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Benjamin Misson2 and Jean-François Briand1*

1 Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France, 2 Université de Toulon, Aix Marseille Université,
CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France, 3 Microbia Environnement Observatoire
Océanologique, Banyuls-sur-Mer, France, 4 Division for Marine and Environmental Research, Ruðer Bošković Institute,
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Trace metal (TM) contamination in marine coastal areas is a worldwide threat for
aquatic communities. However, little is known about the influence of a multi-chemical
contamination on both marine biofilm communities’ structure and functioning. To
determine how TM contamination potentially impacted microbial biofilms’ structure and
their functions, polycarbonate (PC) plates were immerged in both surface and bottom
of the seawater column, at five sites, along strong TM contamination gradients, in
Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by
biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as
well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon
gene sequencing to describe prokaryotic community diversity, structure and functions,
and to determine the relationships between bacterioplankton and biofilm communities.
Our results showed that prokaryotic biofilm structure was not significantly affected by
the measured environmental variables, while the functional profiles of biofilms were
significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated
sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-
degrading microorganisms. Functions related to major xenobiotics biodegradation and
metabolism, such as methane metabolism, degradation of aromatic compounds, and
benzoate degradation, as well as functions involved in quorum sensing signaling,
extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly
over-represented in the contaminated site relative to the uncontaminated one. Taken
together, our results suggest that biofilms may be able to survive to strong multi-
chemical contamination because of the presence of tolerant taxa in biofilms, as well
as the functional responses of biofilm communities. Moreover, biofilm communities
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exhibited significant variations of structure and functional profiles along the seawater
column, potentially explained by the contribution of taxa from surrounding sediments.
Finally, we found that both structure and functions were significantly distinct between the
biofilm and bacterioplankton, highlighting major differences between the both lifestyles,
and the divergence of their responses facing to a multi-chemical contamination.

Keywords: prokaryotic biofilms, bacterioplankton, trace metal contamination, Illumina Miseq sequencing, marine
coastal environment

INTRODUCTION

Trace metal (TM) pollution is a global concern in marine
environments due to and currently increasing metal emissions
(The Mermex Group et al., 2011) but also the legacy of historic
contamination. Coastal areas of the Mediterranean Sea are
traditionally zones of intense human activities, characterized by
highly urbanized and industrialized coastline with large harbors
and major cities. In this context, pollution is increasingly present
as a result of anthropogenic activities, making marine coasts,
one of the most heavily contaminated aquatic environments by
TMs (Förstner and Wittmann, 2012; de Souza Machado et al.,
2016). Thus, TM concentrations in Mediterranean coastal surface
waters, mainly due to atmospheric inputs, are higher than those,
for example, in Atlantic Ocean (Heimbürger et al., 2011; Cossa
et al., 2020). Rather than the atmospheric pathway, TM seawater
contamination of the semi-enclosed Toulon Bay (Mediterranean
Sea, France) is primarily caused by urban and industrial
wastes (Levin et al., 2001; Oursel et al., 2013), antifouling
coatings (Turner, 2010), fuel consumption (Callender, 2003), and
sediment resuspension (Dang et al., 2015; Layglon et al., 2020).
Then, seawater of the Toulon Bay is characterized by high levels
of anthropogenic (Cd, Pb, and Zn) and intermediate (i.e., both
anthropogenic and natural origins) (Cu and Ni) TMs (Jean et al.,
2012; Coclet et al., 2018, 2019, 2020; Layglon et al., 2020), which
can be 100-fold above geochemical background levels of the
Mediterranean Sea (Morley et al., 1997), and by far, upper than
most of Mediterranean coastal zones (Cossa et al., 2020).

Biofilms are sessile communities formed by microbes,
which are able to colonize any submerged surface and form
complex structure over time, as defined by the cell attachment
and production of a hydrated polymeric matrix that allows
aggregation (Costerton, 1995; Dang and Lovell, 2016). Because
microbial biofilm communities were shown to be influenced by
some local environmental conditions (Lee et al., 2014; Briand
et al., 2017; Catão et al., 2019; Caruso, 2020), biofilms could also
be significantly affected by TM contamination encountered in
coastal areas (Corcoll et al., 2019). In this sense, the structure of
microbial biofilms from contaminated areas have been shown to
present divergence with microbial biofilms from uncontaminated
areas (Webster and Negri, 2006; Briand et al., 2012; McElroy
et al., 2016; Pollet et al., 2018). Several studies showed that
exposure to antifouling coating containing TMs reduced biofilm
biomass as well as altered both formation and structure of
microbial biofilm (Camps et al., 2014; Catão et al., 2019; Liang
et al., 2019). A number of studies have indicated that TMs
have toxicological effects against exposed microbes into marine

biofilms (Corcoll et al., 2019), through the alteration of genes
important to cellular processes or metabolic activities related to
photosynthesis, nitrogen cycling, degradation and biosynthesis
of lipids (Ding et al., 2019; Bergsveinson et al., 2020). However,
relationships between both structure and function of microbial
biofilm communities, and TM contamination in coastal and
especially harbor environment remains to be determined.

Nevertheless, biofilm lifestyle provide to microbes, numerous
ecological advantages, including greater access to nutritional
resources, enhanced organism interactions, and environmental
stability (Costerton, 1995; Decho, 2000; McDougald et al., 2011;
Salta et al., 2013; Dang and Lovell, 2016). It is frequently observed
that bacterial biofilms can withstand the effects of toxic metals
better than planktonic cultures of the same species (Teitzel and
Parsek, 2003; Harrison et al., 2007). It has been also reported that
the increased production of extracellular polymeric substances
(EPS) helps to increase the resistance of biofilms to heavy
metals because EPS can absorb a lot of heavy metals, thereby
reducing its toxicity to microbial cells (Lin et al., 2020). The
presence of a small population of persistent cells into the biofilm
structure may contribute to the tolerance of microbial biofilms
to TM contamination (Harrison et al., 2005). These findings
suggested existence of ubiquitous mechanisms of resistance and
tolerance to TM, governing biofilm formation on surface in
contaminated environments (Dang and Lovell, 2002, 2016; Ding
et al., 2019). Thereby, biofilm constitutes a major microbial
lifestyle highlighting the ecological success of biofilms as habitat
formers (Flemming et al., 2016). Although a quantity of studies
has reported the interactions between metal surface types and
both the biomass and the structure of microbial biofilms (Richard
et al., 2019; Caruso, 2020), the diversity of microbial biofilms
subject to TM contamination in the environment remains largely
elusive. As biofilms contribute to deleterious effects by reducing
hydrodynamic performance and increasing fuel consumption
when colonizing ship hulls (Schultz et al., 2011) or promoting
the corrosion of metallic structures like off-shore platforms or
marine renewable facilities (Païssé et al., 2013; Kip and van
Veen, 2015; Macleod et al., 2016), they become a prominent
marine environmental issue (Zettler et al., 2013; Debroas et al.,
2017; Dussud et al., 2018; Oberbeckmann et al., 2018). Moreover,
as sessile integrative systems, biofilms were also promoted as
bioindication tools to monitor pollution, almost exclusively in
freshwater environment (Tlili et al., 2016; Weigand et al., 2019).

