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aDES/ISAS-Service d’études mécaniques et thermiques (SEMT), CEA, Université
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Abstract

Fragility curves which express the failure probability of a structure as func-
tion of a loading intensity measure are nowadays widely used to facilitate the
design and decision making of structures/infrastructures against seismic haz-
ard (and possibly other natural hazards), with analysis procedures specified
by Seismic Probabilistic Risk Assessment, Performance-Based Earthquake
Engineering, and other frameworks. To avoid the use of parametric models
(such as the lognormal model) to estimate fragility curves from a reduced
number of numerical calculations, a methodology based on Support Vector
Machines (SVMs) coupled with an active learning algorithm is proposed in
this paper. In practice, input excitation is reduced to some relevant param-
eters and then SVMs are used for a binary classification of the structural
responses relative to a limit threshold of exceedance. Since the output is not
binary but a real-valued score, a probabilistic interpretation of the output is
exploited to estimate very efficiently fragility curves as score functions or as
functions of classical seismic intensity measures.
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1. Introduction

In Seismic Probabilistic Risk Assessment (SPRA, e.g. [1]) as well as in
Performance-Based Earthquake Engineering (PBEE, e.g. [2, 3]) frameworks,
a key point is the evaluation of fragility curves which express the failure
probability of a structure (or critical components) as a function of a seismic
Intensity Measure (IM) such as the Peak Ground Acceleration (PGA) or
the Pseudo-Spectral Acceleration (PSA). Apart from the use in SPRA and
PBEE frameworks, fragility curves are useful for making decisions regarding
the choice of construction details, to improve the structural performance of
installations under seismic excitations [4, 5, 6, 7] or hurricanes [8]. They are
also used to evaluate the role of the ground motion characteristics (near-fault
type like, broadband, e.g. [7, 9]), of the soil-structure interaction [10] or of
the numerical modeling assumptions [11] etc. Beyond the seismic hazard,
fragility curves are also used for wind hazards [8, 12].

In theory, for complex structures, fragility curves have to be evaluated
empirically based on a large number of mechanical analyses requiring, in most
cases, nonlinear time-history calculations including both the uncertainties
inherent to the system capacity and to the seismic demand, respectively
called epistemic and aleatory uncertainties [1, 13, 14]. Nevertheless, the
prohibitive computational cost induced by most nonlinear mechanical models
requires the development of numerically efficient methods to evaluate such
curves from a limited number of computations.

Following the idea proposed in the early 1980’s in the framework of nu-
clear safety assessment [1], the lognormal parametric model was widely used
in many applications to estimate fragility curves from a limited number
of numerical calculations [4, 5, 6, 9, 10, 13, 15, 16, 17, 18, 19]. Differ-
ent methods can be employed to determine or estimate the parameters of
the lognormal model [15, 16, 20, 21] as well as different model assumptions
[18, 19, 22]. However, the validity of the parametric models is itself ques-
tionable [18, 19, 21, 22, 23].

In practice, as it is very difficult to verify the validity of a parametric
model assumption, the need of a numerically efficient non-parametric-based
methodology (which would be accurate with a limited number of mechanical
analyses) is necessary. One way to achieve this goal is to build a metamodel
(i.e. a surrogate model of the mechanical analysis) which expresses the sta-
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tistical relation between seismic inputs and structural outputs also called
Engineering Demand Parameters (EDP). Various metamodeling strategies
have been proposed recently in the literature based on, for example, response
surfaces [24, 25], kriging [7] and Artificial Neural Networks (ANNs) [26]. In
[8], considering storage tanks subjected to hurricane induced storm surge,
prediction accuracy of three metamodels (SVMs, Random Forest and Logis-
tic Regression) was systematically assessed and compared for various failure
modes and Logistic Regression models were found to be the most accurate
in order to estimate fragility curves.

The goal of this paper is twofold. First, it proposes a simple and efficient
methodology for estimating non-parametric fragility curves that allows to
reduce the number of mechanical numerical simulations by optimizing their
selection. Second, it addresses the question of the best seismic IM indicator
that can be used as the abscissa of the fragility curves and that can be defined
as a simple function of a set of macroscopic IMs. This set includes but is not
limited to PGA and PSA. Although the search for an optimal IM indicator
is not strictly part of a fragility analysis, it is not disconnected from the
first goal in particular in the framework of metamodeling strategies since the
performance of a metamodel depends on the IM used. Consequently, many
researchers have addressed this issue in the context of performance-based
engineering assessments, see e.g. [19, 27, 28, 29, 30, 31]. With the strategy
implemented in this work the two problems can be addressed together since
the SVM output is not binary but a real-valued score (SVM margin) and a
probabilistic interpretation of this score can be introduced to estimate score-
based fragility curves.

Regarding the question of the IM indicators, a complete review of those
proposed in the literature can be found in [19] as well as five optimality crite-
ria (efficiency, practicality, proficiency, sufficiency and hazard computability
successively introduced in [27, 28, 29, 31]). According to these criteria, the
methodology proposed here consists in defining a proficient IM, proficiency
being a composite measure of efficiency and practicality. Indeed, the score
function can be viewed as an efficient IM since a perfect classifier would lead
to a fragility curve in the form of a unit step function when the problem is
linearly separable. Moreover, as it is highly correlated with the EDP, it can
be considered as a practical IM. Hazard compatibility and sufficiency are out
of the scope of this paper.

In contrast to classical learning (passive learning), the active learner se-
lects the most useful numerical experiments to be carried out and added to
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the learning data set. The “learner” chooses the best instances from a given
very large set of unlabeled examples. So, the main question in active learning
is how to choose new numerical experiments to be labeled. Various methods
proposed in active learning by ANNs are presented in [32], which are typi-
cally based on several “learners” [33, 34]. With SVMs, active learning can be
done easily by using only one “learner” because the distance to the separator
hyperplane is a natural criterion for selecting new points to label [35]. A
similar technique using logistic output ANNs can be used by analyzing the
logit of the output. But in this case, given the non-linearity of the ANNs,
the different learnings of the learner may present a strong variability on the
decision boundary.

