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Abstract

We have long ago, in the framework of the scale relativity theory, derived a
theoretical relation between the mass of the electron and the fine structure constant
[1], which writes to lowest order 8

3α ln(mP/me) = 1 (where mP is the Planck mass).
This relation is improved by taking account of threshold effects on the running
charge and mass at the electron Compton scale, leading to an agreement with the
experimental values at the 10−5 level. Then we suggest the existence of a similar
relation valid for neutrinos, which writes 2α ln(mP/mν) = 1. From this relation, we
theoretically predict a lightest neutrino mass mν = mP exp(−α−1/2) = 0.0214 eV.
The masses of the two heavier neutrinos, 0.0231 eV and 0.0552 eV, can then be
obtained from experimental results of neutrino oscillations.

1 Introduction

The discovery of neutrino oscillations (see Ref. [2] and references therein) proved that
neutrinos are not massless. However, only differences of square masses are known through
these experiments and observations, not the masses themselves.

The current view about the origin of elementary particle masses attributes them to
their Yukawa coupling to the Higgs field. This is based on the fact that the coupling
constants and the masses are equal. However, one may remark that the acquisition of
masses by the W± and Z0 bosons through the spontaneous breaking of the SU(2)×U(1)
electroweak (EW) symmetry leads to an explicit prediction of these masses, while this is
not the case for the fermion masses. One can therefore interpret these facts in the reverse
way, namely, that the fermion masses are determined by a different mechanism and that
they subsequently define the Yukawa couplings with the Higgs field.
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Among the reasons which lead one to suspect that the HIggs / spontaneous symme-
try breaking mechanism is not sufficient to understand fermion masses, there is the huge
difference between the e, µ, τ masses and that of their associated neutrinos, despite their
similar electroweak quantum numbers. Actually, the neutrinos should be precisely mass-
less with the Standard Model [2]. On the other hand, it is remarkable that the masses of
νe, e and u, d quarks are in increasing order while they respectively are subjected to the
(weak), (weak and electromagnetic), then (weak, electromagnetic and strong) forces. This
suggests that the origin of fermion masses could be linked to the gauge fields themselves.

In the theory of scale relativity [3, 4, 5], a geometric interpretation of the nature of
gauge transformations, of gauge fields and their associated charges has been proposed
[1, 6], [5, Chapt. 7]. In this framework, one naturally obtains an universal relation be-
tween couplings (i.e. square of charges) and mass scales ratios with the Planck scale (or
equivalently Compton-length-scale ratios).

Such a relation between the electron to Planck mass ratio and the fine structure
constant has been long ago proposed [1]. In the present paper, we suggest the existence
of a similar relation for neutrinos, which allows us to obtain a theoretical prediction for
the lightest neutrino mass, then to derive the other masses from experimental results of
neutrino oscillations.

2 Mass-charge relation for the electron

2.1 Gauge theories in scale relativity

In the theory of scale-relativity and fractal space-time [3, 4, 5], the geometry of space-
time is generalized to a non-differentiable continuum. This implies its fractality, i.e. its
explicit dependance on the resolution scale (going as far as divergence when the scale
interval tends to 0). In this framework, we add the space-time resolutions (which may
become realized through the measurement resolutions) to the fundamental variables that
characterize in a relative way the state of the coordinate system (in addition to position,
orientation and motion) [7, 3, 4]. Then particles are identified with the geodesics of this
fractal space-time: more specifically, the velocity field V of these geodesics provides a
geometric interpretation of the nature of the wave function (e.g. mV = −i~∇ lnψ in the
simplest case where ψ is solution of a Schrödinger equation) [4, 6, 8, 5].

This has led us to a new interpretation of gauge transformations and gauge fields
[1, 6, 5] in which the variable conjugate to the charge is just the resolution scale. In other
words, charges find their origin, according to Noether’s theorem, in the symmetries of the
space of resolution-scales (internal to the geodesics which are identified to the particle).