In the present study, using both flow cytometry and 16S
rRNA gene amplicon sequencing, we examined prokaryotic
biofilms formed on polycarbonate (PC) plates and surrounding
bacterioplankton community in five sites at the surface
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and bottom of the seawater column, along the chemical
contamination gradient in Toulon Bay. We hypothesized that
clear difference could be observed between prokaryotic biofilm
and bacterioplankton communities, and microbes in biofilms
may adopt certain mechanisms of resistance or tolerance to TM
contamination. To test these hypothesizes, we (i) characterized
taxonomic and functional patterns of prokaryotic biofilm
communities across TM contamination gradients at five sites
in the Toulon Bay, (ii) assess the potential effect of depth
on biofilm community at the same sites, and (iii) investigated
relationships between bacterioplankton and biofilm communities
in this context.

MATERIALS AND METHODS

Study Area, Experimental Design, and
Sample Collection
The five sites (i.e., 41p, Pt15, Pt12, MIS, and 6ext) of immersion
were located throughout the semi-enclosed Toulon Bay
(North-Western Mediterranean Sea, France), from the
entrance of the bay to the north-western anthropized
area (Figure 1). The five sites were chosen along multi-
chemical contamination gradients, based on previous
chemical characterization of the water column in Toulon
Bay (Coclet et al., 2018).

Polycarbonate was chosen as a common plastic substrate
found in seawater. PC plates were previously sandblasted to
promote microbial adhesion. All plates have been immersed
in the five sites at the surface (1 m depth) and the bottom
(1 m above sediment) of the water column, over a period
of one month, from June 1 to June 29, 2015. After 28 days
(end of immersion), three biofilm samples, at each site and

each depth were collected by scraping a 25 cm2 PC plate
and washed with sterile artificial seawater. Biofilm samples
were then placed upright in sterile cryotubes, and stored
frozen at −80◦C for later analysis (Briand et al., 2017).
Additionally, a quantity of 1L seawater were collected from
each site of immersion, at both surface and bottom of
water column, every week over the one-month experiment,
as described in Coclet et al. (2019). A total of 30 biofilm
samples and 50 seawater samples were collected during the
immersion experiment. Details of samples are shown in
Supplementary Table 1.

Environmental Measurements
Water temperature (◦C), salinity, dissolved oxygen (mg L−1

and%) and chlorophyll a (µg L−1) were measured weekly at
each site and depth using multi-parameter probe (Hydrolab DS5,
OTT). Seawater samples for nutrients (DOC, NO3

−, PO4
3−)

and dissolved TM were also collected weekly and analyzed
as detailed in Coclet et al. (2018, 2019). Additionally, labile
TMs concentrations, considered to be more representative
from the bioavailable fraction (Caillat et al., 2014; Han
et al., 2014; Kim et al., 2016), were assessed at every site
and depth using three passive samplers (diffusive gradients
in thin-films – DGT) immersed for the whole survey
(n = 30). DGT devices, sample preparation and analytical
methods for multi-element analysis in DGT eluates were
described in Cindrić et al. (2017) and are summarized in
Supplementary Material.

DNA Extraction, 16S rRNA Gene
Amplicon Sequencing
Biofilm materials were extracted using the PowerBiofilm DNA
isolation Kit (Qiagen) following the supplier’s instructions, and

FIGURE 1 | Map of the Toulon Bay with the location of the sampling sites (A). Solid and dashed lines represent a seawall and treated sewage submarine outlets,
respectively. Bottom and surface depths of sampling in each site (B) and immersion design at each site (C).
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DNA samples were conserved at −20◦C. After DNA extraction,
the V4–V5 region of 16S rRNA gene was amplified by PCR
using 515F-Y/926R primer set (Parada et al., 2016). Details
of PCR reaction and thermal cycling scheme is given in
the Supplementary Materials. DNA extraction, amplification
of seawater samples were fully described in Coclet et al.
(2019) and briefly detailed in Supplementary Materials. Briefly,
PCR products from all sampling dates were pooled for each
site (n = 5) and each sampling depth (n = 2), in order
to provide an overview of the bacterioplankton diversity
during the survey and to compare with prokaryotic biofilm
communities collected only once in each site. Amplicons
were then paired-end sequenced (2 × 250 bp) with on
an Illumina MiSeq platform at the GeT-PLaGe (Castanet-
Tolosan, France).

Bacterial Quantification
Quantification of 16S rRNA gene was performed by
qPCR using primers BAC338f/515R (Borrel et al., 2012).
Amplification reactions were performed in triplicate in
a LightCycler 480 thermocycler (Qiagen) with GoTaq R©

SybrGreen mastermix (Promega) in a final volume of
10 µL containing 0.25 µM of each primer and 2 ng of
DNA. Serial 10-fold dilutions of a linearized recombinant
plasmid ranging from 107 to 102 copies were also
amplified in duplicate in each qPCR run to produce a
standard curve used for determining 16rRNA gene copy
number in the samples.

Bioinformatic Analysis
Forward and reverse reads were merged using PEAR 0.9.8
with default options (Zhang et al., 2014a). Raw sequences
were analyzed using MacQiime v.1.9.1 software (Caporaso
et al., 2010). Briefly, barcode, primer, shorter sequences
(<100 bp in length) and sequences with ambiguous base
calls or homopolymer runs exceeding 10 bp were removed.
The remaining sequences were clustered at a 97% threshold
using Uclust algorithm (Edgar, 2010), including both closed
and open reference operational taxonomic unit (OTU) picking,
and taxonomy were assigned to each OTU by performing
BLAST searches (Altschul et al., 1990) against the SILVA
(release 128) database (Pruesse et al., 2007; Quast et al.,
2013), with a maximum E-value of 1e–5. Low abundance OTU
(<0.005%) were filtered as recommended by Bokulich et al.
(2013). Sequences classified as mitochondria or chloroplast were
removed from the OTU table, corresponding to 610 OTUs.
A total of 233,120 reads were finally obtained representing 12,877
OTUs. OTU table was normalized by random subsampling
to the smallest number of sequences (i.e., 5828). OUT
table was also normalized by 16S rRNA gene copy number.
Hierarchical clustering analysis using these data revealed that
structure of biofilm communities differed by site but not by
depth (Supplementary Figure 3A), due to the absence of
significant difference between densities in surface and bottom
biofilms. Thus, only qualitative data are used in the following
manuscript. The 16S rRNA gene sequences have been deposited

in the NCBI Sequence Read Archive (SRA) database under
BioProject ID PRJNA522389.

