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Band-stop Smoothing Filter Design
Arman Kheirati Roonizi∗, and Christian Jutten, Fellow, IEEE

Abstract—Smoothness priors and quadratic variation (QV)
regularization are widely used techniques in many applications
ranging from signal and image processing, computer vision,
pattern recognition, and many other fields of engineering and
science. In this contribution, an extension of such algorithms to
band-stop smoothing filters (BSSFs) is investigated. For designing
a BSSF, the most important parameters are the order and the cut-
off frequencies. In this paper, we show that with the optimization
approaches (smoothness priors or QV regularization), the cutoff
frequencies are related to the regularized parameters and the
order can be directly (and easily) controlled with the number
of derivatives. We describe two ways to implement the BSSFs
using these approaches. First, we present a parallel structure
to BSSF and then illustrate why it is less than ideal. Next, we
present a novel approach regarding parallel structure to produce
BSSFs with very sharp transition bands for high-performance
applications. An improved optimization-based approach to BSSF
design is introduced. The performance of the new BSSFs is nearly
ideal.

Index Terms—Smoothness priors, Quadratic variation regular-
ization, Least-squares optimization, Band-stop smoothing filter,
Parallel structure

I. INTRODUCTION

THERE is no doubt that smoothing filters (i.e., smoothness
priors and quadratic variation) have a respectable place

in signal and image processing, computer vision and pattern
recognition, statistics, time series analysis, economics and
many other fields of engineering and science. Many papers
and a number of books have appeared. In the following, some
major contributions that have been developed in the design of
smoothing filters are highlighted.

The conceptual structure of smoothing filter dates from
1899 with Bohlmann’s work who studied the application of
regularized method for time series smoothing [1]. In 1923,
Whittaker addressed the problem of estimating a smooth trend
embedded in white noise and spoke about the method of
graduating data [2]. Therefore, his method is known as the
method of graduating data [3]. At the same time, Henderson
had presented a different solution which was widely extended
in North America [4]. So the method of graduating data is
also known as Whittaker-Henderson (WH) graduation [5]. In
1973, Shiller worked on the same problem and introduced
the notation of “smoothness priors” [6]. It seems that he
was not aware of either Whittaker-Henderson graduation or
Bohlmann’s work. Subsequently, smoothness priors became
popular in research communities. It was used in many appli-
cations.
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In time series analysis, smoothness priors was used for
modeling nonstationary time series [7], [8], generalizing a
nonparametric estimator [9], [10] and exploring large-scale
time series [11]. Some developments, extensions and the least-
squares computational framework of smoothness priors in time
series analysis are presented in [12], [13].

In signal and image analysis, smoothness priors was used for
signal smoothing and detrending [14]–[18], image smoothing
and restoration [19], [20], spectral estimation [21] and spline
smoothing [9], [22].

In pattern recognition, the second-order priors was used for
surface reconstruction [23], [24], dense stereo [25] and global
stereo reconstruction [26].

Some other connections to smoothness priors are quadratic
variation (QV) regularization [27], Hodrick-Prescott filtering
[28], Savitzky-Golay filter [29] and the ill-posed inverse
problems of statistical Tikhonov regularization [30].

The smoothing approach based QV regularization or
smoothness priors is based on a penalized least-squares
optimization which depends on a regularization factor that
needs to be designed and weighted properly for getting good
performance. There are several methods for designing the
regularization factor and its weight (usually denoted as an
hyperparameter). Some of them are briefly presented below.

• The L-curve method is a well-known heuristic method for
choosing the regularization parameter for ill-posed prob-
lems by selecting it according to the maximal curvature
of the L-curve [31].

• Generalized cross validation is a popular tool for calculat-
ing the parameters in the context of inverse problems and
regularization techniques. It was initially used to tune the
smoothness parameter in ridge regression and smoothing
splines [32].

• Discrepancy principle is a posteriori parameter choice
strategies for Tikhonov regularization for solving non-
linear ill-posed problems [33].

• Maximum likelihood estimation (MLE) algorithm which
is based on the concept of Bayesian likelihood, was first
introduced by Akaike to determine the smoothness trade-
off parameter [34].

• Stein’s unbiased risk estimate (SURE) regularization is
another approach that uses the Jacobian matrix of the
reconstruction operator with respect to the data [35].

• Regularization factor design in terms of the cutoff
frequency. Recently, we have derived a rather simple
closed-form expression for the frequency response of the
smoothness priors and proposed a closed-form expression
for the regularization factor. The design parameter was
calculated in terms of the cutoff frequency [36].

For extracting a signal within a predetermined frequency band,
conventional linear filtering (digital filtering) techniques are
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commonly used [37]. There are many papers and many ways
for designing digital filters developed over the past decades.
This technique is performed through linear time-invariant
(LTI) systems which are characterized in time/frequency do-
main by their impulse/frequency response. The frequency
response is the Fourier transform of the system’s impulse
response.

In [17], [38], [39], it is shown that smoothness priors or QV
regularization can be designed for linear filtering or smoothing.
In other word, there is an equivalence between penalized least-
squares optimization and zero-phase filtering. Especially, in
a series of our recent papers, a general approach based on
a regularized least-squares optimization framework has been
introduced to signal denoising/smoothing [36], [38], [40] that
shows there is a strong connection between linear filtering
techniques and the current approach based on regularized
least-squares optimization. We note that the main difference
between them is that the designed filters based on regular-
ized least-squares optimization handles smoothing/denoising
directly in the time domain while in the conventional linear
filtering techniques, the desired filter is first designed in the
frequency domain and then implemented in the time domain
using convolution operator. In the following, we briefly present
the main results regarding the connection between penalized
least-squares optimization and filtering reported in [36], [38],
[40].

In [40], a general framework based on a regularized least-
squares optimization has been introduced to signal smoothing
when the signal is represented by an autoregressive moving
average (ARMA) model. As an application, the framework
was used for ARMA filter design. It was shown that the
framework can be driven from a forward-backward filtering,
which is accomplished through LTI system. In [40], the design
of a variable-Q 1 notch filter design has been discussed.
Recent comparisons with many classical methods such as
simple notch filter or narrow-band notch filter using feedback
structure proposed by Pei et. al. [41] showed the superiority
of the current approach based on optimization with smoothing
constraints.

