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A B S T R A C T

Preterm neonates are highly likely to suffer from ventriculomegaly, a dilation of the
Cerebral Ventricular System (CVS). This condition can develop into life-threatening
hydrocephalus and is correlated with future neuro-developmental impairments. Conse-
quently, it must be detected and monitored by physicians. In clinical routing, manual 2D
measurements are performed on 2D ultrasound (US) images to estimate the CVS vol-
ume but this practice is imprecise due to the unavailability of 3D information. A way
to tackle this problem would be to develop automatic CVS segmentation algorithms for
3D US data. In this paper, we investigate the potential of 2D and 3D Convolutional
Neural Networks (CNN) to solve this complex task and propose to use Compositional
Pattern Producing Network (CPPN) to enable Fully Convolutional Networks (FCN) to
learn CVS location. Our database was composed of 25 3D US volumes collected on 21
preterm nenonates at the age of 35.8 ± 1.6 gestational weeks. We found that the CPPN
enables to encode CVS location, which increases the accuracy of the CNNs when they
have few layers. Accuracy of the 2D and 3D FCNs reached intraobserver variability
(IOV) in the case of dilated ventricles with Dice of 0.893 ± 0.008 and 0.886 ± 0.004
respectively (IOV = 0.898 ± 0.008) and with volume errors of 0.45 ± 0.42 cm3 and
0.36 ± 0.24 cm3 respectively (IOV = 0.41 ± 0.05 cm3). 3D FCNs were more accu-
rate than 2D FCNs in the case of normal ventricles with Dice of 0.797 ± 0.041 against
0.776 ± 0.038 (IOV = 0.816 ± 0.009) and volume errors of 0.35 ± 0.29 cm3 against
0.35±0.24 cm3 (IOV = 0.2±0.11 cm3). The best segmentation time of volumes of size
320 × 320 × 320 was obtained by a 2D FCN in 3.5 ± 0.2 s.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

1.1. Motivations
Millions of babies are born preterm every year in the world.

These neonates, particularly those with a very low birth weight
(< 1500 g), are highly likely to suffer from ventriculomegaly
(VM) which corresponds to a dilation of the cerebral ventricular
system (CVS). This pathology has several etiologies [1] whose

∗Corresponding author: matthieu.martin@creatis.insa-lyon.fr

most commons are intraventricular hemorrhage (IVH) [2] and
white matter damages [3].

In grade 3 and 4 IVH [4], CVS dilation is directly caused
by the hemorrhage which prevents the CerebroSpinal Fluid
(CSF) produced inside the CVS from flowing out normally.
This case is particularly critical because VM can develop
into hydrocephalus, in which case the increased intracranial
pressure can cause convulsions, brain damages and lead to
death. When VM is caused by white matter damages, the
ventricles are dilated to compensate for the loss of brain white
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matter volume and there is no risk of hydrocephalus. In both
cases, studies carried out on US scans [5, 6, 7] and on MRI
scans [8, 9] have shown a correlation between VM and future
neuro-developmental impairments such as cerebral palsy or
delayed cognitive performance.

To mitigate the short-term risks and the long-term impair-
ments for these patients, VM must be detected and the ven-
tricular volume (VV) monitored. Even though it is easy to
detect VM when the CVS is very dilated, quantitative longi-
tudinal measurement of its volume is required to evaluate the
severity of the dilation and its resorption. Based on these pa-
rameters, clinicians can prognosticate for future impairments
and decide to perform a surgical intervention [10]. Recently,
[11] has shown that an early surgical intervention was more ap-
propriate than a late intervention to limit neurodevelopmental
impairments. Therefore, early detection of VM and precise and
regular monitoring of VV are of great clinical interest.

To image preterm neonates’ CVS, 2D transfontanellar sonog-
raphy is the most common clinical routine examination. Com-
pared to the other imaging modalities, it is low cost, highly
available and low-risk for babies. Clinicians estimate the CVS
volume by performing various manual measurements, on these
2D images, such as the ventricular index or the anterior horn’s
widths [12, 13]. However this methodology is imprecise: the
estimated volume is not correctly correlated with direct vol-
ume measurements [14] performed on 3D US data and the
intra/inter-observer dependency can make the evaluation of the
CSF volume evolution difficult. A good correlation was re-
cently shown between measurements performed on MRI scans
and on 3D US data [15] and measurements made on in 3D US
data were reported to be more accurate and faster [16] than
those performed on 2D US data. This suggest that 3D US ex-
ams have a great potential for this application. In that case,
automatic and fast CVS segmentation algorithms need to be de-
veloped.

1.2. Related works

Several methods have been proposed to achieve preterm
neonates’ CVS segmentation in MRI data. Automatic pixel-to-
pixel segmentation methods were developped by [17] and [18].
[17] proposed a CNN which performs segmentation based on
features from three independant branches with different patch
size as input and [18] combined spatial and non-spatial diction-
nary learning to achieve CVS segmentation. An active contour
based method was also proposed by [19]. It used a multiphase
geodesic level-set which utilizes a spacial prior obtained from
multi-atlas registration. Unfortunately, that imaging modality is
not suitable to monitor all preterm neonates because of its low
accessibility and its inconvenience for babies. Conversely, US
scans are available and convenient for these patients. But US
images are hard to analyze because of their low contrast, the
presence of speckle and the realization of the acquisition in an
unknown coordinate system. Several methods have been pro-
posed to achieve preterm neonate’s CVS segmentation in US
data.

In 2D US data, a semi-automatic segmentation algorithm

which uses a method based on an active contour which incorpo-
rates a prior on the location was proposed by [20]. Automatic
segmentation was achieved by [21] applying a combination
of fuzzy c-mean, phase congruency and active contour-based
method and by [22] using a 2D-CNN-based method which com-
bines segmentation blocks and confidence blocks.

In 3D US data, its segmentation was achieved semi-
automatically by [23]. This algorithm used manually labeled
points as initialization and an intensity-based surface-evolution
method to perform CVS segmentation. Automatic segmenta-
tion methods were proposed by [24], [25] and [26]. [24] used
a multi-altas registration algorithm to initialize segmentation
which was then performed using a deformable mesh model.
The authors reported Dice and MAD in [24] on their own
dataset containing 12 infants whose age ranged from 2 to 8.5
months. Respective values of 0.708 ± 0.036 and 0.88 ± 0.2 mm
were obtained. The segmentation time was not reported. [25]
also initialize CVS segmentation utilizing a multi-atlas registra-
tion and performed segmentation with a multi-phase geodesic
level-set method based on phase congruency maps. Their per-
sonal database contained 14 patients with IVH grade I to III
whose gestational age ranged from 37 to 42 weeks. The au-
thors reported a Dice, a MAD and a segmentation time of
0.767±0.062, 1.0±0.3 mm and 54 min per volume, respectively.
Finally, [26] achieved CVS segmentation with a 2D U-net on a
subset of the US database (15 patients) used in this article. The
latter has the advantage of being very fast (only a few seconds
compared to 54 minutes).

The 3D US data segmentation algorithms described in this ar-
ticle are based on CNNs. The later have recently outperformed
the state-of-the-art methods dedicated to image segmentation
[27, 28]. In particular, the use of CNNs for medical image
semantic segmentation enables to reach outstanding levels of
accuracy [29, 30] in a clinical time. Deep learning methods
enable to learn relevant features directly from data. It is inter-
esting in difficult problems, such as CVS segmentation, where
the anatomical structure has a complex shape (Fig.2.d) and wide
range of intensity (Fig.2.a).

