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ABSTRACT 

The paper deals with the stiffness analysis and stability 

study of equilibrium configurations for dual-triangle tensegrity 

mechanism, which is actuated by adjusting elastic connections 

between the triangle edges. For this mechanism, the torque-

deflection relation was obtained as a function of control inputs 

and geometric parameters. It was proved that the mechanism 

can has either a single or three equilibrium configurations that 

can be both stable and unstable. Corresponding conditions of 

stability were found allowing user to choose control inputs 

ensuring the mechanism controllability. The obtained results are 

confirmed by the simulation examples presented in the paper. 

Keywords: Tensegrity mechanisms, Equilibrium 

configurations, Stability analysis.  

INTRODUCTION  

Many modern robotic applications require new type of 

manipulators that possess high flexibility similar to an elephant 

trunk [1][2]. Such manipulators are usually composed of a 

number of similar segments based on varies tensegrity 

mechanisms, which are assembly of compressive elements and 

tensile elements (cables or springs) held together in equilibrium 

[3][4]. This paper concentrates on the stiffness analysis and 

equilibrium stability study, which are connected by a passive 

joint in the center and two elastic edges on each sides with 

controllable preload.  

Some kinds of the tensegrity mechanisms have been 

already studied carefully in literature [5][6]. In particular, in 

[7][8], there were considered the cable-driven X-shape 

tensegrity structures, where each section was composed of four 

fixed-length rigid bars and two springs. For this mechanism, the 

authors investigated influence on the cable lengths on the 

mechanism equilibrium configurations, which maybe both 

stable and unstable. Special attention was paid to the work 

space and singularities analysis. Another group of related works 

[9] deals with the mechanism composed of two springs and two 

length-changeable bars. The authors analyzed the mechanism 

stiffness using the energy method and demonstrated that the 

stiffness of this mechanism always decreases when it is 

subjected to external loads with the actuators locked, which 

may lead to “buckling”. Some other research in this area [10] 

focus on the three-spring mechanisms, for which the 

equilibrium configurations stability and singularity were 

analyzed. Using these results the authors obtained conditions 

under which the mechanism can work continuously, without the 

“buckling” or “jump” phenomenon. There are also some 

research studying a four-legged parallel platform [11], which is 

based on the compliant tensegrity mechanisms. Here, each leg 

consists of a piston and a spring in series, which allows the 

platform to achieve in the desired position and orientation. The 

authors investigated the loaded equilibrium configurations and 

numerically computed the platform stiffness. However, the 

tensegrity mechanism based on dual-triangles were not studied 

in robotic literature yet. 

This paper focuses on the stiffness analysis of a new 

tensegrity mechanism, which is composed of rigid dual-

triangles connected by a passive joint that is actuated by 

adjusting elastic connections between the remaining triangle 

edges. This structure proved to be very promising for designing 

of multi-section serial chains possessing very high flexibility. 

For this mechanism, we concentrate on the equilibriums 

computing, the stability analysis and the selection of the 

geometric parameters and control inputs allowing to achieve 

the desired configuration while ensuring its stability. The 

results provide a good base of the study of the multi-segment 

manipulators in the future work.  

MECHANISM GEOMETRY AND EQUILIBRIUM 

EQUATION 

Let us consider first a 1-d.o.f. (degree of freedom) 

segment of the total flexible structure to be studied, which 

consists of two rigid triangles connected by a passive joint 

whose rotation is constrained by two linear springs as shown in 

Fig. 1. It is assumed that the mechanism geometry is described 

by the triangle parameters 1 1( , )a b  and 2 2( , )a b , and the 
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mechanism shape is defined by the angle q that can be 

adjusted by means of two control inputs influencing on the 

spring lengths 1L  and 2L . Let us denote the spring lengths in 

the non-stress state as 
0

1L  and 
0

2L ，and the springs stiffness 

coefficients as 1k  and 2k . 
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FIGURE 1 MECHANISM GEOMETRY. 

To find mechanism configuration angle q corresponding to 

given control inputs 
0

1L  and 
0

2L , let us derive the static 

equilibrium equation. The forces 1F , 2F generated by the 

springs can be obtained from Hook’s law as follows. 