Functional Analysis
Functional profiles were predicted from obtained 16S rRNA
gene data, using the R-based tool Tax4Fun21 (Wemheuer et al.,
2018), and based on KEGG category. The numeric results
represent the fraction of the community that matched with the
functional database, and indicated the community proportions
containing each specific function. The functional predictions
corresponded, on average to 17± 0.06% and 29± 0.19% of OTUs
and sequences, respectively, according to the matches with the
Tax4Fun2 reference functional dataset.

Statistical Analysis
All statistical analysis and plots were under the R software
(CRAN)2 and the GUI Rstudio using the core distribution
(R Core Team, 2017). Details on data analysis is given in
Supplementary Materials. Briefly, the alpha diversity was
calculated in Qiime using Chao1, equitability, Observed OTUs,
PD whole, Shannon and Simpson indices (Caporaso et al.,
2010). Shapiro–Wilk and Bartlett’s tests were employed to
test the data normality and homoscedasticity prior to other
statistical analysis. All the tested variables followed parametric
test conditions. One-way and two-way ANOVA tests and post hoc
comparisons were used to assess differences between lifestyle,
sampling sites and depths for labile metal concentrations,
alpha diversity indices and prokaryote densities. Principal
component analysis (PCA) was employed to observe differences
in environmental profiles between both sampling sites and
depths, using FactoMineR package (Lê et al., 2008). Only
significant environmental variables (p < 0.01) were fitted on
the PCA plot using envfit function (vegan package) (Oksanen
et al., 2016). Non-metric multidimensional scaling (nMDS)
ordination and Hierarchical clustering analysis based on Bray-
Curtis dissimilarity matrices, using the vegan package, was
used to visualize taxonomic composition profiles. Permutational
multiple analysis of variance (PERMANOVA) tests were used to
identify significant differences in bacterial community structure
between lifestyle, sampling sites, and depths. To investigate
the relationships between both biofilm structure and functions
and environmental variables, redundancy analysis (RDA) was
performed on the global community with vegan package in R,
using Hellinger transformed data and a reduced and normalized
environmental dataset, as already described (Coclet et al.,
2018, 2019). Finally, we used Welch’s tests to detect significant
taxonomic composition and functional differences between
the communities (biofilm vs seawater; Surface vs Bottom;
Contaminated vs Uncontaminated), using STAMP (Statistical
Analysis of Metagenomic Profiles) software v 2.1.3 (Parks and
Beiko, 2010). All parameters and outputs of statistical tests
performed (ANOVA and PERMANOVA) were provided in
Supplementary Tables S3 to S5.

1https://sourceforge.net/projects/tax4fun2/
2http://cran.r-project.org/
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RESULTS

Physico-chemical Variability in Seawater
Thirty-three physicochemical variables were measured in the
Toulon Bay seawater, used to performed the PCA (Figure 2A),
and presented in Figure 2B and Supplementary Table 2.
Among these 33 environmental variables, 14 were significantly
discriminants (envfit, p < 0.01), and explained 86.2% of the total
variation of the environmental dataset. The main contributors
were TM concentrations (e.g., dissolved and labile Cu, Cd, Pb
and Zn) for PC1 (68.4%), and total nitrogen, and dissolved Cr
for PC2 (17.8%). Environmental variables differed significantly
between sites (PERMANOVA, p < 0.01) but not between depths
(PERMANOVA, p > 0.1).

Among significant variables, both dissolved and labile Cd, Cu,
Pb, and Zn concentrations increased from the uncontaminated
site (41p) to the most anthropized sites (MIS and 6ext)
(ANOVA; p < 0.05) (Figure 2B and Supplementary Table 2).
Concentrations of labile Cd in the most anthropized sites
(0.1 nM) were up to 2-fold higher than those observed in
the uncontaminated sites (0.046 nM). Concentrations of labile
Cu in the most anthropized sites (29 nM) were up to 31-
fold higher than those observed in the uncontaminated sites
(0.93 nM). Concentrations of labile Pb in the most anthropized
sites (0.4 nM) were up to 20-fold higher than those observed
in the uncontaminated sites (0.02 nM). Concentrations of labile
Zn in the most anthropized sites (164 nM) were up to 35-fold
higher than those observed in the uncontaminated sites (4.9 nM).
Finally, there was no significant difference of both dissolved and
labile TM concentrations between surface and bottom seawater.

Alpha Diversity and Density of the
Prokaryotic Communities
All α-diversity indexes differed significantly between depths
(ANOVA; p < 0.001) and sites (ANOVA, p < 0.05) (Figure 3B
and Supplementary Figure 1). Shannon index was significantly
higher in bottom biofilms (BB) than in surface biofilms
(Figure 3B). Lowest values of Shannon index were found at MIS

while Pt15 and 6ext sites displayed the highest values of Shannon
index. Finally, independently of the site and depth, richness
and diversity indices were significantly higher in biofilm than
in seawater samples (Figure 3B and Supplementary Figure 6)
(ANOVA; p < 0.05).

Prokaryotic densities into biofilms significantly differed
between sites (ANOVA, p < 0.001) while no difference between
depths was observed (ANOVA, p > 0.05). The highest and lowest
estimated densities were observed in Pt15 (1.2 ± 0.2 × 107

cell mL−1) and MIS (6.6 ± 2.0 × 105 cell mL −1), respectively
(Supplementary Figure 2).

Structure of Prokaryotic Communities
Between Surface and Bottom Biofilms
Hierarchical clustering analysis firstly revealed that structure of
prokaryotic SB (i.e., clusters III, IV, VII) significantly differed
from those of BB (i.e., cluster V) communities (PERMANOVA,
p < 0.001) (Figure 3B and Supplementary Figure 3B). Among
the different phyla, Proteobacteria (49% of total reads), and
Bacteroidetes (31% of total reads) were the most abundant in
all biofilm communities (i.e., clusters III–VII) (Figures 3C,D).
At the family level, prokaryotic biofilm communities were
dominated by Rhodobacteraceae (19± 0.68%), Flavobacteriaceae
(15 ± 1.1%), Saprospiraceae (7.7 ± 0.80%), Planctomycetaceae
(5.4 ± 0.62%), Flammeovirgaceae (3.2 ± 0.17%), and
Hyphomonadaceae (3.2± 0.33%).

