and maximizes the distance between the cannot-link pixels. [START_REF] Zou | A new constrained spectral clustering for sar image segmentation[END_REF][START_REF] Jia | Learning distance metric for semi-supervised image segmenta-tion[END_REF] Furthermore, the constraints can be propagated to the nearest neighborhood pixels that are found in the discriminating feature sub-spaces, rather than those that are identified in the original feature space. [START_REF] Zhu | Constrained clustering with imperfect oracles[END_REF] However, the random forest procedure used for this purpose, requires a time consuming training step.

In this paper, we propose an original approach for color-texture segmentation based on constrained spectral clustering. Specifically, it consists of propagating the pairwise constraints in order to select the most relevant features. Rather than computing a score for each color-texture feature, we propose a new constraint score that evaluates the relevance of a subset of color-texture features. Thus, the similarity matrix that is computed in this selected subspace is truer to the data structure and respects as much as possible the given must-link and cannot-link constraints.

We develop an efficient color-texture image segmentation that combines constrained feature selection and spectral clustering (CFS-SC). Its main contributions are as follows:

-Pairwise must-link and cannot-link constraints are involved in feature selection to improve the color-texture image segmentation performance using spectral clustering.

-A new similarity-based constraint score is proposed to select the optimal number of relevant features.

The rest of this paper is organized as follows. Section 2 introduces the related work, including a brief overview of the constrained spectral clustering and primary state-of-theart semi-supervised constraint scores. Our proposed color-texture image segmentation is detailed in Sec. 3. Section 4 provides experimental segmentation results achieved with four benchmark datasets. Finally, our conclusions are given in Sec. 5.

Related work

In this section, we first introduce spectral clustering and detail how to include the constraints for spectral clustering and feature selection.

Spectral clustering

Let X be the set of n sample pixels represented by the matrix X = [x 1 , x 2 , . . . , x n ] ∈ R n×d , where x i = [x i1 , x i2 , . . . , x ir , . . . , x id ] T ∈ R d represents the i-th pixel of X, and x ir ,(r = 1, . . . , d), the r-th feature value of the i-th pixel. Let

F d = {f 1 , f 2 , . . . , f r , . . . , f d } be the set of d features that is represented by X T = [f 1 , f 2 , . . . , f r , . . . , f d ], where f r = [x 1r , x 2r , . . . , x nr ] ∈ R n
is the r-th feature vector.

Spectral clustering represents dataset X by an un-directed weighted similarity graph G = (V, E, W) in which each sample pixel corresponds to a node. V is a non-empty set that contains all nodes, and E is the set of edges between any two nodes in V . Each edge in E is weighted by a similarity value w ij (i, j = 1, 2, . . . , n) between two nodes. The similarity matrix W that gathers similarities between all pairs of nodes is positive semi-definite and symmetric. Generally, the similarity w ij between two pixels x i and x j is computed by the following Gaussian kernel function 11

w ij = exp ( - δ 2 (x i , x j ) 2σ 2 ) i, j = 1, 2, . . . , n (1) 
where σ is a scaling parameter and δ(x i , x j ) is the Euclidean distance between the two pixels

x i and x j .
Spectral clustering is an unsupervised classification method that computes the eigen spectrum of the Laplacian matrix, which is deduced from the similarity matrix W, to separate the dataset into clusters. The most commonly used un-normalized Laplacian matrix is

L = D -W while the most used normalized Laplacian matrices are L Sym = D -1/2 LD -1/2
and L Asym = D -1 L. [START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Luxburg | A tutorial on spectral clustering[END_REF] D ∈ R n×n is the diagonal degree matrix whose elements are d ii =

∑ n j=1 w ij . To identify k clusters, the data are mapped onto a low-dimensional space that is based on the k-dominant eigenvectors corresponding to the smallest eigenvalues of the Laplacian matrix. Finally, an unsupervised clustering algorithm such as k-means identifies the k clusters of so mapped data. 5, 11

Constraint spectral clustering

In the semi-supervised learning context, the prior knowledge is expressed by a small number of labeled pixels or pairwise constraints. In this paper, we consider that few labeled pixels (prototypes) characterize the k classes ω l , l = 1, . . . , k of the input image I. These prototypes can be interactively selected by the user or randomly selected from the ground truth. Let X l (X l ⊂ X) be the subset of p prototypes associated with the class ω l . From the set of prototypes denoted as X P

( X P = ∪ l=1,...,k X l ) , we can build the set M of (k • p • (p -1))
must-link pairs that are composed of two prototypes belonging to the same class:

M = { (x i , x j ) ∈ X 2 | ∃ l = 1, . . . , k so that x i ∈ X l and x j ∈ X l } . ( 2 
)
We can also build the set C of (k • (k -1) • p 2 ) cannot-link pairs that are composed of two prototypes belonging to different classes:

C = { (x i , x j ) ∈ X 2 | ∃ (l, m); l ̸ = m; so that x i ∈ X l and x j ∈ X m } . ( 3 
)
Of all possible pixel pairs that can be extracted from X, those belonging to M or C are called constrained pairs while the remaining pairs are called unconstrained pairs. Furthermore, the pixels that are not prototypes are called unlabeled sample pixels, and are gathered in subset X U = X/X P (with

|X U | = n -(k • p)).
A straightforward way to integrate must-link and cannot-link pairs in spectral clustering is computing the similarity matrix W M,C . [START_REF] Basu | Constrained clustering: Advances in algorithms, theory, and applications[END_REF][START_REF] Kamvar | Spectral learning[END_REF] For a given must-link pair (x i , x j ) ∈ M , w M,C ij is set to 1; for a given cannot-link pair (x i , x j ) ∈ C, w M,C ij is set to 0. Thus, the modified matrix W M,C is defined as follows:

w M,C ij =                1 if (x i , x j ) ∈ M 0 if (x i , x j ) ∈ C exp ( - δ 2 (x i ,x j ) 2σ 2 ) otherwise. i, j = 1, 2, . . . , n (4) 
The next steps of constrained spectral clustering are not specific and are summarized in 

t ij = u ij √ ∑ k j=1 u 2 ij 5.
Consider each row of T M,C as a point, and cluster all points into k clusters by k-means algorithm. Output: k clusters of dataset X.

The performance achieved by constrained spectral clustering strongly depends on the pairwise similarities between the unconstrained pixels, which are based on the Euclidean distance δ in the original d-dimensional feature space (see Eq. ( 4)). Nevertheless, using all of these features may bias the pairwise similarities. To deal with this problem, we propose to select the relevant subset of features among those available. In the semi-supervised context, many feature selection methods have been proposed to make full use of prior knowledge. [START_REF] Sheikhpour | A survey on semisupervised feature selection methods[END_REF] In the next section, we focus on the constraint scores that are used by semi-supervised feature selection.