In [38], a framework for unification of the penalized least-
squares optimization and forward-backward filtering scheme
was presented. We showed that forward-backward filtering
(zero-phase IIR filters) can be presented as instances of pe-
nalized least-squares optimization. Against conventional linear
filtering that uses an IIR filter in its forward pass (followed
by time reversing, filtering the reversed signal with the same
IIR filter and finally flipping the result), the approach pre-
sented in [38] uses an FIR matrix filter in its forward pass
which has the advantage of being inherently stable. Com-
parison with classical linear filtering showed the superiority
of the regularized approach. Therefore, the regularized least-
squares optimization techniques (e.g., smoothness priors or
QV regularization strategies) and zero-phase IIR filters can be
conflated into one topic. In this paper, we propose a regularized
least-squares optimization approach for BSSF design. The

1The quality factor or Q-factor of a filter is defined as the ratio of its center
frequency over its bandwidth.

optimization problem used in this work is a linear least-
squares optimization (or a convex optimization) problem. It
can be solved by equating its derivative with respect to each
unknown variable to zero. The approach is different from
linear time invariant (LTI) filter and matrix filter which can
be used to design BSSF. For more details on matrix filters,
we refer the interested readers to [42]. In [42], the design
and implementation of causal recursive filters in terms of
banded matrices are discussed. It is based on the fact that
a discrete-time filter is described by the difference equation.
In this paper, we consider the problem of filtering finite-
length signals, since signal processing problems are generally
formulated in terms of finite-length signals, and the developed
algorithms are targeted for the finite-length case. In [36], we
have shown that the regularized least-squares optimization
techniques are also suitable for signal recovering even if the
signal of interest is (approximately) restricted to a known
frequency band. We introduced a new way to the design and
implementation of smoothness priors and QV regularization
and discussed its application to low-pass, high-pass and band-
pass smoothing filter design. Building on that result, in this
paper, we mainly focus on the design of band-stop smoothing
filter (BSSF). In [36], we have proposed a simple parallel
structure for band-pass smoothing filter (BPSF) or BSSF
design. The simple band-stop smoothing filter is made out of
a low-pass smoothing filter and a high-pass smoothing filter
by connecting the two smoothing filter sections in parallel
with each other. As it will be shown in Section III, the
simple parallel structure has some limitations for BSSF design.
Especially, its cutoff frequencies are not exactly mapped on
the arbitrary cutoff frequencies and the amplitude at its center
frequency is not exactly zero. Furthermore, it has a shallow
frequency transition band which is another limitation of the
simple parallel structure. It is known that the filters with steep
frequency transition bands can better separate signal and noise
components in adjacent frequency bands than filters with a
shallow frequency transition band. To solve these issues, we
propose an improved parallel structure to BSSF design. In
the proposed approach, we consider a modified model and
investigate the role of noise correlation which represents the
link between two smoothing filter sections. Our results suggest
that the noise correlation increases the steepness of the role-
off and boosts the performance. First we briefly review the
simple method described in [36] for BSSF design and then
show its limitations. Next, we present an improved parallel
structure which yields nearly ideal BSSF: its cutoff frequencies
are exactly mapped on the arbitrary cutoff frequencies and it
has a sharp frequency transition band.

The remainder of the paper is organized as follows. In
Section II, the relevant background on smoothness priors or
QV regularization is reviewed. In Section III, we present
a naive BSSF using smoothness priors or QV regulariza-
tion approach and show its limited performance. Section IV
presents an extension of such algorithms to BSSFs design,
which can achieve nearly optimal performance. In Section
V, the proposed method is used to electrocardiogram (ECG)
signal denoising and compared with conventional filters such
as zero-phase Butterworth filter. It is shown that the proposed



KHEIRATI ROONIZI AND JUTTEN: BAND-STOP SMOOTHING FILTER DESIGN 3

BSSF outperforms band-stop Butterworth filter. Finally, some
concluding remarks are presented in Section VI-B.

Throughout this paper, we use the following notations:
boldface uppercase/lowercase letters are used to denote ma-
trices/vectors and lowercase letters for scalars. The subscript
k stands for discrete time index while (·)T , (·)−1 and (·)�
denote the matrix transpose, matrix inverse and deconvolution,
respectively. Symbol Dn denotes the n-th order derivative with
respect to t, i.e., Dn = dn

dtn and ∗ denotes the convolution.

II. BACKGROUND

Formally, the objective of univariate smoothness priors and
QV regularization strategies is to find an estimate of signal
xlp(t), where the subscript lp stands for low-pass signal, from
its noisy measurement y(t) in the model

y (t) = xlp(t) + vlp(t), (1)

where vlp(t) is the unwanted additive noise signal, by solving
the following optimization problem

x̂lp(t) = argmin
xlp(t)

∫
[y(τ)− xlp(τ)]

2
dτ+α2

∫ [
dn

dtn
xlp(τ)

]2
dτ,

(2)
where dn

dtn is the n-th order derivative and α denotes a
smoothness tradeoff which balances the error variance and
the output smoothness. The subscript lp is used as a low-
pass in the above equations since the mentioned methods
act as low-pass smoothing filter [36]. In order to digitally
process the signal at discrete time k, one needs to consider
y[k] = y[kTs], the discrete-time samples of y(t), where Ts
is the sampling period, xlp[k] the sampled desired signal and
vlp[k] the sampled observation noise:

y[k] = xlp[k] + vlp[k], k = 1, · · · , L.

The smoothing procedure (2) can be then expressed as

x̂lp[k] = argmin
xlp[k]

L∑
j=1

(y[j]− xlp[j])2 + α2
L∑
j=1

(∇nxlp[j])2 ,

(3)
for all k = 1, · · · , L, where ∇nxlp[k] is the n-th order
difference approximation of the derivative. There are several
methods that can be used for the difference approximation of
the derivative operator. Some of them are forward, backward,
central difference rule and bilinear transform. Without loss
of generality, we consider the backward/forward difference
rule for the difference approximation of the derivative. In
this case, the first order difference is defined by ∇xlp[k] =
xlp[k] − xlp[k ± 1], where one with “+” holds for forward
difference rule and one with “−” holds for backward dif-
ference rule. The n-th order difference is then computed
as ∇nxlp[k] = ∇(∇n−1)xlp[k]. The n-th order difference,
∇nxlp[k], can also be computed as

∇nxlp[k] =

n∑
i=0

(−1)i
(
n

i

)
xlp[k ± i], (4)

where
(
n
i

)
is the binomial coefficient. In the following, we use

the backward difference rule. It then means that, from now,

we used xlp[k − i] in (4). Hence, (3) can be written in the
following matrix notation [36]

x̂lp = ‖y − xlp‖2 + α2 ‖Dnxlp‖2 , (5)

where y = (y[1], · · · , y[L])
T , xlp = (xlp[1], · · · , xlp[L])

T ,
‖·‖2 denotes the Euclidean norm and Dn is the L×L Toeplitz
matrix, built from the backward difference operator dn:

dn ,

[
1, −

(
n

1

)
, · · · , (−1)n−1

(
n

n− 1

)
, (−1)n

(
n

n

)]
.