Based on STAMP results, 22 families have been identified to
show a significant difference in relative abundance between
SB and BB communities (Welch’s test; p < 0.05; Effect
size < 0.2) (Supplementary Figure 4). Hyphomonadaceae
(4.6 ± 1.6%), Erythrobacteraceae (3.5 ± 2.1%), Phycisphaeraceae
(2.6 ± 1.7%), Parvularculaceae (1.2 ± 0.91%), and unknown
Alphaproteobacteria (0.93 ± 1.7%) families were significantly
more represented in SB than in BB communities. Among the
17 families significantly more represented in BB than in SB
communities, Planctomycetaceae (7.3 ± 3.5%), JTB255 marine
benthic group (MBT) (3.6 ± 1.8%), Sva0996 marine group
(1.2 ± 0.34%), unknown Gammaproteobacteria (1.9 ± 0.92%),

FIGURE 2 | Principal component analysis (PCA) biplot based on the environmental variables of surface and bottom seawater samples collected at the five different
sites (A) and labile trace metals concentrations (Cd, Cu, Pb, and Zn) in surface and bottom of seawater at the different sampling sites. (B) Dotplots represent the
labile metal concentrations (in nM), along each sampling sites (i.e. 6ext, MIS, Pt12, Pt15, and 41p) in surface biofilm (circle) and bottom biofilm (square) samples.
Colors and shapes of symbols depend on site sampling and depth sampling, respectively.
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FIGURE 3 | Dendrogram clustering represents the Bray-Curtis dissimilarity of taxonomic profile, conducted from the OTU abundance table (A). The scale bar of the
dendrogram represents the dissimilarity level (%) between prokaryotic community. Shannon index values calculated from 16S rRNA OTU table along each sampling
sites (i.e., 6ext, MIS, Pt12, Pt15 and 41p) in surface (circle) and bottom (square) samples for biofilm (green) and seawater (blue) samples (B). Barplot representing the
cluster from the Bray-Curtis dendrogram (C). Structure of prokaryotic community at the family level in seawater and biofilm at surface and bottom waters at the five
different sites of Toulon Bay (D). Each bar represents the relative abundance of family in the studied samples.

Desulfobulbaceae (0.29 ± 0.21%), Phyllobacteriaceae
(1.8 ± 0.44%), Hyphomicrobiaceae (1.1 ± 0.98%), and
Rhodobiaceae (1.1± 0.42%) exhibited the higher difference.

At the genus level, 21 genera showed significant
differences in abundance between SB and BB communities
(Welch’s test; p < 0.05; Effect size < 0.2) (Figure 4).
Uncultured Hyphomonadaceae, Phycisphaeraceae SM1A02,
Erythrobacteraceae Other, Parvularcula, and uncultured
Alphaproteobacteria genera were significantly more represented
in SB than in BB communities. Finally, among the 16 genera
which were significantly more represented in BB than in SB
communities, uncultured Saprospiraceae, Aquibacter, uncultured
bacterium Sva0996 marine group, Filomicrobium, Pseudahrensia,
Rubripirellula, and Planctomyces exhibited the higher difference
in mean proportions between SB and BB.

Structure of Prokaryotic Communities in
Biofilm Between Immersion Sites
In addition to the depth structuration, the hierarchical
analysis revealed secondly that structure of prokaryotic
biofilm communities differed significantly between sites
(PERMANOVA, p < 0.001) (Figure 3 and Supplementary
Figure 3B). STAMP analyses revealed that seven families

exhibited significant difference in abundance between sites
in SB communities (Welch’s test; p < 0.01, Effect size < 0.9)
(Supplementary Figure 5A). In BB communities, 15 families
exhibited significant difference in abundance between sites
(Welch’s test; p < 0.01, Effect size < 0.9) (Supplementary
Figure 5B). Except JTB255 MBG, Phyllobacteriaceae, and
Hyphomicrobiaceae, all discriminant families represented less
than 1% of the total bacterial community.

Characterization of Prokaryotic
Communities in Biofilms and Seawater
Prokaryotic communities of biofilms and seawater were
dominated by members of Proteobacteria which represented
58 and 49%, and Bacteroidetes which represented 27 and 31%
of total reads, respectively. However, substantial differences
in the structure between biofilm and planktonic communities
were observed at the phylum level and below (Figures 3A–D).
UPGMA clustering showed that bacterioplankton (clusters
I and II) and biofilm (clusters III to VII) communities were
clearly distinct, showing only 25% of Bray-Curtis similarity
(PERMANOVA, R2 = 0.40 to 0.65, p < 0.001) (Figure 3A).
The distinctness of prokaryotic communities was also reflected
in the number of shared OTUs across the two lifestyles, with
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FIGURE 4 | Bar graph representing relative proportions of significant genera in biofilms from surface (yellow) and bottom (blue) samples. Extended error bar plots
showed pairwise comparison of significant genera proportions (Welch’s t-test; p < 0.01) between surface (yellow) and bottom (blue) samples. Corrected p-value is
determined using Fisher’s exact test.

945 OTUs (7.3%) shared between the biofilm and seawater
samples (Figure 5). Biofilm had the largest number of unique
OTUs (only observed in this compartment) (n = 11099; 86%),
mostly rare OTUs (<1% of all sequences across all samples).
Bacterioplankton had the lowest number of unique OTUs
(n = 833; 6.5%).

STAMP analyses revealed that 21 families and 37 genera
exhibited significant difference in abundance between biofilm
and bacterioplankton communities (Welch’s test; p < 0.01, Effect
size < 1) (Figure 6A and Supplementary Figure 7). At the
genus level, among the 16 genera which were significantly
more represented in bacterioplankton than in biofilm
communities, uncultured SAR11 clade Surface 1, NS4 marine
group, Synechococcus, NS5 marine group, OM60(NOR5) clade,
Candidatus Aquilina, Ascidiaceihabitans, and Planktomarina
genera exhibited the higher difference in mean proportions.
Conversely, Rhodobacterales Other, Croceitalea, and Lewinella,
uncultured Saprospiraceae, and uncultured Hyphomonadaceae
genera were significantly more represented in biofilms than in
bacterioplankton communities.

Predicted Functions of Prokaryotic
Communities in Both Biofilms and
Seawater
A total of 246 KEGGs (functional orthologs) within 27
metabolic pathways were identified and used for the global

functional analysis. Firstly, predicted function profiles
between biofilm and seawater samples were significantly
different (PERMANOVA, p < 0.001). Additionally,
sites (PERMANOVA, p < 0.001), mainly, and depths
(PERMANOVA, p < 0.002), significantly discriminated
the predicted functional profiles of biofilm samples
(Supplementary Figure 3C).

