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AN ALGORITHM TO RECOGNIZE REGULAR SINGULAR
MAHLER SYSTEMS

COLIN FAVERJON AND MARINA POULET

ABSTRACT. This paper is devoted to the study of the analytic properties of Mahler
systems at 0. We give an effective characterisation of Mahler systems that are
regular singular at 0, that is, systems which are equivalent to constant ones. Similar
characterisations already exist for differential and (¢-)difference systems but they do
not apply in the Mahler case. This work fills in the gap by giving an algorithm which
decides whether or not a Mahler system is regular singular at 0. In particular, it gives
an effective characterisation of Mahler systems to which an analog of Schlesinger’s
density theorem applies.
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1. INTRODUCTION

Let K be the field of Puiseux series with algebraic coefficients i.e. the field
K := U @((zl/d)) .
deN*

For an integer p > 2, we define the operator

¢p: K — K
flz) = f().

The map ¢, naturally extends to matrices with entries in K. A p-Mahler system or,
for short, a Mahler system is a system of the form

(1.1) ¢p (V) = AY, A€ GLp, (Q(2)) -
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2 COLIN FAVERJON AND MARINA POULET

The study of Mahler systems began with the work of Mahler in 1929 [Mah29, Mah30a,
Mah30b]. Nowadays, there is an increased interest in their study because they are
related to many areas such as automata theory or divide-and-conquer algorithms (see
for example [AF17, AF20, Cob68, Dum93, MF80, Nis97, Phil5] for a non-exhaustive
bibliography). In this paper, we focus on the singularity of Mahler systems at 0.
Similarly to differential or (¢-)difference systems, a singularity at 0 of a Mahler system
can be regular. In that case, we say that the Mahler system is regular singular at 0.

Definition 1.1. A p-Mahler system (1.1) is regular singular at 0, or for short regular
singular, if there exists a matrix ¥ € GL,, (K) such that ¢,(¥) 1AV is a constant
matrix.

Note that some authors use the term “Fuchsian” to mean “regular singular”. The
singularities of differential systems and then of (¢-)difference systems have been widely
studied and algorithms have been given. One of the main interests in studying the
regular singular systems is the good analytical properties of their solutions. A linear
differential system is regular singular at z = 0 if and only if all of its solutions have
moderate growth at z = 0, that is, at most a polynomial growth (see for example
[vdPS03, Th. 5.4]). There exist criteria and algorithms to recognize regular singular
differential systems, see for example [Bar95, Birl3, Hil87, HW86, Mos59]. Then, algo-
rithms have been given for other systems such as difference systems and g¢-difference
systems (see for instance [Bar89, BBP08, BP96, Pra83]). In [BBP08], the authors give
a general algorithm for recognizing the regular singularity of linear functional equa-
tions satisfying some general properties. This algorithm applies to many systems such
as differential systems and (g¢-)difference systems. However, this general algorithm
does not apply to Mahler systems for the Mahler operator ¢, does not preserve the
valuation at 0. The aim of this paper is to fill this gap and to present an algorithm
which decides whether or not a Mahler system is regular singular at 0.

A remarkable property of linear differential systems at regular singular points is
that Schlesinger’s density theorem applies: the monodromy group is Zariski-dense in
the Galois group of the system [vdPS03, Cor. 5.2]. An analog of this theorem was
proved for (g-)difference systems also using the regular singular property (see [vdPS97,
Cor. 9.10], [vdPS97, Th. 12.14] or [Sau03]). Recently, the second author has proved an
analog of the Schlesinger’s density theorem for Mahler systems [Pou20] under regular
singular conditions. Thus, the present work gives an algorithm to determine whether
this theorem applies or not.

In general, a Mahler system does not admit a fundamental matrix of solutions in
GL,, (K). To find such a matrix, one has to consider some field extensions of K. Let
H denote the field of Hahn series, that is the set of series of the form ) \ran2",
N cC Q, where {n € N | a, # 0} is a well-ordered set (see [Roq20, Sec. 2]). One
can extend the operator ¢, to H. In [Roq20], Roques proved that for every p-Mahler
system there exists a matrix ¥ € GLy,(#H) such that ¢,(¥)"L AV is a constant matrix.
Moreover, any constant Mahler system has a fundamental matrix of solutions in some
ring containing some determinations of the functions log log(z) and log”(z), a € Q\ {0}
(see [Roql8]). Thus, any Mahler system has a fundamental matrix of solutions of the
form VO, where V¥ is matrix with entries in ‘H and © is a fundamental matrix of
solutions of a constant system. Among them, the regular singular systems are those
for which one can choose ¥ in GL,,(K). The restriction to the subfield K of H is
essential to preserve the analytic properties of the system. In particular, if f € K™
is a column vector, solution of a Mahler system, it follows from Randé’s Theorem
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[BCR13, Ran92] that the entries of f are ramified meromorphic functions inside the
unit disk.

Definition 1.2. Let p > 2 be an integer, and let A, B € GLy, (Q(z)). Let k C # be
a field. The p-Mahler systems

op(Y) =AY and ¢,(Y)=BY
are said to be k-equivalent if there exists a matrix ¥ € GL,, (k) such that
op(V)B = AV .
In that case, the matrix V¥ is called an associated gauge transformation.

This choice of equivalence class ensures that if Y is such that ¢,(Y) = AY then
op (\II_IY) =B (\II_IY). With this definition, the regular singular systems are the
ones that are K-equivalent to constant systems.

A Mahler system is said to be strictly Fuchsian at 0 if the entries of A are analytic
functions at 0 and A(0) € GL;, (Q). In other words, a system is strictly Fuchsian at 0
if 0 is not a singularity of this system. It follows from [Roq18, Prop. 34] that systems
which are strictly Fuchsian at 0 are regular singular at 0. Since the p-Mahler system
associated with some matrix A and the p-Mahler system associated with the matrix
z¥ A for some v € Z are K-equivalent, there exist systems which are regular singular
at 0 but are not strictly Fuchsian at 0. Note that not all Mahler systems are regular
singular at 0. For example, the system

¢2(Y):;<} —ll)Y

associated with the generating series of the Rudin-Shapiro sequence is not regular
singular at 0 (see Section 5). The main result of this paper reads as follows.

Theorem 1.3. Let A € GL,, (Q(2)) and p > 2. There exists an algorithm which
determines whether or not the Mahler system (1.1) is regular singular at 0. This is
done by computing the dimension of an explicit Q-vector space. If the system is reqular
singular at 0 the algorithm computes a constant matrix to which the system is equivalent
and a truncation at an arbitrary order of the Puiseux expansion of an associated gauge
transformation.

In [CDDM18], the authors built an algorithm to decide whether or not a linear
homogeneous Mahler equation has a complete basis of solutions in K. If it is the
case, the associated Mahler system is regular singular at 0 and K-equivalent to the
identity matrix. However, in general one does not know a priori the constant matrix
to which a regular singular Mahler system is K-equivalent. The algorithm mentioned
in Theorem 1.3 not only recognizes regular singular systems but also computes this
constant matrix. From this point of view, the present work is a generalisation of this
result of [CDDM18]. From [Roq20], we know that every Mahler system is H-equivalent
to a constant system but this work is not effective so it does not enable us to recognize
regular singular Mahler systems. Our algorithm has been implemented in Python 3.
Some bounds for the complexity are given in Section 4.