The recent progress on the simulation of seismic ground motions makes
it possible to propose an active learning-based methodology, which requires
a number of realizations larger than the size of the available real signals
databases (in order to optimize their selection), but small enough to be able
to use complex mechanical models. Various techniques can be used to create
artificial seismic signals (e.g. the review presented in [36] and non-exhaustive
references [23, 37, 38, 39, 40]). In this work, we have chosen to enrich a set of
acceleration records selected in a real ground motion database using magni-
tude and distance criteria. To this end, the parameterized stochastic model of
modulated and filtered white-noise process defined in [41] was implemented.
This model efficiently addresses both temporal and spectral nonstationarities
of seismic signals and has been used in several recent works [21, 42, 43, 44, 45].
The advantage of this model is that its constitutive parameters that charac-
terize its time-frequency envelope can be considered as input parameters of a
metamodel additionnaly with the classical IM parameters (PGA, PSA, etc.).
Indeed, although the links between the Ground Motion Simulation Model’s
(GMSM’s) parameters and the nonlinear structural responses are complex,
intrinsically these parameters contain information that can help to discrim-
inate seismic signals from the point of view of their damaging potential. A
machine learning-based approach allows to capture such unintuitive links.

The methodology proposed to estimate fragility curves consists first of all
in generating a large set of artificial seismic signals and to compute the differ-
ent IM indicators of interest. In practice, this step is not time consuming in
contrast with the nonlinear mechanical calculations. Then, the second step
consists in building a SVM-based classifier by optimally selecting by active
learning the mechanical calculations to perform. A probabilistic interpreta-
tion of the real-valued score given by the classifier is used in a third step to
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estimate score-based fragility curves. The classifier can also be used to pre-
dict the scores and probabilities associated to new input parameters in order
to estimate fragility curves as functions of the classical seismic IMs. These
new input parameters can be the ones of the artifical signals that have not
been selected for the construction of the classifier, or new ones generated by
new simulations of the GMSM, or new ones that come from new real seismic
signals (the procedure proposed in [41, 46] makes it possible to extract the
input parameters of any real signal). Different procedures can be used to
construct empirical fragility curves [3, 21, 23]. Here we propose a method
based on k-means clustering of the IM data [23]. This means that in each
cluster, the probability of failure corresponds to the ratio between the num-
ber of structural responses that exceed the limit threshold and the number
of structural responses belonging to the cluster.

In this paper, the GMSM implemented for this work is briefly presented in
section 2. In order to validate the methodology within a direct Monte Carlo-
based approach, a simple inelastic oscillator is considered. This structural
model is presented in section 2 as well as the IM indicators. Section 3 is
devoted to the presentation of different classification methods and the active
learning algorithm. Section 4 explains how the proposed methodology is used
to estimate fragility curves, using either the score functions or the classical
IM indicators. The conclusion is presented in section 5.

2. Ground Motion Simulation Model, Mechanical Structure Model,
and Intensity Measure Indicators

In this section, the GMSM implemented for this work is briefly presented,
followed by the model of the mechanical structure which is used to illustrate
the methodology, and the choice of the IM indicators selected as inputs of
the classifiers. A discussion is finally proposed about the GMSMs.

2.1. Model of earthquake ground motion

Following [46], a seismic ground motion s(t) with t ∈ [0, T ] is modeled as:

s(t) = q(t,ααα)

[
1

σf (t)

∫ t

−∞
h[t− τ,βββ(τ)]w(τ)dτ

]
, (1)
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where q(t,ααα) is a deterministic, non-negative modulating function that is
defined piecewisely as

q(t,ααα) =


α1t

2/T 2
1 if 0 ≤ t ≤ T1,

α1 if T1 ≤ t ≤ T2,
α1 exp [−α2(t− T2)α3 ] if T ≥ t ≥ T2,

(2)

and that depends on the vector-valued parameter ααα = (α1, α2, α3, T1, T2) ∈
R
5
+. The process inside the squared brackets of Eq. (1) is a filtered white-

noise process of unit variance. w(t) is a white-noise process and h(t,βββ) is
the Impulse Response Function (IRF) of the linear filter that depends on the
vector-valued parameter βββ. σ2

f (t) =
∫ t
−∞ h

2(t − τ,βββ(τ))dτ is the variance of
the process defined by the integral in Eq. (1). In order to achieve spectral
nonstationarity of the ground motion, the parameter βββ is allowed to depend
on the time τ . Following [46], the IRF is of the form:

h[t− τ,βββ(τ)]

=
ωf (τ)√
1− ζ2f

exp [−ζfωf (τ)(t− τ)] sin
[
ωf (τ)

√
1− ζ2f (t− τ)

]
1t≥τ , (3)

where βββ(τ) = [ωf (τ), ζf ], ωf (τ) is the natural frequency (that depends on
the time τ) and ζf ∈ [0, 1] is the (constant) damping ratio. A linear form is
chosen for the frequency: ωf (τ) = ω0 + τ

T
(ωn − ω0). The IRF is, therefore,

parameterized by λλλ = (ω0, ωn, ζf ) ∈ R3
+.

The modulation parameters ααα and the filter parameters λλλ are identified
independently following the procedure proposed in [41, 46] for the Nr = 97
acceleration records selected from the European Strong Motion Database [47]
in the domain 5.5 < M < 6.5 and R < 20km, where M is the magnitude and
R the distance from the epicenter. The identification of the model param-
eters θθθ = (ααα,λλλ) for each of the Nr = 97 acceleration records, gives Nr data
points (θiθiθi)

Nr
i=1 in the parameter space R8

+. The model then allows to generate
artificial signals, thanks to the white-noise. However, these signals would all
have very similar features due to the limited number of real signals consid-
ered to define the GMSM. In order to estimate fragility curves, a second level
of randomness is added in the generation process, coming from the parame-
ters θθθ themselves. The parameters’ probability distribution function can be
estimated using a Gaussian Kernel Density Estimation (KDE) method [48]:

pKDE(θθθ) =
1

Nr

Nr∑
i=1

φH(θθθ − θiθiθi), (4)
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where φH is a Gaussian kernel centered at 0 with covariance matrix H prop-
erly chosen from the data points (θiθiθi)

Nr
i=1 (see [48]). Finally, the simulation of

an artificial ground motion requires three steps:

1. choose an integer i ∈ J1, NrK with a uniform distribution;

2. sample a vector y from a multivariate Gaussian distribution with prob-
ability density function φH, and let θθθ = θiθiθi+y (to be precise: reject the
vector θθθ if it does not belong to R8

+);

3. sample a realization of w(t) and compute the signal with parameters
θθθ = (ααα,λλλ) by Eq. (1).