As a consequence the wave function of a free electron can be written as:

ψ = ψ0 × ei[(px−Et+σφ)/~+2π α̃(r) ln(λe/r)], (1)
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where α̃(r) is a running coupling, r is a running resolution length-scale and λe = ~/mec
is the Compton scale of the electron. We know that angles φ vary between 0 and 2π, so
that spin differences δσ are universally quantized in units of ~. In the same way, in the
theory of special scale-relativity (SSR) where the Planck length-scale λP is re-interpreted
as a minimal, undepassable scale of resolution, invariant under dilations and contractions
[3], the scale variable is limited as ln(λe/r) ≤ ln(λe/λP), so that the charge is quantized
according to the relation:

α̃ ln
λe
λP

= 1. (2)

We have suggested, since the running occurs up to the Planck scale, that the coupling ap-
pearing in this relation should be the effective electromagnetic coupling of the electroweak
theory, α̃ = 8α/3, where α is the fine structure constant. This mass-coupling relation can
be understood as yielding the mass of the electron from its charge.

2.2 Bare charge 1/2π

The electron charge itself can be derived through its running from its infinite energy value
(i.e. Planck length-scale value in SSR) to the electron energy 0.511 MeV. In the Standard
Model (SM), the value of the charge at infinite energy is divergent. This is no longer the
case in SSR, where an infinite energy corresponds to the finite Planck length-scale (in
similarity with special motion relativity, where an infinite value of energy corresponds to
a finite value v = c of velocity), according to the log-Lorentz relation [3, 4]:

ln
m

me

=
ln(λe/λ)√

1− ln2(λe/λ)/ ln2(λe/λP)
, (3)

where the referernce scale has be taken here to be the electron scale. It is easy to check
in this formula that m → ∞ when λ → λP and that the Planck length λP =

√
~G/c3

becomes, in the SSR framework, a limit scale, unreachable and invariant under dialtions.
We have argued [9, 4, 5] that the infinite energy value (which can be identified with

its “bare” value) of the inverse electromagnetic coupling (including the electroweak factor
3/8) is expected to have the value 4π2. Let us briefly recall the argument.

The force between two charges can be computed as:

F =
δp

δt
, (4)

where δp is the momentum exchanged by the intermediate boson during the interaction
time δt. Since the boson is assumed to be of zero mass and moving at light velocity, the
time interval is δt = r/c, where r is the distance between the two charges.

This force can be decomposed into a radial and an anguler part, F = Fr × Fθφ. As
concerns the radial part of the force, it can be established by describing the exchanged
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boson in terms of an harmonic oscillator, according to the second quantization theory. A
general method making use of the concept of information entropy has been devised by
Finkel [10] for constructing any exact Heisenberg relation between any couple of variables
and to determine the kind of wave function which achieves the limit of the inequality.

In the situation considered here, δx = r is an interval of distance. In this case, the
Finkel method [10] allows one to show that the Heisenberg relation writes r δp ≥ ~/π, and
that the limit ~/π is just reached by the harmonic oscillator distribution. Therefore we
find that the radial part of the momentum variation in the exchange of null mass bosons
over a distance r is given by

δp =
~
πr
. (5)

As regards the angular part of the force, it is naturally given by spherical harmonics
|Y m
l (θ, φ)|2, i.e. in the isotropic case considered here, by

|Y 0
0 (θ, φ)|2 =

1

4π
. (6)

The force created by the exchange of null mass bosons writes

F =
~c
πr2
× 1

4π
=

~c
4π2r2

. (7)

By comparing Eq. (7) with the standard expression of the force written in terms of a
coupling constant, F = α ~c/r2, one finally obtains a “natural” value for the coupling
constant [9]:

α−1∞ = 4π2 = 39.478... (8)

We have shown [4, 9, 5] that the running of the effective electromagnetic coupling in the
electroweak theory, α0(r)

−1 = 8α(r)−1/3 = 5
3
α1(r)

−1 + α2(r)
−1 fairly supports such an

expectation: we obtained α−10∞ = 39.489 ± 0.013 in [5, Sec. 11.1.3.4], which differs from
4π2 by less than 1σ.