Remark 1.4. Tt is also interesting to look at Mahler systems around other fixed points
of ¢, such as 1 or co. We say that a p-Mahler system is regular singular at 1 (resp.

IThe implemented algorithm is available at the following URL address:
https://hal.archives-ouvertes.fr/hal-03147365/file/AlgoRegularSingularMahlerSyst.py.
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at 0o) if it is L-equivalent to a constant matrix system, where we let L denote the

field of Puiseux series J o Q (((z — 1)Y9)) (resp. Ugen- Q ((27Y/4))). Using the
change of variables z = e* one can test the regular singularity at 1 using the theory
of g-difference linear systems (with ¢ = p). Furthermore, one can know if a system is
regular singular at co by applying Theorem 1.3 to the system with matrix A(1/z).

We present our strategy of proof. Assume that the Mahler system is K-equivalent
to a constant matrix A with an associated gauge transformation ¥ € GL,,(K). We
can assume that A is a Jordan matrix. Thus, using the relation ¢,(V)A = AV, the
columns v, ...,1,, of ¥ are solutions of equations of the form

(1.2) Aidp(;) + €idp(hi_q) = A,

where ¢; € {0,1}, \; is an eigenvalue of A and v, := 0. Thus, to prove that some
Mabhler system is regular singular at 0, we will have to solve equations of the form (1.2).
Section 2 is devoted to the study of the solutions of such equations. We compute some
bounds for their valuations and we find some admissible ramification indexes. Then we
exhibit some linear equations which must be satisfied by the first coefficients of such
solutions. In Section 3 we consider the vector space of solutions of such linear equations.
Then we prove our main theorem (Theorem 3.1) which states that the system is regular
singular at 0 if and only if the dimension of this vector space is precisely m. Then, in
Section 4 we describe the algorithm of Theorem 1.3 and we compute a bound for its
complexity. Section 5 is devoted to the study of some examples. Finally, in Section 6
we discuss some open problems.

Notation. We let Q denote the algebraic closure of Q in C and Q" = Q\ {0}. We
let vo : Q[[2]] = Z N {oo} denote the valuation at z = 0: for f € Q[[z]], vo(f) is the
supremum of the integers v € N such that f belongs to the ideal z?Q][2]]. It extends
uniquely as a valuation from K to Q. We also extend it to the set of matrices with
entries in K where vg(U) denotes the minimum of the valuations at 0 of the entries
of a matrix U. Let f be a polynomial. We let deg(f) denote the degree of f. If
M is a matrix with coefficients in Q(z), and f is the least common multiple of the

denominators of the entries of M, we define M = fM and

deg(M) := max (deg(f), deg (M)) :

Our bounds for the complexity of the algorithms presented here are given in terms
of arithmetical operations in Q. Given f,g : N — R we use the classical Landau
notation f(n) = O(g(n)) if there exists a positive real number x such that f(n) <
rg(n) for every large enough integer n € N. Similarly, we write f(n) = O(g(n)) if
f(n) = O(g(n)log(n)¢) for some ¢ € N. Given a n > 0, we let M(n) denote the
complexity of the product of two polynomials of degree at most n, and MM (n) denote
the complexity of the product of two matrices with at most n rows and n columns.

For the sake of clarity, we shall denote by roman capital letters A, B, ... matrices
whose coefficients are effectively known and by Greek capital letters W, 0, A, ... the
other matrices. While matrices are denoted by capital letters ¥, O, ..., the columns of
these matrices should be denoted by bold lowercase letters 1,0, . ..

2. VECTOR SOLUTIONS OF SOME MAHLER EQUATIONS

We fix some Mahler system (1.1). Consider a vector of Puiseux series g € K™
and some nonzero algebraic number A\ € Q". The aim of this section is to study the



AN ALGORITHM TO RECOGNIZE REGULAR SINGULAR MAHLER SYSTEMS 5}

solutions f € K™ of the system

(2.1) Aop(f) + dp(g) = AF .

Precisely, we compute some integer d such that any solution of this equation belongs to
Q ((zl/d))m assuming that g also belongs to Q ((zl/d))m. Then, this integer d being
fixed, we exhibit an integer v, such that vo(f), the minimum of the valuations of the
entries of the vector f, is at least v4/d, assuming that vy(g) > v4/d. Finally, we prove
that f is uniquely determined by its first coefficients and that these coefficients must
satisfy some linear equations.

2.1. The cyclic vector lemma. In [CDDMI8], the authors developed a method to
solve linear Mahler equations, that is, equations of the form

(2.2) QWY+ 01p(Y) + ©ér(y) + -+ amo10) " (y) — O (y) =0,

with qo, ..., gm-1 € Q(2). Actually, one can use these results to solve linear systems of
the form (2.1). In order to do that, we use a result known as the cyclic vector lemma.
For the sake of completeness, we develop here a proof of this result.

Theorem 2.1 (cyclic vector lemma). Any Mahler system (1.1) is@(z)-equivalent to
a companion matriz system, i.e., there exist a matric P € GL,, (Q(z ) and rational
functions qo, . .., qm—1 € Q(z) such that ¢p(P)AP™ = Acomp where

o 1 0 --- 0
(2.3) Acomp = : 0

0 - - 0 1

qO e ... ... qm—l
Proof. We adapt the proof of Birkhoff given in [Bir30, §1] and of Sauloy given in [Sau00,
Annexe B.2]. In order to build such a matrix P, we build its rows 71,...,7,,. These
rows must be linearly independent and must satisfy
(24) (;Sp (Tz) A= Ti+1 for 1 < ) <m -— 1.
Therefore, we are looking for a vector » € Q(z)™ such that the vectors r; = 7,

Tit1 = ¢p (ri) A, 1 <i < m —1 form a basis of Q(z)™. For this purpose, we choose
20 € Q" not a root of unity such that A (zp),...,A (ng—2> e GL,, (@) (such a z

m—1
exists because the matrix A has finitely many singularities). Since z9,20,..., 25

are distinct, we can choose, by a polynomial interpolation process, a vector r € Q[z]™
such that

r(z0) = el
r(z) = exA(zo)7?
(2.5)
pmfl 1 pm72 -1
r(zg ) = enA(z) ...A (Zo )
where eq,...,e,, is the canonical basis of Q™. Write 71 := r and define recursively

Tit1 = ¢p (r;) A, 1 <i < m — 1. By construction,

Ti(ZO) =€,
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and the matrix P whose rows are the vectors ri,...,rp, satisfies P(zp) = I,,. Thus,
P € GLy, (Q(z)) . Write

(qoa s 7Qm—1) = ¢p<7’m)AP71 .
Then Acomp = ¢p(P)AP™! is a companion matrix of the form (2.3). O

Remark 2.2. If one chooses e, . .., em to be any basis of Q'", instead of the canonical
basis, a different rational interpolation, and another zy in the proof of Theorem 2.1,
one would obtain a different matrix P and different rational functions qg, ..., gm—1-
The different companion matrices obtained after this process, with these different
choices, are Q(z)-equivalent. Actually, any companion matrix system equivalent to
(1.1) can be obtained by this process in the following way. Indeed, let us assume that
P € GL,,(Q(2)) is such that ¢,(P)AP~! is a companion matrix. Let zo be chosen as
in the proof of Theorem 2.1 with the additional assumption that P is well defined and
non-singular at zp. We now let ey, ..., e, denote the rows of P(z), instead of the
canonical basis. Let r denote the first row of P. Since ¢,(P)AP~! is a companion
matrix, r satisfies the interpolation conditions (2.5). Then, let r1,..., 7, be defined
from r and A as in the proof of Theorem 2.1. One easily checks that rq,...,7,, are
the rows of P.