State-of-the-art about semi-supervised constraint scores

Feature selection based on semi-supervised constraint scores involves the analysis of both pairwise constraints and unlabeled sample pixels. Specifically, it considers both the discriminating power of the pairwise constraints and the local properties of the unlabeled sample pixels. In the context of spectral graph theory, the dataset X can be represented by the nearest neighbor graph G KNN whose node v i is connected to v j when x j is one of the Knearest neighbors (KN N s) of x i , the distance being computed in the original d-dimensional feature space. The similarity matrix W KNN ∈ R n×n is defined as follows:

w KNN ij =        w ij if x i ∈ KNN(x j ) or x j ∈ KNN(x i ) 0 otherwise (5) 
The two graphs G M and G C can also be built from the sets of must-link constraints M and cannot-link constraints C. The corresponding similarity matrices W M ∈ R n×n and W C ∈ R n×n are defined as follows:

w M ij =        1 if (x i , x j ) ∈ M 0 otherwise (6) w C ij =        1 if (x i , x j ) ∈ C 0 otherwise. (7) 
Zhao et al. [START_REF] Zhao | Locality sensitive semi-supervised feature selection[END_REF] introduced the semi-supervised constraint score C 1 r , which combines the similarity matrix W C constructed from the cannot-link constraints (Eq. ( 7)) and the similarity matrix W KNN1 ∈ R n×n , which is built from the set of must-link constraints and unlabeled sample pixels as follows:

w KNN1 ij =                γ if (x i , x j ) ∈ M 1 if (x i ∈ X U or x j ∈ X U ) and ( x i ∈ KNN(x j ) or x j ∈ KNN(x i ) ) 0 otherwise ( 8 
)
where γ is a constant parameter. In our experiments, γ is set to 100 and K is set to 5 as in Ref. 26.

The constraint score C 1 r is defined as

C 1 r = f T r L KNN1 f r f T r L C f r ( 9 
)
where L KNN1 = D KNN1 -W KNN1 is the un-normalized Laplacian matrix of W KNN1 , and D KNN1

is the degree matrix computed from W KNN1 .

Kalakech et al. [START_REF] Kalakech | Constraint scores for semi-supervised feature selection: A comparative study[END_REF] proposed the semi-supervised constraint score C 2 r that is less sensitive to the constraint sets (10) where fr =

C 2 r = fT r L fr fT r D fr • f T r L M f r f T r L C f r
∑ n i=1 x ir d ii ∑ n i=1 d ii = f T r D1
1 T D1 , fr = f r -fr , and 1 = [1, . . . , 1] T . L and D are deduced from the similarity matrix W (Eq. ( 1)

). L M = D M -W M and D M = ∑ n j=1 w M ij .
Benabdeslem and Hindawi proposed another constraint score C 3 r , which combines the similarity matrices W C and W KNN2 . [START_REF] Benabdeslem | Constrained laplacian score for semi-supervised feature selection[END_REF] The similarity matrix W KNN2 is expressed as

w KNN2 ij =        w ij if ( (x i , x j ) ∈ M ) or ( x i ∈ KNN(x j ) or x j ∈ KNN(x i ) ) 0 otherwise (11) 
The score C 3 r is defined as follows: 28

C 3 r = f T r L KNN2 f r f T r L C D KNN2 f r (12)
A second semi-supervised constrained Laplacian score, referred to C 4 r , has been proposed by Benabdeslem and Hindawi in Ref. 29 as follows: (13) where the diagonal matrix D KNN is deduced from the similarity matrix W KNN (see Eq. ( 5)).

C 4 r = f T r L KNN3 f r f T r L C D KNN f r
The Laplacian matrix L KNN3 is computed from the similarity matrix W KNN3 , which is defined as follows:

w KNN3 ij =                        w 2 ij + w ij if ( (x i , x j ) ∈ C ) and ( x i ∈ KNN(x j ) or x j ∈ KNN(x i ) ) w 2 ij if ( (x i , x j ) ∈ M ) and ( x i / ∈ KNN(x j ) and x j / ∈ KNN(x i ) ) w ij if ( x i ∈ X U or x j ∈ X U ) and ( x i ∈ KNN(x j ) or x j ∈ KNN(x i ) ) 0 otherwise (14) 
Recently, Yang et al. [START_REF] Yang | Semi-supervised feature selection for audio classification based on constraint compensated laplacian score[END_REF][START_REF] Yang | Semi-supervised minimum redundancy maximum relevance feature selection for audio classification[END_REF] introduced the new semi-supervised constraint score C 5 r , which takes advantage of the local geometrical structure of unlabeled data samples as well as the constraint information deduced from prototypes as follows:

C 5 r = 2(f r ) T L KNN4 f r ( fr ) T D KNN4 fr + 2( fP r ) T L P fP r -( fP r ) T D P fP r ( 15 
)
The similarity matrix W KNN4 is expressed as

w KNN4 ij =                                1 if ( (x i , x j ) ∈ M ) and ( x i ∈ KNN(x j ) or x j ∈ KNN(x i ) ) λ if ( (x i , x j ) ∈ M ) and ( x i / ∈ KNN(x j ) and x j / ∈ KNN(x i ) ) (1 -γ)w ij if ( (x i , x j ) ∈ C ) and ( x i ∈ KNN(x j ) or x j ∈ KNN(x i ) ) w ij if ( x i ∈ X U or x j ∈ X U ) and ( x i ∈ KNN(x j ) or x j ∈ KNN(x i ) ) 0 otherwise ( 16 
)
where γ and λ are the parameters set to the empirical values of 0.9 and 0.5, respectively. [START_REF] Yang | Semi-supervised feature selection for audio classification based on constraint compensated laplacian score[END_REF][START_REF] Yang | Semi-supervised minimum redundancy maximum relevance feature selection for audio classification[END_REF] The cells of W P are set to 1/|X l | when two data samples are prototypes that belong to the same class and to 0, otherwise

w P ij =        1/|X l | if x i ∈ X l and x j ∈ X l 0 otherwise (17) 
Note that fP r = f P r -fP r . L P = D P -W P is the un-normalized Laplacian matrix of W P , and D P is the degree matrix computed from W P .

Because feature scores are based on the similarity matrices that are computed in the original d-dimensional feature space, they may be corrupted by irrelevant features. Furthermore, as features are ranked according to their individual scores, the selected features can be correlated and may lead to low pixel classification performance.

3 Proposed color-texture image segmentation This section details our CFS-SC method for semi-supervised color-texture image segmentation. The prior knowledge provided by a user is expressed by a small number of labeled pixels that represent the prototypes of each color-texture class. The binary similarities between the prototypes are integrated into a matrix that quantifies the pairwise similarities of the pixels, and pixel spectral clustering that analyzes similarity matrix is used to perform semi-supervised segmentation.

Because some color and texture features may be irrelevant or redundant, the computation of pairwise similarities, which is based on the Euclidean distance in the full feature space, is biased. Thus, the segmentation performance from spectral pixel clustering can be degraded.

To circumvent this problem, a new constrained feature selection is included in the color- texture image segmentation that is outlined in Fig. 1. The proposed constrained feature selection and spectral clustering is first applied to a limited number of sampled pixels.