The difference operator dn can also be computed by the
following recursion:{

d1 , [+1, −1] n = 1

dn = dn−1 ∗ d1 n > 1
, (6)

where ∗ denotes the convolution operator. Throughout the
paper, the second-order smoothness priors is of special interest.
As a special case, for data on L samples, D2 is a L×L matrix
defined as:

D2 =



1 . . . 0 0 0 0
−2 1 . . . 0 0
1 −2 1 0 . . . 0

0 1 −2 1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 1 −2 1


L×L

. (7)

The solution that follows from the minimization of (5) is

x̂lp = (I + α2DT
nDn)−1y.

Any component x̂lp[k] of the vector xlp can be written in the
following convolution form [36]:

x̂lp[k] =
(
δ[k] + α2dn[−k] ∗ dn[k]

)� ∗ y[k], (8)

where (·)� denotes the deconvolution. (8) can be implemented
as

x̂lp[k] = Z−1

{
1

1 + α2dn( 1
z )dn(z)

}
∗ y[k],

where Z−1 denotes the inverse Z-transform. The above reg-
ularization method can be stated in terms of a zero-phase,
linear time-invariant (LTI) smoothing filter (for more details
see [17], [36]). It can be analyzed in the frequency domain. To
this purpose by substituting y[k] with δ[k] in (8), and taking
the Z-transform, the frequency response of the smoothing filter
is obtained as follows [36]
H lp
n (z) =

1

1 + α2dn(z)dn( 1
z )

=
1

1 + α2(1− z−1)n(1− z)n

H lp
n (ejω) =

1

1 + α2(2 sin ω
2 )2n

.

(9)

The transfer function of the smoothing filter, i.e., (9), is real
and its phase is zero. It has a low-pass characteristic which
makes it suited for extracting the low frequency components
of the signal, hence the subscript lp in the previous equations.
The regularization factor α determines at which frequency the
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Fig. 1. The amplitude response of LPSF with cutoff frequency ω1 = 0.2 (left
panel) and HPSF with cutoff frequency ω2 = 0.8 (right panel) for different
values of n.

transition of pass-band to stop-band occurs. By equating the
Fourier frequency response, H lp

n (ejω), to 1/2, the value of α
is obtained as

αo =
1

(2 sin ωcut

2 )
n ,

where ωcut is the cutoff frequency of the smoothing filter. We
refer to this approach as low-pass smoothing filter (LPSF).
Note that for designing a filter, the most important parameters
are the order and the cutoff frequency. So, with the opti-
mization approach, we can directly (and easily) control the
order with the number of derivatives, and the cutoff frequency
is related to the hyperparameter α. The method can also
be used for extracting the high frequency components: by
extracting the low frequency components and subtract it from
the observed signal:

x̂hp[k] = y[k]− x̂lp[k]. (10)

In this case, the transfer function of the high-pass smoothing
filter is Hhp

n (z) = 1−H lp
n (z), i.e.,

Hhp
n (z) =

[
(1− z−1)(1− z)

]n
(2 sin

ωcut
2

)2n +
[
(1− z−1)(1− z)

]n
Hhp
n (ejω) =

(2 sin ω
2 )

2n

(2 sin
ωcut

2
)
2n

+ (2 sin ω
2 )

2n

,

where the superscript hp refers to high-pass smoothing filter
(HPSF). The frequency responses of an LPSF with cutoff
frequency ω1 = 0.2 and an HPSF with cutoff frequency
ω2 = 0.8 for the first and second order are depicted in Figure
1. The transition band of LPSF and HPSF increases as the
order of the smoothing filter (i.e., the order of the derivative)
increases. In Section III, we present a simple approach to

H lp
n (ejω)

Hhp
n (ejω)

+
y[k]

x̂lp[k]

x̂hp[k]

x̂bs[k]

LPSF

HPSF

Fig. 2. The simple parallel structure to band-stop smoothing filter (BSSF)
design.

BSSF design which is based on the combination of an LPSF in
parallel with an HPSF. But, we show that the simple BSSF is
less than ideal. Next, in Section IV, we show a new approach
to modify that smoothing filter, making its performance nearly
ideal.

III. A SIMPLE DESIGN OF BAND-STOP SMOOTHING FILTER

Let us consider the problem of signal denoising where
the desired signal xbs[k] (subscript bs stands for band-stop)
contains a low-frequency and a high-frequency component.
We assume that the noisy signal y[k] can be represented as

y[k] = xlp[k] + xhp[k]︸ ︷︷ ︸
xbs[k]

+vbs[k], (11)

where vbs[k] is the unwanted additive noise. We assume
that the noise vbs[k] and the signal xbs[k] are on disjoint
frequency ranges. A simple approach to recover xbs[k] is to
extract low and high frequency components (i.e., xlp[k] and
xhp[k]) separately and combine them to extract the desired
signal (i.e., xbs[k]). Therefore, a simple approach to BSSF
design is to combine an LPSF in parallel with an HPSF [36].
The block diagram of a simple BSSF is given in Figure
2. Suppose that a BSSF with cutoff frequencies ω1 and ω2

(ω1 < ω2) is desired. By extracting the low and high frequency
components using an LPSF with cutoff frequency ω1 and an
HPSF with cutoff frequency ω2 and combining them, one can
extract a desired signal with frequency components in range
of ω ∈ [0, ω1] ∪ [ω2, 1]. Note that LPSF and HPSF have the
following transfer functions

H lp
n (ejω) =

1

1 + (
sin ω

2

sin
ω1
2

)
2n

Hhp
n (ejω) =

1

1 + (
sin

ω2
2

sin ω
2

)
2n

. (12)

Therefore, the simplest BSSF that we can create has the
frequency response function:

Hbs
n (ejω) =

1

1 + (
sin ω

2

sin
ω1
2

)
2n +

1

1 + (
sin

ω2
2

sin ω
2

)
2n .