Common CNN architectures, such as V-net and U-net, do
not encode information about absolute location since convolu-
tion operations are equivariant to translation. In laymen terms,
a traditional CNN attempts to classify the tissue manually, as
if a physician did it using a small picture patch. It has no clue
whether it comes from inside the brain, the cortex prefrontal
area or the cerebellum area. Nevertheless, the automation of the
conventional methods used in 3D ultrasound to segment CVS
[24, 25] and in MRI to segment several brain structures [31, 32]
rely on the use of atlases. The latter allow to introduce an a
priori on the position of the cerebral structures. Therefore, it
seems important to estimate the benefit of a spatial a priori in
the context of CVS segmentation by CNNs. In that case, the use
of atlases did not seem relevant to us because only MRI atlases
are avaible for this application. Their use could result in im-
precise and difficult registrations because the data comes from
different imaging modalities and because of the huge anatom-
ical variability at that age. Moreover, atlas registration would
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no longer allow for segmentations in a clinical time of a few
seconds. To introduce a spatial a priori in CNNs, [33, 34, 35]
have proposed to concatenate spatial features to the input of
the classification layer. Nevertheless, these approaches rely on
handcrafted spatial features which does not enable the CNNs to
learn abstract spatial a priori.

1.3. Contributions

In this paper, we investigate the potential of 2D and 3D CNNs
for CVS segmentation in 3D US data. We evaluate the bene-
fits of using 2D FCN instead of 2D CNN which achieve pixel-
to-pixel segmentation. In addition, we compared 2D and 3D
FCNs. Finally, we propose to use Compositional Pattern Pro-
ducing Network (CPPN) [36] to enable the FCNs to learn CVS
location.

CPPNs are specific types of networks outputting shapes from
input such as coordinates. Combined with CNNs low-level fea-
tures, they can provide information about the features’ loca-
tion within the head. This approach has the advantage to learn
the CVS-location directly from our dataset and enable the net-
works to be end-to-end trained. The accuracy of the networks
was evaluated using two usual metrics (Dice and Mean Abso-
lute Distance (MAD) and two medical metrics (absolute and
relative volume difference).

In the following sections, we show that the addition of the
CPPN enables the learning of a pattern dictionary that improves
the accuracy of the FCNs when they have few layers. We
also show that 2D FCN are more accurate and faster than 2D
CNN which achieve pixel-to-pixel segmentation. In addition,
we show that 2D and 3D FCN can segment dilated CVS at IOV
level and that 3D FCNs are more accurate than 2D FCNs in the
case of normal CVS. Both architectures enable CVS segmenta-
tion in a clinical time of a few seconds. The main contributions
of this paper are:

1. U-net and V-net learning spatial information end-to-end
with the use of a CPPN, resulting in improved accuracies
when they have few layers.

2. The comparison of 2D and 3D CNNs for CVS segmenta-
tion in 3D US data.

3. The first automatic CVS segmentation in 3D US data, us-
ing 3D CNN, performed in a clinical time.

2. Materials and Methods

2.1. US data description

2.1.1. Data acquisition
For this study, 2D transfontanellar sonography acquisitions

were performed on 21 preterm neonates at the neonatology cen-
ter of the hospital of Avignon in France. These acquisitions
corresponded to angular manual sweeps (Fig.1.b) performed
through the anterior fontanel with an Acuson Siemens 9L4
multi-D matrix transducer. A total of 25 acquisitions were ob-
tained, each of them contained in average 249 ± 69 images of
size 567 × 763, their spatial resolution was 0.15 mm/pixel. The
mean age of the infants at acquisition and at birth were respec-
tively 35.8 ± 1.6 and 31.9 ± 2.9 gestational weeks.

2.1.2. Data pre-processing
3D-reconstructed US volumes were obtained from the 2D

acquisitions with the reconstruction algorithm we described in
[26]. After 3D reconstruction (Fig.2.c), the data was manu-
ally centered on the corpus callosum splenium (green points
in Fig.2.a.b) and rotated to the standard MRI coordinate sys-
tem with axes x, y and z (Fig.1.a). Then, the volumes were
scaled to the half of their original size using bicubic interpo-
lation and cropped to 320 × 320 × 320 voxels. This permitted
defining a common coordinate system for all volumes and then
computing identically normalized coordinate maps used as in-
put for the CPPN. Finally, each image (respectively volume)
were standardized to constitute the database used for 2D net-
works (respectively 3D networhs).

2.1.3. CVS description and data annotation
CVS segmentation is part of the difficult segmentation prob-

lems: it deals with complex spatial structures with variable as-
pects in terms of image contrast. Fig.2.a shows that the CVS
is composed of a hyperechoic part and a hypoechoic part. The
last one must not be confused with the Cavum Septi Pellucidi
(CSP) visible in Fig.2.b which is also hypoechoic. The com-
plex anatomy of the CVS, which includes very thin parts, is
described in Fig.3.

Manual CVS segmentations were performed on the US data
acquisitions by a physician who checked all the reconstructed
annotated volumes (Fig.2.d) for anatomical and spatial consis-
tency. These reference segmentations were used to measure
each CVS volume, its mean value and the number of normal
and dilated CVS composing the dataset are given in the last
row of Table.1.

2.1.4. Dataset creation
The volumes were divided into a training set, a validation set

and a test set which contained 13, 5 and 7 volumes respectively.
All volumes corresponding to the same patient were placed in
the training set. The remaining volumes were randomly dis-
tributed so that the proportion of dilated and normal CVS was
close in each set. Their characteristics are summarized in Ta-
ble.1.

2.1.5. Four-fold cross validation dataset
To prove that the previous definition of the dataset did not

usefully bias our results, a four-fold cross validation dataset was

Fig. 1. a): anatomical reference planes, b): transfontanellar 2D US acqui-
sition: manual sweep of angle θ.
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Fig. 2. a), b): coronal and sagittal view of the corpus callosum splenium
(green dot) and the CVS borders (red lines), the Cavum Septi Pellucidi
(blue arrow) is also visible in b). c): 3D US reconstructed volume, d): 3D
CVS manual segmentation.

Fig. 3. Anatomical description of the CVS in axial and sagittal view.

Table 1. Repartition of the dilated and normal CVS between the sets

Set Normal CVS Dilated CVS
Number VV (cm3) Number VV (cm3)

Training 9 2.7 ± 0.8 4 9.4 ± 0.6
Validation 3 3.1 ± 0.9 2 8.4 ± 2.5

Test 5 2.5 ± 0.5 2 9.4 ± 1.1
All volumes 17 2.7 ± 0.8 8 9.1 ± 1.5

defined. In that case, only one volume per patient was retained,
the validation set was not modified and the remaining patients
were separated into four sets. In each of these sets, the patients
were randomly drawn in order to have 1 patient with dilated
CVS and 3 patients with normal CVS. This distribution is sum-
marized in Table.2.

2.2. MRI data description

To make our results comparable, we sought an open-access
database that contains 3D manual annotations of the premature

Table 2. Repartition of the dilated and normal CVS in the case of the four-
fold cross validation dataset

Set Normal CVS Dilated CVS
Number VV (cm3) Number VV (cm3)

Fold 1 3 2.5 ± 0.5 1 8.69
Fold 2 3 2.3 ± 0.4 1 10.46
Fold 3 3 3.1 ± 0.7 1 9.5
Fold 4 3 2.0 ± 0.3 1 8.33

child’s CVS. Unfortunately, to our knowledge, there is no US
database that meets these criteria. The only MRI database meet-
ing these criteria ([37]) contained few available annotated vol-
umes. We therefore used an MRI database, from the OASIS
project ([38]) containing a reasonable number of volumes with
manual annotations of the CVS of the young adult.

