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Abstract: Estuarine processes play a key role in determining the amount and quality of land-derived 

dissolved organic matter (DOM) reaching the oceans. Microbial-mediated reactions can affect the 

concentration, quality, and bioavailability of DOM within an estuary. In this study, we investigated 

biological DOM removal in a small estuary and its variability in two contrasting seasons (spring 

and autumn) characterized by natural differences in the concentration and quality of the riverine 

DOM. Two incubation experiments were carried out using natural DOM and heterotrophic 

prokaryotes community collected at the estuary in March and September. Dissolved organic carbon 

(DOC) concentration, DOM fluorescence, and the heterotrophic prokaryotes abundance (HPA) 

showed marked differences between the two seasons. These parameters were followed through 

time for up to two months. Despite the marked differences in the initial conditions, the DOC 

removal rates were surprisingly similar in the two periods (16 µM DOC month−1 in March and 18 

µM DOC month−1 in September), with the biggest removal in the first 48 h. The trend of fluorescent 

DOM (FDOM) during the incubation showed marked differences between the two periods. In 

March, the net removal of all the FDOM components was observed consistently with the decrease 

in DOC; whereas, in September, the net production of humic-like substances was observed. 
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1. Introduction 

A large amount of dissolved organic matter (DOM) is continuously exported from 

the land to the oceans through rivers and estuaries. It has been estimated that 250 Tg of 

dissolved organic carbon (DOC) are delivered yearly to the ocean from the rivers [1], even 

if recent studies suggest that this amount might have been underestimated [2]. Estuaries 

represent only the 0.3% of the Earth’s ocean-covered surface and they are a direct link 

between fresh and saline waters. The delivery of organic matter from rivers to the coastal 

ocean via estuaries is recognized as an important component of the global C budget [3–

6]. Within the estuaries, a variety of biogeochemical reactions determine the quantity and 

quality of DOM reaching the oceans. These reactions include flocculation, adsorption on 

suspended matter, photochemical and microbial processes [2,7–9], and can affect both the 

concentration and quality of the DOM transported to the coastal area [10]. 

In estuaries, microbial communities are exposed to quick changes in the 

environmental conditions. Mixing of seawater and freshwater, transportation of 

dissolved or suspended organic and inorganic material, as well as hydrological 

modifications due to climatic conditions or to human actions affect the estuarine 
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biogeochemical properties, inducing specific patterns of microbial abundance, diversity, 

and activity in these areas [11,12]. Changing salinity is a considerable physiological stress 

factor for freshwater organisms and affects the performance and functioning of microbial 

communities [13]. Differences in microbial abundances have been therefore observed 

along salinity gradient at various sites, such as the Rhone [14], Columbia [15], and Adour 

estuaries [16]. The use of DOM by the estuarine microbial community can be affected by 

several environmental parameters other than salinity, such as temperature, discharge 

(changing the residence time of the water), nutrient availability, and the amount and 

quality of the riverine DOM transported to the estuary. Apple et al. [17] suggested that 

bacterial carbon metabolism can be strongly affected by local environmental conditions, 

and seasonal differences in estuarine DOC uptake has been observed [17–19]. 

With this study we aim at investigating the biological removal and transformation of 

riverine DOM in different seasons in an estuarine system. The Arno River estuary (Italy) 

was chosen for this study because its DOM temporal dynamic is well known and it has a 

clear seasonal cycle of DOM, both in terms of concentration and quality, and of 

heterotrophic prokaryotes abundance (HPA) [20]. Two incubation experiments were 

carried out using natural DOM and heterotrophic prokaryotes community collected at the 

estuary in two contrasting seasons, spring (March) and autumn (September). In spring, 

according to the predominance of terrestrial DOM and the lower DOC concentration 

observed in the river [20], we expect a lower percentage of labile DOM, which combined 

with a lower temperature might lead to lower removal rates than in autumn. To test this 

hypothesis, the concentration of DOC and the HPA were followed through time in order 

to investigate the DOM removal rates and heterotrophic prokaryotes growth efficiencies. 

Changes in DOM quality were evaluated by measuring its fluorescence (FDOM), which 

gives indication about the main groups of fluorophores present in its pool. 

2. Materials and Methods 

2.1. Samples Collection and Incubation Experiment Setup 

Surface water samples were collected in the Arno River estuary in March and 

September 2015 at intermediate salinities (Figure 1, Table 1) into 10 L, acid washed, 

polycarbonate bottles (Nalgene). Temperature and salinity were measured in situ by 

using a portable Hanna 9033 probe (Hanna Instruments Inc., Woonsocket, Rhode Island, 

USA). 

 

Figure 1. Sampling sites (light blue March, white September). 
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Table 1. Initial conditions of the two experiments. 