2.2. Ramification index of vector solutions of Mahler systems. In this section,
we study the ramification index of solutions of linear systems of the form (2.1). Let D
denote the set of integers d € {1,...,p"™ — 1} such that p and d are relatively prime.

Lemma 2.3. Let A € GL,, (@(z)) There exists an integer d € D such that for any
AeQ and f e K™ satisfying
(2.6) Aop(F) + dp(g) = AS
with g € Q ((zl/d))m, we have f € Q ((zl/d))m.
In the sequel, we let Dy C D denote the set of all such integers d € D. Note that,

if di,dy € Dy then so does ged(dy, dz). Indeed, if do := ged(d1, d2), then Q((z1/d0)) =
Q=) NQ((z"/%)).

Proof. By Theorem 2.1 there exists P € GLy,(Q(2)) such that Acomp = ¢p(P)AP!
is a companion matrix, that is, a matrix of the form (2.3). We let f, g, A be as in the
lemma. We have

)‘pr(P.f) + (rbp(Pg) - Acompr
so, without loss of generality, we replace Pf with f and Pg with g, which does not
modify the ramification index, and we assume that A = A¢omp. Let f1,..., fr € Kand
g1, gm €Q ((zl/d)) be the entries of f and g respectively. Since A is a companion

matrix, we infer from (2.6) that, for every ¢ € {1,...,m — 1},
(2.7) firr = bplg0) + Adp(fi) = - = Ny, (f1) + DN "8l (gij11).
j=1

To find an integer d satisfying the conclusion of Lemma 2.3 we first assume that g = 0.
Considering the last row of the system (2.6), it follows from (2.7) that f; is a solution
of the Mahler equation

(2.8) Q@Y + Aq1dp(y) + -+ X" g 10 (y) — Ao (y) = 0.
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Let H € R? denote the lower hull of the set of pairs (pi,vo()\iqi)), 0 <i < m, with
gm := 1. Let d € N* be the least common multiple of the denominators of the slopes of
‘H which are coprime with p. If there are no such denominators we write d := 1. Since
vo(Aiq;) = vo(g;), this integer d does not depend on A. From [CDDM18, Prop. 2.19],
d € D and any solution y € K of (2.8) belongs to Q ((2'/?)). Therefore, f1 € Q((1/%)).

We now prove that Lemma 2.3 holds with this integer d. Let g € Q((z'/%))™. From
(2.7), we only have to prove that f; € Q((z%/9)). Considering the last row of the
system (2.6), it follows from (2.7) that

(2.9) Gof1 + A1 dp(f1) + -+ X o190 T (1) = AR (f1) = g0
where gg € @(( 1/d)) is a Q(z)-linear combination of the QSg)(gZ-), i,j € {1,...,m}.

First, we prove that f; € k, where k := UEENQ (( 1/(dp )>> C K. The function
f1 € K can be written as

fi=ho+h
where hy € k and none of the monomials in the Puiseux expansion of h; belong to
k. Then, none of the monomials of the Puiseux expansion of ¢}(h1), j € {0,...,m},

belong to k. Hence, since gg € @((zl/d)) C k, it follows from (2.9) that hy is a
solution of (2.8). From the first part of the proof, hy € Q ((z l/d)). Thus h; = 0
and fi; = hg € k. Let 4y be the smallest integer such that f; € Q (( 1/ dp£0)>>. We

assume by contradiction that £y > 0. From (2.9), f; is a Q(2)-linear combination of go
and the qﬂ,(fl) for j € {1,...,m}, which are all elements of Q <<21/(dpéoil))). Thus,

f1€Q (( 1/(dp*o~ 1)>), which provides a contradiction. As a consequence, £y = 0 and
fieQ ((zl/d)) as wanted. O

Corollary 2.4. Assume that the Mahler system (1.1) is reqular singular at 0 and let
U € GL,,(K) be such that ¢,(¥)"L AV is a constant matriz. Then ¥ belongs to

1 o (@)

Proof. We can assume that ¢,(¥) 1AW is a Jordan matrix. Thus (1.2) holds. Let
d € Dy. Using the notations of (1.2), we prove by induction on i € {1,...,m} that
the columns 1, ..., ,, of ¥ belong to Q ((zl/d))m. From (1.2) we have

Mdp(hy) = Ay .

Thus, it follows from Lemma 2.3 applied with A = XA, f = 1, and g = 0 that
Y, € Q(( 1/d)) . Assume that ¢ > 2 and that ¥, ;| € @((zl/d))m. Then, it

-1
follows from (1.2) and Lemma 2.3 applied with A = X;, f = 9, and g = €2, that
¥ € Q ()" O
One could be tempted to work with the smallest integer d € Dy. However, while

Algorithm 2 below returns an integer d € Dy, there is no guaranty that this integer is
minimal. Thus, in what follows, we shall work with any d € Dy.

2.3. Valuation of vector solutions of Mahler systems. In this subsection, we fix
an integer d € Dy and we consider

(2.10) vq := [dvo(A)/(p — 1)].
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We prove that the valuation of vector solutions of systems of the form (2.1) is at least
vq/d assuming that the valuation of g is at least v4/d.

Lemma 2.5. Let A € Q" and let g € Q((2'/%)™ be a vector of Puiseux series whose
valuation is at least vg/d. The valuation at 0 of a solution f € Q((zY/%)™ of

(2.11) Aop(F) + ¢ulg) = AS

is at least vg/d.
Proof. From (2.11) we have
puo(f) = min (vo(A) + vo(f), pro(g)) := no.

Two cases occur:
o If ng = vo(A) + vo(f), then pvo(f) > vo(A) + vo(f) and
vo(A)
> .
vo(f) = b1
Since dug(f) is an integer we have dvo(f) > v4, as wanted.
e If ng = pvy(g) then vo(f) > vo(g) > v4/d, which concludes.

We then have the following corollary.

Corollary 2.6. Let d € Dy. Suppose that the system (1.1) is reqular singular at 0
and let ¥ € GL,, (Q ((zl/d))) be such that ¢,(¥) LAV is a constant matriz. Then,
vo(¥) > vg/d.