Globally, biofilms were enriched with KEGG pathways
related to Xenobiotics biodegradation and metabolism, lipid
metabolism, signal transduction, and cellular community
functions, and specifically by the two-components
system, fatty acid metabolism and degradation, Valine,
leucine and isoleucine degradation, biofilm formation
and quorum sensing functions (Welch’s test; p < 0.01,
Effect size < 0.01) (Figure 6B and Supplementary
Figure 8). On the contrary, seawater samples were
significantly enriched with KEGG pathways related
to global and overview maps, energy metabolism,
translation, and nucleotide metabolism, mainly with
biosynthesis of secondary metabolites, biosynthesis of
amino acids, and ABC transporters’ functions (Welch’s
test; p < 0.01, Effect size < 0.01) (Figure 6B and
Supplementary Figure 8).

Post hoc tests revealed also that main differences in
functional profiles were between biofilms from the most
and less contaminated sites, 6ext and 41p, respectively.
The most contaminated site was enriched with KEGG
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FIGURE 5 | Venn diagram showing prokaryotic OTUs overlap for pooled biofilm samples, and seawater samples at Toulon Bay. Numbers inside the circles represent
the number of shared or unique OTUs for the given environment.

FIGURE 6 | Bar graph representing relative proportions of significant genera (A) and KEGG Pathways at level 3 of SEED metabolic hierarchy (B) in biofilms (green)
and seawater (blue) samples. Extended error bar plots showed pairwise comparison of significant genera (A) and KEGG Pathways at level 3 of SEED metabolic
hierarchy (B) proportions (Welch’s t-test; p < 0.01) between in biofilms (green) and seawater (blue) samples. Corrected p-value is determined using Fisher’s exact
test.

pathways that were related to “Signal transduction” and
“Xenobiotics biodegradation and metabolism”, and more
specifically to two components system, biofilm formation,
oxidative phosphorylation, methane metabolism, degradation
of aromatic compounds, and benzoate degradation functions
(Welch’s test; p < 0.01, Effect size < 0.01) (Figure 7A and
Supplementary Figure 9). On the contrary, the uncontaminated
site was enriched with KEGG pathways that were related
to “Amino acid and carbohydrate metabolisms”, and
more precisely to metabolic pathways, biosynthesis of
amino acids, amino sugar and nucleotide sugar, cysteine,
methionine, and phenylalanine metabolisms’ functions

(Welch’s test; p < 0.01, Effect size < 0.01) (Figures 7A,B
and Supplementary Figure 9).

Relationships Between Prokaryotic
Structure or Predicted Functions in
Biofilm Communities and Environmental
Variables
The contribution of measured environmental variables in the
variations of biofilm community structure and function was
tested by RDA analyses. While, SB and BB samples formed
two separate clusters, total set of environmental variables didn’t
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FIGURE 7 | Bar graph representing relative proportions of significant KEGG Pathways at level 3 of SEED metabolic hierarchy in biofilms from contaminated (6ext;
red) and uncontaminated (41p; green) sites (A), and in biofilms from surface (yellow) and bottom (blue) (B). Extended error bar plots showed pairwise comparison of
significant KEGG Pathway proportions (Welch’s t-test; p < 0.01) at level 3 of SEED metabolic hierarchy between biofilms from contaminated (6ext; red) and
uncontaminated (41p; green) sites (A), and between biofilms from surface (yellow) and bottom (blue) (B). Corrected p-value is determined using Fisher’s exact test.

FIGURE 8 | Redundancy analysis (RDA) ordination diagram of the first two
axes for KEGG Pathway profiles at level 3 of SEED metabolic hierarchy. The
percentage of the spatial variation in community structure explained by each
axis is indicated in parentheses after the axis label. The constrained sets of
environmental variables analyzed are indicated as vectors. P-value
correspond to the results of CCA.ANOVA analysis.

contribute significantly to the variation in the biofilm community
structure (ANOVA.CCA, p > 0.05). On the contrary, according
to the RDA analysis, a significant difference was found in biofilm
community function profiles between samples (ANOVA.CCA,
p < 0.001), mainly explained by dissolved Cu, Zn, Mn, and
salinity (Figure 8). In accordance to nMDS (Supplementary
Figure 3C), functional profiles from biofilm samples showed
separation between sites and depths, with the 4 significant
environmental variables, explaining 20% (for the first two RDA
axes) of the function variability. RDA analysis clearly identified
TM (Cu, Zn, and Mn), as the dominant abiotic drivers of
predicted function profiles.

DISCUSSION

By combining measurement of physicochemical parameters
with variations in prokaryotic biofilm diversity and functional

potential, we provided a first insight into the marine prokaryotic
biofilm ecology of a highly anthropized coastal area, such
as the Toulon Bay. Overall, abiotic variables were stable
through the one-month experiment in June 2015, and no
significant differences between surface and bottom seawater were
observed. However, we found that TM concentrations exhibited
strong north-south decreasing gradients, as previously observed
punctually, monthly, or pluri-annually in Toulon Bay (Coclet
et al., 2018, 2019, 2020; Layglon et al., 2020), allowing us to
specifically address the potential effect of TM on the structure
and functions of prokaryotic biofilm communities. The high
contamination levels of localized areas indicated significant
anthropogenic inputs that could be attributed to numerous recent
(e.g., large boat traffic, harbor activities, antifouling coatings,
sediment remobilization) (Turner, 2010; Layglon et al., 2020),
and historical events (2nd World War) (Tessier et al., 2011).

Limited Impact of Trace Metal Gradients
on Prokaryotic Biofilm Structure
While we observed a significant impact of the site of immersion
on prokaryotic biofilm structure, and despite the uncontaminated
site 41p appeared as a separate cluster, surprisingly this
was not related to TM contamination gradients or to other
measured environmental variables in this study. Conversely to
bacterioplankton communities (Coclet et al., 2018, 2019), biofilm
communities could exhibit better adaptation and survival skills,
as they are protected within a matrix of EPS and show ability
to immobilize the pollutants (Mohapatra et al., 2020). Indeed,
complex natural biofilms include a diversity of organisms with
different metabolic capacities and physiologies which generates
opportunities for cooperation (Dang and Lovell, 2016; Flemming
et al., 2016; Kirstein et al., 2018) and promote tolerance
(Königs et al., 2015) or resistance to metallic stress (Harrison
et al., 2007). Interestingly, biofilms respond dynamically to
pollutant substances, suggesting that biofilms can be viewed as
fortresses made of a self-produced matrix of EPS (Flemming
and Wingender, 2010; Flemming et al., 2016). Intuitively, the
matrix of EPS might plausibly represent a diffusion barrier.
EPS components of the matrix can substantially annihilate the
activity of toxic substances that diffuse through the biofilm
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(Billings et al., 2015). For example, in response to the exposure
to toluene, biofilm was reported to produce EPS enriched in
carboxyl groups which can lead to an increase in their ions
exchange capacity (Harrison et al., 2007; Flemming et al., 2016).
The matrix of biofilms can also accumulate metals such as
Cu2+, Zn2+, Fe2+/3+, and Al3+, which protects the biofilm
from the toxicity of the metal ions (Harrison et al., 2007;
Grumbein et al., 2014; Flemming et al., 2016; McElroy et al.,
2016), especially when present at concentrations toxic to free-
living cells like observed in Toulon Bay (Coclet et al., 2018).
Copper can be complexed by polysaccharides in the EPS matrix
in order to protect the biofilm community (Ordax et al., 2010).
Additionally, numerous mechanisms of detoxification in biofilm,
including metabolic heterogeneity, extracellular signaling, metal
immobilization and complexing, and uptake of resistance genes
by HGT are well known and described in the literature
(Decho, 2000; Teitzel and Parsek, 2003; Harrison et al., 2007;
Mah, 2012). However, future studies are needed to specify the
response of prokaryotic biofilms to specific contamination, such
as Cu or Pb alone.