 March September 

Temperature in situ (°C) 11.5 22.2 

Salinity 12.7 18.7 

DOC (µM) 179 316 

HPA (cells ml−1) 1.3 × 105 6.3 × 104 

The incubation experiments were carried out in 2 L, acid washed, polycarbonate 

bottles (Nalgene) in triplicates. For each replicate, 1.8 L of the estuarine water was filtered 

through a 0.2 µm pore size filter (Whatman Polycap, 6705–3602 capsules) and inoculated 

with 0.2 L of the same water, filtered through a 1.2 µm pore size filter (Sartorius, 17,593 

K), in order to add the local microbial community. Both filters were extensively rinsed 

with Milli-Q water prior to their use to avoid DOM contamination. The 1.2 µm filter was 

chosen because this pore size allows the majority of the heterotrophic prokaryotes to 

remain in the water used for the inoculum, whereas it should retain most of the 

autotrophic organisms and the bacterivores [21]. In order to simulate as closely as possible 

the natural conditions, the incubations were carried out at the in situ temperature (Table 

1), and the bottles were kept in the dark to avoid any autotrophic activity not removed by 

filtration. A headspace of ≈15% of the volume was left empty to keep enough oxygen in 

the system. 

Subsamples for analyses were collected immediately after the inoculum (T0), and at 

different times during the incubation up to 2 months. The 2 L bottles were open and mixed 

before each subsampling, which was carried out in sterile conditions to avoid any 

contamination from ambient microbes. 

2.2. Analytical Procedures for DOM and Heterotrophic Prokaryotes Abundance 

Heterotrophic prokaryotes (HP) were enumerated by flow cytometry. Samples fixed 

with either glutaraldhyde alone or a mix of paraformaldehyde (PF, 1%) and 

glutaraldehyde (GL, 0.05%), were stained with SYBR Green (Invitrogen Milan, Italy) and 

analyzed with an Accuri C6 or a FACSVerse flow cytometer (both from BD BioSciences) 

equipped with standard laser and filter sets. HP were discriminated from other particles 

and background by their high green fluorescence, small size, low light scatter, and low 

red fluorescence, as previously described [22,23]. 

The samples for DOM analyses were collected into 60 mL, acid washed, 

polycarbonate bottles (Nalgene) and measured immediately. Total organic carbon (TOC) 

concentration was measured by high temperature catalytic oxidation using a Shimadzu 

TOC-Vcsn analyzer following the method reported by Santinelli et al. [24]. From 3 to 5 

replicate injections were performed until the analytical precision was lower than 1 µM, 

and the measurement reliability was assessed twice daily by comparison of data with 

DOC consensus reference material [25] (CRM Batch #13 Lot 05-13, nominal concentration: 

41–44 µM; measured concentration: 42.3 ± 0.9 µM). 

To avoid any contamination, subsamples were not filtered; DOC concentration was 

therefore calculated by subtracting HP carbon biomass from TOC concentration. The HP 

biomass was calculated assuming a conversion factor of 20 fg C cell−1 [26] and ranged 

between 0.11 and 1.94 µM C with values <1 µM C in 80% of the samples. 

The variation in biomass and in carbon concentration were used to estimate the 

heterotrophic prokaryotes growth efficiency (HPGE) as follows: 

���� =  
∆ �������

∆ ���
 

Fluorescence excitation–emission matrices (EEMs) were measured using the 

Aqualog spectrofluorometer (Horiba) following the method reported by Retelletti Brogi 

et al. [27]. By using the drEEM toolbox [28], the EEMs were elaborated in order to remove 
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and interpolate the Rayleigh and Raman scatter peaks, normalize the fluorescence 

intensities to Raman units, and carry out parallel factor analysis (PARAFAC). The model 

was validated by visual inspection of the residuals, split-half analysis (Figure S1), and 

percentage of explained variance (99.5%). 

2.3. Statistics 

The Kruskal–Wallis test (R software) was used in order to test if the variations in the 

parameters during the incubations were statistically significant. This test was chosen since 

is a nonparametric test and does not need any distributional assumption [29]. Differences 

were considered significant for p < 0.005. 

3. Results and Discussion 

3.1. Biological Removal of DOC 

As expected, the initial conditions of the two experiments were biologically, 

chemically, and physically different (Table 1). 

It is noteworthy that in September, DOC concentration was ≈1.7 times higher than in 

March, whereas HPA was ≈2 times lower. These results are in good agreement with the 

DOM and HPA annual cycle in the Arno River [20]. The accumulation of DOM and the 

low HPA can be attributed to the presence of recalcitrant DOM, which cannot be 

consumed by the HP on the short temporal scale. The top-down control (viral lysis or 

grazing) would also reduce the HPA, leading to DOM accumulation. With this 

experiment, we investigated if the biological lability of DOM was different in the two 

periods and if the DOM removed was used for biomass synthesis with the same efficiency. 

DOC concentration showed an exponential decrease during the two months in both 

incubations (Figure 2). It decreased from 179 ± 7 to 147 ± 1 µM in March and from 316 ± 2 

to 279 ± 1 µM in September, suggesting an overall DOC removal rate of 16.0 µM month−1 

(0.5 µM day−1) in March and 18.5 µM month−1 (0.6 µM day−1) in September. The removal 

rates were very similar, despite the difference in the initial DOC concentrations, HPA, and 

temperature (Table 1), and similar to those reported in a previous study carried out at the 

Arno River estuary in October 2012 (20 µM month−1, [30]). 