The running of this coupling from this value (4π2) at infinite energy scales (i.e. Planck
length-scale in SSR) to low energy scales determines the low energy value of the electric
charge, i.e. of the fine structure constant (this running depends on the whole content of
charged elementary particles). Then its intersection with the running mass fixes the mass
of the electron to its low energy value (see Fig. 2).

Note that this universal value 4π2 of an inverse coupling at infinite energy can also be
combined with the mass-coupling relation Eq. (2) to yield a fundamental mass-scale [9, 5]
given by

ln
mP

mWZ

= 4π2. (9)

This mass-scale is 1.397 × 1017 smaller than the Planck mass, i.e. mWZ = 87.4 GeV [9],
which is typical of the electroweak scale since it is intermediate between the W (80.379
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GeV) and Z boson (91.1876 GeV) masses. Such a relation may therefore help solving
the hierarchy problem (i.e. the large ratio between the GUT scale, which is the Planck
mass-scale in SSR, and the electroweak scale).

Another application of this mass-coupling relation concerns the strong inverse cou-
pling, which can be shown, in the SSR framework, to reach the value 4π2 just at the scale
where it crosses the gravitational inverse coupling [5].

2.3 Lowest order mass-coupling relation

The ratio of Compton lengths between electron and Planck scales can be replaced by the
mass ratio:

ln
λe
λP

= ln
mP

me

. (10)

Therefore, the mass-charge relation we theoretically obtained for the electron [1] reads:

8

3
α ln

mP

me

= 1. (11)

The present recommended values of the fine structure constant and of the electron mass
[11, 2] are

α−1 = 137.035999084(21), me = 0.51099895000(15)× 10−3 GeV, (12)

while the Planck mass determination has been now improved to [11, 2]

mP = 1.220910(29)× 1019 GeV. (13)

These values yield numerically

8

3
α ln

mP

me

= 1.0027, (14)

which differs by less than 0.3 % from the predicted value 1.
It should be remarked that a similar relation was proposed long ago by Rosen [12] in

the framework of a quantum theory of gravitation, with a slightly different and arbitrary
constant 0.362 (‘to be computed from the details of the theory’), instead of the universal
value 3/8 = 0.375 (justified by the electroweak theory), used here. Moreover, the Planck
scale enters in Rosen’s formula through a cut-off linked to quantum gravity, while in
the SSR framework the Planck length-scale is a limit, impassable scale invariant under
dilations which fully justifies the quantization of charge.
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2.4 Account of threshold effects on the running charge

However, this zeroth order calculation does not account for the threshold effects that occur
at the electron scale. The fine structure constant is a large length-scale value measured at
the atom scales. Actually, the electron mass and the electron charge both increase below
the Compton length of the electron λe toward small length-scales (i.e., beyond the electron
mass me toward large mass-scales) because of radiative corrections. Therefore, there is a
smooth transition around the electron Compton-length between the constant large scale
value and the variable small scale running coupling, which is known since Uehling and
Serber first calculation in 1935 to diverge asymptotically only logarithmically (see Fig. 1).
Consequently, the scale at which the asymptotic running coupling reaches the value of
the fine structure constant α differs from λe.