0 0

1 1 1 1 2 2 2 2( );     ( )F k L L F k L L     (1) 

where 1L and 2L  are the spring lengths AD , BC  

corresponding to the current value of the angle q . These values 

can be computed from the triangles AOD and BOC  using 

the formulas  

2 2

1 1 1 2 1 2 1

2 2

2 2 1 2 1 2 2

( ) 2 cos( )

( ) 2 cos( )

L c c c c
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where 2 2

1 1 1c a b  ; 2 2

2 2 2c a b  , and the angles 1 , 2   

are expressed via the mechanism parameters as follows 

1 12 q   ; 2 12 q   ; 12 1 1 2 2atan( / ) + atan( / )a b a b   

The torques 1 1 1M F h  , 2 2 2M F h    created by the 

forces 1F , 2F  in the passive joint O can be computed using the 

triangle area relations 1 1 1 2 1sin( )L h c c  , 2 2 1 2 2sin( )L h c c    

of AOD  and BOC , which yield the following expressions  

0

1 1 1 1 1 1 2 1

0

2 2 2 2 2 1 2 2

( ) (1 ( )) sin( )

( ) (1 ( )) sin( )

M q k L L c c

M q k L L c c

 

 

  

  
 (3) 

where the difference in signs is caused by the different 

directions of the torques generated by the forces 1F , 2F  with 

respect to the passive joint. 

Further, taking into account the external torque extM  

applied to the moving platform, the static equilibrium equation 

for the considered mechanism can be written as follows 

1 2( ) ( )+ 0extM q M q M    (4) 

Solving this equation we can get the rotation angle 0q

corresponding to the control inputs
0

1L , 
0

2L and to the external 

torque extM applied to the moving platform. It is clear that this 

equation is highly nonlinear and cannot be solved analytically, 

so it is reasonable to apply the numerical Newton technique, 

which leads to the iterative scheme  

 1 ( ) ( )k k k k

extq q M q M M q     (5) 

where 1 2( ) ( ) ( )M q M q M q  ,  ( )kM q dM q dq  . 

STABILITY ANALYSIS OF THE MECHANISM  

Let us now evaluate the stability of the considered 

mechanism at the equilibriums, which shows its reaction to the 

external disturbances. In general, this property highly depends 

on the equilibrium configuration defined by the angle q, which 

satisfies the equilibrium equation ( ) 0extM q M  . As follows 

from the relevant analysis, the function ( )M q  can be either 

monotonic or non-monotonic one, so the single-segment 

mechanism under study may have multiple stable and unstable 

equilibriums, which are studied in detail below. 

To analyze the mechanism equilibriums, let us consider 

the torque-angle curves 1 2( ) ( ) ( )M q M q M q   defined by Eq. 

3 and presented in Fig. 2. It is clear that for the monotonic 

function ( )M q  with negative derivative (see Fig. 2a) increase 

of the external loading extM  always leads to higher mechanism 

resistance, so the equilibrium is unique and stable. However, in 

the non-monotonic case, while increasing the external loading, 

it is possible to achieve a point where the mechanism does not 

resist any more and suddenly changes its configuration as 

shown in Fig. 2b. It is worth mentioning that similar 

phenomenon can be observed in other robotic mechanisms and 

is known in mechanics as “buckling” [13]. Hence, in the non-

monotonic case, there maybe three solutions of the equilibrium 

equation (two stables and one unstable). 

As follows from the above presented figures, the static 

equilibrium defined by angle q is stable if and only if the 

corresponding derivative ( )M q  is negative. However, taking 

into account possible shapes of the torque-angle curves ( )M q  

that can be either monotonic or with two maximum/minimum  
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FIGURE 2 THE TORQUE-ANGLE CURVES AND EQUILIBRIUMS FOR DIFFERENT COMBINATIONS OF MECHANISM PARAMETERS

points, the considered stability condition can be simplified and 

reduced to the derivative sign verification at the zero point only, 

 
0

0
q

M q


    (6) 

which is easy to verify in practice. It should be noted that here 

the derivative represent the mechanism stiffness for the 

unloaded configuration. 