2.2.1. Data description
We used data from the MICCAI challenge on multi-atlas la-

belling [39], this database contains 35 annotated volumes di-
vided into 15 training volumes and 20 test volumes. From the
15 training volumes, we used 4 volumes for validation. These
images were acquired with a Siemens Vision 1.5T MRI in the
sagittal plan at a resolution of 1 × 1 × 1.25 mm per voxel and
were resized to a resolution of 1 × 1 × 1 mm. The images were
originaly segmented into 134 classes in coronal plan. For the
need of our study, we only retained and fusioned the classes
corresponding to CVS.

2.2.2. Data pre-processing
All volumes were re-centered, oriented similarly to US vol-

umes and cropped to the size 320 × 192 × 256. These steps en-
abled the creation of a common coordinate system for all vol-
umes similar to the one defined for the US database. Finally,
each image (respectively volume) was standardized to consti-
tute the database used for 2D networks (respectively 3D net-
works)

2.3. CNN architecture

2.3.1. Deep learning and CNNs
In segmentation problems, deep supervised learning aims at

learning a conditional probability distribution P(Y/X) where X
refers to an input image and Y to a targeted output label map.
This approach enables to learn features directly from data. This
is particularly suitable for this kind of problem because the
CVS has a complex shape and a wide range of pixel intensities,
making it hard to define handcrafted features properly. CNNs
aim at learning abstract representations of X that can be used
by a final classification layer. For this purpose, convolution
operations are used to permit learning small features regardless
of their absolute locations in an image. This enables the
networks to figure out what the CVS boarders look like as well
as its inside aspects. This work aims at studying two points:
the benefit of using FCNs ([28]) compared to CNNs with a
fully connected classification layer and, among FCNs, if it was
more suitable to use a 2D or 3D architecture.
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2.3.2. FCN
FCN are interesting architectures because they enable the

full segmentation of an image in one inference. A pixel-wise
classification of millions of voxels is then possible in a few
seconds only. Among them, we compared V-net and U-net
(Fig.5.a and Fig.5.b) which are respectively 3D and 2D efficient
architectures to solve these kinds of problems in the field of
medical imaging.The inputs X given to the networks were stan-
dardized coronal gray-level images (Fig.4.a) and the targeted
outputs Y were the corresponding binary images (Fig.4.b) with
the CVS labeled as 1 and the background as 0. The network
output was Ŷ: the pixel-wise probabilities to belong to the
background or the CVS. The estimated segmentation maps
ˆ̂Y were eventually obtained by assigning the label with the
highest probability to each voxel. In order to be as fair as
possible while comparing U-net and V-net for this problem,
convolutions of size 3×3 for U-net and 3×3×3 for V-net were
used as well as ReLU activation for both. Batch Normalization
(BN) was included [40] in the original architectures because it
has been reported to improve network parameters optimization
by making the optimization landscape smoother [41]. Dropout
and the Softmax function were respectively applied just before
and right after the classification layer.

2.3.3. CNN with fully connected classification layer
Architectures with fully connected classification layers were

used in image segmentation before FCNs. Although they gen-
erally offer good accuracy, image segmentation is generally
slow because each inference gives a class to only one pixel.
Among these architectures, we used the network proposed by
[17] which has been used for multi-class segmentation of the
brain of premature child in MRI. This network is composed of
three independent branches that use patches of different sizes
(centered on the same pixel) as input. Each branch has three
convolutional layers with differently sized convolution that al-
low learning features at different scales. Each branch ends
with a fully connected layer. Finaly, a final fully connected
layer gather the characteristics learned by the three branches to
achieve classification. In the case of the MRI database, the size
of the input patches was 75×75, 50×50 and 25×25 as defined
in [17]. In the case of the US dataset, as the pixel resolution was
smaller, we used sizes of 127× 127, 101× 101 and 75× 75 and
consequently adapted the number of neurons in the fully con-
nected layers. The desired output was the class of the pixel in
the center of the patches which was represented by 1 for VL and
0 for background. The convolution sizes defined in [17] were
used. As for U-net and V-net, we used batch normalization and
the Softmax function right after the classification layer but no
dropout was applied.

2.4. CPPN and integration to the networks

2.4.1. CPPNs
CPPNs were introduced by [36] in the field of evolutionary

biology to study phenotype evolution. These particular net-
works use sum and composition of basic mathematical func-
tions to produce geometric patterns from input such as coordi-

Fig. 4. a) Network input X: 2D or 3D US image in coronal view, b) targeted
output Y: 2D or 3D binary image.

nates. Even though CNNs do not encode absolute location in-
formation, relevant features can be detected regardless of their
positions in a given image thanks to convolution kernels’ speci-
ficities. When it can be easy to human beings to determine
whether two different features with similar aspects, -such as
skull boundary and plexus choroid boundary-, belong to the
CVS or not by acknowledging their locations, CNNs have to
work differently. They will use contextual information to dis-
criminate them. Nevertheless, this information can be costly
to obtain as it requires more layers or bigger convolution ker-
nels. To that end, we defined a CPPN to generate patterns for
the CNN to identify and use as spatial-information patterns. In
particular, we want the CNN to be able to use the CPPN to re-
move obvious false positives given their locations. Basically
the CPPN component enables networks to learn their own dic-
tionaries of relevant template shapes.

2.4.2. CPPN designed and integration to U-net and V-net
To define our CPPN’s inputs we created normalized-

coordinate volumes Xc, Yc, Zc. The normalized coordinates
(xn, yn, zn) of a point of coordinates (x, y, z) were calculated as
follows:

xn = 2x−Nx
Nx

yn = |
2x−Ny

Ny
|

zn =
2x−Nz

Nz

(1)

Where Nx, Ny and Nz correspond to the number of pixel in x,y
and z axis. Thus, xn, zn ∈ [−1, 1] and yn ∈ [0, 1] which takes into
account the symmetry between the right and left hemispheres of
the brain and allow for the generation of symmetrical patterns.
Finaly, Xc, Yc and Zc were defined so that for each point of
coordinates (x, y, z) :

(xn, yn, zn) = (Xc(x, y, z),Yc(x, y, z),Zc(x, y, z)) (2)

An example of Xc, Yc and Zc slices for a given z (coronal
plan) is shown in Fig.6.a. The CPPN architecture is described in
Fig.6.b, the concatenation of the normalized coordinate maps,
their squares and their component-wise products (Hadamard :
�) are used as inputs (I) to a 3-layer CNN. This CNN’s layers
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Fig. 5. a), b): the originals 24-layer U-net and 31-layer V-net CNNs with CPPN, c): 17-layer U-net with CPPN. The tensors and the concatenated tensors
are represented by blue and gray rectangles respectively. Their number of channels is written inside the rectangles.

Fig. 6. a) Normalized coordinate maps from Xc, Yc and Zc at a given z, b)
CPPN architecture.

are composed of 1× 1(×1) convolution operations, one BN and
then one ReLU activation. In the first layer, the 1 × 1(×1) con-
volutions combine the 9 inputs linearly to generate a quadrics
(ellipsoid, hyperboloid, . . .). As an example the i-th output of
the first layer O1,i (O1 can be seen in Fig.6.b), before BN and
ReLU, is:

O1,i = wi,1X2
c + wi,2Y2

c + wi,3Z2
c + wi,4Xc � Yc + wi,5Xc � Zc

+wi,6Yc � Zc + wi,7Xc + wi,8Yc + wi,9Zc + bi
(3)

It is an exact quadratic function of the coordinates with wi,k

and bi being the k-th weights and the bias of the i-th neuron
of the first layer respectively. The outputs of the first layer are
then combined together by the second and the third layer to
create more complex patterns that are non-linear compositions
of quadrics. We expect these patterns to be able to help the
network figure out where the CVS is located. For instance,
some shapes can be identified as regions where the CVS is
not likely to be whereas others will be identified as regions
where the CVS might be located. However, more complex
interactions and logical operations could occur.