Figure 2. Dissolved organic carbon (DOC) concentration during the two incubations, and a 

zoom of the first 48 h (inserts). Error bars refer to the standard deviation among the three 

replicates. Note the difference in y-axis scale. 

Both in March and in September, the greatest decrease in DOC concentration (≈17 

µM in March and ≈25 µM in September) was observed between 24 and 48 h (Figure 2). 

Taking into account only the first 48 h, a removal rate of 9 µM day−1 in March and 13 µM 

day−1 in September can be estimated. Between 1 week and 1 month, DOC removal rates 

ware markedly lower (0.3 µM day−1 in March and 0.4 µM day−1 in September) than in the 

first two days. 
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Even though the amount of DOC removed in 48 h is different in the two periods, it 

is interesting to notice that its percentage, with respect to the initial concentration, is very 

similar (9% in March and 8% in September). These results indicate that ≈8–9% of DOC was 

labile on a 48 h temporal scale during both periods. In contrast, considering the whole 

incubations (i.e., two months), the percentage of the removed DOC was slightly different; 

18% of the initial DOC was removed in March and 12% in September. 

Our results are in good agreement with incubation experiments carried out in other 

estuaries [18,31,32]. Raymond and Bauer [18] observed no variation in DOC concentration 

in the first 24 h and no seasonal variability during incubation experiments, carried out 

with water from the York River estuary in different seasons; they also found 10% removal 

of the initial DOC concentration within five days of experiment. Avery et al. [31] reported 

the results of incubation experiments with water from the Cape Fear River estuary in three 

different seasons (February, April, and July) and observed similar results in the three 

periods with 9 ± 4.5% DOC removal during three months. Similar results were also 

reported by Moran and Sheldon [32] for incubation experiments carried out in five 

estuaries in the southeastern USA, where 3–12% of DOC was removed in 1–2 months. The 

environmental conditions can be totally different between estuaries and seasons and it is 

not easy to explain this general agreement among different studies around the globe. We 

can hypothesize that this 8–9% is the measurable LDOC, and that there is a fraction which 

is labile on a shorter temporal scale and therefore not measurable. This highly labile 

fraction can have different concentration among environments and seasons. However, it 

is not possible to exclude that the results might be also affected by the experimental 

conditions, which were similar between our experiment and the ones cited. 

HPA showed a similar trend in both March and September: after a lag phase of 24 h, 

it rapidly increased to reach a maximum after 48 h (Figure 3), in correspondence with the 

largest DOC decrease. After reaching the maximum of abundance, HPA decreased to 

reach a minimum at day 10 (March) and day 7 (September). Then, it started to increase 

again and reached a second maximum after one month in March and 15 days in 

September, and then it slowly decreased (Figure 3). The marked decrease in HPA 

observed between 2 and 7 days can be attributed to the inability of the initial HP 

community to use the DOC that was left. However, we cannot exclude other factors like 

viral lysis [33] or an incomplete removal of grazers. The increase in abundance observed 

afterward may suggest the growth of a second community not dominant in the first week, 

which was able to grow on the remaining DOC or which was less sensitive to grazing and 

viral lysis. 

 

Figure 3. Heterotrophic prokaryotes abundance (HPA) during the two experiments, and a 

zoom of the first 48 h (inserts). Error bars refer to the standard deviation among the replicates. 

Note the difference in y-axis scale. 
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These results were surprising because a higher DOC removal was expected in 

September when initial DOC concentration and temperature were higher. In March, the 

lower temperature and DOC concentration were expected to reduce the HP growth. 

3.2. Heterotrophic Prokaryotes Growth Efficiency and CO2 Production Estimates 

Comparing DOC removal rates and the variations in HPA, both experiments can be 

divided in two periods that seemed to be characterized by different HP communities: in 

the first period (0–48 h) HP grew fast on the labile DOC (LDOC, removal rates of 9–13 µM 

day−1) while after about 1 week they grew slower on the semilabile DOC (SLDOC, 

mineralization rates of 0.3–0.4 µM day−1). 

The DOC removed by HP can follow 3 metabolic pathways: it can be (1) incorporated 

into biomass, (2) mineralized into CO2 through respiration, or (3) released as DOC in a 

different form. HPGE gives an estimate of the percentage of the removed DOC 

transformed in biomass. 

The HPGE estimated in the first period (0–48 h) was 10 ± 0.21% in March and 5 ± 

0.10% in September, whereas in the second period (7–10 days to 1 month), it was 7 ± 0.15% 

in March and 8 ± 0.12% in September. The lower HPGE within the first 48 h in September 

suggests that the HP community was less efficient in transforming DOC into biomass, and 

most of the DOC removed (~95%) was respired to CO2 even with warmer conditions (T ~ 

22 °C) than in April. Although these results might seem surprising, they are in agreement 

with the results of Apple et al. [17], who investigated the temperature dependency of 

bacterioplankton carbon metabolism and showed an inverse relationship between the 

temperature and HPGE. 