In this work Ns = 105 artificial seismic ground motions si(t) are generated.

2.2. Model of the mechanical structure

In order to illustrate the methodology, a nonlinear single degree of free-
dom system is considered. Despite its extreme simplicity, it reflects the
essential features of the nonlinear responses of some real structures. In addi-
tion, in a probabilistic context requiring Monte Carlo simulations, it provides
reference results at a reasonable numerical cost. Its equation of motion is:

z̈i(t) + 2βωLżi(t) + fnli (t) = −si(t), i ∈ J1, NsK, (5)

where żi(t) and z̈i(t) are respectively the relative velocity and acceleration of
the unit mass of the system submitted to the ith signal si(t) with null initial
conditions in velocity and displacement. In Eq. (5), β is the damping ratio,
ωL = 2πfL is the circular frequency, and fnli (t) is the nonlinear resisting force.
In this study, fL = 5 Hz, β = 2%, the yield displacement is Y = 5 10−3 m,
and the post-yield stiffness, defining kinematic hardening, is equal to 20% of
the elastic stiffness. The relative displacement z̃i(t) of the Associated Linear
System (ALS), assumed to be known in practice, is governed by the equation:

¨̃zi(t) + 2βωL
˙̃zi(t) + ω2

Lz̃i(t) = −si(t). (6)

Eqs. (5-6) are solved with a finite-difference method and we set:

Zi = maxt∈[0,T ]|zi(t)|, (7)

Li = maxt∈[0,T ]|z̃i(t)|. (8)

7



2.3. Choice of the seismic IM indicators

A complete review of the existing seismic IM indicators can be found
in [19]. The methodology proposed here is intended to take into account
the advantage of using a ground motion parametric model, in considering
its constitutive parameters as input parameters of a metamodel. Thus, if
B = (si(t))i∈J1,NsK is the database of Ns simulated ground motions, we can
consider θiθiθi = (αααi,λλλi) ∈ R8

+ the associated modulating and filter parameters
as inputs. However, they can not be used alone since there is an infinity of
possible realizations of the stochastic process for a set of parameters, due to
the white-noise process. They have to be used additionally with the main
classical IM parameters. Thus, for every signal si(t), we also consider:

1. the Peak Ground Acceleration : PGAi = maxt∈[0,T ] |si(t)| ;

2. the Peak Ground Velocity : Vi = maxt∈[0,T ]

∣∣∣∫ t0 si(τ)dτ
∣∣∣;

3. the Peak Ground Displacement : Di = maxt∈[0,T ]

∣∣∣∫ t0 ∫ τ0 si(u)dudτ
∣∣∣ ;

4. the total energy Ei =
∫ T
0
s2i (τ)dτ (this IM parameter is proportional to

the “Arias Intensity” indicator usually considered);

5. the linear displacement Li. The PSA ω2
LLi is usually considered as

IM indicator, nevertheless, since the variable of interest is a nonlin-
ear displacement, it is more suitable to use linear displacement. This
structure-dependent indicator can be easily evaluated from the signal
si(t) and it improves the performance of the metamodeling strategy
because it is strongly correlated with Zi.

It is worth noting that the use of the classical IM indicators in association
with the ground motion’s ones does not guarantee that it is possible to find
a perfect “meta-indicator”, i.e. a perfect combination of the input indicators
that can predict the failure of the structure with very high accuracy. In
fact, this is not possible because, for a given value of PGA, there is an
infinite number of possible realizations of the ground motion. This also
applies to all IM indicators and this is the main challenge for this type of
problem. Nevertheless, we will see that the proposed methodology allows
efficient estimations of fragility curves with very good precision. So, each
signal si(t) is represented by a vectorXXX?

i = (αααi,λλλi, PGAi, Vi, Di, Ei, Li) ∈ R13
+

in order to predict whether the nonlinear displacement Zi is greater than a
damage state threshold, for example twice the yield displacement Y .
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2.4. Discussion

Different GMSMs can be used to enrich a database of real seismic signals
[23, 36, 37, 38, 39, 40], knowing that there is no consensus regarding the one
which has to be privileged. To the best of the knowledge of the authors, if a
generator is defined from real seismic signals, it is considered as valid if the
statistical characteristics of the artificial signals are close to the ones of the
real signals reduced to some scalar indicators (PGA, L, etc), and this is the
case here. However, the influence of the GMSM is out of the scope of this
work which aims to propose a general methodological framework to find an
“optimal” classifier (or indicator) for a non-prohibitive computational cost,
whatever the structure and the GMSM considered.

3. Binary Classification and Active Learning

In section 3.1, a simple but crucial preprocessing of the data is first ad-
dressed. Indeed, although the results of the comparative study are not shown
here for the sake of brevity, this preprocessing improves the performance of
the classifier. In sections 3.2-3.5, different classification methods and the
active learning methodology are presented. The latter consists in selecting
sequentially n signals si(t) and computing the corresponding displacements
Zi (which is the time-consuming step) in order to build a classifier that will
predict whether the displacement Z of a new signal s(t) exceeds the thresh-
old 2Y . Finally, considering the structure presented in section 2.2, which
allows calculations of N structural responses with a reasonable computa-
tional time, the performances of different classifiers are compared in sections
3.6-3.8. With N � n, this comparison is used to give recommendations on
the values of n that can be considered in practice to estimate the fragility
curves of complex structures (section 3.9).