To enable the U-net and the V-net to be end-to-end trained
with the CPPN, the patterns are learnt in parallel of the low-
level features before being concatenated with the main network
(Fig.7.c). Consequently, the extraction of low-level features is
kept translation invariant. When an image X is given as input
to the network, the associated input I of the CPPN is obtained
by extracting the images at the same coordinates in volumes
Xc,Yc,Zc anb by calculating their squares and component-wise
product. Examples of U-net’s inputs are given at different z in
Fig.7.b, the associated CPPN’s inputs are shown in Fig.7.a.
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Fig. 7. a) Example of CPPN’s inputs at z = 80 and z = 240 b) Example of U-net’s input at z = 80 and z = 240, c) integration of the CPPN to U-net.

2.4.3. Evaluation of the CPPN influence

U-net and V-net label achieve pixel-wise classification based
on contextual information and do not use location information.
The distance at which a network can combined contextual in-
formation from a pixel is called the receptive field. To evaluate
the benefit of the CPPN, we varied the receptive field of U-net
and V-net by modifying their number of layers. The fewer the
number of layer, the less contextual information the networks
can use to achieve pixel-wise classification. In the case where
networks have too little contextual information, they may con-
fuse brain structures that look similar but are not located in the
same place. If the CPPN learns the location of the CVS, this in-
formation would reduce the false-positives when networks have
few layers. The number of layers of U-net and V-net were in-
creased from 9 to 31 and from 7 to 24 in the case of U-net and
V-net respectively.

In the 2D case the number of layers was increased by adding,
at the bottom of the U, a max pooling operation followed by two
3 × 3 convolutional layers, one 2 × 2 deconvolutional layer and
two 3× 3 convolutional layers (5 layers in total). In the 3D case

we added, one 2×2 convolutional layer, three 3×3 convolutional
layers, one 2 × 2 deconvolutional layer and finally three 3 × 3
convolutional layers (8 layers in total) were added at the bottom
of the V. The original U-net (24 layers) and V-net (31 layers) are
represented in Fig.5.b and Fig.5.a respectively. An increase in
depth from 19 layers (Fig.5.c) to 24 layers (Fig.5.b) is given as
an example for the U-net.

3. Experiments and results

3.1. Training procedure pinciple

3.1.1. Training procedure of U-net and V-net
During the training process, we gave batches composed of

randomly drawn sub-volumes (coronal view) as inputs to the U-
net and the V-net as well as the corresponding normalized sub-
volumes’ coordinates to the CPPN. The targeted output was the
corresponding label sub-volume. The optimization of the net-
work’s parameters was performed following the cross-entropy
loss during the first 5000 steps to ensure a correct optimization
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start. It was then performed in accordance with the softDice
loss (L) (4) in order to reach a better local minimum [29].

L(Y, Ŷ) = 1 − 2

N∑
i=1

yi ŷi

δ+
∑

yi+ŷi

(4)

yi ∈ {0, 1} and ŷi ∈ [0, 1] represent respectively Y’s and Ŷ’s
i-th voxel’s values, with Y and Ŷ each containing N voxels. δ
was set to 10−10 to avoid division by zero. Dice was calculated
over the entire validation set every 1000 iterations. The learn-
ing procedure was stopped as soon as it would not decrease over
5000 iterations in a row. The optimized network with the high-
est Dice was eventually retained. All codes were implemented
on Python with Tensorflow [42] and all networks were trained
using NVIDIA Tesla V100 GPU.

3.1.2. Training procedure of Moeskops et al. [17] network
The network was trained with batches of 50 patches (ran-

domly drawn in coronal plan) which contained at least half of
patches labeled as CVS. The optimization of the network was
done with cross-entropy. Early stopping was used in the same
way as for U-net and V-net. Nevertheless, to limit the total op-
timization time, the performance on the validation set was ob-
tained by calculating the average cross-entropy over a subset of
voxels.

3.1.3. Parameters initialization and optimization-parameters
setting

Before starting the optimization, the network’s weights were
initialized in accordance with a uniform distribution with
Xavier initializer [43] and the networks’ bias were initialized
at 0.01. The input sub-volumes’ size were 1 × 128 × 128 in
U-net cases and 64 × 128 × 128 in the V-net cases. Concern-
ing Moeskops et al. [17] network, input patch of size 75 × 75,
51 × 51 and 25 × 25 were used in the case of the MRI dataset
and input patch of size 127 × 127, 101 × 101 and 75 × 75 were
used in the case of the US dataset. The optimization was per-
formed using Adam optimizer [44] with β1 = 0.9, β2 = 0.999
and ε = 10−8. The learning rates were set to: 10−4 for the 10000
first iterations, 2 × 10−5 for the 10000 following iterations and
5 × 10−6 until the end of training.

3.2. Test procedure
3.2.1. Test volume segmentation

In the U-net cases, the test volumes were segmented image
by image (size 320 × 320) in coronal orientation. In the V-net
cases, subvolumes of size 64 × 320 × 320 with an overlapping
of 75% were segmented by the network, the output probabilities
to belong to the CVS were summed and the classes resurging
in the highest values were attributed to each voxel. Finaly, in
the Moeskops et al. [17] network case, the test volumes were
segmented vector by vector (size 320) along coronal axis z.

3.2.2. Evaluation metrics
The proposed networks’ segmentation accuracy was evalu-

ated using Dice (5) and MAD (6):

Dice = 2 |Y∩
ˆ̂Y |

|Y |+| ˆ̂Y |
(5)

MAD = 1
2


∑

x∈∂ ˆ̂Y

d(x,∂Y)

|∂Y | +

∑
x∈∂Y

d(x,∂ ˆ̂Y)

|∂ ˆ̂Y |

 (6)

where ∂Y and ∂ ˆ̂Y corresponds to Y’s and ˆ̂Y’s boarders respec-
tively, |Y | gives the number of ones in the set Y-set and d is the
euclidean distance defined as:

d(x, ∂Y) = min
y∈∂Y
‖x − y‖2 (7)

To complete Dice and MAD, two other metrics closer to the
clinic were used: the absolute volume difference (∆Va) and the
relative volume difference (∆Vr). They are defined by (8) and
(9) respectively.

∆Va = VY − V ˆ̂Y (8)

∆Vr = ∆Va
VY

(9)

Where VY and V ˆ̂Y are the volume of the reference segmenta-
tion and the volume of the automatic segmentation respectively.