The BSSF has a center frequency at ωc =
√
ω1ω2 and its

bandwidth is ω2 − ω1. The quality factor (Q-factor) of the
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Fig. 3. The amplitude response of a simple BSSF with cutoff frequencies
ω1 = 0.2 and ω2 = 0.8 for different values of n.

smoothing filter that shows how fast the roll-off is, is defined
by

Q =
ωc

|ω2 − ω1|
.

If Q < 1, then the BSSF is a wide-band BSSF, and if
Q > 1, it is a narrow-band BSSF. The BSSF attenuates the
signals whose frequencies are in the range ω ∈ (ω1, ω2) and
allows other frequencies to pass. The magnitude responses of a
simple BSSF, Hbs

n (ejω) with cutoff frequencies ω1 = 0.2 and
ω2 = 0.8 are shown in Figure 3. We find that the first order
BSSF shown in Figure 3 does not have cutoff frequencies
at ω1 and ω2. Another drawback is that the simple BSSF
does not have zero gain at center frequency (ωc = 0.4)
and its vicinity. Moreover, its transition band is not narrow.
The problem even becomes worse when we need to design
a BSSF with high Q-factor. These types of BSSF are known
as notch smoothing filters (NSFs). For example, consider a
simple NSF with center frequency ωc = 0.5, ω1 = 0.47
and ω2 = 0.53. The magnitude response plot of this NSF
is shown in Figure 4. There, we find the worst case: its cutoff
frequencies are not exactly the planned-for the desired cutoff
frequencies, the amplitude at the center frequency is not zero
and its transition band is not enough narrow to eliminate the
unwanted frequency components and pass desired frequency
components. Therefore, extracting low and high frequency
components separately and combining them to construct BSSF
is simple but naive and weak. We propose to establish the
conditions for achieving optimal performance, in extracting the
low and high frequency parts simultaneously and considering
the interaction between LPSF and HPSF. In the following
section, we propose an improved optimization-based approach
to BSSF design.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 4. The amplitude response of a simple NSF with cutoff frequencies
ω1 = 0.47 and ω2 = 0.53 for different values of n.

IV. IMPROVED DESIGN OF BAND-STOP SMOOTHING FILTER

In order to construct a BSSF, in the previous section, we
naively combined an LPSF with an HPSF. However, the HPSF
was designed by subtracting the output of LPSF from the
observed signal (see (10)). As a result, its formulation depends
on the LPSF. Therefore, it is not suitable for studying the
interaction between the low-pass and high-pass smoothing
filters. In the following, we propose a new approach to
implement the regularization method (i.e., smoothness priors
or QV regularization) which makes it suited for HPSF design.

To this end, by replacing the n-th order derivative using
dn following (4) and (6), we represent (3) in the following
regularized form:

x̂lp[k] = argmin
xlp[k]

L∑
j=1

(y[j]− xlp[j])2+α2
L∑
j=1

(dn[j] ∗ xlp[j])2 ,

(13)
where {

d1[k] = δ[k]− δ[k + 1]

dn[k] = dn−1[k] ∗ d1[k]

The actual minimization problem (13) is related to the state
model {

dn[k] ∗ xlp[k] = elp[k]

y[k] = xlp[k] + vlp[k]
, (14)

According to (13), it can be realized that the traditional
smoothness priors or QV regularization is an adaptive esti-
mation algorithm which assumes that the state of the system
at a time k evolved from the prior state at previous times
according to the equation (14). The stabilizing kernel used in
the QV regularization dn[k] is chosen to be some differential
operator. It imposes smoothness constraints on the solution.
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Therefore, the obtained filter acts as a low-pass filter. In the
following, we suggest a new state space model for the signal
which the stabilizing kernel u[k], the unit step function, is
chosen to be some integral operation. Using the new state
space model, we propose a modified approach to smoothness
priors which is suited for HPSF design.

A. A new approach to HPSF design

Let us consider the following state space model for the
desired signal: {

bn[k] ∗ xhp[k] = ehp[k]

y[k] = xhp[k] + vhp[k]
, (15)

where {
b1[k] = u[k]

bn[k] = bn−1[k] ∗ b1[k]
.

Choosing u[k] as the stabilizing kernel is equivalent to im-
posing the irregularity constraints on the solution. In the
following, we will see that when the stabilizing kernel u[k]
is used, the obtained filter has a high-pass characteristic.
According to the state space model (15), we propose the
following regularized approach:

x̂hp[k] = argmin
xhp[k]

L∑
j=1

(y[j]− xhp[j])2+β2
L∑
j=1

(bn[j] ∗ xhp[j])2 ,

(16)
where β is the regularization factor. The regularization term
in (16) is expressed with power of the integral of the signal2,
against the regularization term in (3) which was explicitly the
smoothness expressed with power of signal derivatives. (16)
can be expressed in the following matrix notation

x̂hp = argmin
xhp

‖y − xhp‖2 + β2 ‖Bnxhp‖2 , (17)

where Bn is defined as a lower triangular matrix and bn[k] is
truncated to construct the matrix filter Bn. For instance, B1

is defined by

B1 =


1 0 . . . 0

1 1
. . .

...
...

. . . . . . 0
1 . . . 1 1

 ,

which represents a cumulative sum. B2 is defined by

B2 =


1 0 . . . 0

2 1
. . .

...
...

. . . . . . 0
n . . . 2 1

 . (18)

The solution that follows from the minimization of (17) is

x̂hp = (I + β2BT
nBn)−1y.

2In continuous time, we have u(t) ∗ x(t) =
∫ t
−∞ x(τ)dτ and in discrete

time, we have u[k] ∗ x[k] =
∑k

j=−∞ x[j].

The parameter β can be computed in terms of cutoff frequency.
To this purpose, we write the component x̂hp[k] of the vector
xhp in the following convolution form

x̂hp[k] =
(
δ[k] + β2bn[k] ∗ bn[−k]

)� ∗ y[k]. (19)

In the Z-domain, the amplitude response of (19) is

Hhp
n (z) =

1

1 + β2bn(z)bn( 1
z )

=
1

1 +
β2

[(1− z−1)(1− z)]n

.