3.1. Preprocessing of the training data

First of all, recall that Ns = 105 signals have been generated and, for
each of them, the displacement Li of the ALS have been calculated. Signals
with very small or very large values of L are discarded from the database.
Indeed, on the one hand, the signals which produce values of L lower than
the yield displacement Y are not useful, because the structural responses do
not reach the limit threshold 2Y : if Li < Y , then Zi = Li and thus Zi < Y .
This discards 66% of the Ns signals. On the other hand, the very few signals
which produce very large values of L (Li > 6Y ) are also discarded because the
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mechanical model is not realistic beyond that level. This gives a subset I of
the database, composed of N = 33718 signals, such that ∀i ∈ I, Li ∈ [Y, 6Y ].
In addition, a Box-Cox transform is applied to each of the thirteen entries of
XXX?

i = (αααi,λλλi, PGAi, Vi, Di, Ei, Li) ∈ R
13
+ . This nonlinear step is critical for

the accuracy of the classification, especially for linear SVM classifiers. The
Box-Cox transform (parameterized by δ ∈ [0,+∞)) reads:

BCδ(x) =

 xδ − 1

δ
if δ 6= 0,

log(x) if δ = 0.
(9)

The parameter δ is optimized, for each entry, in order to obtain an empirical
distribution as close as possible to the normal law by maximizing the log-
likelihood. Finally, all of the thirteen components are standardized, thus
forming the training database XXX = {X1X1X1, . . . ,XNXNXN} with XiXiXi ∈ R13.

3.2. Simple classifiers

At the most basic level, a binary classifier is a labeling function

l̂ : Rd −→ {−1, 1}
XXX 7−→ l̂(XXX),

(10)

that, given a vector XXX ∈ R
d (corresponding to a seismic signal s(t)), gives

an estimated label l̂. In this work, the true label li of instance XiXiXi is 1 if the
displacement Zi is greater than the damage threshold 2Y , and −1 otherwise:

l = sgn(Z − 2Y ) =

{
1 if Z > 2Y,
−1 otherwise.

(11)

Note that the true label li is not in general a function of the vector XiXiXi, since
it depends on the full signal si(t) when XiXiXi only gives macroscopic measures
of the signal; therefore, a perfect classifier l̂(XiXiXi) may not exist (see section
2.3). One simple choice for a classifier is to look at only one component of
the vector XXX. For example, as the PGA is correlated with the nonlinear
displacement Z, it can be used as a classifier defined by:

l̂PGA(XXX) = sgn(PGA−M), (12)

where M is a threshold to be adjusted. Moving the threshold up results
in less false positives (l̂ = 1 when the real label is l = −1) but more false
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negatives (l̂ = −1 when the real label is l = 1); and moving the threshold
down results in the opposite. There is therefore a choice of M such that the
number of false positives and false negatives is equal. Note that this choice
does not guarantee that the total number of misclassifications is minimal.
Similarly, we can also define a classifier l̂L based on the linear displacement
L, since it is also highly correlated with the nonlinear displacement Z. These
two simple classifiers give a baseline to assess the performance of advanced
classifiers.

3.3. Support Vector Machines

In machine learning, SVMs are supervised learning models used for clas-
sification and regression analysis. In the linear binary classification setting,
given a training data set {X1X1X1, . . . ,XnXnXn} that are vectors in Rd, and their labels
{l1, . . . , ln} in {−1, 1}, the SVM is a hyperplane of Rd that separates the data
by a maximal margin. More generally, SVMs allow one to project the original
training data set {X1X1X1, . . . ,XnXnXn} onto a higher dimensional feature space via a
Mercer kernel operator K. The classifier then associates to each new signal
XXX a score fn(XXX) given by fn(XXX) =

∑n
i=1 ϕiK(XiXiXi,XXX). A new seismic signal

represented by the vector XXX has an estimated label l̂ of 1 if fn(XXX) > 0, −1
otherwise. In a general SVM setting, most of the labeled instances XiXiXi have
an associated coefficient ϕi equal to 0; the few vectorsXiXiXi such that ϕi 6= 0 are
called “support vectors”, hence the name “support vector machine”. This
historical distinction among labeled instances is less relevant in the case of
active learning (see next section), since most of the ϕi are non-zero. In the
linear case, K(XiXiXi,XXX) is the scalar product in R

d, and the score is:

fn(XXX) = WWW TXXX + c, (13)

where WWW ∈ Rd and c ∈ R depend on the coefficients ϕi. Another commonly
used kernel is the Radial Basis Function (RBF) kernel using Gaussian radial
basis functions.

3.4. Active learning : basic principles

In the case of pool-based active learning, we have, in addition to the
labeled set LLL = {X1X1X1, . . . ,XnXnXn}, access to a set of unlabeled samples UUU =
{Xn+1Xn+1Xn+1, . . . ,XNXNXN} (therefore XXX = LLL ∪UUU). We assume that there exists a way
to provide a label for any sample XiXiXi from this set (in our case, running a full
simulation of the physical model using signal si(t)), but the labeling cost is
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high. After labeling a sample, we simply add it to the training set. In order
to improve a classifier it seems intuitive to query labels for samples that
cannot be easily classified. Various querying methods are possible [35, 49].
The method presented here only requires to compute the score fn(XXX) for
the samples in the unlabeled set, then to identify a sample that reaches the
minimum of the absolute value |fn(XXX)|, since a score close to 0 means a high
uncertainty for this sample. The algorithm starts with n = 2 samples with
indices j1 and j2, labeled +1 and −1 (see next section). Recursively, if the
labels of signals j1, . . . , jn are known, it consists in :

1. computing the SVM classifier associated with the labeled set {(Xj1Xj1Xj1 , lj1),
. . . , (XjnXjnXjn , ljn)} ;

2. computing the score fn(XiXiXi) for each unlabeled instance XiXiXi,
i ∈ J1, NK\{j1, . . . , jn} ;

3. identifying the instance with maximum uncertainty for this classifier:

jn+1 = argmin
i∈J1,NK\{j1,...,jn}

|fn(XiXiXi)|, (14)

and computing the corresponding displacement Zjn+1 by running a full
simulation of the mechanical model;

4. adding the instance (Xjn+1
Xjn+1Xjn+1 , ljn+1 = sgn(Zjn+1 − 2Y )) to the labeled set.

No termination criteria are explicitly given here because, in practice, the
limitation regarding the number of training data available is mainly due to
the computational cost of the numerical mechanical calculations. The large
number of simulations carried out here makes it possible to give recommen-
dations on the required number of simulations (section 3.9).