3.3. Comparison of the networks
3.3.1. t-test

Optimizing the network’s parameters means solving a non
convex optimization problem whose solution is a local mini-
mum. There are few chances to reach the same local minimum
twice when the optimization procedure is run several times
given the facts that the network’s parameters are randomly ini-
tialized and that a stochastic batch gradient descent is used for
the optimization process. Hence, the accuracy obtained over
the test set can be different from one optimization to another
even if the training and validation sets are the same. To take
this variability into account, the training procedure was always
performed 5 times for each case. To highlight significant differ-
ence between two given architectures, the distribution resulting
from the above-described 5-time optimization process was con-
sidered for Dice and MAD. A t-test was performed between two
given distributions to compare them. The difference was con-
sidered significant when the p-value (p) was inferior to 0.05.
For instance, the Dice obtained over the test set for the 5 opti-
mizations of the 24-layer U-net were 0.808, 0.809, 0.811, 0.8
and 0.81 whereas results showed 0.823, 0.824, 0.822, 0.821 and
0.822 for the 31-layer V-net. The t-test comparing these two
distributions resulted in p = 7.6×10−5 < 0.05. Hence there is a
significant difference for Dice between these two architectures.
For example, such results are given in Table.5 and Table.10.

3.3.2. Best validation
In a given configuration where the training procedure had

been repeated for the same architecture, we considered that the
best network was the one that had obtained the best Dice on the
validation set. The final accuracy of this network was then eval-
uated on the test set. For example, in the case of the 24-layer
U-net and the 31-layer V-net, the quantitative results given in
Table.6 and Table.7 and the qualitative results presented in Fig-
ure.9 were all obtained from the best 24-layer U-net and the
best 31-layer V-net.
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3.4. Intraobserver variability

IOV was measured on five patients from the US test set: three
patients with normal ventricles and two patients with dilated
ventricles. The CVS of each of these patients was segmented
twice. The agreement between each couple of segmentations
was measured with respect to Dice, MAD, ∆Va and ∆Vr. The
results obtained in the case of the dilated and the normal ventri-
cles are given in Table.7. IOV was good in both cases but it was
lower in the case of the dilated ventricles (according to all the
metrics except ∆Va). A particularly good agreement between
the segmentations of the dilated ventricles was found with a
Dice of 0.898 ± 0.008 and a ∆Vr = 4.4% (0.41 ± 0.05 cm3).

3.5. Four-fold cross validation

To show that the distribution of the volumes between the
training set, the validation set and the test set (Table.1) did not
bias our results, a cross validation was performed. This exper-
iment was realized with the four-fold cross validation dataset
described in Table.2. It was performed such that each of the 4
sets was, in turn, considered as the test set and the 3 remaining
sets as the training set. In each configuration, the validation set
remained unchanged and the U-net was optimized five times.
The mean Dice and the mean MAD obtained for each fold are
given in Table.3.

Table 3. Mean Dice and Mean MAD values over cross validation test set.

Set Dice MAD (mm)
(average) (average)

Fold 1 0.811 ± 0.004 0.49 ± 0.04
Fold 2 0.807 ± 0.002 0.54 ± 0.03
Fold 3 0.828 ± 0.003 0.53 ± 0.03
Fold 4 0.797 ± 0.005 0.51 ± 0.05

The Dice and MAD varied from one test set to an other, but
these variations remained reasonable. The Dice ranged from
0.797 ± 0.005 (fold 4) to 0.828 ± 0.003 (fold 3) and the MAD
from 0.49 ± 0.04 mm (fold 1) to 0.54 ± 0.03 mm (fold 2).

3.6. Influence of the number of training volumes

Training a CNN for this application efficiently also requires
understanding and determining the accurate number of images
to be used in this process. That is why a 24 layers (Fig.5.b)
U-net with different training-set size was optimized. For this
experiment, the dataset defined in Table.1 was used, the vali-
dation and the test sets’ sizes remained the same while several
sizes were used for the training sets: 1, 3, 5, 7, 9, 11 and 13. For
each of these sizes, the optimization process was run 10 times
with randomly-drawn volumes. The evolution of the mean Dice
over the optimization as a function of the training set’s size is
shown in Fig.8 for both the training and the test sets. Detailed
values are given in Table.4.

Results showed that mean Dices over the training and test
sets decreased and increased respectively as the training set’s
size increased. Both values seem to evolve slowly with the
standard deviation being very low for training-set sizes reach-
ing 7-or-more volumes. To determine whether the improvement

Fig. 8. Mean Dice calculated over the training and the test sets as a function
of the number of training volumes.

Table 4. Mean Dice values over the training and test set values in relation
to the training-set size.

Training-set Mean Dice Mean Dice p-valuesize (training) (test)
1 0.904 ± 0.054 0.485 ± 0.049 1.22 × 10−13

3 0.895 ± 0.031 0.692 ± 0.043 1.97 × 10−7

5 0.877 ± 0.033 0.746 ± 0.028 4.81 × 10−6

7 0.875 ± 0.006 0.796 ± 0.009 2.08 × 10−3

9 0.866 ± 0.009 0.8 ± 0.012 0.091
11 0.868 ± 0.008 0.807 ± 0.004 0.685
13 0.867 ± 0.006 0.808 ± 0.005 1

was still significant, the results obtained for a training-set size
of 13 were used as a baseline. Table.4 shows that there is a
significant difference for 1, 3, 5 and 7 patients but none for 9
(p = 0.091 > 0.05) and 11 patients (p = 0.685 > 0.05).

3.7. Comparison of the U-net, the V-net and Moeskops et al.
[17] network

To evaluate the benefits of FCNs and to determine whether
a 2D FCN or a 3D FCN architecture was more suitable for this
problem, the segmentation time and the accuracy of the U-net,
the V-net and [17] were compared.

3.7.1. Quantitative results
US dataset. According to the results presented in Table.5, the
V-net was significantly better than the U-net for Dice (p = 7.6×
10−5) and also better fr MAD but not significantly (p = 0.7). It
was also significantly better than the network proposed by [17]
for Dice (p = 8.96 × 10−5) and MAD (p = 3.36 × 10−7). Con-
sidering the accuracy of the best networks (Table.6), the V-net
was more accurate than the U-net for the Dice and as accurate
for MAD. Both FCNs were extremely more accurate than [17]
according to all metrics . However, the comparison of the U-net
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Table 5. Quantitative results given by the networks.

Database Network Dice p-value MAD (mm) p-value(average) (average)

3D US
V-net 0.823 ± 0.001 0.5 ± 0.03
U-net 0.808 ± 0.004 7.59e-05 0.51 ± 0.02 0.7

Moeskops et al. [17] 0.592 ± 0.019 8.96e-09 1.32 ± 0.1 3.36e-07

3D MRI
V-net 0.892 ± 0.007 0.51 ± 0.03
U-net 0.889 ± 0.008 0.64 0.52 ± 0.04 0.82

Moeskops et al. [17] 0.691 ± 0.027 5.34e-07 2.67 ± 0.42 6.79e-06

Table 6. Quantitative results obtained by the best networks over the whole US the test set compared to IOV

Metrics All CVS
U-net V-net Moeskops et al. [17] IOV

Dice 0.81 ± 0.062 0.822 ± 0.053 0.621 ± 0.107 0.849 ± 0.041
MAD (mm) 0.5 ± 0.13 0.5 ± 0.13 1.16 ± 0.23 0.45 ± 0.07
∆Va (cm3) 0.38 ± 0.3 0.35 ± 0.28 3.3 ± 1.17 0.28 ± 0.14
∆Vr (%) 11.9 ± 9.6 11.1 ± 10.1 101.5 ± 46.9 6.02 ± 3.09

Table 7. Quantitative results obtained by the best U-net and the best V-net over the normal and dilated ventricles of the test set compared to IOV