(20)

Eq. (20) becomes in the Fourier domain

Hhp
n (ejω) =

1

1 + β2(
2 sin

ω

2

)2n

. (21)

By equating (21) to 1/2, the value of β is obtained in terms
of cutoff frequency:

βo = (2 sin
ωc
2

)2n.

Finally, the amplitude response of (20) is expressed as

Hhp
n (z) =

[(1− z−1)(1− z)]n

(2 sin
ωc
2

)2n + [(1− z−1)(1− z)]n

Hhp
n (ejω) =

(2 sin
ω

2
)2n

(2 sin
ωc
2

)2n + (2 sin
ω

2
)2n

. (22)

Comparing (22) and (12), we conclude that the frequency
response of the new regularization model is equivalent to the
HPSF described in the previous section. It acts as an HPSF.
The advantage of the new HPSF is that its model does not
depend on the LPSF model. Therefore, it can be used for
studying the interaction between the LPSF and HPSF when we
combine them to construct a BSSF. In the following section,
the new HPSF is combined with the LPSF for designing the
BSSF.

B. A new model to band-stop smoothing filter design

In order to overcome the drawbacks of the simple paral-
lel approach discussed in Section III, in the following, we
consider the interactions between the LPSF and HPSF. The
proposed method is as follows:

We are interested in the estimation of the signal xbs[k] from
its noisy measurements y[k] in the model (11). Figure 5 depicts
our proposed scheme for BSSF, and the following equations
give its mathematical representation

dn[k] ∗ xlp[k] = elp[k]

bn[k] ∗ xhp[k] = ehp[k]

y[k] = xlp[k] + xhp[k]︸ ︷︷ ︸
xbs[k]

+vbs[k]

This model assumes that the lp and hp part of the signal of
interest are modelled by filtering a white noise. We assume
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1
(1−z−1)n

(1− z−1)n

+

elp[k]

ehp[k]

xlp[k]

xhp[k]

xbs[k]
+

vbs[k]

y[k]
Hbs
n (z)

x̂bs[k]

Fig. 5. The proposed scheme for band-stop smoothing filter design.

that the inputs elp[k] and ehp[k] are each zero-mean white
noise, with

(23)
E
{[

elp[k]
ehp[k]

] [
e∗lp[m] e∗hp[m]

]}
=

[
σ2
lp ρσlpσhp

ρσlpσhp σ2
hp

]
δk,m,

where E{} refers to the expected value operation, σ2
lp and σ2

hp

denote the noises variance and ρ is the noise correlation.
Considering the fact that the system noises can be corre-

lated, we propose to estimate the desired signal x̂bs[k] by
solving the following least-squares optimization problem

x̂lp[k], x̂hp[k] = argmin
xlp[j],xhp[j]

L∑
j=1

(y[j]− xlp[j]− xhp[j])2

+ α2
L∑
j=1

(dn[j] ? xlp[j])
2

+ β2
L∑
j=1

(bn[j] ? xhp[j])
2

+ 2ραβ

L∑
j=1

(dn[j] ? xlp[j]) (bn[j] ? xhp[j]) .

(24)

The first regularization term is used to control the smoothness
of xlp, the second regularization term controls the sharpness
of xhp and the third regularization term is used to control the
interaction between the smoothness of xlp and the sharpness
of xhp.

Equation (24) can be expressed in the following matrix
notation

x̂lp, x̂hp = argmin
xlp,xhp

‖y − xlp − xhp‖2 + α2 ‖Dnxlp‖2

+ β2 ‖Bnxhp‖2 + 2ραβ (Dnxlp)
T

(Bnxhp) ,

(25)

where (·)T denotes the matrix transpose operator. Note that
DT
nBn = BT

nDn = I . Hence, (25) can be expressed as

(26)
x̂lp, x̂hp = argmin

xlp,xhp

‖y − xlp − xhp‖2 + α2 ‖Dnxlp‖2

+ β2 ‖Bnxhp‖2 + 2ραβxTlpxhp.

By setting the derivatives of (26) with respect to xlp and xhp
equal to zero, after some simplifications, we get the following
system of equations for xlp and xhp:{

M11xlp + M12xhp = y

M21xlp + M22xhp = y
, (27)

where 
M11 = I + α2DT

nDn

M12 = M21 = (1 + ραβ) I

M22 = I + β2BT
nBn

Solving the set of equations (27), we find{
x̂lp = [M11M22 −M12M21]

−1
[M22 −M12]y

x̂hp = [M11M22 −M12M21]
−1

[M11 −M21]y

Finally, the desired signal, x̂bs, is obtained as

(28)
x̂bs = x̂lp + x̂hp

= [M11M22 −M12M21]
−1

[M11 + M22

− (M12 + M21)]y.

The only unknown parameters are the regularization factors
α and β. In the following section, the design parameters are
calculated in terms of the BSSF cutoff frequencies.

C. Frequency domain analysis: parameter design based on
cutoff frequencies

The BSSF developed in (28), was derived from a regular-
ized least-squares optimization in form of block-wise matrix
formulation. It can also be stated in terms of a zero-phase,
forward filtering backward smoothing scheme. Therefore, the
regularization factors α and β can be calculated in terms of
the BSSF cutoff frequencies. Any component x̂lp[k], x̂hp[k]
and x̂bs[k] of the vector xlp, xhp and xbs can be written in
the convolution form represented in (29), on the top of the
next page, where

m11[k] = δ[k] + α2dn[−k] ∗ dn[k]

m12[k] = m21[k] = (1 + ραβ)δ[k]

m22[k] = δ[k] + β2bn[−k] ∗ bn[k]

The frequency response of (29) is

Hbs
n (z) =

M11(z) +M22(z)− [M12(z) +M21(z)]

M11(z)M22(z)−M12(z)M21(z)
, (30)

where Mij(z) is the Z-transform of mij [k]:
M11(z) = 1 + α2dn(

1

z
)dn(z)

M12(z) = M21(z) = 1 + ραβ

M22(z) = 1 + β2bn(
1

z
)bn(z)

Equation (30) in Fourier domain becomes

Hbs
n (ejω) =

κ

(αβ)2(1− ρ2) + κ
, (31)
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x̂lp[k] = (m11[k] ∗m22[k]−m12[k] ∗m21[k])

� ∗ (m22[k]−m21[k]) ∗ y[k]

x̂hp[k] = (m11[k] ∗m22[k]−m12[k] ∗m21[k])
� ∗ (m11[k]−m12[k]) ∗ y[k]

x̂bs[k] = (m11[k] ∗m22[k]−m12[k] ∗m21[k])
� ∗ (m11[k] +m22[k]−m21[k]−m12[k]) ∗ y[k]

(29)

where

κ = α2(2 sin
ω

2
)2n − 2ραβ +

β2

(2 sin
ω

2
)2n

.