The established inherent capacity of biofilms to survive
in contaminated environments is also explained by their
ability to play a role in bioremediation processes (Singh
et al., 2006; Mohapatra et al., 2020). Biofilms are more
suitable for the remediation of TM compounds because
of their high microbial cell densities, structural stability,
signaling process, metabolic diversification, immobilization
ability, and the presence of surface active molecules (Singh
et al., 2006). Biofilm can efficiently remove metals by the
bioaccumulation and biosorption mechanisms due to their high
biomass density and can also reduce some metals to a lower
toxicity level by their enzyme activities (Harrison et al., 2007;
Flemming and Wingender, 2010).

The susceptibility and the capacity of resistance to multi-
metal contamination, as well as the ability to play a role in
bioremediation and immobilization of TM depends on the nature
of the biofilm microorganisms (Harrison et al., 2007). The
presence of JTB255 MBG, Alcanivoracaceae, and Porticoccaceae
(Gammaproteobacteria), Hyphomicrobiaceae (Actinobacteria),
and Methanobacteriaceae (Euryarchaeota) families, as key taxa
in biofilms from the most contaminated site of Toulon Bay
is relevant with the literature, in the sense all these taxa have
already been observed in harsh-condition environments, as
metal-contaminated seawaters, sediments and biofilms (Sjöstedt
et al., 2012; Bell et al., 2013; Emilson, 2015; Liu et al.,
2015; Mußmann et al., 2017; Won et al., 2017; Garris et al.,
2018; Yan et al., 2018; Yakimov et al., 2019; Knapik et al.,
2020). Most of these groups have been identified as tolerant
to contaminants in biofilm communities (Yang et al., 2016;
Pollet et al., 2018; Catão et al., 2019). The Alcanivoracaceae
family contains a large group of hydrocarbon-degrading bacteria,
due to their ability to use hydrocarbons as main carbon
source (Yakimov et al., 2019). Most family members, such
as Alcanivorax and Ketobacter, are highly specialized in
degrading linear and branched alkanes of different origin.
They typically dominate marine environments suffering from
oil contamination (Won et al., 2017). They are also known

to form biofilms around oil droplets and at the oil–water
interface (Coulon et al., 2012). Even if the ability to degrade
hydrocarbons is widespread among marine prokaryotes, the
majority of specialized hydrocarbon-degrading microorganisms
belong to Gammaproteobacteria (Coulon et al., 2012; Yakimov
et al., 2019), such as Alcanivoracaceae, or JTB255 MBG and
Porticoccaceae found in this study. Finally, Hyphomicrobiaceae
were previously identified in disturbed environments, suggesting
that they could be promising bioindicators for monitoring
the impact of contamination (Sjöstedt et al., 2012; Simonin
et al., 2019). Taken together, the presence of these key taxa
in prokaryotic biofilms from contaminated sites could explain
the limited impact of metals on the biofilm structure along
TM contamination gradients of Toulon Bay. This suggest
that marine prokaryotic biofilms may be able to survive to
strong metal contamination because of the high diversity of
the biofilm community, and the nature of the population
structure, as well.

Finally, among not measured environmental factors that could
be involved in the driving of biofilm communities, organic
matter availability and nature would be relevant to consider,
as already proposed for bacterioplankton communities in the
bay of Toulon (Coclet et al., 2019). It makes sense considering
that organic matter, in addition to determine the source of
carbon and nutrients for all the microbes, probably influences
the biochemical surface conditioning, that come before the
colonization process (Flemming and Wingender, 2010).

Trace Metal Contamination Impacts
Predicted Functional Profiles of Biofilms
In contrast to the structure of biofilm communities, our
results indicated that predicted functional biofilm profiles
could be explained by some of the environmental variables
we measured., Indeed, TM contamination, especially Cu,
Mn, and Zn, seemed to be the main driver of predicted
functional profiles of biofilm communities. Pathways involved in
Amino acid and Carbohydrate metabolisms, such as metabolic
pathways, biosynthesis of amino acids, amino sugar and
nucleotide sugar, cysteine, methionine, and phenylalanine
metabolisms dominated the functional profiles of the overall
biofilm communities, but they were mainly represented
in biofilms from the uncontaminated site. The dominance
of the functions related to maintenance of basic cellular
machinery, enabling growth and metabolism was consistent
with the results from previous comparative metatranscriptomic
analyses of disturbed aquatic (Parro et al., 2007; Moreno-Paz
et al., 2010; Bertin et al., 2011; Bergsveinson et al., 2020)
and marine environments (Chen et al., 2015b; Ding et al.,
2019), indicating that the biofilm community is capable
of maintaining normal growth processes and metabolic
functions in face of metal toxicity, such as biofilms from
uncontaminated environments.

On the contrary, pathways involved in Xenobiotics
biodegradation and metabolism, such as methane metabolism,
degradation of aromatic compounds, and benzoate degradation
functions dominated the functional profiles of biofilm
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communities from the contaminated sites. Over-representation
of metabolic pathways involved in the degradation of aromatic
compounds (hydrocarbons) and xenobiotics, and degradation of
toxic compounds observed in biofilms from the contaminated
sites, provide further evidence for the influence of anthropogenic
activity on prokaryotic function. These results are relevant with
those found in several studies (Ding et al., 2019; Bergsveinson
et al., 2020), where these functions have been found in biofilms
submitted to Zn exposure. As expected, the predicted functions
enriched in overall biofilms were related to ion transport,
ion resistance, prokaryotic defense, and DNA transfer. This
result suggests that functions associated with TM transport and
resistance should be over-expressed in biofilm communities
from contaminated environments in the Toulon Bay. These
findings can imply that one important feature for the biofilm
communities developed in highly contaminated environment
is the occurrence of metal ion transport and resistance genes
in their genomes.