Pixel sampling procedure

Spectral clustering is based on Laplacian matrix eigen-decomposition, whose computational complexity is O(n 3 ), where n is the number of pixels that are sampled from the color image I, whose size is N pixels. From I, we build the subset X = {x 1 , x 2 , . . . , x n } of n sample pixels. This set includes the subset X P of the (k • p) prototypes and the subset X U of the (n -(k • p)) unlabeled sample pixels that are picked up thanks to a regular hexagonal grid. Once the subset X has been classified by constrained spectral clustering, a specific 

Color and texture features

To segment the color-texture image, the pixels are characterized by both Haralick features (spatial features) [START_REF] Haralick | Textural features for image classification[END_REF] and Gabor features (spectral features). [START_REF] Jain | Unsupervised texture segmentation using gabor filters[END_REF][START_REF] Liu | From bow to cnn: Two decades of texture representation for texture classification[END_REF] Haralick texture features describe correlation between neighboring pixels and are computed from co-occurrence matrices. In a color image I, each pixel x is represented by three color components R, G, and

B. Six co-occurrence matrices (three between-component matrices M R,R [x] , M G,G [x],
and

M B,B [x], and three within-component matrices M R,G [x], M R,B [x], and M G,B [x]
) are locally computed for each pixel x by considering all co-occurrences in a window with a size of (2ω + 1) × (2ω + 1) centered on pixel x (see Fig. 2) (ω is set to 11 for our experiments).

Overall, 84 Haralick features are extracted from six co-occurrence matrices. [START_REF] Haralick | Textural features for image classification[END_REF] Gabor features are powerful texture descriptors generated from the convolution of Gabor filters. The impulse response of a Gabor filter with specific parameters (scale γ and orientation θ) depends on spatial coordinates (u, v) and is expressed as

g(u, v; γ, θ) = exp -1 2 ( u ′2 σu 2 + v ′2 σv 2
)

exp j2πγu ′ (18)
with u ′ = u cos θ+v sin θ and v ′ = -u sin θ+v sin θ. γ is the central frequency of the filter and σ u and σ v are the space constants of the Gaussian envelope along the horizontal and vertical axes, respectively. A bank of Gabor filters, tuned with several scales (frequencies) and orientations, are designed to characterize different textures at different scales and orientations in the input image. [START_REF] Jain | Unsupervised texture segmentation using gabor filters[END_REF] Seven scales (γ 

⋆ = 2 √ 2, 4 √ 2, 8 √ 2, 16 √ 2, 32 √ 2, 64 √ 2,

Proposed constrained feature selection

Among extracted features, some of them are irrelevant for the faithful computation of pairwise similarities. Therefore, analyzing all of these features could degrade the clustering performance. To avoid this problem, we propose applying a constrained feature selection using constraint feature scores to select the most relevant features among the d available features. [START_REF] Sheikhpour | A survey on semisupervised feature selection methods[END_REF] As mentioned in Section 2, the state-of-the-art feature scores based on the similarity matrices evaluate the features one by one and ignore any correlation between features.

Thus, clustering algorithms that operate in a subspace of individually relevant features do not necessarily provide favorable results. [START_REF] Benabdeslem | Efficient semi-supervised feature selection: constraint, relevance, and redundancy[END_REF] In this section, we propose a new constraint score that estimates the relevance of a subset of features, making it possible to identify an optimal number of relevant features. The relevance of F m is evaluated by means of the distance between a target similarity matrix ŴSS , which is defined from the given constraints, and the similarity matrix W(F m ) computed with the subset F m of features. The score ε SS (F m ), which should be as low as possible, is expressed as follows:

ε SS (F m ) = ∥W(F m ) - ŴSS ∥ 2 (19) 
where ∥ • ∥ 2 is the Euclidean norm. Thus, ε SS (F m ) can be rewritten as

ε SS (F m ) = n ∑ i=1 n ∑ j=1 ( w ij (F m ) -ŵSS ij ) 2 (20) 
W(F m ) ∈ R n×n is the similarity matrix computed on the sample pixel set X that is characterized by the subset of features

F m w ij (F m ) = exp ( - δ 2 ( x (m) i , x (m) j ) 2σ 2 
)

i, j = 1, 2, . . . , n (21) 
where δ(x

(m) i , x (m) j )
is the Euclidean distance between two sample pixels x i and x j characterized by the subset of m features F m .

ŴSS ∈ R n×n is the target matrix whose cells correspond to must-link pairs and are set to 1, while cells corresponding to the cannot-link pairs are set to 0. ŴSS is then a binary matrix defined as follows:

ŵSS ij =        1 if (x i , x j ) ∈ M SS 0 otherwise. ( 22 
)
The cell ŵSS ij is set to 1 when (x i , x j ) belongs to M SS (0 otherwise), which is a new set of must-link pairs that results from the propagation of prototype subsets X l , l = 1, . . . , k to unlabeled sample pixels

M SS = { (x i , x j ) ∈ X 2 | ∃ l = 1, . . . , k so that N P (x i ) ∈ X l and N P (x j ) ∈ X l } (23) 
The nearest prototype N P (x i ) is the prototype whose distance in the original d-dimensional feature space from a sample pixel x i ∈ X is the smallest

N P (x i ) = arg min z ∈ ∪ l=1,...,k X l ( δ 2 (x i , z) ) . ( 24 
)
Thus, the pair (x i , x j ) belongs to M SS when the nearest prototypes of x i and x j both belong to the subset X l of prototypes that is associated to the class ω l . Because N P (x i ) is x i

when x i belongs to prototype subset X l , set M is included in M SS (M ⊂ M SS ). Thus, M SS
increases the contribution of the pairwise constraints M for semi-supervised feature selection.

Finally, ε SS (F m ) makes it possible to assess the ability of the feature subset to preserve the pairwise constraint sets M and C, and the extended pairwise constraints provided by M SS .

These extended pairwise constraints should represent the geometric structure of the classes well.

Feature selection procedure

Because the score ε SS evaluates the relevance of a subset of features simultaneously, we use a simple sequential forward feature selection technique. [START_REF] Siedlecki | On automatic feature selection[END_REF] To evaluate the relative relevance of d features, we first consider each feature one by one (m = 1). The feature f r ,which minimizes 

ε SS (F 1 ) with F 1 = {f r },
f + r = arg min fr ∈ F d \F m-1 ( ε SS (F m-1 ∪ {f r }) ) . b. Update F m = F m-1 ∪ {f + r }. 3. Select the number m of features such that m = arg min m=1,2,...,d ( ε SS (F m )
) .

Output: Subset of m relevant features F m.

Constrained spectral clustering

Once the subset F m of relevant features has been selected, the set of n sample pixels X is classified by the constrained spectral clustering algorithm (see Algorithm 1). For this purpose, we propose to replace the k-means algorithm with the nearest neighbor algorithm, which uses the available k prototype subsets X l , l = 1, . . . , k. Moreover, the matrix W M,C of Eq. ( 4) is computed in the m-dimensional feature space and becomes

w M,C ij (F m) =                1 if ( x i , x j ) ∈ M 0 if ( x i , x j ) ∈ C exp ( - δ 2 (x ( m) i ,x ( m) j ) 2σ 2 ) otherwise. i, j = 1, 2, . . . , n (25) 

Out-of-sample classification

The last step of the proposed image segmentation is to assign the subset Y of (N -n) out-ofsample pixels to clusters that have been previously determined by the constrained spectral clustering. Generally, this procedure is performed by assigning each out-of-sample pixel y i to the class of its nearest sample pixels x i ∈ X in the m-dimensional feature space. [START_REF] Zou | A new constrained spectral clustering for sar image segmentation[END_REF] In this paper, we propose to classify the out-of-sample pixels in this low-dimensional space, where the k clusters of sample pixels have been determined.