Proof. Let d € Dy. From Corollary 2.4, ¥ € GL,,(Q ((zl/d)). Then, arguing as in the
proof of Corollary 2.4, we prove by induction, using (1.2) and Lemma 2.5, that the
valuations of the columns of U are at least vy/d. O

2.4. Coefficients of vector solutions of Mahler systems. Let d € Dy be an
integer and let v be defined by (2.10). Instead of studying solutions in Q((z/%))™ of
(2.11), we use the operator ¢q : z — 2¢ to work in the field Q((z)) of Laurent series.
To compute the coefficients of such vectors of solutions, we need to inverse the Mahler
system. We write By := ¢g(A)~! and we let

By = Z Byn2"
n>dvo(A~1)

denote the Laurent expansion of By. Let f € Q((z))™ be a solution of the linear
system

)‘f = Bd¢p(f) 5
for some A € Q. By Lemma 2.5, the valuation of f is at least vy. We write f =
Y onswy Fn2"s Fn € Q", and f, =0 if n < . Then, for every n € Z, we have

Moo= Y. Baufs
(k,0) : k+pl=n
Write
(2.12) pa = [—dvo (A7) /(p—1)].
Since AA™! =1,,, we have vg(A) +vo(A™1) < 0 s0 vg < pg. The vectors f, which are

_ 1
taken into account on the right-hand side of the equation have an index ¢ < %(A).
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n—dvg(A~1)
p

Then, if n > ug, we have < n. Thus, f, is uniquely determined by the

vectors f,, ¢ < n. Moreover, the coefficients of the vectors f,, vy < £ < g, are
solutions of some linear equations depending on A and By. Thus, the problem of
determining f can be transformed into a finite dimensional problem. To capture this
we introduce the following map:

ma: Qz)" — QraTraty

v,
Yoo |

Then we define two block matrices
Mg = (Ba,i—pj)va<i,j<ps> and
Na = <Bdﬂ'*m')duo(A*1)+pud§i§ud71, va<j<pd.-

We proceed to check that the map m; and these matrices are well defined. Since
vg < g, g and the matrix M, are well defined. Now, vy < pug if and only if
va < —dvg (A7) /(p—1). In that case, dvg(A™") 4+ prg < vy — 1 and the matrix
Ny is well defined. If vg = g, then dvg(A™1) + prg > v4 — 1 and the matrix Ny shall
be considered as a matrix with no rows.

Lemma 2.7. Let v € Q" and let h € Q((2))™ be a vector of Laurent series whose
valuation is at least vg. If £ € Q((2))™ is a solution of

(2.13) vf +h = Bapp(f),
then,
Ndﬂ'd(f) =0, and Mdﬂ'd(f) = ")/ﬂ'd(f) + ﬂd(h) .

Note that, if ug = vq and Ny is a matrix with no rows, the condition Nyms(f) = 0 is
automatically satisfied for every f. We shall consider that, in that case, the right-kernel
of Ny is the whole space @m(“dﬂjdﬂ).

Proof. From (2.13), we have ¢, (f) = ¢4(A) (vf + h). It follows that puvy (f) >

dvg (A) + min (v () ,vo (h)). Arguing as in the proof of Lemma 2.5, one checks that
the valuation of f is at least v4. Write

f: anzn7 h: Zhnzn7 fnvhne@m7
n>vg n>vg
and f,,, hy, := 0, when n < v4. The series f is a solution of (2.13) if and only if
(2.14) VneZ, vf,+ho= > Baufi.
(k,0) : k+pl=n

When n < vy, the left-hand side is 0. If £ > pug, then n — pl < vo(By) = dvg(A™1).
Thus, we have

1a
Vn < vg, Z Bd,n—pff[ =0.

l=vyq
In particular, Nymq (f) = 0. Now, looking at equation (2.14) for all n, vy < n < pg,
we have, similarly,
Mamq (f) = ma(vf + h) = yma (f) + 7a (h)
as wanted. O
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3. A CHARACTERISATION OF REGULAR SINGULAR MAHLER SYSTEMS AT 0

In Section 2, we studied the vector solutions of Mahler systems of the form (2.1) in
K'™. We computed the possible ramification indexes, a lower bound for the valuation
of such solutions, and proved that their coefficients must satisfy certain linear relations
over Q. Let d € Dy be an integer. The conclusion of Lemma 2.7 invites us to define
the following vector spaces:

x) = () Miker(Ng), X5 :=[)ker(NaMy)
neN neN
and
Xa=%7 (%,
The main result of this paper states as follows.

Theorem 3.1. The three following propositions are equivalent:

(1) The Mahler system (1.1) is reqular singular at 0,
(2) dim X4 > m for some integer d € Dy,
(8) dim Xy = m for every integer d € Dy.

In that case, the system is Q((z'/9))-equivalent to a constant system for every d € Dy.

Thus, to prove that some Mahler system is regular singular at 0, one only needs
to check point (2). Before proving Theorem 3.1 we need two lemmas. The first one
is about the linear independence of vector solutions of linear Mahler systems. The
second one gives an implicit characterisation of the vector space X;.

Lemma 3.2. Let T be a matriz with entries in Q((z)) and D be a constant invertible
matriz such that

(3.1) TD = Byg,(T) .

If the columns of T' are linearly dependent over Q((2)), then they are linearly dependent
over Q.

Proof. Let P be a constant invertible matrix such that the matrix PDP~! is upper
triangular. Then, (TP~1)(PDP™1) = Ba¢,(TP~1). Thus, without loss of generality,
we replace T with TP~! and we assume that D is upper triangular. We can also
assume that the first column of T is nonzero, otherwise the conclusion of the lemma
is immediate. Let a be the least integer such that the first a columns of the matrix
T are linearly dependent over Q((z)). By assumption, a > 2. There exists a column
vector g := (g1,...,9a-1,1,0,...,0)T € Q((2))™, m € N, such that

(3.2) Tg=0.
Mutliplying (3.1) by ¢,(g) one obtains
(3.3) TD¢p(g) = Bagp(T)¢p(g) = Bagp (T'g) = 0.

Since D is upper triangular, the ath coordinate of D¢p(g) is some eigenvalue 7 € Q"
of D and the m — a last coordinates of D¢,(g) are zero. By minimality of a, we infer
from (3.2) and (3.3) that

Déy(g) =ng -

From [Nis97, Thm. 3.1], g € Q™ and Equation (3.2) provides a linear relation over Q
between the columns of T', as wanted. O



AN ALGORITHM TO RECOGNIZE REGULAR SINGULAR MAHLER SYSTEMS 11

Lemma 3.3. Let d € Dy. The vector space X4 is the largest subspace of ker(Ng) on
which My acts as an isomorphism.

Proof. By definition, X4 C ker(Ny) and X is invariant under the action of M. Since
X4 is finite dimensional, to prove that M, acts as an isomorphism on X we only have to
prove that ker(My)NXy = {0}. Let @ € ker(My)NX,4, and let sx s denote the size of M.
Then ker(M3) = ker(M35™). Since z € X4 C M ker(N,), there exists y € ker(N,)
such that £ = Mjy. Then, Mj“y = Mgz = 0. Thus, y € ker(M;T) = ker(M3) and
x = Mjy = 0. It follows that ker(Mg) N X4 = {0}.

Now, let U C ker(Ny) be a vector space on which My acts as an isomorphism. On
the one hand, M} = U C ker(Ny) for every n € N. Thus, U C ker(NgM}) for every
n € N. On the other hand, ¥ = MJU C M} ker(Ngy) for every n € N. Therefore,
U C X4 O

We are now able to prove Theorem 3.1.
Proof of Theorem 3.1. Consider the following proposition :
(4) dim X4 > m for every d € Dj.

We prove that (1) implies (4), that (4) implies (3) and that (2) implies (1). Since (3)
trivially implies (2), this shall prove Theorem 3.1.