Biofilms from the contaminated sites also harbored higher
KEGG functions for two-components system, involved in
quorum sensing signaling and EPS matrix formation, as well as
biofilm formation (Lee et al., 2009; Yelton et al., 2013; Chen
et al., 2015a). Both two-components signal transduction and
biofilm formation systems enable bacteria to sense, respond, and
adapt to changes in their environment or in their intracellular
state, by participating to biofilm formation (i.e., Quorum
sensing pathway) and EPS matrix production (i.e., peptidoglycan
biosynthesis and extracellular polysaccharide production, and
adhesion genes). The two-components system contains also
genes associated with membrane transport, and in particular,
multiple efflux systems. While these pump systems also have role
in antibiotic resistance and potential xenobiotic degradation, the
preference for these transport systems over the minimally ABC
transporters in biofilms from the contaminated sites, indicates
that the hydrolysis of ATP to drive ABC transport is not
an optimal energy expenditure for biofilms exposed to metal
contamination (Parro et al., 2007; Moreno-Paz et al., 2010;
Bergsveinson et al., 2020).

Despite Tax4Fun2 provides a good approximation to
functional profiles obtained from metagenomic shotgun
sequencing approaches, relatively low fraction of reads
(approximatively 30%), classified by QIIME, were used to predict
the functional profiles, likely caused to the high complexity
of the natural marine biofilm communities, which are poorly
represented in the KEGG database (Wemheuer et al., 2018).
Moreover, although the KEGG Orthology database evolved
rapidly with new functional orthologs, predicted functions were
mostly affiliated to human microbiome. Predicted functions
related to both metal tolerance and resistance, metal stress
response, as well as, to metal acquisition processes such as
membrane transport are not still very available in the KEGG
database. It must be noted that the functional predictions cannot
replace whole metagenome shotgun sequencing approach. Such
analyses would provide useful insights of metabolic activities
and functional profiles of microorganisms into prokaryotic
biofilms submitted to harsh conditions. However, the results
of our study can serve as template for further metagenomic

or metatranscriptomic studies on marine microbial biofilm
communities in a highly contaminated area.

Prokaryotic Structure Exhibited
Variations Between Surface and Bottom
Biofilms
In this study, we also tried to improve our understanding of
spatial variations of prokaryotic biofilms’ community structure
through the comparison of surface and bottom water column
in shallow coastal areas (i.e., 10-m depth on average). Very
scarce data exist in the literature as depth impacts on biofilm
community on artificial substrate was only studied in extreme
oligotrophic conditions in the deepest part of the Mediterranean
Sea between 1,500 and 4,500 m depth (Bellou et al., 2012,
2020). Our results showed that, whatever the site, the structure
of biofilm communities formed on immersed PC plates at the
surface was dissimilar to bottom ones. Then, conversely to
bacterioplankton community (Coclet et al., 2019), the structure
of biofilm communities seemed to exhibit a vertical structuration
along the seawater column. However, as shown by the RDA
analysis, this spatial structuration seemed to be driven by other
environmental factors than the variables measured in this study.
The analysis of the abiotic variables showed that the geochemical
profile was homogeneous from the surface to the bottom waters,
probably because of the low depth. The influence of light
attenuation with depth in such rather turbid environments, not
measured here, remains to be further appreciated.

The sediment of the Toulon Bay is also known for its
organic contamination by PAHs and PCBs (not measured in
this study), the contamination of these compounds increasing
globally from South-East to North-West as for TMs (Wafo et al.,
2016). Moreover, resuspension experiments have demonstrated
that organic matter and PAH could efficiently be remobilized
into the water column (Guigue et al., 2017). Considering
that remobilized organic matter and PAH can sustain the
growth of specific bacterial lineages (Quero et al., 2015;
Jeanbille et al., 2016; Salerno et al., 2018), multi-contaminated
areas of Toulon Bay could provide higher diverse microbial
communities than marine uncontaminated coastal areas. The
presence of known hydrocarbonoclastic taxa in this study,
including Gammaproteobacteria, such as Alcanivoracaceae, or
JTB255 MBG and Porticoccaceae tends to confirm the influence
of organic contaminants hypothesis (Coulon et al., 2012; Dussud
et al., 2018; Yakimov et al., 2019). This hypothesis is also
supported by our observation of a higher diversity in BB samples
which is consistent with similar conclusions proposed for bacteria
within the sediments of Toulon Bay (Misson et al., 2016). Webster
and Negri (2006) also suggested that organic (PAHs) pollution
levels in sediments may have a direct impact on the community
structure of microbial biofilms.

Members of Planctomycetaceae (Plnactomyces), JTB255
MBG, Desulfobulbaceae, Phyllobacteriaceae, and Rhodobiaceae
significantly discriminated BB’s communities from SB ones. Most
of these groups were also observed in contaminated sediments
(Webster and Negri, 2006; Zhang et al., 2008; Besaury et al., 2012;
Acosta-González et al., 2013; Fonti et al., 2014; Quero et al., 2015;
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Wang et al., 2016; Fang et al., 2017; Won et al., 2017; Dai et al.,
2018; Godoy-Lozano et al., 2018; Miao et al., 2019; Song et al.,
2019; Yakimov et al., 2019). The presence of Planctomycetes as
biomarkers of bottom biofilms in our study is consistent with
the results obtained in Antarctic marine biofilms established on
glass surfaces near highly contaminated sediments (Webster and
Negri, 2006). Taken together, our results suggest that surrounding
superficial sediments could possibly serve as a direct source for
the colonization of nearby immersed substrates by opportunistic
microorganisms at the sediment/water interface, as already
reported for freshwater ecosystems (Battin et al., 2001). This
process could happen with sediment resuspension during storm
events or human activities, such as dredging operations, which
are numerous in Toulon Bay (Layglon et al., 2020). Investigating
the benthic compartment of the Toulon Bay appears necessary
to shed the light on the role of both benthic communities and
sediment contamination on biofilm formation and establishment
in a multi-contaminated ecosystem.

Structure and Predicted Functions Are
Dissimilar Between Biofilm and
Planktonic Communities
In this study, by analyzing 16S rRNA gene amplicon sequences
from biofilms and surrounding seawaters, we comprehensively
explored both structure and functions related to both prokaryotic
biofilms and planktonic communities in the highly contaminated
Toulon Bay. Alpha diversity showed a clear distinction between
lifestyles with higher diversity in biofilms. The higher diversity
in biofilm samples could be likely related to an addition of
rare planktonic OTUs, undetectable in seawater and variable in
time, which are able to colonize and proliferate into biofilms.
These findings support several previous studies pointing toward
a consensus that bacterioplankton community structure differs
from immersed artificial surface attached ones (Zettler et al.,
2013; Oberbeckmann et al., 2014, 2016; Amaral-Zettler et al.,
2015; De Tender et al., 2015, 2017; Bryant et al., 2016; Kirstein
et al., 2018; Ogonowski et al., 2018; Ding et al., 2019), including
in the Toulon Bay (Catão et al., 2019), by selecting rare and/or
specialists into a pool of bacterioplankton community.