For this purpose, we propose to embed out-of-sample pixels y i onto the k-dimensional subspace that is formed by the k-dominant eigenvectors u l , which correspond to the k smallest eigenvalues λ l of the Laplacian matrix L M,C Sym computed on the set X of sample pixels. [START_REF] Bengio | Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering[END_REF] The projection of out-of-sample pixel y i on the l th k-dominant eigenvector is defined as follows:

z l (y i ) = 1 (1 -λ l ) n ∑ j=1 u lj w( m) (y i , x j ) l = 1, . . . , k (26) 
where w( m) (y i , x j ) is the equivalent normalized similarity between the out-of-sample y i and the sample pixel x j .

w( m) (y i , x j ) = 1 n w ( m) (y i , x j ) √ E [ w ( m) (y i , x) ] E [ w ( m) (x j , x ′ )] ) (27) 
E[•] represents the average operator such that E [ w ( m) (y i , x) ] = 1 n ∑ n j w ( m) (y i , x j ).
The similarity w ( m) (y i , x j ) between two pixels y i and x j is defined as follows:

w ( m) (y i , x j ) = exp ( - δ 2 ( y ( m) i , x ( m) j ) 2σ 2 ) ( 28 
)
The embedded out-of-sample pixel y i onto the k-dimensional subspace is normalized to have the unit length

zl (y i ) = z l (y i ) √ ∑ k j=1 z j (y i ) 2 l = 1, . . . , k. ( 29 
)
Following this, each out-of-sample pixel y i is assigned to the cluster of the nearest sample pixel of z(y i ) in the k-dimensional subspace.

As in Ref.

2, a refinement procedure can be applied to further improve the segmentation accuracy. This procedure consists of keeping all regions larger than 0.5% of N while all other regions are relabeled with the class index corresponding to the largest adjacent region.

Finally, all steps of the proposed CFS-SC method for color-texture image segmentation are summarized in Algorithm 3.

Experimental results

In this section, we evaluate our CFS-SC method for color-texture image segmentation. We first evaluate the performance of the proposed semi-supervised feature score ε SS . For this purpose, we consider two color-texture images from the Prague texture segmentation benchmark. [START_REF] Haindl | Texture segmentation benchmark[END_REF] Next, we present segmentation results obtained by the proposed algorithm and we compare them with those obtained by several state-of-the-art algorithms on four benchmark datasets of color and grayscale textures.

Evaluation of the semi-supervised constrained feature selection

To evaluate the performance of the proposed constraint score ε SS , we compare it with the state-of-the-art constraint scores C 1 , C 

M,C = [u 1 , . . . , u k ] ∈ R n×k corresponding to k smallest eigenvalues λ M,C = [λ 1 , . . . , λ k ] ∈ R k . 8. Construct the matrix T M,C ∈ R n×k from U M,C by normalizing each row of U M,C to have unit length t ij = u ij √ ∑ k j=1 u 2 ij 9.
Handle each row of T M,C as a point, and regroup them into k clusters using the nearest neighbor algorithm with the p prototypes of each class. -Compute m most relevant features.

-Compute the normalized kernel W defined by Eq. ( 28).

-Compute the embedded point z(y i ) defined by Eq. ( 26).

-Compute the normalized embedded point z(y i ) using Eq. ( 29).

-Assign y i to the cluster of the nearest sample point, among T M,C , of z(y i ).

Refinement procedure (optional).

Output: Segmented image.

selection procedures are performed on the sample pixel set X, and repeated over 100 runs. At are tested to study the influence on the quality of feature selection. Furthermore, two images with 6 and 9 textures from the Prague dataset are used to illustrate our experiments regarding parameter adjustment (see Fig. 3).

Constraint scores with respect to number of features

The performance obtained by the proposed constraint score ε SS is compared with that reached by the constraint scores C c (c = 1, . . . , 5). increase with respect to the number m of features. Similar results are observed for other numbers of prototypes and sample pixels (these results are omitted from this paper to avoid excessive length). We can conclude that only ε SS presents a minimum value that can be considered as the optimal number of features.

Accuracy of unlabeled pixels

The performance of the constraint score ε SS is evaluated according to the classification accuracy of the set X U of unlabeled sample pixels, which is obtained by the constrained spectral clustering described in Sec. 

Optimal number of selected features

As indicated in Sec. 4.1.1, the curve of constraint score ε SS versus the number of features presents a minimum that can be considered as the optimal number of features. To validate this assertion, we simultaneously display in Fig. 7 the curves of ε SS and the accuracy versus the number of features achieved when n is set to 300 and p is set to 5. We can see that the accuracy T c ( m) obtained with the subset of features F m that corresponds to the minimum of ε SS coincides with or is close to the maximum value of the accuracy T c (m * ). In order to compare the performance of our constraint score with the state-of-the-art scores according to the number of pairwise constraints, the number of selected features for each score is set to half of all features (i.e. m = 90). Figure 9 shows the average accuracy obtained over 100 runs by the constraint scores versus number p of prototypes when n is set to 300. The accuracy obtained with ε SS is higher than those obtained with C c (c = 1, . . . , 5)

for any value of p. multi-phase segmentation framework (PCA-MS) [START_REF] Mevenkamp | Variational multi-phase segmentation using highdimensional local features[END_REF] that uses a filter bank for feature extraction, 3) the model-based learning of local image features (MLLIF) 7 that learns features from images without ground truth segmentation, 4) the factorization-based texture segmentation (FSEG) algorithm 41 that characterizes pixels by local LoG/Gabor spectrum features, 5) the unsupervised fully convolutional network for texture (FCNTunsup) algorithm, and 6) the dictionary learning based sparse representation (DLSRC) [START_REF] Yang | Unsupervised images segmentation via incremental dictionary learning based sparse representation[END_REF] that extracts the features from wavelet transform and co-occurrence matrices.

Four semi-supervised algorithms: 1) the weakly-supervised sparse coding geometric priori (WSSCGP) [START_REF] Quan | Weakly-supervised sparse coding with geometric prior for interactive texture segmentation[END_REF] that requires a small amount of prototypes to perform segmentation. WSS-CGP adopts the same local LoG/Gabor spectrum features than FSEG, 2) FSEG + , which is a semi-supervised version of FSEG in which the same prototypes used in WSSCGP are integrated in FSEG, [START_REF] Quan | Weakly-supervised sparse coding with geometric prior for interactive texture segmentation[END_REF] 3) our proposed semi-supervised method using only the constrained spectral clustering (CSC), without feature selection procedure, i.e., with 180 features, and 4) our proposed semi-supervised method CFS-SC.