3.5. Active learning : choice of the starting points

The active learner needs two starting points, one on each side of the
threshold. After the preprocessing step, about 17% of the N remaining in-
stances have a displacement greater than the threshold (although this precise
value is usually unknown). It can be tempting to choose, for example, the
signal with the smallest PGA as j1 and the signal with the largest PGA as
j2. However, running simulations with these signals is costly and give a rela-
tively useless information. We prefer to choose the starting points randomly,
which also allows to see how this randomness affects the final performance
of the classifier. As the parameters Li and PGAi of the ith signal are both
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strongly correlated with Zi, it is preferable that the starting points respect
the order for these two variables:

Zj1 < 2Y < Zj2 , Lj1 < Lj2 , and PGAj1 < PGAj2 . (15)

Indeed, if j1 and j2 are such that, for example, Zj1 < 2Y < Zj2 but PGAj1 >
PGAj2 , then the active learner starts by assuming that the PGA and Z
have negative correlation, and it can take many simulations before it “flips”;
in some rare instances the classifier performs extremely poorly for several
hundreds of simulations. Thus, the starting points j1 and j2 are chosen such
that Eq. (15) is satisfied, using empirical quantiles of PGA and L. j1 is
chosen randomly among the instances whose PGA and L are smaller than
their median values (i.e., their 0.5-quantiles q0.5(PGA) and q0.5(L)):

j1 ∈ {i ∈ J1, NK | PGAi < q0.5(PGA) & Li < q0.5(L)} . (16)

It is almost certain that any instance in this set satisfies Zi < 2Y and thus
li = −1. Similarly, j2 is chosen using the 0.9-quantile q0.9(PGA) of PGA and
the 0.9-quantile q0.9(L) of L:

j2 ∈ {i ∈ J1, NK | PGAi > q0.9(PGA) & Li > q0.9(L)} . (17)

In this case, the probability that Zi > 2Y is found to be 97%. So, if Zi < 2Y ,
this signal has to be discarded in order to choose another one.

3.6. Performance checking : ROC curve and PRBP

Two tests of performance are proposed in this section. They are based on
a large set of N nonlinear displacements Z, with N � n and n the number
of instances required by the active learning algorithm to train the classifier.
In practice these tests are not possible (because of the prohibitive cost of the
nonlinear displacements), but the model of mechanical structure described
in section 2.2 makes it possible to compute them here.

The SVM classifier gives an estimated label l̂i to each signal si(t) depend-
ing on its score l̂i = sgn(fn(XiXiXi)). As for the simple classifiers (section 3.2),
the SVM classifier can be defined in terms of a real-valued limit β ∈ R by:

l̂i(β) = sgn(fn(XiXiXi)− β). (18)

If β > 0, then the number of false positives (li = −1 and l̂i = 1) is smaller,
but the number of false negatives (li = 1 and l̂i = −1) is larger, relative to the
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β = 0 case, and the opposite is true if we choose β < 0. Taking all possible
values for β ∈ R defines the Receiver Operating Characteristic (ROC) curve.
The area under the ROC curve is a common measure for the quality of a
binary classifier. The classifier is perfect if there exists a value of β such
that all estimated labels are equal to the true labels; in this case the area
under the curve is equal to 1. Fig. 1 shows one example of active learning,
with ROC curves for different numbers of labeled signals. As expected, the
classifier improves when the labeled set gets larger; and the active learner
becomes better than the simple PGA classifier as soon as n ≥ 10.
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Figure 1: ROC curves for the PGA classifier (black) and for six active learners after n
simulations (n = 5, 10, 20, 50, 100 and 200).

Another metric can be used to measure performance: the Precision/Recall
Breakeven Point (PRBP) [49]. Precision is the percentage of samples a clas-
sifier labels as positive that are really positive. Recall is the percentage of
positive samples that are labeled as positive by the classifier. By altering
the decision threshold on the SVM we can trade precision for recall, until
both are equal, therefore defining the PRBP. In this case the number of false
positives and false negatives are equal. Let us denote by N+ the number of
instances where the displacement Zi is greater than the threshold (on a total
of N signals in the database):

N+ = # {i ∈ J1, NK | li = 1} . (19)

We sort all instances according to their score, i.e. we find a permutation
σ such that fn(XXXσ(1)) ≤ · · · ≤ fn(XXXσ(N)). Then the PRBP is equal to the
proportion of positive instances among the N+ instances with the highest
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score:

PRBP =
# {i ∈ J1, NK | li = 1 & σ(i) > N −N+}

N+

. (20)

This criterium does not depend on the number of true negatives (unlike the
false positive rate, used in the ROC curve). In particular, it is not affected
by the choice of preprocessing of the training data, where all the weak signals
(Li < Y ) are rejected. Both metrics are affected by the choice to discard the
very strong signals (Li > 6Y ), but the effect is negligible in both cases.

3.7. Binary classification results for simple elasto-plastic structures

Considering the simple elasto-plastic structure presented in section 2.2,
performances of different classifiers are compared considering the PRBP, in
order to highlight the effectiveness of the active learning algorithm. More
precisely, we compare different orderings of all signals, since only the order
matters to the PRBP; for instance, the PGA does not give directly a label,
but we can compute the PRBP of the PGA classifier with Eq. (20) using the
permutation σPGA that sorts the PGA of all signals. Thus, we compare:

1. the simple PGA and L classifiers l̂PGA and l̂L. These simple classifiers
are defined with the N = 33718 signals and labels ;

2. ANNs trained with all instances and all labels (i.e. with the N sig-
nals and labels), with either all 13 parameters, or just 4 of them:
(L, PGA, V, ω0) (see section 3.8 for justification of this choice). The
ANNs we use are full-connected Multi Layered Perceptrons (MLPs)
with 2 layers of 26 and 40 neurons for XXX ∈ R4, and two layers of 50 and
64 neurons for XXX ∈ R13. This classifier is considered for completeness
to show the best results we have achieved with the seismic indicators
considered in R

4 and in R
13 with all the N instances;