Assuming negligible the DOC released by the HP, the amount of CO2 produced by 

respiration was estimated as follows: 

CO2 produced = ∆DOC·(1-HPGE) 

This calculation suggests that 14.4 to 24.5 µM of CO2 were released in 48 h by the 

consumption of LDOC from heterotrophic prokaryotes, leading to the production of 7–12 

µM of CO2 per day. These calculations may, however, be affected by the experimental 

conditions. 

3.3. DOM Quality Affects its Mineralization and Vice Versa 

The PARAFAC analysis of the EEMs validated a four component model (Figure S1 

and S2). According to their excitation and emission maxima and to the comparison with 

similar components within the OpenFluor database [34], these components were 

attributed to different groups of fluorophores. C1 showed the excitation and emission 

maxima at 310 and 410 nm, respectively, and its signal was attributed to microbial humic-

like compounds [20,35–37]. C2 showed the excitation peak at 360 nm, and the emission 

maximum at 460 and its signal can be attributed to fulvic-like fluorescence [20,38]. The 

excitation and emission maxima of C3 and C4 were 290/340 and 280/330 nm, which are 

typical of protein-like compounds fluorescence [20,35,37]. Because both C3 and C4 

represent protein-like compounds, hereinafter they are reported together as C3 + C4 in 

order to show the overall changes in protein-like fluorescence during the incubations. 

In order to evaluate the differences in DOM quality between the two periods, the 

EEMs were compared for the two experiments at T0 (Figure 4). 
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Figure 4. Excitation–emission matrices (EEMs) of samples measured at T0 in March and 

September. The four parallel factor analysis (PARAFAC) components are indicated with white 

circles on both the EEMs. For better visual comparison, the two EEMs were normalized to have 

a maximum fluorescence intensity of 1. 

About 30% of the fluorescence intensity was due to the microbial humic-like 

component in both experiments (29 ± 0.1% and 28 ± 0.1% in March and September, 

respectively). The percentage of fulvic-like component in March (36 ± 0.1%) was twice that 

in September (18 ± 0.2%), whereas the percentage of protein-like fluorescence was 

markedly higher in September (54 ± 0.1%) than in March (35 ± 0.1%). These results agree 

well with those reported within the river [20]. 

Fluorescence and DOC data clearly indicate a marked difference in the DOM in the 

two periods; in March, DOM has a low concentration and a similar percentage of humic, 

fulvic, and protein-like FDOM, although the microbial humic FDOM was slightly reduced 

with respect to the other components. In September, DOM concentration is twice than in 

March, and protein-like substances dominated the fluorescence signal. It is possible that 

changes in DOM pool, together with the different environmental conditions (i.e., winter 

vs. autumn), can favor HP communities with different growth efficiencies or that 

according to the type of DOM, the HP community can use the available DOM mainly for 

biomass synthesis (March) or respiration (September). 

The fluorescence intensities of the components were followed during the incubations 

in order to investigate changes in DOM quality due to HP activity (Figure 5). All of the 

fluorescence components showed no significant variations in the first 48 h of the 

experiment, suggesting that the DOC removed in this time frame was not fluorescent. In 

contrast, large changes in fluorescence were observed afterwards. 
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Figure 5. Fluorescence intensity of the components during the two experiments, and a zoom 

in the first 48 h (inserts). Error bars refer to the standard deviation between the replicates. 

In both experiments, between 2 and 7/10 days all of the components showed a 

decrease in intensity, in correspondence with the decrease in HP abundance. From day 

7/10 to the end of the experiments, FDOM showed a different trend in the two incubations 

(Figure 5). In March, all of the components showed a significant decrease until the end of 

the experiment; in September, the microbial humic-like component (C1) markedly 

increased, reaching a fluorescence intensity >1.5 times that measured at T0; the fulvic-like 

component (C2) followed a trend similar to that of the HPA, increasing between 7 and 15 

days and then decreasing again; the protein-like components (C3 + C4) slowly decreased 

towards the end of the experiment. 

The overall effect of the HP community on FDOM during the experiments can be 

seen by the subtraction of the EEMs measured after two months from the EEMs measured 

at T0 (Figure 6). In March, the HP reduced all of the FDOM components, whereas in 

September they mainly released microbial humic-like compounds and removed protein-

like substances (Figure 6). 
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Figure 6. Three-dimensional plot of the subtraction between the EEMs at the end of the 

experiment (60 days) and the EEMs at T0 (T60 EEM–T0EEM) showing the overall effect of 

incubation on fluorescent DOM (FDOM). 