Let d € Dy and suppose that the system is regular singular at 0. Then, it follows
from Corollaries 2.4 and 2.6 that there exists ¥ € GL,, (Q 1/d ) such that A :=
¢p(¥) LAV is a constant matrix and vo(¥) > vy/d. Write © := ¢4(¥) and recall that
By := ¢4(A™1). We have

(3.4) OA ! = By, (O) .
We can assume that A~! is a Jordan matrix that is
JSl (71)
ALl — JSQ (72)
Js. (1)
where 71, ...,7, are nonzero algebraic numbers and J, (7;) is the Jordan block of size

s; associated with the eigenvalue ~;. Let
011,...,6015,6021,...,024,,...,0,1,...,0,
denote the columns of © indexed according to the Jordan block decomposition of A~1.
We infer from (3.4) that the columns of O satisfy
(3.5) Yi6in1 = Badp(0i1) 1<i<r
%i0ij+6ij-1 = Bagp(0ij) 1<i<r,2<j<s;.

It follows from (3.5) and Lemma 2.7 applied with g = 6; j_1 that 74(8; ;) € ker(Ng)
and that

(3.6) ded(ei,j) = ’yiﬂd(ei,j) + ﬂd(ei,jfl),

for every 4,75, 1 < i < r, 1 < j < s;, where 0,9 = 0 for every i. Let U denote
the vector space spanned by the vectors 74(0;;), 1 < i < r, 1 < j < s;. Then,
U C ker(Ng). It immediately follows from (3.6) that U is invariant under the left
multiplication by M. We prove that the m vectors m4(0; ;) are linearly independent
over Q. By contradiction, assume that they are not linearly independent. Let k be
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the least integer such that the image by mg of the first £ columns of © are linearly
dependent. There exists a non-zero vector A := (Ay,...,A\p—1,1,0,..., 0)T e Q" such
that ng := vo(OX) > pg. Multiplying (3.4) with A and looking at the valuations on
both sides gives

—dvy (A1)

i) (@A_l)\) > dvg (A_l) + png > T

+p(no — pd) -

Therefore, we have
(3.7) vo (OATIN) > g + p(no — pa) -

Since A~! is upper triangular (because we assumed that it is a Jordan matrix), the
vector A~!X is also of the form (n1,...,7,0,... ,O)T with n, # 0. By (3.7), we have
Vg (@A‘l)\) > pq. Thus, mg (@A‘l)\) = 0. Then, by minimality of k, A~!X = mA.
Thus, vg (@A*IA) = vy (NkOA) = ng. Then, from the inequality (3.7), we have pg >
no, which is a contradiction. Thus, the m vectors m4(; ;) are linearly independent and
they form a basis of U. Now, from (3.6), the representation of the action of My on U
in the basis (74(0;;))1<i<r, 1<j<s; is just the matrix A~1. Since it is nonsingular, My
acts as an isomorphism on 2. Hence, by Lemma 3.3, U C X; and

dimX; > dimY =m.

Thus (1) implies (4).

We let d € Dy and assume that dim X; := n > m. We prove that n = m and that
the Mahler system (1.1) is regular singular at 0. We deduce that (4) implies (3) and
(2) implies (1). Let ey, ..., e, denote a basis of X; and let E' be the m(puqg—vq+1) xn

matrix whose columns are ey,...,e,. Since My acts as an isomorphism on Xg4, there
exists R € GL, (Q) such that
(3.8) MysE = ER.
We make a block decomposition of E into pq — vg + 1 matrices E,,,...,E,, of size
m X n:

E,,

E= :
By,

We then define by induction on j > ug a matrix Ej, setting

(3.9) E; = Z BarE, | R
(k,0) : k+pl=j

where we recall that ) _, Bgn2" = Bg = $q(A)~L. Since j > pg, the matrices Ey
contributing to the right-hand side of the equality have an index ¢ < j. Hence the
matrices E; are well defined. If j < v4, we define Ej := 0. We stress that (3.9) actually
holds for any j € Z :

e by definition, it holds when j > ug4 ;

e when vy < j < g, it follows from the fact that ER = MyFE ;

e when j < vy, it follows from the fact that NyFE = 0, for X4 C ker(Ny).
We now write U := ) J>va E;27. Tt is a matrix with m rows, n columns and entries in
Q((2)). It follows from (3.9) that

(3.10) UR = Byé,(U).
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Since eq,...,e, is a basis of X4, the columns of U are linearly independent over Q.
It follows from Lemma 3.2 that they are linearly independent over Q((z)) so n < m.
Thus n = m and the matrix U is invertible. In particular (4) implies (3). Now, let us
define W := ¢ /4(U). It follows from (3.10) that

(3.11) ¢p(¥) AV = R™! € GL,, (Q) .

Thus, the system is regular singular at 0 and Q((z'/%))-equivalent to a constant system
with matrix R~'. The matrix ¥ is an associated gauge transformation. This proves
that (2) implies (1). O

Let k C Q denote a number field such that A € GL,,(k(z)). Then the vector space
X4 is defined over k and the matrices £ and R in the proof of Theorem 3.1 can be
chosen with their entries in k.

Corollary 3.4. Let k C Q be a number field and A € GLy,(k(2)). The system (1.1) is

reqular singular at 0 if and only if it is k(2)-equivalent to a matriz in GL,,(k), where

- k()

deN

is the field of Puiseux series with coefficients in k.

4. A CONCRETE ALGORITHM FOR THEOREM 1.3

Theorem 3.1 gives the description of a vector space whose dimension characterises
the regular singularity at 0 of a Mahler system (1.1). In this section we show that
the construction of Theorem 3.1 is algorithmic. This provides a proof of Theorem 1.3.
Then, we discuss the complexity of this algorithm.

Remark 4.1. In what follows, when discussing the complexity of our algorithms, we
shall count the number of operations in Q. However, if k C Q is the smallest number
field such that A € GL,,(k(z)), our operations are done with elements of k. To
count the number of operations over the rational numbers, one should add a factor
OM([k : Q])), where [k : Q] is the degree of k over Q, to the bounds we give.

4.1. Description of an algorithm computing a ramification index. To apply
the result of Theorem 3.1, we first have to find an element d in the set Dy. This
integer is related to the valuations at 0 of the entries of a companion matrix Acomp,
Q(z)-equivalent to A, which we obtain thanks to the cyclic vector lemma (Theorem
2.1).

Recall that, from the Cauchy’s Theorem (see [Mar66, Th. 27,2]), the modulus of
any root of a nonzero polynomial

fi=fo+ fiz+ o2+ + frz with  fo,..., fi1 €C, f € C\ {0}

is smaller than 1 plus the max of %, 0 < k < h—1. However, number fields are

not necessarily invariant under the map z — |z|. To stay in the initial base field,
we shall not consider directly the absolute value. Let k denote a number field such
that A € GL,(k(z)). We fix an embedding k < C. We can obtain an upper bound
V(€) € Q for the absolute value of any ¢ € k. Then, for f = fo + fiz +--- + fa2",

fi €k, fn #0, we write
Il == 1+max{V (?) ,0< k< hl} > 1+max{‘;k
h

h

,O§k§h1}>L
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if h > 1 and || f|| = 2 otherwise. Hence, | f|| € Q is greater than the modulus of every
root of f. We assume that V() is computable in O(1) for any & € k so that ||f|| is
computable in O(deg(f)).