3. SVMs given by the active learning algorithm (using a limited number
n of instances).

Fig. 2 shows the PRBP of (i) a linear SVM using all thirteen parameters
(in blue), (ii) a linear SVM using only four parameters (L, PGA, V, ω0) (in
red) and (iii) a RBF SVM, using the same four parameters (in yellow), as
functions of the number n of labeled instances. As active learners depend on
the choice of the first two samples, results of Fig. 2 are averaged over twenty
pairs of starting points, the same starting points being used for all three types
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of SVMs. In addtion, Fig. 2 shows the performances of four classifiers built
using all the N signals. These four classifiers are represented as horizontal
lines, since they do not depend on n. Fig. 2 shows that active learning gives a
much better classifier than the standard practice based on a single parameter
(PGA or L). The linear SVM with only four variables has initially the best
performance on average, up to n = 150–200 simulations. The linear SVM
with thirteen variables is better when n ≥ 200. The RBF kernel in R4 appears
to have the best performance with n = 1000, outperforming the ANNs in R

4

using all N labeled instances. RBF SVMs with thirteen parameters seem to
always perform very poorly, and are not represented here. So, in conclusion,
(i) active learners need a minimum of n = 30/40 simulations, otherwise they
can end up worse than using the simpler PGA classifier, (ii) between n = 50
and n = 200 simulations, the linear SVM in R4 is the best choice and (iii) the
RBF kernel seems quite unpredictable for less than n = 1000 simulations (not
shown here), and its performance strongly depends on the starting points,
probably because of over-fitting. This methodology was applied to structures
with different frequencies (not shown here for the sake of brevity) and the
conclusions were similar.
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Figure 2: Performances of three active learning classifiers (averaged over twenty test cases)
as functions of the number n of labeled instances, and comparison with classifiers using
all N = 33718 instances.

3.8. Remark about the dimension reduction

In the linear case the score is equal to the distance to the hyperplane:
fn(XXX) = WWW TXXX+c (Eq. (13)). Therefore, since the thirteen components ofXXX
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are standardized in the preprocessing procedure (see section 3.1), it can be
seen which of them are the most important for the classification by looking
at the values of the components of WWW . Fig. 3 shows that the values of WWW are
roughly the same for the twenty test cases. After n = 1000 simulations, the
coefficients for the PGA and L end up between 3 and 4, the value for V is
around 1 and the value for the signal main frequency ω0 is around −1. The
other nine components of WWW (when working with XXX ∈ R13) are all between
−1 and 1, but are smaller (in absolute value) than these four components.
As seen previously, reducing the dimension from thirteen to four allows for a
faster convergence, although the converged classifier is less precise. Contin-
uing the active learning after n = 1000 simulations changes only marginally
the results; even with XXX ∈ R

13, both the PRBP and the values of WWW stay
roughly the same between n = 1000 and n = 5000 simulations.
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Figure 3: Evolution of the four main components of WWW for the twenty test cases.

3.9. Synthesis and Recommendations

Although the results are not shown here for the sake of brevity, (i) the sim-
ple preprocessing of the data presented in section 3.1 is necessary to improve
the performances of the SVM classifiers especially when they are linear and
(ii) the performances of the SVM classifiers are structure-dependent. The
input parameters in R

4 or in R
13 are indeed more or less well correlated with

the output according to the structure considered. Nevertheless, the proposed
methodology is very general and can be applied to a variety of structures.
The results show that a minimum of n = 100 simulations, selected via an
active learning algorithm (sections 3.4 and 3.5), are necessary to obtain very
precise classifiers. For n = 100 simulations, it is shown that linear SVM
classifiers in R

4 are sufficient. In this case, for the class of structures, the
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seismic scenario and the GMSM considered, the main seismic IM parameters
are the classical ones, i.e. PGA, V , L and ω0. In the next section it is shown
that such a classifier allows good estimations of fragility curves.

4. Fragility Curves

Different procedures can be used to construct non-parametric fragility
curves [3, 21, 23]. Here, they are constructed based on k-means clustering
of the IM data [23]. In a Monte Carlo-based approach this means that in
each cluster, the empirical probability of failure is evaluated by the ratio
between the number of structural responses that exceed the limit threshold
and the number of structural responses belonging to the cluster. With SVM
classifiers which give to each signal si(t) a real-valued score fn(XiXiXi) whose sign
expresses the estimated label, we first need to assign a probability to estimate
fragility curves. In this section we explain how SVMs can be used to estimate
fragility curves, using either the score functions (which can be viewed as an
optimal seismic IM since a perfect classifier would lead to a fragility curve in
the form of a unit step function when the problem is linearly separable) or
IM indicators such as the PGA or the PSA (replaced here by L).

4.1. Fragility curves estimations

The estimation of the score-based fragility curve is based on a probabilis-
tic interpretation of the output of the SVM. The probabilistic interpretation
of the SVM output depends only on the score fn(XXX). For a perfect classifier,
the probability would be 0 if fn(XXX) < 0 and 1 if fn(XXX) > 0; for the SVM
classifiers a logistic function is used in order to get a probablity in (0, 1):

pn(XXX) =
1

1 + exp[−afn(XXX) + b]
, (21)

where a and b are the slope and intercept parameters of the logistic function (b
should be close to 0 if the classifier has no bias, giving a probability of 1/2 to
signals with fn(XXX) ≈ 0). These parameters are estimated by maximizing the
likelihood function from Eq. (21) on the labeled set {(Xj1Xj1Xj1 , lj1), . . . , (XjnXjnXjn , ljn)}.

The estimation of the score-based fragility curve is given by Eq. (21). If
we are interested in more-understandable fragility curve such as PGA-based
fragility curve (or an other IM-based fragility curve), the classifier should first
be used to predict the scores and the associated probabilities by Eq. (21) of
several new input parameters. These new input parameters correspond to
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those which were not selected for the construction of the classifier, or other
ones generated from new simulations of the GMSM. Then, as in a Monte
Carlo-based approach, k-means clustering has to be used on the IM indicator
of interest. In each cluster, the probability of failure is then evaluated by
averaging the probabilities associated to the input parameters belonging to
the cluster.