The percentage of each component on the total fluorescence was calculated at the end 

of the experiment and compared with that calculated at T0 (Figure 7). This calculation 

showed that, in March, the relative weight of the components on the composition of 

FDOM did not change over the course of the incubation, meaning that all of the 

components were proportionally removed. After two months of incubation, the 

percentage of the components were 31 ± 0.1%, 39 ± 0.2%, and 31 ± 0.1% for C1, C2 and C3 

+ C4, respectively, which are indeed not significantly different from those calculated at T0. 

In September, a change in the relative FDOM composition was observed between the 

beginning and the end of the experiment. After two months, the microbial humic-like 

component (C1) increased from 28 ± 0.1% to 39 ± 0.05%. The protein-like fraction (C3 + C4) 

decreased from 54 ± 0.1% to 45 ± 0.1%, whereas the fulvic-like component (C2) remained 

unchanged (16 ± 0.1% after two months). 

 

Figure 7. Percentages of the fluorescence components on total fluorescence at the beginning 

(darker colors) and end (lighter colors) of the experiment in March (red) and September (blue). 

The increase in humic-like fluorescence due to the HP activity is well documented in 

the literature [39–43], and supports that humic-like substances do not represent only 

terrestrial DOM. 

C1 C2 C3+4

%
 o

f 
to

ta
l f

lu
o
re

s
c
e

n
c
e

0

10

20

30

40

50

60 March T0
March T60

September T0

September T60



J. Mar. Sci. Eng. 2021, 9, 172 10 of 13 
 

 

The different FDOM trends observed in the two incubations can be attributed to (i) a 

different composition of the microbial community, (ii) differences in the quality of DOM, 

or, most probably, by a combination of these two factors. It was reported that biological 

degradation of DOM is carried out by phylogenetically diverse communities, whose 

composition has been shown to be affected by the quality and quantity of the available 

DOM [44,45]. Different groups of bacteria have different capability to use different size-

fractions of DOM. Low molecular weight compounds (LMW < 600 Da) can be taken up 

easily across the cell membrane [46], whereas molecules bigger than 600 Da require 

extracellular enzymes that not all of the bacterial taxa can produce, as observed by 

Berlemont and Martiny [47]. It is known that microbial communities can also release 

FDOM [48]. Goto et al. [41] observed the production of refractory humic-like FDOM by 

three strains of marine bacteria growing on a labile substrate (glucose). According to their 

results, the three strains produced different DOM with different efficiency, and proposed 

specific mechanisms of humic-like FDOM production according to the strain. A recent 

study highlighted how the microbial community can release humic-like refractory DOM 

when growing on phytoplankton-derived DOM [40]. This observation supports the 

results of this study since the increase in humic-like fluorescence was observed in 

September, after the spring/summer phytoplankton blooms, when indeed a much higher 

percentage of protein-like fluorescence was present than in March, suggesting a higher 

abundance of autotrophic DOM. The similar DOC removal rates in September with 

respect to March, despite the much higher DOC concentration, can be explained by the 

HP producing refractory humic-like compounds as shown by both Kinsey et al. [40] and 

Goto et al. [41]. Some studies, combining PARAFAC results with more detailed molecular 

analysis (FT–ICR–MS) showed that FDOM is a good tracer for the bulk DOM pool [49]. 

However, FDOM still represents only a fraction of the DOM and a more detailed 

molecular characterization of all the compounds, including the nonfluorescent ones, could 

give more insight into its changes and its biologically labile fraction [50]. 

4. Summary and Conclusions 

The results of this study show similar DOC removal rates in the Arno River estuary 

in spring and autumn, despite the marked difference in DOC initial concentration, HPA, 

and environmental conditions (i.e., temperature). In both seasons, 8–9% of the initial DOC 

was removed after 48 h, suggesting that it is labile on the short temporal scale. The 

estimate of the HPGE growth efficiency highlighted that the HP community can use the 

removed DOC differently (i.e., growth vs. respiration). A higher percentage of DOC was 

used for biomass synthesis in March than in September. Fluorescence data suggest a 

different quality of the initial DOM, with a higher percentage of protein-like compounds 

and a lower percentage of terrestrial fulvic-like compounds in September than in March. 

These differences might stimulate the growth of different HP communities with different 

growth efficiencies. In turn, the HP community affects the FDOM differently during the 

incubations. In September, the HP removed the protein-like compounds and released a 

large amount of humic-like compounds that may inhibit a further DOM uptake. These 

results show that, in absence of grazers the HP community is able to remove protein-like 

DOM, while the accumulation of protein-rich DOM coincident with a low HPA might be 

attributed to a top-down control of HP by grazers or by viruses. In March, the HP removed 

all of the FDOM components consistently with the DOC decrease without apparently 

altering the relative fluorescence intensity of the components in the DOM pool. The results 

of this study point to a high complexity of estuarine systems that needs to be investigated 

further. The similar DOC removal rates, together with the low growth efficiency of 

September’s HP community, despite DOM being more concentrated and enriched in 

protein, and despite the higher temperature, was an unexpected result and raises 

intriguing questions about the cross influences of microbial diversity, physical constrains, 

and DOM properties. A detailed study on the composition of the HP community at 

different time of the year, together with more detailed incubation experiments covering 
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all seasons, is needed to get more insights into these processes. Moreover, a molecular 

characterization of the DOM during the experiments would help in the interpretation of 

these results and on predicting the biological lability of DOM in different conditions. 