The following algorithm takes a Mahler system as input, computes a companion
matrix Acomp such that the systems associated with A and Acomp, are Q(2)-equivalent,
and returns the valuations of the last row of this companion matrix.

Algorithm 1: Find the valuation of the entries of the last row of Acomp

Input: A € GLy, (Q(2)), p € N>o.

Output: The valuations of the last row of a companion matrix
Q(2)-equivalent to A.

Compute f the lem of the denominators of the entries of A.

Write A = fA € GL,, (Q[2]).

Consider zp := max (Hf”, I det(ﬁ)H).

Compute a solution r» € Q[z]™ of (2.5) by Newton interpolation.
Let P be the matrix whose rows are ri :=7, rj11 1= ¢p(r;)A, 1 <i<m—1.
return the valuation of the entries of ¢,(r.,)AP™L.

It is clear, from the proof of Theorem 2.1, that the matrix (;SI,(P)AP_1 is a companion
matrix and that its last row is gbp(rm)AP_l. Now, the following algorithm finds an
element of Dy — though not necessarily the smallest— as it was done in the proof of
Lemma 2.3.

Algorithm 2: Find some integer d € Dy

Input: A € GLy, (Q(2)), p € N>a.

Output: An integer d € Dy

Compute (v, ..., vn—1) the valuations of the last row of a companion matrix
Q(2)-equivalent to A, with Algorithm 1.

Compute the lower hull H of the set of pairs (pi, vi), 0 <i < m, with v, := 0.

Compute the set S of denominators of the slopes of H which are coprime with
p.

return lem(S).

We compute an upper bound for the complexity of Algorithm 2. Let us first recall
some notations and results. Given a n > 0, we let M(n) denote the complexity of the
product of two polynomials of degree at most n, and MM(n) denote the complexity of
the product of two matrices with at most n rows and n columns. Let C' € M,, (@[z])
with det(C) # 0 and let § := deg(C). The complexity of computing

e the determinant of C'is O <MM(m)M(6) (log(m))2), see [Sto03];

e the product vC~1 is O (MM(m)M(§)log(m)log(s)), assuming that we know
some point at which C is invertible and that the degree of v € Q[2]™ is at most
J, see [Sto03, Cor. 16];

e the inverse of C is O (m*M(md)log(md)), see [ZLS15].

Proposition 4.2. The complextiy of Algorithm 2 is
O (MM(m)log(m)M (u)log(u)) with wu:= (m+ deg(A))p™.

Proof. We start by computing an upper bound for the complexity of Algorithm 1.
Assume first that the matrix A has its entries in Q[z]. The complexity of computing
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det(A) is

O (MM(m)M(3) (log(m))?)
where § = deg(A). Then, since f = 1 here and since det(A) is a polynomial of degree
O(md), the computation of zp, which is equal here to max{2, || det(A)| }, can be done

with O(md) operations. To obtain a solution 7 of (2.5), we first need to compute the
matrices

~1
(4.1) (A (zgk) ...A(z82>A(zg)A(zO)> L 1<k<m-2.
The complexity of taking the pth power of a number is O(log(p)), thus computing
20, 2 ,zgmi2 necessitates O(mlog(p)) operations. A straightforward evaluation of

a polynomial with degree ¢ at n points necessitates O (nf) operations. Since the
m? entries of A(z) are polynomials with degree §, the complexity of computing the
matrices A(zg), A(z),..., Azl ) is O (m3§). We now have to compute m products
and inverses of these constant matrices. To sum up, the computation of (4.1) can be
done with

O (mlog(p) + m>5 +mMM(m))

operations. Then, we compute each of the m entries of r by doing a Newton interpo-
lation at m points. There, the complexity is

O(mM(m) log(m))
(see [BS05]). We use that 7 = 71 and 711 = ¢p(ry)A for every k, 1 <k <m —1, to
compute the rows rq,...,7r, of P. In particular,

deg(ry) < (m + (5)11)}“*1 .

The computation of ¢,(rx)A necessitates m? sums and products of polynomials with

degree at most (m + §)p*. Thus, O (mQM ((m + (5)pk)) operations suffice to compute
ri41 from r;. Hence, once 7 is known, one may compute the matrix P with

O <m2 mzl M ((m + 5)pk>)

k=1

operations. Then, the complexity of computing ¢, (7,,) A is

O (m*M (u)) ,
where u := (m + §)p™, and the the one of computing ¢, (r,,) AP~! is
(4.2) O (MM (m) log(m)M (u) log(u)) .

Since (4.2) is greater than the complexity of all the previous steps in Algorithm 1, the
complexity of Algorithm 1 is (4.2), when A is a matrix with entries in Q[z]. Assume
now that A has rational coefficients. Write A = fA, with f € Q[z] the least common

multiple of the denominators of the entries of A. Then, by definition, deg(A4) < deg(A).

Now, the operations with A = 1/ fﬁ have the same complexity as the ones with A
and the cost of the computation of f and Ais negligible compared to (4.2). Thus,
the complexity of Algorithm 1 is (4.2) for any matrix A. Then, the complexity of
computing the lower hull in Algorithm 2 is negligible compared to (4.2). This ends the
proof. O
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4.2. Description of the algorithm of Theorem 3.1. The following algorithm tests
if a given Mahler system is regular singular at 0.

Algorithm 3: Test for the regular singularity of a Mahler system at 0

Input: A € GL,, (@(z)), p € N>9 and the order n > 0 of truncation.
Output: Whether or not the system (1.1) is regular singular at 0 and in that
case the constant matrix A to which it is equivalent and a truncation
of an associated gauge transformation W at order n.
Compute d with Algorithm 2.
Compute vy, g, Mg, Ng.
Set ¢ i= [logy(m(iq — v+ 1))].
for j from 1 to t do
L Compute Mdzj.
Set Jp := ker(Ny)
for ¢ from 1 to t do
| Set Jto {xed| M2 ‘zeT)

Set X := M?'J.

if dimX = m then

From a basis of X, compute R and E,,, ..., E,, as in the proof of Theorem
3.1.

for j from pg + 1 to max{ug + 1;dn} do
| Compute Ej; from (3.9).

Define A := R7L. A
return “True”, A and Z;-lzyd E;z/4,

else
L return “False”.

Then, Theorem 1.3 is a consequence of the following proposition that we will prove
in Section 4.4.

Proposition 4.3. Algorithm 3 satisfies the hypothesis of Theorem 1.3. Apart from
the computation of the Puiseux expansion of W, the complexity of Algorithm 3 is

O (MMM (m)M((m + 0)p™) + mp™MM(mwv))
where & := deg(A) and v := —(vo(A) + vo(A~1)) +1> 1.