Eight supervised algorithms: 1) the MRF algorithm based on a Markov random field pixel classification model, [START_REF] Kato | Color image segmentation and parameter estimation in a markovian framework[END_REF] 2) the COF algorithm that uses the co-occurrence features and the nearest neighbor classifier, [START_REF]Prague texture segmentation data generator and benchmark[END_REF] 3) Con-Col algorithm, 39 4) the supervised fully convolutional network for texture (FCNTsup) algorithm, 2 5) the empirical wavelet transform based fully convolutional network for texture (EWT-FCNT) 2 that combines the empirical wavelet transform with FCNTsup, 6) U-Net, [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] 7) Deep Visual Model (DA), [START_REF] Wang | Deep visual attention prediction[END_REF] and 8) the pyramid scene parsing network (PSP-Net). [START_REF] Zhao | Pyramid scene parsing network[END_REF] The results of supervised algorithms (Table 2) were obtained using the normal Prague dataset, which contains 20 test images. [START_REF]Prague texture segmentation data generator and benchmark[END_REF] The results of semi-supervised and unsupervised algorithms (Table 1) were obtained over the large Prague dataset (80 test images), which includes the 20 test images of the normal Prague dataset. [START_REF]Prague texture segmentation data generator and benchmark[END_REF] The segmentation results of FCNT, texNcut, FSEG, MRF, COF, and Con-Col were reported on the Prague benchmark website. [START_REF]Prague texture segmentation data generator and benchmark[END_REF] Those of DLSRC, WSSCGP, and FSEG + were described in Ref. 9 and in Ref. and WSSCG used 81 prototypes per class. These prototypes are included in square regions of (9 × 9) whose centers are marked by the user inside each texture region.

Next, we examine tables 1 and 2 according to three general comparisons.

Comparison with unsupervised algorithms

In Table 1 we can see that all semi-supervised algorithms, except FSEG + , outperformed the unsupervised algorithms. Moreover, our proposed methods with (CFS-SC) and without refinement (CFS-SC-nr) exhibited the best results for all the criteria except for GCE and LCE.

Comparison with semi-supervised algorithms

To assess the relevance of the proposed semi-supervised feature selection on the segmentation performance, we compare the segmentation accuracy benchmark results obtained by our method with feature selection (CFS-SC) and without feature selection (CSC). The results in Table 1 clearly show the benefit provided by the proposed feature selection on the segmentation. When we compare the semi-supervised methods, we observe that the performance of the proposed semi-supervised method (CFS-SC), even without refinement, is superior to that of FSEG + and WSSCGP. 

Segmentation results on Histology dataset

The Histology dataset [START_REF] Ozolek | Teratomas derived from embryonic stem cells as models 50 for embryonic development, disease, and tumorigenesis[END_REF][START_REF] Mccann | Images as occlusions of textures: A framework for segmentation[END_REF] contains 36 color images of size 128 × 128 pixels that represent two types of tissue. The ground truth images were determined by professional pathologists through visual inspection. We use the same setup as for the Prague texture experiment except for the Haralick parameter ω that we set to 5. To assess the performance of our methods CFS-SC and CSC without and with refinement, we compare their results with several methods including, FSEG + , WSSCGP, DLSRC, and FSEG as well as an another unsupervised method, called occlusion of random textures segmentation method (ORTSEG). [START_REF] Mccann | Images as occlusions of textures: A framework for segmentation[END_REF] The quantitative evaluation is based on the same measures used for the Prague dataset. Table 3 shows that the proposed algorithm, even without refinement, largely outperforms the other methods. Fig. 11 displays the segmentation results achieved on some images of Histology dataset. To highlight the accuracy of segmentation results, the boundaries of detected regions are embedded in the original images. We clearly observe that the boundaries between the two tissues are better detected by our method and close to the ground truth. 

Segmentation results on Outex dataset

Our proposed method CFS-SC is designed to segment color-texture images, but it is also suitable for grayscale texture segmentation. To assess its performance for grayscale textures, we apply it on the popular texture dataset Outex (US_00000 test suite) [START_REF] Ojala | Outex-new framework for empirical evaluation of texture analysis algorithms[END_REF] error (BCE). [START_REF] Pont-Tuset | Measures and meta-measures for the supervised evaluation of image segmentation[END_REF] All these measures provide a number between 0% and 100%, the latter corresponding to perfect segmentation. Fig. 12 shows some segmentation results obtained on the Outex dataset. A visual inspection illustrates the efficacy of the proposed method (CFS-SC) compared with the other segmentation methods. Table 4 gives quantitative measurements for the Outex dataset based on the previously mentioned mesures. We clearly observe that the proposed algorithm (with and without refinement) largely outperforms the two unsupervised algorithms (PCA-MS, FSEG), the semi-supervised algorithm (WSSCGP) and especially the three supervised methods (U-Net, DA, PSP-Net). However, CFS-SC provides lower results than EWT-FCNT whose expensive learning reaches impressive performance. 

Segmentation results on Berkeley dataset

To study the efficiency of our proposed method, we applied CFS-SC on some natural images selected from the Berkeley database. [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] To evaluate segmentation performances, three quantitative measures, namely, F-measure, [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] probabilistic rand index (PRI), [START_REF] Pont-Tuset | Measures and meta-measures for the supervised evaluation of image segmentation[END_REF] and recall (CO), are computed. The values of F-measure and PRI fall in [0,1], and the larger, the better. These images, displayed on Fig. 13, are often considered because they include some uncertain and complex color-texture patterns. We compare our method CFS-SC with robust self-sparse fuzzy clustering algorithm (RSSFCA) that is a very recent image segmentation method. [START_REF] Jia | Robust self-sparse fuzzy clustering for image segmentation[END_REF] Fig. 13 shows that the obtained segmentation results from a qualitative and quantitative point of view are better than those of RSSFCA and close to ground truth. 

Algorithm 1 .Algorithm 1

 11 Constrained spectral clustering algorithm. Input: dataset X represented by X = [x 1 , x 2 , . . . , x n ] ∈ R n×d , number k of desired clusters, set M of must-link constraints, and set C of cannot-link constraints. 1. Compute the similarity matrix W M,C defined by Eq. (4). 2. Compute the Laplacian matrix L M,C Sym associated to W M,C . 3. Compute the spectrum of L M,C Sym , and extract k dominant eigenvectors U M,C = [u 1 , . . . , u k ] ∈ R n×k . 4. Construct the matrix T M,C ∈ R n×k from U M,C by normalizing each row of U M,C to have unit length

Fig 1

 1 Fig 1 Flowchart of the proposed color-texture image segmentation (CFS-SC).

Fig 2

 2 Fig 2 Illustration of local Haralick texture feature computing.

  and 128 √ 2), and four orientations (θ ⋆ = 0°, °45°, 90°, and 135°) are considered as in Ref. 33 for each one of three color components R, G, and B (with ⋆ = R, G, or B). As magnitude response of each filter corresponds to a feature, 84 Gabor features are computed at each pixel. Besides texture features, color features are represented by color components. Two devicedepend color spaces, namely (R, G, B) and (H, S, V ), and two device-independent color spaces, namely (X, Y, Z) and (L * , a * , b * ) are considered in this paper. The conversion from standard (R, G, B) to (H, S, V ), (X, Y, Z) and (L * , a * , b * ) color spaces is performed using CIE standard illuminant D65 as reference white. 35 Finally each pixel is characterized by a set of d = 180 features (84 Haralick texture features, 84 Gabor texture features, and 12 color features) F m = {f 1 , . . . , f d }. Each of the d = 180 pixel features is normalized between 0 and 1 to ensure that the scales of all features are equal.

3. 3 . 1

 31 Proposed constraint scoreThe proposed constraint score, denoted ε SS (F m ), uses the similarity matrices to evaluate the relevance of a subset of m features F m = {f 1 , . . . , f m } (m = 1, 2, . . . , d) and exploits both the pairwise constraint sets and the distribution of unlabeled sample pixels in the F m feature space.