Supplementary Materials: The following are available online at www.mdpi.com/2077-

1312/9/2/172/s1, Figure S1: Results from the PARAFAC split-validation test made by using drEEM 

4.0 Matlab toolbox, Figure S2: Contour plots of the 4 components validated by PARAFAC. The 

figure was made within the drEEM 4.0 Matlab toolbox. 

Author Contributions: Conceptualization, C.S., S.R.B., M.G., B.M., and R.C.; methodology, C.S., 

B.M., and R.C.; formal analysis, S.R.B., C.B., S.V., and B.M.; investigation, C.S., S.R.B., M.G., B.M., 

and R.C.; data curation, S.R.B., C.B., S.V.; writing—original draft preparation, S.R.B.; writing—

review and editing, all authors; funding acquisition, C.S. and B.M. All authors have read and agreed 

to the published version of the manuscript. 

Funding: This research was funded by the COMECOM project as a part of the “MerMex-WP3-C3A” 

project, by the Italian Flagship project RITMARE funded by the Italian Ministry of Research and 

University, and by CARTT of the Institut Universitaire Technologique from Toulon University. 

Institutional Review Board Statement: Not applicable.  

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author.  

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the 

manuscript, or in the decision to publish the results. 

References 

1. Hedges, J.I.; Keil, R.G.; Benner, R. What happens to terrestrial organic matter in the ocean? Org. Geochem. 1997, 27, 195–212. 

2. Raymond, P.A.; Spencer, R.G.M. Riverine DOM. In Biogeochemistry of Marine Dissolved Organic Matter, 2nd ed.; Academic Press: 

Cambridge, MA, USA, 2015; pp. 509–533, ISBN 9780124059405. 

3. Bauer, J.E.; Cai, W.-J.; Raymond, P.A.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A.G. The changing carbon cycle of the coastal 

ocean. Nature 2013, 504, 61–70, doi:10.1038/nature12857. 

4. Benner, R. What happens to terrestrial organic matter in the ocean? Mar. Chem. 2004, 92, 307–310. 

5. Richey, J.E. Pathways of Atmospheric CO2 through Fluvial Systems. In The Global Carbon Cycle: Integrating Humans, Climate and 

the Natural World; Island Press: Washington, DC, USA, 2004; pp. 329–340. 

6. Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.R.; Tilbrook, 

B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371, doi:10.1126/science.1097403. 

7. Hernes, P.J.; Benner, R. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of 

terrigenous dissolved organic matter in marine environments. J. Geophys. Res. Ocean. 2003, 108, 1421, doi:10.1029/2002jc001421. 

8. Shank, G.C.; Zepp, R.G.; Whitehead, R.F.; Moran, M.A. Variations in the spectral properties of freshwater and estuarine CDOM 

caused by partitioning onto river and estuarine sediments. Estuar. Coast. Shelf Sci. 2005, 65, 289–301, 

doi:10.1016/j.ecss.2005.06.009. 

9. Uher, G.; Hughes, C.; Henry, G.; Upstill-Goddard, R.C. Non-conservative mixing behavior of colored dissolved organic matter 

in a humic-rich, turbid estuary. Geophys. Res. Lett. 2001, 28, 3309–3312, doi:10.1029/2000GL012509. 

10. Riedel, T.; Zark, M.; Vähätalo, A.V.; Niggemann, J.; Spencer, R.G.M.; Hernes, P.J.; Dittmar, T. Molecular signatures of 

biogeochemical transformations in dissolved organic matter from ten world rivers. Front. Earth Sci. 2016, 4, 85, 

doi:10.3389/feart.2016.00085. 

11. Paerl, H.W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of 

human and climatic perturbations. Ecol. Eng. 2006, 26, 40–54. 

12. Crump, B.C.; Hopkinson, C.S.; Sogin, M.L.; Hobbie, J.E. Microbial Biogeography along an Estuarine Salinity Gradient: 

Combined Influences of Bacterial Growth and Residence Time. Appl. Environ. Microbiol. 2004, 70, 1494–1505, 

doi:10.1128/AEM.70.3.1494-1505.2004. 

13. Lozupone, C.A.; Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 11436–11440, 

doi:10.1073/pnas.0611525104. 

14. Troussellier, M.; Schäfer, H.; Batailler, N.; Bernard, L.; Courties, C.; Lebaron, P.; Muyzer, G.; Servais, P.; Vives-Rego, J. Bacterial 

activity and genetic richness along an estuarine gradient (Rhone River plume, France). Aquat. Microb. Ecol. 2002, 28, 028013, 

doi:10.3354/ame028013. 



J. Mar. Sci. Eng. 2021, 9, 172 12 of 13 
 

 

15. Crump, B.C.; Armbrust, E.V.; Baross, J.A. Phylogenetic analysis of particle-attached and free-living bacterial communities in 

the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 1999, 65, 3192–3204, 

doi:10.1128/aem.65.7.3192-3204.1999. 