In [Roq20] the author explained how to find the eigenvalues of a constant matrix
‘H-equivalent to a Mahler system, and the dimension of the associated characteristic
space. This is done by solving some explicit equations associated to the slopes of the
lower hull of the set of points (p’,vo(¢;)) and by counting the multiplicity. When the
system is regular singular at 0, these eigenvalues are precisely the eigenvalues of the
matrix M, whose associated eigenvectors belong to ker N;. Then, there are only a
finite number of constant matrices in Jordan normal form having this precise set of
eigenvalues. Thus, one could test if, for each one of these matrices, there is a basis
of solutions in the Puiseux series by applying the cyclic vector lemma (Algorithm 1)
and by solving m equations of the form (2.6), where A is a companion matrix, by
extending the results of [CDDMI18, Algo. 7] to the inhomogeneous case. By doing so,
one could determine if a given Mahler system is regular singular at 0. However, this
method seems less efficient than the one presented in Algorithm 3. Furthermore, by
doing so, one would possibly have to work in finite extensions of the base number field
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k instead of the base field k (see Corollary 3.4), in contrast to the method presented
in this paper.

When the system (1.1) is regular singular at 0, Algorithm 3 computes a K-equivalent
constant matrix. Furthermore, Roques [Roq18, §5.2] described fundamental matrices
of solutions for constant systems. Precisely, for ¢ € @k we let e, and ¢ denote functions
such that ¢, (e.) = ce. and ¢,(¢) = £+ 1. Any constant system has a basis of solutions

inQ [(ec)ce@*,f}.

Corollary 4.4. Consider a system (1.1) which is regular singular at 0. From Algo-
rithm 3, one can compute a fundamental matriz of solutions of (1.1) with entries in

K [(ec)ce@*,e] .

For example, one can take respectively for e, and £, the functions log(z)'(c)/ log(r)
and log (log(z)) /log(p). Before proving Proposition 4.3, we make some observations
about the shape of the matrices My and Ny.

4.3. On the shape of M; and Ny. Algorithm 3 requires some calculations with the
matrices My and Ng. Naively, it should necessitate MM(n) operations where n is at
least the number of rows and the number of columns of My and N;. However, by
looking more closely at the shape of My and Ny, we will show that it can be lowered
to dMM(n/d).

Definition 4.5. Let D = (Divj)1<i<r,1<j<s be a block matrix with D;; € M, (@)
We say that D is a d-gridded matriz if for all (ig, jo) € {1,...,r} x{1,...,s} such that
D, j, is nonzero, the matrices D j, D; j, with i # ig mod (d) and j # jo mod (d) are
zero matrices. Let o be a permutation of the set {1,...,d}. We say that o is associated
with the d-gridded matrix D if D;; = 0 for every (i,5) € {1,...,7} x {1,...,s} with
j #Zo(i) mod (d).

Lemma 4.6. Let D = (Di,j)lgigr,lgjgs and E = (Ei,j)lgigs,lgjgt be two d—gTidded
matrices with D; ;, E; j € Mp, (@) and, respectively, op and og their associated per-
mutation. We write u := max (r,s,t). The computation of the product DE can be
done with complexity

O(dMM(mu/d)).

Furthermore, DE is a d-gridded matriz with associated permutation og o op.

Proof. We let D, (respectively Ej) denote the block matrices (D4 rdop,(n)+ed)k.¢
(respectively (B ikd,opn)+ed)ke) for any n € {1,...,d}. Let ng € {1,...,d}, write
Fry = DpgEqpy(ng) and consider Fy, := (Fp, ke)ke its block decomposition, where
Fro ke € Mp, (@) For any i € {1,...,r}, write ¢ = ng + kd with ng € {1,...,d},
k € N and for any j € {1,...,t}, let
G Fooke ifj=o0goop(ng)+ ¢d for some £ € N,
J 0 otherwise .

Then DE = (G;;);; and it is a d-gridded matrix whose associated permutation is
og o op. The complexity of computing the product of two permutations of {1,...,d}

is O(d). Then, the complexity of computing each matrix F,, is O(MM(mu/d)). Thus,
the complexity of computing DF is

O(d + dMM(mu/d)) = O(dMM(mu/d)) .
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Remark 4.7. The computation of a basis of the (right-)kernel of a d-gridded matrix
can be done with the same complexity as the product of two d-gridded matrices. Note
that we can add some zero column vectors to the column vectors of the kernel obtained
in this way in order to form a d-gridded matrix. Similarly, one can compute a basis of
the intersection of the vector spaces spanned by the columns of two d-gridded matrices
with the same complexity. The basis obtained being a subset of the columns of one of
the matrices, one can complete it with some zero column vectors in order to form a
new d-gridded matrix.

Lemma 4.8. Let d € Dy. The matrices Mg and Ny are d-gridded matrices.
Proof. Recall that

Mg := (Ba,i—pj)vi<i,j<pa a0d Na := (Bdi—pj)vg(B)+pra<i<vg—1,va<j<pa
where ¢pq(A™1) := 3", Bagnz". In particular, By;p; = 0 if d does not divide i — pj.
Thus if Bgi,—pj, # 0 then Bg;_pj, = 0 for all ¢ such that i # iy (mod d). Moreover,
since p and d are relatively prime, if By ;,—,;, # 0 then Bg;,—p; = 0 for all j such that

Jj Z jo (mod d). Associated permutations to these matrices are oj; and oy such that,
for every k € {1,...,d},

poui (k) = (p— 1)(1 - v) + k (mod d)
pon(k) =wvo (Bg) +p— 1+ k(mod d) .

4.4. Proof of Proposition 4.3. We recall that
Xa=XJ )X,
where
Xj =) Miker(Ng), X := () ker(NaMy).
neN neN

We first use the two following lemmas to prove that the vector space X in Algorithm
3 is equal to the vector space Xg.

Lemma 4.9. Let cqg := m(uqg —vqg+1). For any ¢ > cq, the vector space Xq is the
image of ﬂfl;lo ker(NgMJ) under the left multiplication by M.

Proof. We first prove that X = (‘_y ker(NgM7). Write B, = N— ker (NgME). Tt
is clear that if U,, = U, 11 then By, =Y, for all £ > n. Thus the sequence (Vj,)n>1 is
decreasing and then stationary. Since dim‘U; < ¢4 < ¢, we must have U, = V.11 and
X, = lim, oo Uy = V.

Now, write 20, = M7X,. Since MyX, C X_, the sequence (Wp,),en is non-
increasing. We prove that X4 = limy, oo 20,,. Since X C ker(Ng) we have

lim 20, = () Mpx; C () My ker(Ng) N X, C Xq.
neN neN
It remains to prove that X; C 27, for every n. We argue by induction on n. When
n = 0 it is immediate since Wy = X;. Assume now that X; C 2J,, for some n > 0.
Let x € X4. It follows from Lemma 3.3 that M;Xy; = X4. Hence, there exists y € Xg4
such x = Myy. By assumption, y € 2, = MJX; sox € Mg“.’{g = W, +1, which
concludes the induction. Now, arguing as in the first part of the proof, (20, )nen is

stationary after the rank c4. In particular, since ¢ > ¢gq, X4 = lim,, 00 20,, = W..
O
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Let ¢ be the least integer such that 2' > m(uq — vq + 1). We now define recursively
a finite sequence of vector spaces (J)o</<; setting

Jog = ker(Nd) and J, := {CC € Jpq | Mg_ew € 34_1}
Lemma 4.10. We have

Xg=M27,.
Proof. One checks by induction on ¢ € {0,...,t} that
2¢—1 ,
t—¢
3 = ) ker (NdMg2 ) .
n=0
Thus, J; = ﬂizol ker(NgM}') and the result follows from Lemma 4.9. O

Proof of Proposition 4.3. Let d € Dy be given by Algorithm 2. We infer from Lemma
4.10 that the vector space X in Algorithm 3 is equal to X4. Thus, from Theorem 3.1,
Algorithm 3 returns “true” if and only if the system is regular singular at 0. Then,
arguing as in the proof of Theorem 3.1, one checks that A is K-equivalent to R~ and
that Z?ZW Ejzj/ @ are the first coefficients in the Puiseux expansion of an associated
gauge transformation.