3. 3

 3 Segmentation by classification of the out-of-sample pixel set Y 10. For each out-of-sample pixel y i :

1Fig 3

 3 Fig 3 Two test color-texture images from the Prague dataset (first row) and their corresponding ground truth images (bottom row): (a) image 7_1_1 and (b) image 17_1_1.

Figure 4

 4 illustrates the variation of the constraint scores ε SS , C 1 , C 2 , C 3 , C 4 , and C 5 with respect to the number m of features when the number p of prototypes is set to 5 and the number n of sample pixels is set to 300.The curves of ε SS are quasi convex, whereas those of scores C c (c = 1, . . . , 5) monotonically

Fig 4

 4 Fig 4 Constraint scores versus number m of selected features for the two test images: (a) image 7_1_1 and (b) image 17_1_1.

3 . 4 .

 34 First, we study the influence of the number p of prototypes by class and the number n of sample pixels on the accuracy achieved with ε SS . Next, we compare the accuracy obtained using our constraint score with those obtained using state-of-the-art constraint scores.Accuracy versus number p of prototypes. The number p of prototypes by class is related to the number of pairwise constraints and may modify the classification result provided by the constrained spectral clustering. To stay in the semi-supervised learning context, we have chosen small values for p ranging from 2 to 5. Figure5shows the variation of the average accuracy of X U classification obtained with ε SS over 100 runs according to the number p of prototypes and the number n of sample pixels. As expected, the curves of this figure show that, for a given number n of sample pixels, the accuracy achieved with our constraint score increases with respect to the number p of prototypes by class.Accuracy versus number n of sample pixels. The number n of sample pixels is related to the spatial sampling of the image. On the one hand, n must be large enough to reach a satisfying spatial definition of the detected regions. On other hand, n must be small enough to reduce the computational complexity of the constrained spectral clustering of the unlabeled sample pixels. To satisfy a trade-off between the spatial definition and complexity, the n range is [200 -400], which corresponds on average to 0.10% of the number N of pixels. To show

Fig 5

 5 Fig 5 Accuracy versus number m of features obtained using the proposed semi-supervised constraint scores on test images for different numbers of n and p. Left column: image 7_1_1 and right column: image 17_1_1. (a)-(b) n = 200, (c)-(d) n = 300, and (e)-(f) n = 400.

Fig 6

 6 Fig 6 Accuracy versus number m of features obtained using the proposed semi-supervised constraint score on the two test images for different numbers n of sample pixels: (a) image 7_1_1 and (b) image 17_1_1.

Fig 7

 7 Fig 7 Accuracy-score ε SS versus number m of selected features for the test images: (a) image 7_1_1 and (b) image 17_1_1.

Fig 8 Fig 9

 89 Fig 8 Accuracy versus number m of features for the two test images: (a) image 7_1_1 and (b) image 17_1_1.

  7 for MLLIF. The results of EWT-FCNT, U-Net, DA, and PSP-Net were taken from Ref. 2, and those of PCA-MS from Ref. 40. The majority of these methods involved a refinement step to improve their performances, except for texNcut, MRF, COF, and Con-Col. It is important to note that our methods CSC and CFS-SC were run with n = 300 sample pixels and p = 5 prototypes for each texture class, while FSEG +

Fig 10

 10 Fig 10 Exemplary segmentation results on the Prague color benchmark. From top to bottom: Original images, ground truth, FCNTsup, EWT-FCNT, FCNTunsup, texNcut, WSSCGP, CFS-SC-nr, and CFS-SC.

Fig 11

 11 Fig 11 Exemplary segmentation results on the Histology dataset. From top to bottom: Original images, ground truth, FSEG, ORTSEG, WSSCGP, and CSC-FS.

  and compare its results with those of state-of-the art algorithms: ORTSEG, PCA-MS, FSEG, EWT-FCNT, U-Net, DA, PSP-Net, and WSSCGP. This dataset contains 100 composite texture images of size 512 × 512 pixels, each one being a composite of five training textures. They are generated by mixing twelve different texture images with different rotations according to the regions depicted by the ground truth. 49 For convenience, we analyze only the texture features that are computed from the gray level images. The size of neighborhood ω used for computing the Haralick features is set to 5. To quantitatively assess segmentation performance, we use the same measures as in Ref. 2 : recall (CO), normalized variation of information (NVOI), swapped directional hamming distance (SDHD), Van Dongen distance (VD), swapped segmentation covering (SSC), bipartite graph matching (BGM) and bidirectional consistency

Fig 12

 12 Fig 12 Exemplary segmentation results on the Outex dataset. From top to bottom: Original images, Ground truth, PSP-Net, U-Net, EWT-FCNT, PCA-MS, FSEG, WSSCGP, and CFS-SC.

Fig 13

 13 Fig 13 Segmentation results on some images of the Berkeley database. The values of CO, F-measure, and PRI for each result are presented in parentheses.

  is selected and combined with each of the remaining d -1 features to form (d -1) feature subsets, denoted as F 2 . The corresponding d -1 scores ε SS (F 2 ) are then computed, and the pair of features that minimizes ε SS (F 2 ) is retained. When m features among the d features have been selected, the (m + 1)-th feature that minimizes ε SS (F m+1 ) when combined with the m previously chosen features, is selected. This sub-optimal procedure is iterated until d features have been ordered. Finally, the subset F m that corresponds to the minimum of ε SS (F m ) is selected (see Algorithm 2). Algorithm 2 Feature selection procedure. Input: Set of d feature F d = {f 1 , . . . , f r , . . . , f d }. 1. Create empty set of features F 0 = {∅}. 2. For m = 1 to d a. Select the most relevant feature f +

	r

  Color-texture image segmentation by CFS-SC method. Input: -Image parameters: Image I, number k of pixel classes; -Feature extraction parameters: Haralick parameter (ω), Gabor parameters (θ, γ); -Constrained feature selection and spectral clustering parameters : number n of sample pixels, number p of prototypes by class. 3.1 Sampling and pairwise constraint set generation 1. Extract n sample pixels X from I and regroup remaining out-of-sample pixels in the subset Y . 2. Select p pixel prototypes by class and generate the sets of pairwise constraints M and C. 3. Compute d color texture features for each sample pixel of X. 3.2 Constrained feature selection and spectral clustering of sample pixel set X 4. Select m most relevant features F m using our constrained feature selection (see Algorithm 2). 5. Construct the similarity matrix W M,C (F m) ∈ R n×n from X using Eq. (25). 6. Compute the normalized Laplacian matrix L M,C Sym associated to W M,C (F m). 7. Compute the spectrum of L M,C sym , and find k dominant eigenvectors U

[START_REF] Huang | Empirical curvelet based fully convolutional network for supervised texture image segmentation[END_REF] 

, C 3 , C 4 , and C 5 (see section 2.3). The scaling parameter σ used to compute similarity matrices is set to 1 for all experiments. Feature Algorithm 3

Table 1

 1 Results of unsupervised and semi-supervised methods on the large Prague dataset (80 test images). The arrows ↑ | ↓ denote the required criterion direction. Here, 'nr' means no segmentation refinement.