16. Goñi-Urriza, M.S.; Point, D.; Amouroux, D.; Guyoneaud, R.; Donard, O.F.X.; Caumette, P.; Duran, R. Bacterial community 

structure along the Adour estuary (French Atlantic coast): Influence of salinity gradient versus metal contamination. Aquat. 

Microb. Ecol. 2007, 49, 47–56, doi:10.3354/ame01128. 

17. Apple, J.K.; del Giorgio, P.A.; Kemp, W.M. Temperature regulation of bacterial production, respiration, and growth efficiency 

in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 2006, 43, 243–254, doi:10.3354/ame043243. 

18. Raymond, P.; Bauer, J. Bacterial consumption of DOC during transport through a temperate estuary. Aquat. Microb. Ecol. 2000, 

22, 1–12. 

19. Ram, A.S.P.; Nair, S.; Chandramohan, D. Bacterial growth efficiency in a tropical estuary: Seasonal variability subsidized by 

allochthonous carbon. Microb. Ecol. 2007, 53, 591–599, doi:10.1007/s00248-006-9124-y. 

20. Brogi, S.R.; Balestra, C.; Casotti, R.; Cossarini, G.; Galletti, Y.; Gonnelli, M.; Vestri, S.; Santinelli, C. Time resolved data unveils 

the complex DOM dynamics in a Mediterranean river. Sci. Total Environ. 2020, 733, 139212, doi:10.1016/j.scitotenv.2020.139212. 

21. Sherr, E.; Sherr, B. Understanding Roles of Microbes in Marine Pelagic Food Webs: A Brief History. In Microbial Ecology of the 

Oceans, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470043448. 

22. Gasol, J.M.; Zweifel, U.L.; Peters, F.; Fuhrman, J.A.; Hagström, Å. Significance of size and nucleic acid content heterogeneity as 

measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 1999, 65, 4475–4483, 

doi:10.1128/aem.65.10.4475-4483.1999. 

23. Grégori, G.; Citterio, S.; Ghiani, A.; Labra, M.; Sgorbati, S.; Brown, S.; Denis, M. Resolution of Viable and Membrane-

Compromised Bacteria in Freshwater and Marine Waters Based on Analytical Flow Cytometry and Nucleic Acid Double 

Staining. Appl. Environ. Microbiol. 2001, 67, 4662–4670, doi:10.1128/AEM.67.10.4662-4670.2001. 

24. Santinelli, C.; Follett, C.; Brogi, S.R.; Xu, L.; Repeta, D. Carbon isotope measurements reveal unexpected cycling of dissolved 

organic matter in the deep Mediterranean Sea. Mar. Chem. 2015, 177, 267–277, doi:10.1016/j.marchem.2015.06.018. 

25. Hansell, D.A. Dissolved Organic Carbon Reference Material Program. Eos Trans. Am. Geophys. Union 2005, 86, 318, 

doi:10.1029/2005EO350003. 

26. Ducklow, H.W. Bacterial Production and Biomass in the Oceans; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 85–120. 

27. Brogi, S.R.; Charrière, B.; Gonnelli, M.; Vaultier, F.; Sempéré, R.; Vestri, S.; Santinelli, C. Effect of uv and visible radiation on 

optical properties of chromophoric dissolved organic matter released by emiliania huxleyi. J. Mar. Sci. Eng. 2020, 8, 888, 

doi:10.3390/jmse8110888. 

28. Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. 

Methods 2013, 5, 6557, doi:10.1039/c3ay41160e. 

29. Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; W H Freeman & Co: USA, 1995; 

ISBN 0716724111. 

30. Retelletti Brogi, S.; Gonnelli, M.; Vestri, S.; Santinelli, C. Biophysical processes affecting DOM dynamics at the Arno river mouth 

(Tyrrhenian Sea). Biophys. Chem. 2015, 197, 1–9. 

31. Avery, G.B.; Willey, J.D.; Kieber, R.J.; Shank, G.C.; Whitehead, R.F. Flux and bioavailability of Cape Fear River and rainwater 

dissolved organic carbon to Long Bay, southeastern United States. Glob. Biogeochem. Cycles 2003, 17, 2229, 

doi:10.1029/2004GB002229. 

32. Moran, M.A.; Sheldon, J.E. Biodegradation of Riverine Dissolved Estuaries of the Southeastern United Organic States Carbon 

in Five. Estuaries 1999, 22, 55–64. 

33. Riemann, L.; Middelboe, M. Viral lysis of marine bacterioplankton: Implications for organic matter cycling and bacterial clonal 

composition. Ophelia 2002, 10409490. 

34. Murphy, K.R.; Stedmon, C.A.; Wenig, P.; Bro, R. OpenFluor—An online spectral library of auto-fluorescence by organic 

compounds in the environment. Anal. Methods 2014, 6, 658–661, doi:10.1039/C3AY41935E. 