The magnitude response of the BSSF, (31), has two cutoff
frequencies at ω1 and ω2 which are satisfying |Hbs

n (ejω)|= 1
2 .

Substituting each of these two points into equation (31) results
a system of equations which contains two equations that share
two unknowns α and β:

α2(2 sin
ω1

2
)2n − 2ραβ +

β2

(2 sin ω1

2 )2n
= α2β2(1− ρ2)

α2(2 sin
ω2

2
)2n − 2ραβ +

β2

(2 sin ω2

2 )2n
= α2β2(1− ρ2)

(32)

Subtracting the second equation from the first one, we find

β = α
[
(2 sin

ω1

2
)(2 sin

ω2

2
)
]n

(33)

Substituting (33) in the first equation of (32), the resulting
equation is

(34)α222n[(sin
ω1

2
)2n − 2ρ(sin

ω1

2
sin

ω2

2
)n + (sin

ω2

2
)2n]

= α2β2(1− ρ2)

After some simplifications, we find

βo = 2n

√
(sin ω1

2 )2n − 2ρ(sin ω1

2 sin ω2

2 )n + (sin ω2

2 )2n

1− ρ2
(35)

From (33) and (35), the value of α is obtained as

αo =
βo[

(2 sin ω1

2 )(2 sin ω2

2 )
]n (36)

It means that by setting the value of α and β respectively
to (36) and (35), the proposed optimization approach, i.e.,
(28), acts as a BSSF with cutoff frequencies ω1 and ω2. As
an example, the amplitude response of the new BSSF for
ω1 = 0.2 and ω2 = 0.8, n = 1, 2 and different values
of ρ ∈ (−1, 1) is shown in Figure 6. It shows that the
transition band of the BSSF increases as ρ becomes close to
1. We find that at ρ = 1 − ε ≈ 1 (ε is a small value), the
BSSF has narrower transition band and its gain at ω = ωc is
zero. Therefore, by setting the value of ρ close to 1, a near-
ideal BSSF is obtained. In Figure 6, we set ε to 10−3. The
amplitude response of the BSSF, for ρ = 0.999, ω1 = 0.2,
ω2 = 0.8 and n = 1, 2 is shown in Figure 7. Repeating
our last example, for second order NSF with ωc = 0.5,
ω1 = 0.47, ω2 = 0.53 and different values of ρ, we find that
the frequency response of the improved NSF, shown in Figure

8 is nearly ideal when the value of ρ is sufficiently close to
1. The results of Figure 8 also show that the transition band
of the NSF is related to ρ. In [40], a general approach for
ARMA with exogenous inputs (ARMAX) signals smoothing
with application to variable-Q ARMA smoothing filter design
was proposed. Specially, a narrowband notch smoothing filter
with variable-Q was designed. The NSF proposed in [40]
employs an ARMA model. In Figure 9, we plot the amplitude
response of the NSF proposed in [40] and the first order NSF
in the present paper with cutoff frequencies ω1 = 0.07 and
ω2 = 0.13. We can see from the amplitude responses that the
proposed NSF acts better in the pass band. The NSF proposed
in [40] does not have unit gain in the pass band ω ∈ [0, ω1]
while the proposed NSF has approximately unit gain in both
pass bands, ω ∈ [0, ω1] and ω ∈ [ω2, π]. We also plot the
amplitude response of the first order Butterworth filter and
Kaiser with order 40. Kaiser method has better amplitude
response in its pass-band and stop-band, but compared to the
proposed BSSF, its order is dramatically higher. It is notable
that the design of notch filters is a classic problem in recursive
(IIR) filter design. Especially, a second-order transfer system:

Hn(z) =
1− 2 cos(ω0)z−1 + z−2

1− 2ρ cos(ω0)z−1 + ρ2z−2
(37)

with a pair of zeros on the unit circle and a pair of poles
place inside the unit circle makes a simple and classical
notch filter [41], [43]. However, the classical notch filter
has several drawbacks that has been discussed in [40]. For
avoiding duplication of results presented in [40], we do not
give theoretical derivations or algorithm descriptions that are
easily found in [40]. It has been shown that the approach
presented in [40] is more effective than the classical notch
filter described in [41], [43]. That is why we do not compare
our proposed filter with filters designed using more classical
methods.

Finally, a BPSF with cutoff frequencies ω1 and ω2 can
be obtained by subtracting the BSSF output (28) from the
observed signal (i.e., x̂bp = y − x̂bs).

D. A Causal filter

The designed band-stop smoothing filter is a non-causal
filter as it takes all the measurements into account [see (24)
and (25)]. So it can only be used for off-line applications. In
order to implement it for online applications, in the following,
we propose a causal filter.

From (28), it can be seen that the matrix Υ =
[M11M22 −M12M21]

−1
[M11 +M22 − (M12 +M21)] is a

symmetric positive-definite matrix. Therefore, it has a unique
Cholesky decomposition of the form Υ = LTL, where L is a
lower triangular matrix with real and positive diagonal entries.
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(a) n = 1
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(b) n = 2
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Fig. 6. The amplitude response of the proposed BSSF with cutoff frequencies ω1 = 0.2 and ω2 = 0.8, for different values of ρ a) the first order b) the
second order. In this experiment, we set ε to 10−3.
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1

Fig. 7. The amplitude response of the proposed BSSF with cutoff frequencies
ω1 = 0.2 and ω2 = 0.8, for ρ = 0.999 and n = 1, 2.

Letting J denote the exchange matrix (square matrix with 1’s
on the anti-diagonal), LT is equal to JLJ. Therefore, (28) can
be expressed as

x̂bs = JLJLy,

As a result, we can implement it using forward-backward
filtering scheme with an FIR filter (xfbs = Ly, where the
superscript f stands for forward filter). For more details,
see [44].