				Unsupervised					Semi-supervised		
	Method	FCNT DLS unsup RC	tex Ncut	PCA MLL FSEG FSEG + WSS CSC CSC MS IF CGP nr	CFS SC-nr	CFS SC
	↑ CS	79.34 77.46 72.54 72.27 77.73 69.18	75.97	84.18 79.73 82.97 93.82 94.74
	↓ OS	13.67 28.40 10.92 18.33 15.92 14.69	3.38	10.95 0.14	0.14	0.00	0.00
	↓ US	6.25	0.00	9.61	9.41	6.31	13.64	5.53	0.00	0.00	0.00	0.00	0.00
	↓ ME	3.80	7.13 10.25 4.19	3.93	5.13	11.82	6.90 14.64 11.92 1.98	1.41
	↓ NE	3.80	7.39	9.83	3.92	3.92	4.63	11.49	7.04 15.48 12.34 2.59	1.85
	↓ O	6.47	8.58	7.33	7.25	7.68	9.25	9.12	6.84	8.59	7.32	4.35	3.70
	↓ C	22.88 29.48 8.17	6.44 24.24 12.55	9.34	7.09	7.33	6.02	3.87	3.39
	↑ CA	84.17 83.41 80.58 81.13 82.80 78.22	80.26	87.05 84.33 86.01 91.89 92.62
	↑ CO	87.97 87.36 86.89 85.96 86.89 84.44	88.09	91.58 90.50 91.68 95.51 95.98
	↑ CC	94.15 95.16 88.28 91.24 93.65 87.38	88.19	94.85 91.92 92.92 95.94 96.31
	↓ I.	12.03 12.64 13.11 14.04 13.11 15.56	11.91	8.42	9.50	8.32	4.49	4.02
	↓ II.	1.42	1.19	2.36	1.59	1.50	2.53	2.47	1.28	1.79	1.64	0.75	0.71
	↑ EA	88.97 89.70 86.39 87.08 88.03 84.24	87.40	92.53 90.69 91.76 95.61 96.04
	↑ MS	85.23 84.74 80.33 81.84 83.93 78.81	82.46	88.63 85.75 87.51 93.27 93.97
	↓ RM	3.12	2.42	3.69	5.11	3.27	4.74	2.99	1.89	1.99	1.91	0.81	0.77
	↑ CI	89.91 90.44 86.97 87.81 89.03 85.03	87.76	92.86 90.94 92.02 95.67 96.09
	↓ GCE	6.46	9.56 11.92 8.35	7.40	9.35	15.08	10.21 14.62 12.86 8.00	7.26
	↓ LCE	4.75	7.17	6.85	5.61	5.62	6.08	11.71	7.71 11.52 9.79	6.28	5.59
	↓ dD	7.79	9.08	9.18	9.06	8.57	10.01	10.34	7.21	9.28	8.12	4.48	4.02
	↓ dM	4.88	5.40	6.03	5.89	5.30	7.01	6.59	4.40	5.57	4.95	2.66	2.41
	↓ dVI	14.75 15.18 14.19 14.54 14.88 14.33	14.32	14.52 14.43 14.32 14.18 14.13

Table 2

 2 Results of our method CFS-SC and supervised methods on the normal Prague dataset (20 test images). The arrows ↑ | ↓ denote the required criterion direction. Here, 'nr' means no segmentation refinement.Although the prior knowledge used by the supervised methods is more important than that used by our semi-supervised method, we can observe in Table2that our proposed method, both with and without refinement, largely outperformed the classical supervised methods (MFR, COF, and Con-Col). The methods based on the deep learning (FCNTsup, DA, U-Net, PSP-Net, and EWT-FCNT) outperform CFS-SC for most criteria. However, our method CFS-SC is competitive with deep learning methods except EWT-FCNT that provides exceptional results due to expensive learning step. For example, the CFS-SC does not provide under-segmentation nor over-segmentation (US and OS measures are equal to 0) compared to deep learning methods. It is also noticeable that our method CFS-SC without refinement outperformed the FCNTsup without refinement.

					Supervised					Semi-supervised
	Method	MRF	COF	Con FCNT FCNT EWT U-Net DA Col sup-nr sup FCNT	PSP Net SC-nr CFS	CFS SC
	↑ CS	46.11	52.48 84.57 87.52	96.01	98.45 96.71 94.18 96.45 94.03	94.97
	↓ OS	0.81	0.00	0.00	0.00	1.56	0.00	1.71	0.00 0.17	0.00	0.00
	↓ US	4.18	1.94	1.70	0.00	1.20	0.00	0.00	1.18 0.41	0.00	0.00
	↓ ME	44.82	41.55	9.50	6.70	0.78	0.37	0.68	3.42 1.23	1.63	1.09
	↓ NE	45.29	40.97 10.22	6.90	0.89	0.46	0.48	3.24 1.12	2.32	1.58
	↓ O	14.52	20.74	7.00	7.46	2.72	0.93	0.72	3.13 2.75	4.42	3.83
	↓ C	16.77	22.10	5.34	6.16	2.29	1.04	0.70	1.32 2.39	4.45	3.80
	↑ CA	65.42	67.01 86.21 87.08	93.95	97.67 95.86 94.53 93.89 91.85	92.61
	↑ CO	76.19	77.86 92.02 92.61	96.73	98.78 96.91 96.23 96.06 95.49	95.97
	↑ CC	80.30	78.34 92.68 93.26	97.02	98.81 97.38 97.01 96.41 95.91	96.29
	↓ I.	23.81	22.14	7.98	7.39	3.27	1.22	3.09	3.77 3.94	4.51	4.03
	↓ II.	4.82	4.40	1.70	1.49	0.68	0.25	0.41	0.58 0.69	0.79	0.76
	↑ EA	75.40	76.21 91.72 92.68	96.68	98.77 97.01 96.24 96.08 95.59	96.04
	↑ MS	64.29	66.79 88.03 88.92	95.10	98.17 95.37 94.35 94.08 93.24	93.96
	↓ RM	6.43	4.47	2.08	1.38	0.86	0.24	0.61	1.07 0.70	0.79	0.70
	↑ CI	76.69	77.05 92.02 92.81	96.77	98.78 97.08 96.41 96.15 95.65	96.08
	↓ GCE	25.79	23.94 11.76 12.54	5.55	2.33	2.13	3.50 4.67	8.07	7.30
	↓ LCE	20.68	19.69	8.61	9.94	3.75	1.68	1.46	2.47 3.52	6.40	5.75
	↓ dD	20.35	17.86	7.50	-	3.06	1.21	1.45	2.41 2.59	4.50	4.02
	↓ dM	13.25	10.62	4.69	-	1.96	0.74	0.77	1.35 1.56	2.76	2.48
	↓ dVI	14.51	14.22 13.99	-	13.80	13.68 13.68 13.71 13.77 14.01	13.96
	4.2.3 Comparison with supervised algorithms						

For a visual comparison, Fig.

10

shows some segmentation results obtained by our CFS-SC method, WSSCGP, and by four top-performing methods whose segmented images were available in Ref.

39

. For clarity, the black lines highlight the boundaries of segmented texture regions. Overall, CFS-SC, FCNTsup, and EWT-FCNT approaches provide satisfactory visual segmentation results that are close to the ground truth.

Table 3

 3 Results on the Histology dataset. The arrows ↑ | ↓ denote the required criterion direction and the best score is marked in boldface. Here, 'nr' means no segmentation refinement.