The mass-charge relation is actually an equation relating the running electron coupling
and electron mass in function of the scale r

8

3
α(r) ln

mP

m(r)
= 1, (15)

whose solution is expected to be the electron scale. Therefore, the quantities entering
in this relation are the asymptotic functions, which involve offsets, given by numerical
constants, with respect to the precise electron Compton scale. The asymptotic running
QED coupling is given by [13, 14]

αas(r) = α

{
1 +

2α

3π

[
ln
λe
r
−
(
γ +

5

6

)]}
, (16)

where γ = 0.5772156... is Euler’s constant. This expression means that the asymptotic
running coupling reaches the value of the fine structure constant at a mass scale exp(γ +
5/6) = 4.098 ≈ 4 times the electron mass. This result is quite in agreement with the fact
that the scale dependance of the coupling comes from the e+e− pairs of mass 2me, which
therefore define the center of the transition between the two regimes (logarithmically
scale-dependant at high energies vs constant at low energies). Therefore

αas(r = λe) = α

{
1− 2α

3π

(
γ +

5

6

)}
. (17)

Using this value in the mass-charge relation yields:

8

3
α

{
1− 2α

3π

(
γ +

5

6

)}
ln
mP

me

= 1.00052, (18)

an improvement by a factor ≈ 5 from 2.7× 10−3 to 5.2× 10−4 of the agreement between
the theoretical prediction and the experimental value.
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Figure 1: Behavior of the electron scale-coupling relation around the electron Compton scale,
including the threshold effect (drawn here in terms of length-scale instead of mass-scale). Red
curve: running electromagnetic inverse coupling during the electron-scale transition toward the
inverse fine structure constant α−1 = 137.036. Green line: running scale factor (8/3) ln(r/λP,
which reaches the value of the inverse electromagnetic coupling at the electron scale. Brown
line: asymptotic inverse running coupling α−1as (r) = α−1 + 2

3π

(
ln(r/λe) + γ + 5

6

)
]; it crosses

8
3 ln mP

me
= 137.408 (green horizontal line) at the scale where the running electron mass is assumed

to reach its low energy constant value, m(r) = me (red point, ln(r/λe) = −1/3).

2.5 Account of threshold effects on the running mass

There is also a numerical constant in the expression for the logarithmic divergence of the
running mass [15, 14],

mr(m) = me

{
1 +

3α

2π

(
ln
m

me

+
1

4

)}
. (19)

The value of αas should therefore be taken, no longer at exactly the electron Compton
length λe = ~/mec itself, but at the scale where m = me, i.e. m = me×e−1/4 = 0.7788me,
corresponding to a length-scale lnλ = lnλe + 1/4. One obtains a corrected relation:

8

3
α

{
1− 2α

3π

(
γ +

5

6
+

1

4

)}
ln
mP

me

= 1.00013, (20)

still improved by a factor ≈ 4 and now reaching the 10−4 precision.
However, with the now improved value of the Planck mass, which is the main uncer-

tainty in this calculation (coming in its turn from the badly known Newtonian constant of
gravitation), this result remains far from error bars. One gets δ ln(mP/me) = δmP/mP =
2.4× 10−5, so that with 8α/3 ≈ 1/50, the experimental current uncertainty is 4.6× 10−7,
a value which can be expected to be still improved in the near future.
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2.6 Possible improvement of the running mass contribution

An improvement of this relation can be obtained by realizing that the effective running
mass intervening in the full Lagrangian has a slightly different constant [14] from the 1/4
present in the mere mass renormalization:

mr(m) = me

{
1 +

3α

2π

(
ln
m

me

+
3

8

)}
. (21)

By taking again the value of αas at the scale where mr(m) = me, one obtains a still
improved relation:

8

3
α

{
1− 2α

3π

(
γ +

5

6
+

3

8

)}
ln
mP

me

= 0.999939, (22)

which differs by only 6×10−5 from the expected value 1, thus achieving a new improvement
by a factor ≈ 2 of the agreement with the theoretical prediction.

From this relation one can derive a theoretical expectation for the mass of the electron
from the fine structure constant:

me(pred) = mP exp

[
−3

8
α−1

(
1 +

2α

3π

(
γ +

29

24

))]
= 0.5096 MeV, (23)

which lies within 0.3% of the experimental value me = 0.5110 MeV.