0 0.2 0.4 0.6 0.8 1

0
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0.4

0.6

0.8

1

Fig. 8. The amplitude response of the second order NSF with cutoff
frequencies ω1 = 0.47 and ω2 = 0.53, for different values of ρ. The
transition band of the proposed NSF increases as the value of ρ increases.

V. APPLICATION TO ECG DENOISING

In order to evaluate the performance of the proposed
method, we employed it for ECG signal denoising. To this
purpose, we applied the approach on ECG data from Phys-
ioNet. The dataset contains 80 records, originally provided for
the PhysioNet/Computers in Cardiology Challenge 2004 [45].
Each record, extracted from a two-lead, sampling frequency
128 Hz Holter ECG recording, 1 minute in length. In many
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Fig. 9. The amplitude response of the NSF proposed in [40] and the first
order NSF proposed in the present paper with cutoff frequencies ω1 = 0.07
and ω2 = 0.13. The proposed NSF has approximately unit gain in either pass
band. We also plot the amplitude response of the first order Butterworth filter
and Kaiser with order 40.

applications of signal processing such as ECG denoising,
linear time invariant (LTI) filters (e.g., Butterworth filter) are
still the standard choice for ECG system front-ends [46].
Therefore, we also employed a band-stop Butterworth filter for
extracting the ECG signals and compared it with our proposed
method. In the following case studies, the BSSF order is set
to n = 2, and the operators D2 and B2 are as defined in (7)
and (18), respectively. The Butterworth filters were applied to
the data using the filtfilt function in Matlab to have zero-phase
lag.

As a preliminary example, we plot a specific case (record
b01m from PhysioNet/Computers in Cardiology Challenge
2004 [45]) at the top of Figure 10(a). At the bottom of that
figure, we show its spectral representation.

At the top of Figure 10(b), we plot the same ECG, but
corrupted with a synthetic band-limited noise (SNR = −15
dB), generated by the following equation:

vbs(t) =

N−1∑
i=0

ci cos(2πfit+ ψi) (38)

where ci, fi and ψi are respectively, the amplitude, frequency
and phase of the i-th sinusoid. In this example, the frequencies
of the noise were selected in range of fi ∈ (48, 52) Hz in
(38). Therefore, a BSSF with cutoff frequencies 48 and 52
Hz could be used to remove the noise and extract the original
ECG. The results of applying the second order simple BSSF
(the naive BSSF presented in Section III), the second order
zero-phase Butterworth filter and the proposed BSSF (n = 2)
on the noisy ECG as well as their spectral representation are
reported in Figures 10(c)-10(e). The denoised ECG using the
proposed BSSF is visually closer to the true ECG, compared

to the denoised ECG by simple BSSF and zero-phase Butter-
worth filter. The spectral representation of the signals are also
reported which confirms the superiority of the proposed BSSF
visually (see spectrograms in Figure 10). For more details, we
also report the values of NSR defined in (39) obtained by each
method. The NSR obtained by our proposed method is smaller
than other two methods which indicates the superiority of our
proposed BSSF.

For evaluating quantitatively the performance of the differ-
ent BSSFs, we tested them with variable SNR in the range
−20 dB to 20 dB, by controlling the power of additive noise
vbs. The frequency range of the additive noise were selected
such that fi ∈ [46± 4, 54± 4] Hz in (38).

The average and standard deviation of the SNR im-
provement obtained after filtering, is denoted SNRdiff =
SNRout−SNRin and is used as a measure of performance. It
is shown in Figure 11(a). The results, reported in Figure 11(a),
show that the proposed BSSF outperforms the simple BSSF
and zero-phase Butterworth filter. In Figure 11, we also report
the result of the third order zero-phase Butterworth filter. In
this case, also our proposed BSSF (with n = 2) outperforms
the third order Butterworth filter. Other metrics that was used
for evaluating the performance of the proposed method, are a
classical ratio between the power of the reconstruction error
and the power of the original signal (a noise-to-signal ratio
denoted NSR), given by [36], [47]

NSR =

√∑
k (x[k]− x̂[k])

2∑
k x

2[k]
, (39)

and the ratio between the power of the reconstruction error
and the power of noise [36], [47]

imp = −10 log10

∑
k (x̂k − xk)

2∑
k (yk − xk)

2 (dB). (40)

The results of the reconstruction procedures using these met-
rics are reported in Figures 11(b) and 11(c). These metrics
also show that the proposed BSSF outperformed simple BSSF
and zero-phase Butterworth filter. Figure 11(b) shows that the
error of reconstruction for all methods decreases as the SNR
increases (i.e., the reconstruction improvement continues for
all methods). The NSR obtained by the proposed BSSF is
smaller than the NSR obtained by Butterworth BSSF and
simple BSSF which indicates the superiority of the proposed
method. Furthermore, Figure 11(c) shows that the SNR im-
provement obtained by the proposed BSSF is larger than
other two methods for all SNR, which means the proposed
method outperforms Butterworth and simple BSSF in signal
reconstruction.

VI. DISCUSSION AND CONCLUSION

A. Discussion

In this paper, we used the backward difference rule for
implementing the derivative and integral due to its simplicity.
Actually, the implementation of the unit sequence u[k] is
more simple and straightforward than trapezoidal integrator
and other methods. In fact, we have already employed the
Tustin’s or trapezoidal method for improving the smoothness
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(a) ECG record.