4.2. Score-based fragility curve

To compare the estimation given by Eq. (21) with the empirical failure
probability of signals si(t), the set of indices {1, . . . , N} of the database XXX is
divided into K groups (I1, . . . , IK) depending on their score fn(XiXiXi), with the
k-means algorithm. Then, the estimated pestk and reference prefk probabilities
are defined in each group by:

pestk = 1
nk

∑
i∈Ik pn(Xi),

prefk = 1
nk

# {i ∈ Ik|li = 1} , with nk = #Ik. (22)

The L2 distance between these two probabilities is given by:

∆L2 =

√√√√ 1

N

K∑
k=1

nk(p
ref
k − pestk )2, with N =

K∑
k=1

nk. (23)

Fig. 4 shows the L2 distance for different classifiers using n = 20, 50, 100,
200, 500 and 1000 labeled instances. The three classifiers (linear SVM in R13,
linear SVM in R

4, and RBF kernels in R
4) are compared considering twenty

pairs of starting points. The solid lines show the average L2 errors, and the
dashed lines show the minimum and maximum errors among all test cases.
The average error goes down from 15% after n = 20 simulations to less than
3% after n = 1000 simulations for the linear SVM in R

13, and from 9% to
less than 2% for the linear SVM in R

4. For RBF kernels (in yellow), the
average error does not decrease as n increases, and ends up around 20% after
n = 1000 simulations.

Fig. 5 shows examples of fragility curves obtained with each method
after n = 1000 simulations. Recall that the logistic functions (in red) are not
fitted using all the real data (in blue), but only the labeled set, i.e. n = 1000
signals. The linear SVM in R

4 has the least errors in terms of probabilities,
although its PRBP is smaller than that of the linear SVM in R

13. The RBF
kernel shows an unintuitive result. Indeed, the probability of failure is not an
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Figure 4: Distance ∆L2 for the three different active learners.

increasing function of the score (Fig. 5c); in particular, signals with a very
negative score still have a 5–10% chance of exceeding the threshold. This
result explains why the ∆L2 error of RBF kernels is so high (Fig. 4), since
we have tried to fit a logistic curve on a non-monotonous function.
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Figure 5: Reference and estimated score-based fragility curves using (a) a linear SVM in
R
13, (b) a linear SVM in R

4 and (c) a RBF SVM in R
4 with n = 1000 labeled instances.

The reason for this major difference between linear and RBF kernels can
be understood if we look at the nonlinear displacement Z as a function of the
score fn(XXX), using both kernels (see Fig. 6). Let us keep in mind that the
RBF classifier at n = 1000 simulations is the most precise of all our active
learners; it has the fewest false positives and false negatives of all (Table 1
in red). The sign of the RBF score is thus an excellent predictor for binary
classification.
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linear kernel fn(XXX) < 0 fn(XXX) > 0
Z > 2Y 1020 4711
Z < 2Y 27175 812

RBF kernel fn(XXX) < 0 fn(XXX) > 0
Z > 2Y 1009 4722
Z < 2Y 27287 700

Table 1: Confusion matrix for linear SVM in R
4 and RBF SVM in R

4 with n = 1000.

Fig. 6 shows that for the linear classifier, the score is a good predictor
of the nonlinear displacement Z, with a monotonous relation between the
two; therefore the probability that Z > 2Y can be well-approximated by
a logistic function of the score. The RBF score is a poor predictor of the
probability of failure, since the relation between the score and the nonlinear
displacement Z is not monotonous. This explains why the ∆L2 errors for
RBF kernels are very high. In Fig. 6, we can see that the weakest signals
(Z = 0.005, just above Y ) have a RBF score between −1 and −0.4. Since
these weak signals are very common in the database, prefk goes rapidly from
0.5 for fRBF

n (XXX) = 0 to almost 0 for fRBF
n (XXX) = −0.5 (Fig. 5c), not because

the number of positive signals changes significantly between fRBF
n (XXX) = −0.5

and fRBF
n (XXX) = 0, but because the number of negative signals is more than

twenty times larger. The linear kernels do not have this problem and have
much lower ∆L2 errors.

ROC curves (Fig. 7) give a further insight into the dilemma between
the two kernels. If we look at the unbiased (i.e. β = 0) classifiers, the
RBF is slightly superior: it has fewer false positives and slightly fewer false
negatives than the linear classifier. However, for a negative limit β (Eq. (18)),
for example β = −0.5, some of the weakest signals end up over the limit
(fRBF

1000 (XXX) > β) and thus have an estimated label of l̂(β) = 1. Since these
weak signals are so common, the false positive rate becomes extremely high.

4.3. PGA-based and L-based fragility curves

In the previous section the score fn(XXX) has been used as the parameter
on the x-axis to build the fragility curves. The method assigns a probability
pn(XXX) to each signal, depending only on a few parameters. If we consider this
probability as a function of four parameters (pn(L, V, PGA, ω0) if XXX ∈ R4),
then any of those parameters can be used to define a posteriori a fragility
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Figure 6: Nonlinear displacment Z as a function of the score given after n = 1000 simu-
lations by (a) the linear SVM in R

4 and (b) the RBF SVM in R
4.
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Figure 7: (a) ROC curves for two SVM classifiers using linear and RBF kernels, with
specific values for the unbiased (i.e. β = 0) classifiers. (b) zoom on the upper-left corner.

curve depending on this parameter, averaging over the other ones:

pn(PGA) = E[pn(XXX)|PGA]. (24)

In practice, to obtain numerically the corresponding estimated and refer-
ence probabilities, we use k-means algorithm, and divide the database into
K groups (I1, . . . , IK) depending on their PGA (resp. on their L), instead
of the score, then compute pestk and prefk using Eq. (22). Figs. 8 and 9 show
two examples of such curves, using PGA or L ; pn(XXX) is computed using a
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linear SVM classifier in R
4 with n = 100 or n = 1000 simulations. In this

case, all twenty test cases are shown in a single figure, since they share a
common x-axis (which is not true when the score is used). The distance
between the reference and estimated curves is small in all cases, even with
n = 100 labeled instances.
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Figure 8: Reference and estimated fragility curves as a function of PGA, using (a) n = 100
and (b) n = 1000 labeled points.
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Figure 9: Reference and estimated fragility curves as a function of L, using (a) n = 100
and (b) n = 1000 labeled points.
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4.4. Trading precision for steepness