2.7 Next order

A new improvement could be expected by going to the next order in α expansion. By
taking the running EM coupling to two loops [16] and assuming that the correct constant
determining the scale at which m = me is 1/3 (intermediate between the two previous
possible determinations 1/4 and 3/8), we would obtain (see Fig. 1):

8

3
α

[
1−

(
2α

3π
+

α2

2π2

)(
γ +

7

6

)]
ln
mP

me

− 1 = −7× 10−7, (24)

which is of the order of size of the main uncertainty coming from the Planck mass
(8
3
α δmP/mP ≈ 5× 10−7).
This opens the hope that we actually deal with an exact relation and that we just

need to get a correct and precise description of the electron Compton transition between
constant mass and charge at large length-scales to their scale dependance toward small
scales.
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3 Generalization to neutrino masses

As recalled hereabove, the mass-coupling relation obtained for the electron reads to lowest
order (i.e. disregarding small corrections due to threshold effects):

8

3
α ln

mP

me

= 1, (25)

where α = αe is the low energy fine structure constant.
The factor 8/3 comes from the electroweak theory. It results from the fact that the

photon γ, which carries the electromagnetic interaction, is a low energy residual of the
four high energy electroweak bosons from the SU(2)L field (W1, W2, W3) and U(1)Y field
(B). At WZ scale (≈ 90 GeV), these bosons are combined through the Higgs mechanism
into three massive bosons (W± and Z0), this spontaneous symmetry breaking leaving only
the U(1)EM field, carried by the massless photon γ.

As a consequence the electromagnetic coupling, which can be defined as a linear com-
bination of the U(1) (α1) and SU(2) (α2) couplings,

α−10 =
5

8
α−11 +

3

8
α−12 , (26)

is abruptly decreased by a factor 3/8 at the WZ scale, leaving the running fine structure
“constant”

α−1 =
8

3
α−10 =

5

3
α−11 + α−12 . (27)

The running electron mass-charge relation Eq. (25) is therefore just expressed in terms of
this high energy coupling α0(r), i.e. it can be written as

ln
mP

m(r)
=

5

8
α1(r)

−1 +
3

8
α2(r)

−1, (28)

where r is a running length-scale. Extrapolated to low energies, it is solved in terms of
the electron mass and the electron charge [1, 5].

Under its form Eq. (25), this kind of mass-charge relation seems not to be applicable
to the neutrino, which is devoid of electric charge. However, it owns SU(2) and U(1)Y
charges similar to that of the electron (and constitutes a doublet with the left-handed
electron) so that the EW form Eq. (28) can also be meaningful for the neutrino. Namely,
t3 = −1/2 and y = −1 for the left-handed electron, so that Qe = t3 + y/2 = −1 while
t3 = 1/2 and y = −1 for the neutrino, so that Qν = 0.

The electron, having a weak and electric charge, interacts with the 4 bosons. The
neutrino, on the contrary, being electrically neutral, interacts with only the 3 weak bosons,
W± and Z0, but not the γ. We therefore suggest that a multiplicative factor 3/4 should
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Figure 2: Scale-coupling relations in a global diagram ranging from the Planck length-scale
to the Universe length-scale (defined by the cosmological constant [17]). In the SSR theory,
the Planck length-scale is a minimal scale, invariant under dilatations. The natural value of
an inverse coupling at this scale is 4π2 (see text, horizontal black line). The electromagnetic
inverse coupling starts from this value (39.478), runs toward the WZ electroweak scale where
it jumps by a factor 8/3 and reaches the value ≈ 128 (because of the Higgs mechanism leading
to the emergence of the W+,W− and Z0 masses), and then increases due to the effects of the
various elementary particle pairs, up to the electron scale where it acquires its large scale value
137.036 (black dashed thick curve). Four scale-coupling relations, which can be written as
ln(r/λP) = α̃−1, are considered in this diagram. (1) Taking α̃−1 = 4π2 yields the WZ scale
(marked Z in the diagram). (2) With α̃−1 = α−1, one obtains a cosmological scale (U in the
diagram). (3) With α̃−1 = (3/8)α−1, where α is the low energy fine structure constant,one gets
the electron scale. (4) Finally, taking α̃−1 = (1/2)α−1, one obtains a new length-scale that can
be identified with the lightest neutrino Compton-length (nu in the diagram), yielding a predicted
mass of 0.0214 eV.