Metrics Normal CVS Dilated CVS
U-net V-net IOV U-net V-net IOV

Dice 0.776 ± 0.038 0.797 ± 0.041 0.816 ± 0.009 0.893 ± 0.008 0.886 ± 0.004 0.898 ± 0.008
MAD (mm) 0.55 ± 0.13 0.54 ± 0.13 0.5 ± 0.04 0.38 ± 0.04 0.4 ± 0.06 0.38 ± 0.04
∆Va (cm3) 0.35 ± 0.24 0.35 ± 0.29 0.2 ± 0.11 0.45 ± 0.42 0.36 ± 0.24 0.41 ± 0.05
∆Vr (%) 14.5 ± 9.7 13.9 ± 10.6 7.11 ± 3.6 5.4 ± 5.0 4.2 ± 3.1 4.39 ± 0.02

and the V-net is more nuanced if we analyze the precision ob-
tained on the dilated and non-dilated ventricles separately (Ta-
ble.7). The V-net was more accurate than the U-net at segment-
ing the normal ventricles, but the U-net was slightly better than
the V-net at segmenting dilated ventricles. According to the
metrics that are closer to the clinic, the V-net is slightly more
accurate or equivalent to the U-net. Considering all ventricles,
a low ∆Va was obtained by the U-net and the V-net (0.35± 0.28
and 0.38 ± 0.3 respectively) with few differences between the
normal and dilated ventricles. Consequently, ∆Vr was lower in
the case of the dilated ventricles than for the normal ventricles,
it was 13.9 ± 10.6 % and 4.2 ± 3.1 % in the case of the V-net.

MRI dataset. As reported by the results presented in Table.5,
the V-net was more accurate than the U-net but not significantly.
On the other hand, V-net was significantly better than the net-
work proposed by [17] according to Dice (p = 5.34×10−7) and
MAD (p = 6.79×10−6). The Dice and the MAD obtained by the
[17] network were lower than the one reported in their article on
the same database (0.86±0.05 and 0.52±0.25 mm respectively).
The accuracy obtained by applying the methodology described
in [17]: training with 7 classes (background, CVS, basal gan-
glia, white matter, brain stem, cortical grey matter, cerebellum)
and application of a brain mask is reported in the Table.9. A
similar value was then obtained for Dice (0.844 ± 0.053), the
value obtained for MAD remained more important (0.89± 0.22
mm). This last point could be explained by the fact that the
MAD formula used in our paper is different from the one used

in [17] but it was not mentioned by the authors.

3.7.2. Qualitative results
Qualitative results for the networks with the highest Dice

over the validation set can be observed for the test patients with
the highest and lowest Dice (in the case of the V-net) respec-
tively in Fig.9 and Fig.10. The best test case, -a dilated CVS-,
shows that 2D and 3D FCN architectures both performed well.
However, the 3D FCN was better at segmenting the temporal
horns, especially the left one. In addition, the 3D FCN archi-
tecture was slightly better at segmenting the third ventricle, but
both architectures missed its thinnest part. The 2D non FCN
has well identified the overall shape of the CVS, however there
are more false positives than in the case of the FCN and the
segmentation of the thinnest parts of the CVS are too wide.
The worst test case, -a none dilated CVS-, shows that the 3D
FCN architecture was better at segmenting the right temporal
horn. However, both FCN architectures missed the left tem-
poral horn. Overall, the segmentations showed similar results
when it came to the CVS’s other parts except for the third ven-
tricle that was better identified using the 3D architecture. Fi-
nally, the CVS segmented with the 3D FCN looked smoother
and with fewer false positive particles. In the case of the 2D
non FCN, all parts of the CVS were identified, in particular the
right and left temporal horns. Nevertheless the segmentations
produced were globally too wide and many false positives can
be observed.
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Fig. 9. Qualitative segmentation results for the best networks on the test patient with the highest Dice.

Fig. 10. Qualitative segmentation results for the best networks on the test patient with the lowest Dice.
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Table 8. Segmentation times of the networks depending on the GPU used.

Network
Segmentation time (s)

Nvidia Nvidia Nvidia
Tesla V100 1080 TI Quadro M1000M

U-net 3.5 ± 0.2 9.6 ± 0.2 70.4 ± 0.2
V-net 10.2 ± 0.2 18.0 ± 0.0 -

Moeskops et al. [17] 7454.2 ± 101.6 10757.3 ± 28.8 -

Table 9. Accuracy of the CVS segmentation for Moeskops et al. [17] on the MRI dataset depending on training classes and brain mask use.
CVS only Multi-class Multi-class + brain mask

Dice 0.66 ± 0.19 0.801 ± 0.066 0.844 ± 0.053
MAD (mm) 2.0 ± 0.93 1.65 ± 0.68 0.89 ± 0.22

3.7.3. Segmentation time
The segmentation times, given in Table.8, were obtained

using three GPUs: NVidia Tesla V100 (32 Go), Nvidia GTX
1080 (8 Go) and Nvidia Quadro M1000M (2 Go). Inferences
were respectively performed with batches of size 80×320×320,
20 × 320 × 320 and 4 × 320 × 320 in the case of the U-net. In
the case of the V-net, inferences were always performed with
batches of size 64 × 320 × 320 and an overlapping of 75% be-
tween batches. These results show that, whatever the GPU, the
segmentations were performed faster by the U-net. Regarding
Moeskops et al. [17] network, inferences were performed with
batches of size 1×320. The fastest segmentation time (3.5±0.2
s) was obtained using a Nvidia Tesla V100 GPU. V-net was not
usable with the Nvidia Quadro M1000M because of insufficient
memory ressources but achieved CVS segmentation in a few
seconds with the other GPUs. No memory issues appended
with the U-net, CVS segmentation was achieved in a time
of 70.4 ± 0.2 s with the Quadro M1000M GPU which have
very limited memory ressources. The slowest segmentation
times were obtained by [17]: more than two hours to segment
one volume with the Nvidia Tesla V100 or the Nvidia 1080
TI. We did not perform segmentation with the Nvidia Quadro
M1000M because segmentation time was too long.

3.8. The CPPN’s influence

In this experiment, the number of layers of the U-net and the
V-net were incrementally increased to determine if the CPPN
brings information about the CVS location.

This experiments’ quantitative results on the US dataset are
given in Table.10 and the evolution of MAD and Dice on US
dataset as a function of the number of layers of U-net and V-net
are represented in Fig.11. A similar behaviour was observed
in the 2D and 3D cases. As it can be seen in Fig.11, with and
without CPPN, Dice and MAD improved with the number of
layers, although the improvment shrank as the number of layers
increased. Nevertheless, it can be observed that the accuracy
obtained with CPPN is better than without CPPN when the
number of layers is low and equivalent when the number of lay-
ers is high. This result is confirmed by the quantitative values
of Dice and MAD, and the p-values given in the Table.10. In

the case of U-net, Dice and MAD were significantly (p < 0.05)
better with CPPN for the 9, 14 and 19-layers U-net. In the case
of V-net, Dice and MAD were significantly better with CPPN
for the 7-layers V-net and 15-layers V-net. The results also
show that the networks without CPPN needed fewer layers to
catch up with the performances of the networks with CPPN in
the 3D case.

The quantitative results obtained on the MRI dataset are in
accordance with those obtained on the US dataset. Accuracy is
given for a 24-layer U-net and a 9-layer U-net with and without
CPPN in Table.10. Dice and MAD were better in all the cases
where the CPPN was used and were significantly better in the
case of the 9-layer U-net.