Additionally, the beta-diversity analysis suggests that the
variation in sampling sites has lower effect than depths on the
taxonomic composition of biofilms, whereas niche differentiation
between biofilms and planktonic communities may play an
essential role in determining the microbial community structure.
Although prokaryotic planktonic and biofilm communities
possessed common taxonomic groups considering the overall
community structure, differences of structure between both
lifestyles were observed from phylum to species, and a huge
number of taxa were only detected in the biofilms. Taxonomic
comparison between biofilm and seawater suggests that species
sorting, referring to selection from the pool of microbes in
surrounding seawater, may play important roles during biofilm
formation (Langenheder and Székely, 2011; Meier et al., 2013;
Ding et al., 2019). Plastic, whatever its nature (Kirstein et al.,
2018), is known to provide a novel habitat for microorganisms
and that species sorting occurs, particularly, during the early

colonization stages (Harrison et al., 2007; Zhang et al., 2014b;
Bryant et al., 2016; Ogonowski et al., 2018; Pollet et al., 2018).
Pioneer stages were restricted to specialists displaying adhesion
capacity and/or exopolymeric secretion potential and probably
communication ability (McDougald et al., 2011; Flemming et al.,
2016).

The increase in diversity over time, leading to highly
diversified biofilms as reported here, was associated to the
significant changes between predicted functional profiles from
biofilm and planktonic communities. Most of the functions
related to biofilm formation and compound degradation were
enriched for biofilms, whereas functions involved in biosynthesis
of secondary metabolites, biosynthesis of amino acids, and ABC
transporters were prominent in bacterioplankton communities.
These observations tend to confirm the better capacities of
defense of biofilm communities against metal contamination,
compared to surrounding bacterioplankton communities, as
already shown (Moreno-Paz et al., 2010; Wei et al., 2013; Ding
et al., 2019).

Our results are in agreement with the common observation
of major differences between both structure and function profiles
of marine biofilms and of surrounding bacterioplankton. These
results reinforce the hypothesis of an increase in diversity into
biofilms due to the recruitment of generalists, a diversification
of the structure between biofilm and planktonic communities,
and accurate defense mechanisms against metal contamination
by biofilm communities through the functional response, as well.

CONCLUSION

Our study provides one of the first detailed description of
natural and complex prokaryotic biofilm communities in a
highly anthropized marine area. The analysis of 16S rRNA gene
amplicon sequences revealed that TM contamination in Toulon
Bay have higher impacts on the predicted functional profiles than
on the structure of biofilm communities. The structure of biofilm
communities was stable along TM contamination gradients,
with however, the presence of specialized hydrocarbon-degrading
microorganisms or resistant taxa, known to play a role in
bioremediation and immobilization of metals. Most of functions
found in biofilms from the contaminated site were closely
related to metal ion transport, resistance genes, and alteration
to membrane integrity, as well as biofilm formation mechanisms.
Taken together, our results suggest that biofilms are less impacted
than planktonic communities to metal contamination, due to
a protection offered by the resistant species to all members
in the community, and a wide range of specific mechanism
of protection. In addition to metal contamination, our results
showed that benthic communities or environmental variables
into sediments could influence the structure and the functional
profiles of prokaryotic biofilm communities, due to sediment
remobilization processes. With the benefit of ‘omics’ approaches,
such as the coupling of metagenomics and metatranscriptomic
analyses, future studies could be designed to explore gene
transcription profiles along TM contamination gradients for both
biofilm and planktonic communities. Future studies are also
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needed to bring new evidences about the role of sediments
in biofilm colonization and their impact on the structure and
functions of biofilm communities.
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Omanović, Mullot, Misson and Briand. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 16 February 2021 | Volume 12 | Article 589948

https://doi.org/10.1093/nar/gkm864
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.3389/fmicb.2015.01053
https://doi.org/10.1016/j.scitotenv.2019.04.331
https://doi.org/10.3389/fmars.2018.00196
https://doi.org/10.1111/1462-2920.12186
https://doi.org/10.1080/08927014.2010.542809
https://doi.org/10.1080/08927014.2010.542809
https://doi.org/10.1111/1462-2920.14694
https://doi.org/10.1016/j.tim.2006.07.001
https://doi.org/10.1128/AEM.05542-11
https://doi.org/10.1128/AEM.05542-11
https://doi.org/10.1016/j.envpol.2019.113041
https://doi.org/10.1128/AEM.69.4.2313
https://doi.org/10.1016/j.marpolbul.2011.07.022
https://doi.org/10.1016/j.pocean.2011.02.003
https://doi.org/10.1016/j.pocean.2011.02.003
https://doi.org/10.1111/fwb.12558
https://doi.org/10.1016/j.marpolbul.2009.12.004
https://doi.org/10.1186/s40064-016-2715-2
https://doi.org/10.1038/srep38709
https://doi.org/10.1111/j.1462-2920.2006.01007.x
https://doi.org/10.1038/ismej.2013.194
https://doi.org/10.1016/j.scitotenv.2019.04.247
https://doi.org/10.3390/ijerph14020130
https://doi.org/10.1007/978-3-319-60053-6
https://doi.org/10.3389/fmicb.2018.00015
https://doi.org/10.3389/fmicb.2018.00015
https://doi.org/10.1038/srep37406
https://doi.org/10.1186/1471-2164-14-485
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1038/srep06647
https://doi.org/10.1016/j.ecss.2007.07.040
https://doi.org/10.1016/j.ecss.2007.07.040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area
	Introduction
	Materials and Methods
	Study Area, Experimental Design, and Sample Collection
	Environmental Measurements
	DNA Extraction, 16S rRNA Gene Amplicon Sequencing
	Bacterial Quantification
	Bioinformatic Analysis
	Functional Analysis
	Statistical Analysis

	Results
	Physico-chemical Variability in Seawater
	Alpha Diversity and Density of the Prokaryotic Communities
	Structure of Prokaryotic Communities Between Surface and Bottom Biofilms
	Structure of Prokaryotic Communities in Biofilm Between Immersion Sites
	Characterization of Prokaryotic Communities in Biofilms and Seawater
	Predicted Functions of Prokaryotic Communities in Both Biofilms and Seawater
	Relationships Between Prokaryotic Structure or Predicted Functions in Biofilm Communities and Environmental Variables

	Discussion
	Limited Impact of Trace Metal Gradients on Prokaryotic Biofilm Structure
	Trace Metal Contamination Impacts Predicted Functional Profiles of Biofilms
	Prokaryotic Structure Exhibited Variations Between Surface and Bottom Biofilms
	Structure and Predicted Functions Are Dissimilar Between Biofilm and Planktonic Communities

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