be applied to the coupling in the above relation, i.e a factor 4/3 to the inverse coupling,
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in order to apply it to the lowest mass neutrino:

ln
mP

m(r)
=

5

6
α1(r)

−1 +
1

2
α2(r)

−1. (29)

Extrapolating to low energies, this expression can be written as 5
6
α1(r)

−1 + 1
2
α2(r)

−1 =
1
2
α(r)−1, which becomes constant beyond the electron Compton scale where we recover

the standard fine structure constant α. This finally results in the following conjectured
mass-coupling relation for the neutrino:

2 α ln
mP

mν

= 1. (30)

This relation allows us to derive a lowest neutrino mass from the fine structure constant
and the Planck mass:

mν1 = mP exp

(
− 1

2α

)
= 1.7499× 10−30 mP = 0.0214 eV. (31)

The uncertainty on this theoretical prediction is difficult to estimate. From the lowest
order relation for the electron, one derives a mass me = mP exp(−3α−1/8) = 0.587 MeV,
which differs by 15 % from the experimental electron mass me = 0.511 MeV. Assuming
a similar uncertainty for the neutrino lowest order relation, one obtains for the smallest
neutrino mass mν = (0.0214± 0.0032) eV.

The two other neutrino masses can now be derived from the experimental results on
neutrino oscillations. From ∆m2

21 = (7.39± 0.20)× 10−5 eV2 and ∆m2
32 = (2.51± 0.03)×

10−3 eV2 [2], one obtains

mν2 = 0.0231 eV, mν3 = 0.0552 eV, (32)

i.e. a mass ordering mν1 ≈ mν2 < mν3 and a total mass of 0.0997 ≈ 0.1 eV. Accounting
for the uncertainties, one finds mν2 = (mν1 + 0.0017) ± 0.0030 eV (always larger than
mν1), mν3 = (0.0552± 0.0013) eV and a total mass (0.100± 0.008) eV.

These values are quite compatible with our current knowledge about neutrinos (in par-
ticular, getting for one of the neutrino masses ≈ 0.05 eV occurs in several scenarios) and
in good agreement with a Majorana origin of the mass which requires 0.016 < Σjmνj <
(0.061− 0.165) eV [2].

4 Conclusion

In this paper, we have recalled the mass-coupling relation we derived for the electron in
the scale-relativity framework [1], α ln(mP/me) = 3/8 to lowest order, and attempted to
improve it by a more complete description of the transition occuring around the electron
Compton scale.
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Then we have suggested the existence of a similar relation for the lightest neutrino,
reading α ln(mP/mν) = 1/2. From this relation, we obtain a theoretical prediction for the
lightest neutrino mass mν = mP exp(−1

2
α−1) = 21.4 meV. This corresponds to an inverse

ratio 2.39× 107 with the electron mass, i.e. to a Compton length λν = ~/mνc = 9.22µm,
of the order of size of a living cell.

The two other neutrino masses can be derived from this mass and from experimental
results of neutrino oscillations. We find mν2 = 23.1 meV and mν3 = 55.2 meV, yielding a
total mass of 0.1 eV, compatible with the current experimental limits.

It will be possible to put this expectation to the test by future neutrino experiments
allowing direct mass measurements. The present upper limit by KATRIN, mν < 1.1 eV
[18], is still ≈ 50 times the mass predicted in the present work. If no neutrino mass signal
is found, the KATRIN sensitivity after 3 years of measurements will be mν < 0.2 eV (90%
CL.), which is closer to our theoretical prediction but still larger.
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