0 2 4 6 8
-200

0

200

400

600

2 4 6

Time (secs)

0

20

40

60

F
re

q
u
e
n
c
y
 (

H
z
)

-40

-20

0

20

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

(b) Noisy ECG with SNR = -15
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(c) Naive BSSF of Section III, n = 2
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(d) Zero-phase Band-stop Butterworth filter,
n = 2
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(e) Proposed BSSF, n = 2
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Fig. 10. ECG denoising for record b01m from PhysioNet/Computers in Cardiology Challenge 2004. a) ECG record b) noisy ECG (SNR = -15 dB) c) provided
by second order simple BSSF designed in Section III (NSR = 2.1) d) second order zero-phase band-stop Butterworth filter (NSR = 0.1) e) proposed BSSF
for n = 2 (NSR = 0.02). The spectral representation of the signals is also reported.
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Fig. 11. Mean values of SNRdiff , imp and NSR for ECG reconstruction by simple BSSF, proposed BSSF and zero-phase Butterworth filter, as a function
of the input SNR. The number between braces is the order of the filter.
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Fig. 12. The comparison of the amplitude response of the proposed BSSF
using Tustin and backward difference rule with cutoff frequencies ω1 = 0.47
and ω2 = 0.53 (top left ρ = 0.5, top right panel ρ = .75, bottom left
ρ = 0.9 and bottom right ρ = 0.999). For small values of ρ, the proposed
BSSF using Tustin method has sharper transition band while for large values
of ρ they are close to each other.

priors in our recent paper [38]. In [38], we have shown that
implementing the derivative operator using bilinear transform
(Tustin’s method) improves the smoothness priors method. In
the current paper, we mainly focused on proposing a new
idea to band-stop smoothing filter design. However, we have
included the Tustin’s method and compared it with backward
difference rule. Figure 12 shows the amplitude response of
the proposed BSSF using Tustin and backward difference rule
with cutoff frequencies ω1 = 0.47 and ω2 = 0.53 (top left
ρ = 0.5, top right panel ρ = 0.75, bottom left ρ = 0.9
and bottom right ρ = 0.999). The results show that for small
values of ρ, the proposed BSSF using Tustin’s method has
sharper transition band while for large values of ρ they are
close to each other. It means that for higher values of ρ that the
BSSF has the sharpest frequency transition band, both methods
are close to each other. That is why we chose the backward
difference rule in our paper to implement the BSSF. The first
and second order derivatives are two main basic operations
and blocks in signal filtering/smoothing. In fact, the integer
order differential and integral operators are defined uniquely.
They are local as they consider the values of the neighboring
points to the point of interest. The problem formulation and
algorithms described in this paper could be implemented using
other methods such as fractional order derivative/integral.
The fractional calculus operators are non-local and larger
neighborhoods must be considered in the computation. Thus, it
results in long-term memory effect. In the literature, a plenty of
definitions of the fractional order derivatives [48] can be found:
forward Grunwald-Letnikov (GL), Riemann-Liouville (RL)
fractional derivatives, Fourier domain fractional derivatives.

In a preliminary experiment, the proposed BSSF has been
implemented using fractional calculus and the Fourier domain
fractional derivatives was used to implement the frequency
response of the proposed BSSF. To demonstrate the impact
of fractional order on the shape of the smoothing filter, we
plot the amplitude response of the BSSF at various values of
n in Figure 13. Figure 13 shows that for lower values of n,
the BSSF has a shallow frequency transition band. We will
consider further investigations in future work.

In this paper, we compared the proposed BSSF with
maximally-flat Butterworth BSSF. The reason for choosing the
maximally flat Butterworth filter for comparison is that our
proposed least squares optimization based BSSF design has
also a maximally flat frequency response. But the difference
between them is that our proposed BSSF is directly designed in
time domain while the zero-phase Butterworth is first designed
in frequency domain, following by polynomial root finding,
and finally applying forward filtering backward smoothing
which could be quite involved. Another method that has been
used for digital filter design is based on optimization technique
method [49]. Numerous optimization methods have been de-
veloped based on modern heuristics optimization algorithms:
Simulated Annealing (SA) algorithm, genetic algorithm (GA),
particle swarm optimization (PSO), artificial bee colony and
etc.. However, for optimal filter, designed in the frequency
domain by the optimization methods, the error function and
hence the optimization problem are generally nonconvex with
multiple local optimal points. As a result, while it demands
a large amount of computations, the designed filters need to
be converted into time domain [49]. In the literature, the deep
learning (DL) method has been also used for signal denoising,
e.g. for ECG denoising [50]–[52]. However, in these papers,
even if results seem interesting at first glance, comparison with
the best more classical methods are still missing. Moreover,
one of the advantages of the method we proposed in this
paper is to obtain a closed-form equation relating each cut-
off frequency to one parameter used in the optimization
algorithm: At first glance, such a cut-off frequency control
seems impossible in DL. Anyway, recent theoretical works in
explainable DL introduce the idea of algorithm unrolling [53]
which relates each iteration of an optimization algorithm to
one layer in a deep neural networks. In further work, following
this idea, it seems interesting to investigate how algorithms
we proposed could be implemented in deep neural networks
and compare the performance (accuracy, computational load,
etc.) with respect to more classical implementations. Finally,
the integration of the proposed optimization approach into
advanced control methods, such as those in [54]–[56] and its
sensitivity on the parameters and faults will be investigated in
the future.

B. Conclusion

Quadratic variation (QV) regularization and smoothness pri-
ors are the most commonly used signal denoising techniques.
In this paper, an extension of such algorithms to band-stop
smoothing filters was investigated. We showed that with the
optimization approaches (QV regularization or smoothness
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Fig. 13. The comparison of the amplitude response of the proposed BSSF using fractional calculus for ρ = 0.99. For large values of n, the proposed BSSF
has sharper transition band.

priors), the cutoff frequencies are related to the regularized
parameters and the order can be directly (and easily) controlled
with the number of derivatives. First, a simple (naive) approach
was presented. The simple band-stop smoothing filter can
be made out of a low-pass smoothing filter and a high-
pass smoothing filter by connecting the two smoothing filter
sections in parallel with each other. The simple band-stop
smoothing filter suffers from some shortcomings. Its cutoff
frequencies are not exactly the planned-for the desired cutoff
frequencies, the amplitude at the center frequency is not
exactly zero and its transition band is not enough narrow
to eliminate the unwanted frequency components and pass
desired frequency components. In order to overcome these
problems and further improve the naive approach, we pre-
sented a new approach to band-stop smoothing filter design.
In the proposed approach, we considered a modified model
and investigated the role of noise correlation which represents
the link between two smoothing filter sections. Our results
suggest that the noise correlation increases the steepness of
the role-off and boosts the performance. Moreover, positive
noise correlation is the key to always get the best band-
stop smoothing filter. Specifically, ρ ≈ 1, gives band-stop
smoothing filter with the steepest frequency transition band.
The relationship between the cutoff frequencies of the filter
and the parameters used in the optimization algorithm was
shown in the paper. More precisely, choosing the desired cutoff
frequencies lead to choosing the hyperparameters, i.e., the
weights of the regularization factors.
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