To compute the desired derivative for any given q , it is 

convenient to represent the function ( )M q  in the following 

way 

 
   

0 0

1 2
1 2 1 1 1 2 2 2

1 1 2 2
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L L
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 (7) 

This allows us to express the mechanism stiffness in general 

case as follows 
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 (8) 

For the special cases, when 0q   and 12q   (or 12q   ), 

the above expression is simplified respectively to  

 

 
  

0 0

1 1 2 2
1 2 12 1 2

12

2
2 2 0 0 12
1 2 1 1 2 2

1

0

2

3

( )
q

k L k L
c c cos k k

sin
c c k

M q
L

L
L k L










 
   

 

 

 

 (9) 

 

  

10 2

0

1
1 2 1 12

12

0 2
2 2 02 12

1 2 2 1 2 1 1

2 2

3

1 1

2 1
2

2

2

(

1

)
q

L
c c k cos

L sin
c c k c c k L

c c

M q
L

L












 
  

 

 
  




 





  (10) 

where   2 2

12 121 21 22 cosL c c c c     

  2 2

1 22 121 212 cos2 2L c c c c    . 

Let us also consider in detail the symmetrical case, for 

which 1 2a a , 1 2b b , 1 2c c , 1 2k k ,
0 0

1 2L L . In this 

case, we can omit some indices and present the torque-angle 

relationship as well as the stiffness expression in forms that are 

more compact  

  0 12

122 cos sin cos sin
2 2

q
M q ck c q L




 
  

 
 (11) 

0 12

122 cos cos cos cos
2 2

( )M q
q

ck c q L



 

 


 


 (12) 

where the control input must satisfy the condition 
00 2L b  , 

which follows from the mechanism geometry (Fig. 1). To 

distinguish the monotonic and non-monotonic cases presented 

in Fig. 2, let us compute the derivative for the unloaded 

equilibrium configuration 0q  ，which after simplification 

can be expressed in the following way  

  0

2 2 02( )
q

M q k b a L b

    (13) 

The latter allows us to present the condition (6) of torque-angle 

curve monotonicity as  
20

2 1
L a

b b

  
      

  (14) 

and separate the parameter plane in two regions as shown in 

Fig. 3a. As follows from this figure, the unloaded equilibrium is 

always stable if a b . Otherwise, to have a stable unloaded 

equilibrium, the control inputs 1 2

o oL L  should be higher than 

certain value 

 
2

2 1 ; 1, 2o

iL b a b i   
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FIGURE 3 STABLE AND UNSTABLE REGIONS OF THE PARAMETER PLANE FOR UNLOADED EQUILIBRIUM 0q  .

The monotonic and non-monotonic cases are also 

illustrated by Fig. 3b, which includes the energy curves 
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( ) ( )

2
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E q k L q L


    

as the function of the rotation angle q. As follows from this 

figure, the energy ( )E q  has either a single minimum 0q   

corresponding to a stable equilibrium, or two symmetrical 

minima 

 

0

2 2
2 arccos

2
e

L b
q
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  (15) 

and a local maximum 0q   corresponding to two stable 

equilibriums and one unstable equilibrium. 

For the symmetrical case, where 
0 0

1 2L L , let us also 

compute the torques (7) at the boundary points 12q   .  

  
12

0

2 2

2 22
2

( )
q

abk
M q L c

b
a

a
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  (16) 

which allows us to decide if the stable equilibriums in the non-

monotonic case are located inside of the interval of feasible 

rotation angles  12 12,q     . It can be proved that the 

relevant condition can be expressed as follows 

 2

0

2

2 2

2 b a
L

b a




   (17) 

and allows user to estimate if the energy minimum is achieved 

inside or on the border of the feasible region of q. A physical 

interpretation of this equation is shown in Fig. 4, where two 

cases are presented. In the first case, the mechanism is unstable 

in the desired configuration q=0 and jumps to one of two 

possible stable configurations 
eq q   that are located inside 

of mechanical limits. In the second case, the mechanism is also 

unstable in the equilibrium configuration q=0 but it jumps to 

one of the mechanical limits 
12q   (because the stable 

configurations are out of the limits). So, a static error appears in 

both cases, where q is equal to either 
12  or 

eq . For this 

reason, it is necessary to avoid in practice the parameters 

combinations producing non-monotonic torque-angle curves. 