Qualitative results for the best-performing 24-layer U-nets
and the best-performing 31-layer V-nets associated with the pa-
tient from the US test set with the highest Dice (in the case of
the 31-layer V-net) can be seen in Fig.12.b. These images show
no significant differences between the segmentation performed
with or without CPPN. Looking at the qualitative results for
the best-performing 9-layer U-nets and the best-performing 7-
layer V-nets associated with the patient from the test set with the
highest Dice (Fig.12.a), a clear reduction of the false-positives
is observed.

4. Discussion

4.1. Four-fold cross validation

The results given in Table.3 show that the maximum differ-
ences between two test sets for Dice and MAD are 0.031 and
0.05 mm respectively. These differences are small and the ac-
curacy obtained in the worst cases is good, it is 0.797±0.005 for
Dice and 0.54 mm for MAD. This characterise the fact that each
training set contained enough variability in order to enable the
U-net to generalize its learning to an unknown data set. Based
on these results, we conclude that the database used to compare
the U-net and the V-net did not incorporate biases, such as very
similar patients in the training set and the test set, which could
have led to an overestimation of the results.
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Table 10. Influence of the CPPN on Dice and MAD for U-net and V-net depending on their number of layers.

Database Network Layers Dice (average) p-value MAD (mm) (average) p-valueno CPPN CPPN no CPPN CPPN

3D US

U-net

24 0.808 ± 0.004 0.812 ± 0.003 0.15 0.51 ± 0.02 0.51 ± 0.01 0.87
19 0.795 ± 0.005 0.807 ± 0.001 1.54e-03 0.55 ± 0.02 0.5 ± 0.02 2.91e-03
14 0.762 ± 0.005 0.801 ± 0.002 3.17e-07 1.06 ± 0.08 0.54 ± 0.02 1.60e-06
9 0.605 ± 0.008 0.757 ± 0.008 3.39e-09 3.62 ± 0.17 0.82 ± 0.06 1.42e-09

V-net

31 0.823 ± 0.001 0.824 ± 0.001 0.07 0.5 ± 0.03 0.52 ± 0.03 0.45
23 0.821 ± 0.002 0.821 ± 0.002 0.94 0.55 ± 0.03 0.56 ± 0.04 0.53
15 0.797 ± 0.001 0.808 ± 0.004 8.38e-04 0.85 ± 0.03 0.64 ± 0.02 1.06e-06
7 0.518 ± 0.006 0.714 ± 0.006 4.94e-11 4.98 ± 0.17 1.31 ± 0.04 1.00e-10

3D MRI U-net 24 0.889 ± 0.008 0.9 ± 0.011 0.18 0.519 ± 0.038 0.48 ± 0.028 0.13
9 0.873± 0.009 0.901 ± 0.013 6.76e-03 0.597 ± 0.048 0.464 ± 0.039 2.62e-03

Fig. 11. Mean results, for MAD and Dice, given by the 5 trainings of the U-net architectures.

4.2. Influence of the training-set size
In this experiment, we studied the influence of the training-

set size over the Dice values of the training set and the test
set. Typically, these values respectively decrease and increase
as the number training-set size increases. This is explained by
the increasing variability contained in the training set leading
to a fairly accurate generalization. These curves indicate which
strategy should be used to improve the network’s accuracy over
the test set: increasing the training-set size or designing a more
suitable network architecture. In our case, test set’s Dice value
did not significantly improve when increasing the training set’s
size from 9 to 13 volumes, the training set’s Dice value with 13
volumes was slightly low (0.867 ± 0.006) while the generaliza-
tion gap for 13 volumes from the training set was slightly high
(0.059). Based on these results, we conclude that the best strat-
egy would be to design a more suitable architecture than the
U-net for this problem. Increasing the training-set size would
probably improve the network’s accuracy but it would be very

time-consuming to gather a sufficient number of new volumes
to obtain a significant improvement.

4.3. Comparison of the networks
In this part, the results obtained for accuracy and computing

time are discussed in order to conclude on the use of the
network of [17], the U-net and the V-net for this application.
Possible explanations of the differences between the results
given by these networks are also discussed.

Compared according to the methodological metrics (Ta-
ble.5), the FCNs were significantly better than the network
proposed by [17]. They were therefore also better consider-
ing the clinical metrics, the differences obtained on volumes
(∆Vr = 101.5 ± 46.9%) make the use of this non-FCN net-
work non suitable for clinical follow-up of CVS dilation. These
poorer performances can be explained by the fact that, as it can
be seen on Fig.9 and Fig.10, the non-FCN network gave many
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Fig. 12. Qualitative results (best test patient) given by the 9-layer U-net and the 7-layer V-net a) and the 24-layer U-net and the 31-layer V-net b), with and
without CPPN.

Fig. 13. CPPN output with the corresponding labeled US image at a): z = 80 and b): z = 160.

false positives even though the pixels belonging to the CVS are
very well identified. In particular the network seems to have
difficulties to determine precisely the edges of the CVS. Simi-
larly to what was shown on the MRI dataset (Table.9), training
the networks with more classes and using a brain mask could
reduce the number of false positives and improve the accuracy
on the US dataset. Firstly, it could enable the network to learn
to recognize other brain structures that may look similar to the
CVS. Secondly, it could eliminate obvious false positives based
on their location. However, these solutions are not suitable for
3D US because there are no manual annotations for structures
other than CVS and the entire brain is not visible on the images.

Considering the methodological metrics, the V-net was
significantly better than the U-net for Dice and better for MAD.
Moreover, the V-net has almost twice as few parameters as
the U-net (31 × 106 parameters for the U-net and 16 × 106

parameters for the V-net). This shows that the 3D V-net
is able to encode information more efficiently than the 2D
U-net and is overall more accurate for CVS segmentation.
Nevertheless, according to the results given in the Table.7 the
gain in accuracy is due to the fact that the V-net was better
than the U-net for segmenting normal ventricles, the U-net
being more accurate for segmenting dilated ventricles. The
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qualitative results presented in Fig.10 and Fig.9 provide a
possible explanation for this result. To achieve pixel-wise
classification in our settings, the U-net used the information
available in the coronal plan only whereas the V-net used the
information available in all directions. This can results in 2D
architectures struggling to segment some CVS’s structures. In
particular, the temporal horns, the frontal horns and the third
ventricle are very thin in coronal slice when the ventricles are
not dilated. Since a 3D architecture can analyze information
in all space directions, it is easier for it to segment theses
structures (Fig.10.b). In the case where ventricles are dilated,
the structures are less thin in coronal slice and information
available in this plan might be sufficient for a 2D architecture
to perform as well as a 3D architecture (Fig.9.). Nevertheless,
in both cases, the 3D kernels enabled to smooth CVS’s edges
contrary to 2D kernels, this is particularly striking in Fig.10.

The difference between the IOV and the accuracy of the U-
net and the V-net are given in the Table.11. By convention, the
difference is negative when the network accuracy is better than
the IOV and positive otherwise.

Table 11. Intraobserver variability in the segmentation of normal and di-
lated CVS.

Metrics Normal CVS Dilated CVS
U-net V-net U-net V-net

Dice 0.04 0.019 0.005 0.011
MAD (mm) 0.06 0.04 0 0.02
∆Va (cm3) 0.15 0.15 0.04 -0.05

The accuracy of the U-net and the V-net reached the
IOV level, considering all metrics, in the case of the dilated
ventricles. The accuracy of these segmentations is therefore
excellent and it would be hard to improve in this case. In the
case of normal ventricles, the V-net is globally closer to the
IOV than the U-net with differences of 0.019, 0.04 mm and
0.15 cm3 considering Dice, MAD and ∆Va. The accuracy of
these segmentations is therefore also excellent but it is still
possible to improve the accuracy in this case. Performing data
augmentation, such as horizontal symmetries, as proposed in
[45] could be a way to bridge this gap.