35. Lambert, T.; Teodoru, C.R.; Nyoni, F.C.; Bouillon, S.; Darchambeau, F.F.; Massicotte, P.; Borges, A.V. Along-stream transport 

and transformation of dissolved organic matter in a large tropical river. Biogeosciences 2016, 13, 2727–2741, doi:10.5194/bg-13-

2727-2016. 

36. Maie, N.; Sekiguchi, S.; Watanabe, A.; Tsutsuki, K.; Yamashita, Y.; Melling, L.; Cawley, K.M.; Shima, E.; Jaffé, R. Dissolved 

organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers. J. Sea Res. 2014, 91, 58–69, 

doi:10.1016/j.seares.2014.02.016. 

37. Meng, F.; Huang, G.; Yang, X.; Li, Z.; Li, J.; Cao, J.; Wang, Z.; Sun, L. Identifying the sources and fate of anthropogenically 

impacted dissolved organic matter (DOM) in urbanized rivers. Water Res. 2013, 47, 5027–5039, doi:10.1016/j.watres.2013.05.043. 

38. Lapierre, J.F.; del Giorgio, P.A. Partial coupling and differential regulation of biologically and photochemically labile dissolved 

organic carbon across boreal aquatic networks. Biogeosciences 2014, 11, 5969–5985, doi:10.5194/bg-11-5969-2014. 

39. Asmala, E.; Autio, R.; Kaartokallio, H.; Stedmon, C.A.; Thomas, D.N. Processing of humic-rich riverine dissolved organic matter 

by estuarine bacteria: Effects of predegradation and inorganic nutrients. Aquat. Sci. 2014, 76, 451–463, doi:10.1007/s00027-014-

0346-7. 

40. Kinsey, J.D.; Corradino, G.; Ziervogel, K.; Schnetzer, A.; Osburn, C.L. Formation of chromophoric dissolved organic matter by 

bacterial degradation of phytoplankton-derived aggregates. Front. Mar. Sci. 2018, 4, 430, doi:10.3389/fmars.2017.00430. 



J. Mar. Sci. Eng. 2021, 9, 172 13 of 13 
 

 

41. Goto, S.; Tada, Y.; Suzuki, K.; Yamashita, Y. Evaluation of the Production of Dissolved Organic Matter by Three Marine Bacterial 

Strains. Front. Microbiol. 2020, 11, 2553, doi:10.3389/fmicb.2020.584419. 

42. Lønborg, C.; Álvarez-Salgado, X.A.; Davidson, K.; Miller, A.E.J. Production of bioavailable and refractory dissolved organic 

matter by coastal heterotrophic microbial populations. Estuar. Coast. Shelf Sci. 2009, 82, 682–688, doi:10.1016/j.ecss.2009.02.026. 

43. Arai, K.; Wada, S.; Shimotori, K.; Omori, Y.; Hama, T. Production and degradation of fluorescent dissolved organic matter 

derived from bacteria. J. Oceanogr. 2018, 74, 39–52, doi:10.1007/s10872-017-0436-y. 

44. Logue, J.B.; Stedmon, C.A.; Kellerman, A.M.; Nielsen, N.J.; Andersson, A.F.; Laudon, H.; Lindström, E.S.; Kritzberg, E.S. 

Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic 

matter. ISME J. 2016, 10, 533–545, doi:10.1038/ismej.2015.131. 

45. Logue, J.B.; Lindström, E.S. Biogeography of Bacterioplankton in Inland Waters. Freshw. Rev. 2008, 1, 99–114, doi:10.1608/frj-

1.1.9. 

46. Weiss, M.S.; Abele, U.; Weckesser, J.; Welte, W.; Schiltz, E.; Schulz, G.E. Molecular architecture and electrostatic properties of a 

bacterial porin. Science 1991, 254, 1627–1630, doi:10.1126/science.1721242. 

47. Berlemont, R.; Martiny, A.C. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 2013, 79, 1545–

1554, doi:10.1128/AEM.03305-12. 

48. Romera-Castillo, C.; Sarmento, H.; Alvarez-Salgado, X.A.; Gasol, J.M.; Marrasé, C. Net production and consumption of 

fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. 

Appl. Environ. Microbiol. 2011, 77, 7490–7498, doi:10.1128/AEM.00200-11. 

49. Stubbins, A.; Lapierre, J.-F.F.; Berggren, M.; Prairie, Y.T.; Dittmar, T.; del Giorgio, P.A. What’s in an EEM? Molecular signatures 

associated with dissolved organic fluorescence in boreal Canada. Environ. Sci. Technol. 2014, 48, 10598–10606, 

doi:10.1021/es502086e. 

50. Osterholz, H.; Kirchman, D.L.; Niggemann, J.; Dittmar, T. Diversity of bacterial communities and dissolved organic matter in a 

temperate estuary. FEMS Microbiol. Ecol. 2018, 94, fiy119, doi:10.1093/femsec/fiy119. 

 