		Unsupervised		Semi-supervised	
	Method	DLS ORT FSEG FSEG + WSS CSC RC SEG CGP	CFS CFS SC-nr SC
	↑ CS	82.98 72.53 38.98	82.06 86.90 82.54 96.93 97.07
	↓ OS	3.34 1.71 35.95	1.78	3.29 0.00	0.00	0.00
	↓ US	2.82 2.78	0.00	10.25	1.94 0.00	0.00	0.00
	↓ ME	9.69 20.09 19.96	7.67	5.95 11.33 0.00	0.00
	↓ NE	11.49 20.31 21.05	8.25	7.02 11.99 0.00	0.00
	↓ O	7.64 10.17 24.77	13.71	6.70 8.69	3.26	3.10
	↓ C	6.96 10.57 24.23	7.42	6.21 9.62	3.47	3.31
	↑ CA	86.80 81.81 67.17	84.90 87.69 84.71 94.12 94.37
	↑ CO	91.44 88.84 72.38	90.70 92.07 91.20 96.93 97.07
	↑ CC	94.96 91.27 92.27	92.02 95.28 91.99 97.00 97.14
	↓ I.	8.56 11.16 27.62	9.30	7.93 8.80	3.07	2.93
	↓ II.	5.08 8.98	6.99	11.40	5.07 8.57	3.45	3.27
	↑ EA	92.60 88.71 78.78	90.66 93.15 91.21 96.94 97.08
	↑ MS	87.17 83.43 67.63	86.05 88.11 86.8 95.40 95.61
	↓ RM	6.55 9.93 17.29	7.42	5.82 5.22	1.06	1.13
	↑ CI	92.89 89.37 80.49	91.00 93.40 91.4 96.95 97.09
	↓ GCE 10.42 12.36 14.10	9.64	9.73 13.65 5.77	5.52
	↓ LCE	6.77 7.23 11.24	6.12	6.48 9.68	4.82	4.51
	↓ dD	7.54 9.73 18.55	7.65	6.90 8.66	3.07	2.93
	↓ dM	12.88 17.19 26.18	14.00 11.99 14.96 5.90	5.65
	↓ dVI	5.88 5.64	7.23	5.61	5.85 5.68	5.43	5.42

Table 4

 4 Results on the Outex dataset. Each row corresponds to a segmentation quality measure and the best score is marked in boldface. Here, 'nr' means no segmentation refinement. .65 83.86 96.52 72.83 70.70 86.00 85.41 87.88 88.70 SSC 70.88 62.23 84.32 98.27 64.25 60.65 84.22 89.11 92.42 93.01 SDHD 80.64 65.08 89.67 99.13 71.40 67.77 88.00 94.71 96.02 96.34 BGM 76.42 64.97 89.24 99.13 70.85 67.27 87.83 93.59 96.02 96.34 VD 83.87 80.60 91.39 99.13 80.47 78.75 91.64 94.15 96.02 96.34 BCE 69.50 61.08 82.45 98.02 61.89 58.58 82.63 86.64 91.19 91.77 CO 76.42 64.97 89.24 98.36 70.28 67.28 86.72 93.59 96.02 96.34

		Unsupervised	Supervised	Semi-supervised
	Method	ORT FSEG SEG	PCA EWT U-Net DA MS FCNT	PSP WSS CFS CFS Net CGP SC-nr SC
	NVOI	77.99 73		

Table 5

 5 The average computing time (second) per image of FSEG, WSSCGP, and CFS-SC on the tree datasets. (FE: Feature extraction, OS: Other steps.) .74 26.89 18.21 45.10 67.87 10.69 78.56 constrained spectral clustering. A new constraint score is developed in order to select a subset of features at one time. As the proposed score evaluates the similarity between the sample pixels in the examined feature subspace, the selected features are better analyzed by constrained spectral clustering. Experiments on four benchmark datasets showed that the proposed constraint score outperforms the main state-of-the-art constraint scores in the semi-supervised learning context. Moreover, the result demonstrated that the proposed constrained feature selection and the constrained spectral clustering algorithm is very effective for color-texture image segmentation.Finally, classical color-texture features and a simple sampling technique were used to conduct the experiments presented in this paper. It may to be advantageous to integrate other powerful texture descriptors, such as LBP, wavelets, or pre-trained CNNs, with a more elaborate sampling technique to further improve the segmentation accuracy. Moreover, we have considered that the prior knowledge is represented by class prototypes from which the pairwise constraints are deduced. All available constraints contribute to efficient feature selection and spectral clustering. In future work, we intend to generalize our method to prior knowledge that is only formalized by constraints.

		Prague (512 × 512) Histology (128 × 128) Outex (512 × 512)
	Methods		color image		color image	grayscale image
		FE	OS	Total	FE	OS	Total	FE	OS Total
	FSEG	0.41 0.67	1.08	0.02 0.04	0.06	0.14 0.41	0.55
	WSSCGP 0.90 31.92 32.82	0.06 0.61	1.21	0.72 26.63 27.35
	CFS-SC	486 31.74 517				

Segmentation results on Prague dataset

Here, we present the results obtained by our proposed semi-supervised segmentation method with (CFS-SC) and without refinement (CFS-SC-nr; see Algorithm 3) on the Prague dataset and compare them with those of several state-of-the-art segmentation methods. The Prague dataset, known to be difficult to segment, contains 80 texture mosaics synthetically generated from 114 color-texture images in 10 categories (see ground truth in Ref. 39). The texture class number in each of the images, which are sized at 512 × 512 pixels, ranges from 3 to 12.

The assessment of segmentation performance is based on the conventional measures provided by the Prague texture segmentation website, [START_REF]Prague texture segmentation data generator and benchmark[END_REF] The best score is displayed as bold in each table.

The methods involved in comparison include:

Six unsupervised algorithms: 1) the texNcut algorithm that is based on spectral clustering algorithm [START_REF] Shi | Normalized cuts and image segmentation[END_REF] and which uses texture features computed on super-pixels, 2) the variational

Processing time

To provide an overview on the computational requirements of the proposed CFS-SC algorithm, we estimated its processing time on an Intel Core i7 3.60GHz computer with 8GB RAM. Table 5 displaysthe average computing time of FSEG, WSSCGP, and CFS-SC for the tree datasets, i.e. according to size and type (color or grayscale) of image. The processing time of these methods can be divided into two parts: the processing times consumed by feature extraction step and by the other steps (feature selection and pixel classification steps).

From this table, we can see that the processing time required by the CFS-SC algorithm is the highest. For example, it was about 518 seconds for a (512 × 512) image. This relatively long processing time led us revisit each step of our algorithm. The majority of this time was consumed by the feature extraction step (486 seconds) and more precisely by the Haralick feature extraction (403 seconds). The remaining time (34 seconds) was mainly shared by the three basic procedures of our CFS-SC algorithm; namely, the constrained feature selection (20.7 seconds), the constrained spectral clustering (0.033 seconds), and the classification of out-of-sample pixels (11.01 seconds). Apart from the feature extraction step, the algorithm runs relatively quickly. It should be emphasized that it is always possible to reduce the computational time for feature extraction step and that the computational time cannot be considered as a crucial drawback,given the appreciable segmentation results achieved by the CFS-SC algorithm on all the tested datasets.

Conclusion

In this paper, we proposed an efficient semi-supervised approach for color-texture image segmentation. The proposed method combines the constrained feature selection and the 
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