From a clinical point of view, the important question is
whether these architectures enable the identification of a
dilated ventricle and the monitoring of CVS dilation. The
average volumes of normal and dilated ventricles in our
database (Table.1) were respectively 2.7±0.8 cm3 and 9.1±1.5
cm3. The ∆Va committed by the U-net and the V-net being less
than 0.5 cm3 whether the ventricles are dilated or not, it can
be concluded that these networks are capable of identifying a
dilated ventricle unequivocally. Moreover, the segmentations
of the dilated ventricles by the CNNs being at the level of a
human observer, these networks would be able to follow the
evolution of a ventricular dilation as precisely as a paediatrician
performing manual segmentations.

The segmentation times (Table.8) show that the FCN

architectures are hundreds of times faster than the non-FCN
architecture. This result is explained by the fact that FCNs are
built to segment an entire image at each inference while the
network proposed by Moeskops et al. [17] can only segment
one pixel. Therefore, it takes hundreds more inferences to
non-FCN architectures to segment an entire image. Table.8 also
reveals that the U-net was faster than the V-net at segmenting
the CVS by a factor of 3 with a Nvidia Tesla V100 GPU and
by a factor of 2 with a Nvidia 1080 TI GPU, while the V-net
has fewer parameters than the U-net. This result can mainly
be explained by the fact that the complete segmentation of a
volume with a 3D network required an overlap between input
batches to limit edge effects (along z axis in our case). Thus,
the segmentation of one volume required the U-net to segment
320 images and the V-net to segment 1088 images. Both
architectures were able to segment the CVS in a clinical time of
a few seconds using Tesla V100 GPU and 1080 TI GPU. Nev-
ertheless, compared to the V-net, the U-net has the advantage
to enable the realization of segmentations in a reasonable time
(70.4 ± 0.2 s) with hardware having limited memory resources
(Nvidia Quadro M1000M) which are therefore less expensive.

According to these results, FCN architectures should chosen
over non-FCN architectures for this application. In addition,
unless one wishes to segment normal ventricles accurately, the
U-net is more suitable than the V-net for a clinical use. The
U-net enables to follow ventricular dilation as accurately as a
human observer performing manual segmentation. In addition,
it enables automatic segmentations in a clinical time with GPUS
which have few memory resources. D’après ses résultat

4.4. The influence of the CPPN

The CPPN was used to generate patterns (Fig.13) which
could provide location information to the networks. The quan-
titative results given in the Table.10 show that the accuracy of
U-net and V-net was better with CPPN when networks have
few layers. This can be explained by the fact that the patterns
generated by the CPPN enabled the networks to locate the
characteristics in the common space defined for the database.
Thus, when the networks were not able to use much contextual
information, a decrease in the number of false positives, due to
CVS-looking-like structures, was expected. This assumption
was confirmed by Fig.12.a: many false positives were avoided
when using the CPPN. Examples of false-positives from the
best 7-layer V-net segmentation are given in Fig.14.b. It shows
that the skull and the CSP, -looking like the plexus choroid
and the CVS’s CSF respectively-, were segmented with no
CPPN. Conversely, on adding the CPPN, the same V-net did
not segment the skull at all and it segmented few of the CSP’s
edges (Fig.14.c), the last of them being its closest part to the
CVS geographically speaking.

The CPPN’s 8 output channel with the best 3D network,
can be observed in Fig.13. The patterns are shown for z = 80
(Fig.13.a) and z = 160 (Fig.13.b) with the network input X
(landmarks are given in Fig.9) and the CVS segmentation.
Patterns on channels 1 and 5 show interesting results with
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Fig. 14. Reference segmentation a), 7 layers V-net automatic segmentation
b) and 7 layers V-net + CPPN automatic segmentation c)

shapes which may help to localize the CVS. When looking at
the other shapes, they seem to partition the entire image into
several parts. This may enable the network to use the patterns
to know where the features are located and to avoid obvious
false-positives.

According to Table.10 and Fig.11, 2D networks might
benefit more frome the CPPN than 3D networks. Indeed, the
patterns generated by the CPPN are 3D so they can provide
3D location information. The 2D networks can only use
the information contained in the coronal plans whereas 3D
networks can utilize information in every direction. Thus,
the CPPN is the only way for the 2D networks to use 3D
information, which could explain why the 3D networks without
CPPN needed fewer layers to catch up with the accuracy of the
3D networks with CPPN than the 2D networks.

As a conclusion, the CPPN permits learning the CVS loca-
tion and thus to decrease the number of false positives by pro-
viding this information to the networks. This is all the more
obvious as the network’s number of layers decreases.

5. Conclusion

The first aim of this article was to measure the benefits of
FCNs and to compare the potential of 2D and 3D CNNs to
achieve CVS segmentation of preterm neonates in 3D US data.
Our results showed that FCNs were extremely more accurate
than non-FCNs on this task and that they could achieve segmen-
tation hundreds of time faster. Our experiments also showed
that a 3D FCN architecture is overall more accurate for this

task. Nevertheless, a 2D FCN architecture is as accurate as a
3D FCN architecture for segmenting dilated ventricles, and in
this case the segmentation accucary reaches the IOV. Moreover,
a 2D FCN architecture enables to perform the segmentations
in clinical time with hardwares that requires few memory re-
sources and are therefore affordable. For all these reasons, a 2D
FCN architecture may be preferable to a 3D FCN architecture
in a clinical context where one wishes to monitor CVS dilation.

In the future, these results will be compare to the accuracy
obtained with MRI. Firstly, the match between the volumes
measured in 3D US and MRI will be evaluated, as it was
peformed by [15]. Then, the intra and interobserver variability
will be determined for these two modalities in order to establish
the reliability of the measurements in both cases. Interobserver
variability was measured in MRI by [46] in the case of the
segmentation of the CSF of two preterm neonates with dilated
ventricles, its value ranged from 0.84 to 0.89. If we compare
that result to the IOV, which is intrinsically higher than the
interobserver variability, obtained over dilated ventricules
in our case (0.898 ± 0.008), it can be suggested that the
measurements performed in 3D US images can be competitive
with those performed in MRI.

The second aim of this paper was to enable CNNs to encode
CVS location since this information was used as an important
features in most methods dedicated to the segmentation of
preterm-neonates cerebral structures. Our experiments showed
that the use of a CPPN enables the learning of a pattern
dictionary encoding CVS location from the training dataset
which improves the networks accuracy when they have few
layers. Further investigations must be perform to evaluate the
benefits of the CPPN for brain multi-structural segmentation.
In addition, other CPPN inputs and basic mathematical func-
tions could be tried to build a CPPN so as to better encode the
location information into the patterns.

To the best of our knowledge, this study is the first to com-
pare the accuracy of 2D and 3D CNNs for the segmentation
of preterm neonates’ CVS in 3D US data and to distinguish
between normal and dilated ventricles in the analysis of the re-
sults. This work is also the first to propose a modification of the
U-net and the V-net architectures in order to learn a pattern dic-
tionnary, for localisation, from training data. This study show
that it is possible to accurately segment preterm neonates’ CVS
in a clinical time in 3D US images and that the accuracy can
reach IOV in the case of dilated CVS. This work paves the way
to the study of the clinical benefit of 3D US to monitor CVS
dilation and the other cerebral structures of preterm neonates.
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Knoth, Gabriela Lopez, Roozbeh Shams, Ramy El-Jalbout, Amélie
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