The PGA-based and L-based fragility curves (Figs. 8 and 9) are very
close to the reference curves; the distance ∆L2 between the reference and
estimated curves is very small, even smaller than in the case of score-based
fragility curves. In this case, what is the benefit of score-based fragility curves
compared to more-understandable PGA-based curves ? The difference is in
the steepness of the curve. Formally, when we construct a fragility curve, we
choose a projection F : R4 7→ R to use as the x-axis. This projection F (XXX)
can be one of the 4 variables (e.g. the PGA), or the score fn(XXX), which can
be a linear or nonlinear (in the case of RBF kernel) combinaison of the four
variables. We then use the k-means algorithm to make K groups of signals
which are close according to this projection, i.e. signals with the same PGA,
the same L or the same score; then we compute the estimated probability
pestk for each group. Let us assume for a while that the estimation is very
precise, so that pestk = prefk ∀k. In this case, which fragility curve gives the
most information ? To see this, we define:

R(F ) =
1

N

K∑
k=1

nkφ(pestk ) (25)

for some nonnegative-valued function φ. Intuitively, a perfect classifier would
give each signal a probability of 0 or 1, while a classifier which assigns a
probability of 1/2 to many signals is not very useful. Therefore, we want
φ to be positive on (0, 1), equal to 0 for p = 0 and p = 1. We choose the
entropy-like function:

φ(p) = −p ln(p), (26)

so that R(F ) is equal to 0 for a perfect classifier and has higher values for a
useless classifier. Other suitable choices could be φ(p) = p(1 − p) or φ(p) =
1p∈[0.1,0.9]. In the latter case, R(F ) has a clear physical meaning: it is the
proportion of uncertain signals, i.e. signals such that pestk ∈ [0.1, 0.9]. Table
2 shows the value of R(F ) using the entropy version, for different choices of
projection (score, PGA, or L). We can see in this table that the PGA- and
L-based fragility curves are extremely precise, with very low values of ∆L2

(this can also be seen in Figs. 8 and 9), but their entropy is much higher
than the score-based fragility curves.

One surprising fact of Table 2 is that the entropy is smaller at n = 100
compared to n = 1000 in all three cases. This shows that after only n = 100
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projection score PGA L

n = 100 ∆L2 (%) 3.8± 1.6 2.6± 1 2.8± 0.9
entropy (10−2) 5.3± 1.7 12.3± 1.8 12.2± 2

n = 1000 ∆L2 (%) 1.7± 0.6 1.6± 0.3 1.4± 0.4
entropy (10−2) 7.2± 1.2 13.3± 1.5 13.6± 1

Table 2: Precision and entropy of fragility curves using different projections (average and
standard deviation over 20 test cases), for n = 100 or n = 1000 labeled points.

mechanical calculations, all the classifiers tend to slightly overestimate the
steepness, and give fragility curves that are actually steeper than the reality
(and also steeper than the more realistic curves obtained with n = 1000).
Using the other choices of function φ(p) gives the same conclusions: the
proportion of signals with pestk ∈ [0.1, 0.9] is 18.2% if the score is used instead
of 28% for PGA and L. Therefore, the choice of the projection used for a
fragility curve is a trade-off between precision and steepness. Note that the
values of the entropy for different choices of projection can be obtained after
the active learning, and the computationnal cost is very small (mostly the
cost of k-means). As a consequence, this choice can be made a posteriori,
from the probabilities assigned to each signal.

5. Conclusion

This paper proposes an efficient methodology for estimating non-parametric
seismic fragility curves by active learning with a SVM classifier. We have in-
troduced and studied this methodology when aleatory uncertainties have a
predominant contribution in the variability of structural response, that is
to say when the contribution of uncertainties regarding seismic excitation is
much larger than the contribution of uncertainties regarding structural ca-
pacity. In this work, the structure is considered as deterministic and a perfect
classifier, if it exists, would lead to a fragility curve in the form of a unit step
function, i.e. corresponding to a fragility curve “without uncertainty”. That
means the output of this classifier, which is a real-valued score, would be
the best seismic IM indicator to evaluate the damaging potential of the seis-
mic signals, knowing that such a classifier would necessary be both structure
and failure criterion-dependent, with possibly a dependence on the ground
motion characteristics (near-fault type like, broadband, etc).
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The proposed methodology makes it possible to build such a (non per-
fect) classifier. It consists in (i) reducing the input excitation to some relevant
parameters and, given these parameters, (ii) using a SVM for a binary classi-
fication of the structural responses relative to a limit threshold of exceedance.
Selection of the mechanical numerical calculations by active learning dramat-
ically reduces the computational cost of construction of the classifier. The
output of the classifier, the score, is the desired IM indicator which is then in-
terpreted in a probabilistic way to estimate fragility curves as score functions
or as functions of classical seismic IMs.

This work shows that a simple and universal preprocessing of the data
(Box-Cox transformation of the input parameters) makes it possible to use a
simple linear SVM to obtain a very precise classifier after only one hundred
mechanical calculations. Moreover, it shows that the input parameters of
the GMSM can be used additionally to the classical IM parameters to build
the classifier and to improve its performance. For the class of structures
considered, with only four classical seismic parameters (PGA, V , L, ω0), the
score-based fragility curve is very close to the reference curve (obtained with
a direct Monte Carlo-based approach) and steeper than the PGA-based one,
as expected. L-based fragility curves appear to perform about as well as
PGA-based ones in our setting. Advanced SVMs using RBF kernel result
in less classification errors when using one thousand mechanical calculations,
but do not appear well suited to making fragility curves.
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model for california highway bridges. Journal of Bridge Engineering,
6(6):468–481, 2001. 3

[29] Paolo Giovenale, C. Allin Cornell, and Luis Esteva. Comparing the
adequacy of alternative ground motion intensity measures for the esti-
mation of structural responses. Earthquake Engineering & Structural
Dynamics, 33(8):951–979, 2004. 3

[30] Jack W. Baker and C. Allin Cornell. Vector-valued intensity measures
incorporating spectral shape for prediction of structural response. Jour-
nal of Earthquake Engineering, 12(4):534–554, 2008. 3

[31] Jamie E. Padgett, Bryant G. Nielson, and Reginald DesRoches. Selec-
tion of optimal intensity measures in probabilistic seismic demand mod-
els of highway bridge portfolios. Earthquake Engineering & Structural
Dynamics, 37(5):711–725, 2008. 3
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