It is also useful to investigate the case when the control 

inputs are not equal, i.e. 
0 0

1 2L L , assuming that they produce 

the desired stable configuration with the output angle 0q  . In 

this case, the torque and its derivative can be presented as 

follows. 

  0 012 12

12 1 22 cos sin sin sin
2 2

q q
M q ck c q L L

 


  
   

 

 (18) 

 
0 0 0 0

2 2 1 2 1 22 cos cos sin)
2 2

(
2 2

L L L Lq q
k b a q bM q a
  

   


 


   

(19) 

where all notations are the same as in the above expressions (7) 

and (8). It can be proved from the equilibrium equation that the 

control inputs 
0

1L , 
0

2L  insuring the desired output angle q  

must satisfy the linear relation 

0 012 12

1 2 12sin sin 2 cos sin
2 2

q q
L L c q

 


 
   (20) 

which gives infinite set of control variables  0 0

1 2,L L  that may 

correspond either to stable or unstable equilibrium. To analyze 

sign of the derivative ( )dM q dq , let us consider separately 

two cases: a b  and a b . In the first case, when a b  

and mechanism geometry impose the constraint 2q  , all 

three terms of (19) are negative, so the desired  equilibrium 

configuration q  is stable.  
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FIGURE 4 LOCATION OF STABLE “●” AND UNSTABLE “O” EQUILIBRIUMS WITH RESPECT TO GEOMETRIC BOUNDARY

 12 12,  .

In the second case, when a b , the equilibrium maybe 

either stable or unstable. Corresponding separation curves can 

be found from the conditions ( ) 0M q   and ( ) 0dM q dq  , 

which yield the following system of linear equations with 

respect to 
0

1L , 
0

2L  

 0 0 2 2

1 2

0 012 12

1 2 12

sin cos sin

sin sin 2 c

cos 2 c

os si

os
2 2 2 2

n

2 2 2 2

2 2

a q

q

b q a q b q
L L b a

q
L L

q

c q
 


 

   
        

 

   
    









 

 (21) 

whose solution allows us to present the stability condition in 

the following form 
0

3 31

0

3 32

2 cos sin
2 2

2 cos sin
2 2

L b a a q q

b a b b

L b a a q q

b a b b

  
    

  

  
    

  

 (22) 

It is worth mentioning that in the case of 0q   the above 

expressions give the stability condition Eq. 22.  

Hence, to achieve the desired configuration q , it is 

necessary to apply the control inputs 
0

1L , 
0

2L  satisfying both 

the equilibrium condition Eq. 20 and the stability conditions 

Eq. 22. Corresponding regions of 
0

1L , 
0

2L  are presented in 

Fig. 5, which clearly shows for which combination of inputs the 

desired configuration can be reached geometrically and it is 

statically stable, and where the angle q  is constrained by the 

geometry conditions: 

 

 

2atan ,

2atan ,

q a b a b

q a b a b

 

  
  (23) 

 

CONCLUSION 

The paper presents some results on the stiffness analysis of 

a new type of tensegrity mechanism, which is composed of two 

rigid triangles connected by a passive joint. In contrast to 

conventional cable driven mechanisms, here there are two 

length-controllable elastic edges that can generate internal 

preloading. So, the mechanism can change its equilibrium 

configuration by adjusting the control inputs length. Such 

design is very promising and convenient for constructing a 

multi-section serial structures with high flexibility, which are 

needed in many modern robotic applications.  
For this mechanism, the main attention was paid to a 

symmetrical structure composed of similar triangles. In 

particular, the case of equal control inputs was investigated in 

detail and analytical condition of equilibrium stability was 

obtained, which allows user to select the control inputs 

ensuring the mechanism controllability. The relation between 

the external torque and the deflection was also obtained 

allowing to find loaded equilibriums. It was proved that 

depending on parameters combinations, the actuation can lead 

to either the desired mechanism configuration (corresponding 

to a stable equilibrium) or undesired configuration 

corresponding to shifted stable equilibrium or joint limits. 

Besides, similar analysis has been done for the case of non-

equal control inputs, and equivalent serial structure was 

proposed where the passive joint was replaced by a virtual 

actuated joint with variable stiffness. In future, these results 

will be used for the stiffness analysis of multi-section 

mechanisms that may demonstrate unusual behavior under 

static load and suddenly change its configuration. 
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