To compute the complexity, we follow the script of Algorithm 3. Let ¢ := deg(A).
From Proposition 4.2 Algorithm 2 computes the integer d with

(4.3) O (MM(m) log(m)M (u) log(w))

operations, where u := (m + ¢)p™. To compute My and Ny one needs to compute the
Laurent series expansion of A~! between vy (A™1) and (uq —prg)/d. The computation
of the inverse of A can be done with complexity

(4.4) O(m*M(mé) log(ms))

Newton’s method allows to compute the n first terms in the Laurent series expansion
of a rational function of degree at most n with complexity O(M(n)). One checks that
deg (A7) < mé. Let v:= —(vo(A) + vo(A™1)) +1 > 1. One has

ng 1= Hd — Prd —dpl/d — (Ail) =0 (v)

and v < md. Thus the complexity of computing the first ny terms of the Laurent
expansion of the m? entries of A=! is O (mQM (mé)), which is negligible compared
to (4.4). Thus, the computation of My and Ny can be done with complexity (4.4).
Let ¢t be the least integer such that 2° > m(uq — vqg + 1). The cost of computing ¢
is negligible. We compute My, Mg, ceey Mthil. The number of rows and columns of
M, being O(mdv/p), it follows from Lemma 4.6 that is necessitates O(tdMM (mv/p))
operations. We compute Jy, ..., J;. Since Ny has O(mdv) rows and columns, the com-
plexity of computing Jg is O(dMM(mwv)). Knowing J,_1, the complexity of computing
J¢ is O(dMM(mwv/p)). Thus, the complexity of computing the whole sequence is

O (tdMM(mv/p) + dMM(mv)) .

We now compute X. Since we know M 3t71, the complexity of computing thjt is
O(dMM(mwv/p)). Since d < p™ and since t = O(log(mp™ 1v)), the complexity of the
computation of X is

(4.5) O (p"MM(mv/p) log(mp™ 'v) + p"MM(mv)) .
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Now, (4.4) is negligible with respect to (4.3). Thus, Algorithm 3 returns if a system is
regular singular or not with

O (MM (m) log(m)M(u) log(u) + p" MM (mv/p) log(mp™ 'v) + p™ MM (mwv))

operations. Using the notation O and, remembering that log(p™) = mlog(p), we
obtain the bound we want. 0

Remark 4.11. In Algorithm 3, we chose to compute first the integer d thanks to the
cyclic vector lemma, Algorithm 1 and Algorithm 2. Then we computed the vector
space X4 with this d. One could ask if running the algorithm for every d € D could
be faster. It does not seem to be the case. Since we only have to compute the inverse
of A once and since D has O(p™) elements, running the algorithm for every d € D,
without using Algorithm 2, would necessitate

O(m*M(m deg(A)) + mp*™ MM (mw))

operations. When deg(A) is large compared to other parameters, it can be smaller

than the complexity of Algorithm 3. However, we have to pay a factor p>™ instead of
m

p™.
5. EXAMPLES
In this section, we study the regular singular property of some particular systems.

5.1. Systems of size 1. We consider a system of size 1:

(5.1) bp(y) = ay
where a € Q(z), a # 0.
Proposition 5.1. Any system of size 1 is reqular singular at 0.

Proof. We consider the equation (5.1). Let v denote the valuation at 0 of a and define
= 2¥/(P=D_ Then, the system ¢,(y) = by with b := ¢, (1) av is strictly Fuchsian
at 0. Thus, the homogeneous equation (5.1) is Q ((z” / (pfl)) )—equivalent to an equation
which is strictly Fuchsian at 0. A fortiori, (5.1) is regular singular at 0. O

5.2. An equation of order 2. Consider the 3-Mahler equation:
21—+ 201 = 2" = 21993(y) — (1 - 2% = 2% = 2% — 2% g(y)
+ 25014+ 2)1 =22 =23y =0.

The matrix of the 3-Mahler system associated with this equation is

0 1
A(Z) = ( 23(142)(1—221 —230) 128 _,31_,37_ 40 ) .
(1—23426)(1—27—210)  23(1—23+26)(1—27—210)
We propose to check whether or not the 3-Mahler system associated with this matrix is
regular singular at 0. Since we already know a homogeneous linear equation associated
with this system, it is not necessary to run Algorithm 1. Algorithm 2 applied to this
system returns d := 2. We now run Algorithm 3 with d = 2. We have vy(A) = —3,
vo(A™!) = —6 and thus v = —3 and pp = 6. In that case, the vector space X is
spanned by the transpose of the two linearly independent vectors

(07 1’0’07 170a Oa Oa 717070a Oa ]-a 717070a 71’0’070) )
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,—1,0) .
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In particular, X5 has dimension 2 and, from Theorem 3.1, the system is regular singular
at 0. Ome can check that these vectors are eigenvectors of the matrix My for the
eigenvalue 1. Thus the matrix R is the identity matrix of size 2. In particular, the
associated gauge transformation ¥ given by Algorithm 3 is a fundamental matrix of
solutions because it satisfies

$3 () LAV = I,

From these two vectors, we can compute the first terms of the Puiseux expansion of ¥

U — (fl f2>+0<217/2)

fs 0
with
filz) = LTU/2 Y2 3/2 L 5/2 y T/2 972y 11/2 L 13/2 215/27
folz) = —z3+z4—z5—|—2z6—2z7—|—228’
f3(2) = 273/2 _ 23/2 + Z9/2 o 215/2 )

Remark 5.2. Note that this example is the same as the one that the authors of
[CDDM18] chose to illustrate their paper.

5.3. Systems coming from finite deterministic automata. As mentioned in the
introduction, Mahler systems are related to the automata theory. Indeed, the gener-
ating function of an automatic sequence (see [AS03] for a definition) is solution of a
Mabhler equation. Numerous famous automatic sequences are related to homogeneous
or inhomogeneous Mahler equations of order 1. This is, for example, the case of the
Thue-Morse sequence, the regular paper-folding sequence, the sequences of powers of
a given integer, the characteristic sequence of triadic Cantor integers — those whose
base-3 representation contains no 1. Thus, their associated systems are regular singular
at 0.

Among the sequences satisfying equations with an order greater than 1, a famous
one is the Baum-Sweet sequence, the characteristic sequence of integers whose binary
expansion has no blocks of consecutive 0 of odd length. The system associated with this
sequence is strictly Fuchsian at 0 and thus regular singular at 0. Another important
one is the Rudin-Shapiro sequence whose general term is

a, = 1 if the number of occurrences of two consecutive 1
in the binary expansion of n is even
a, = -1 otherwise.

Its generating series f := ) _ya,2" satisfies the equation

s(J)-4( ) (42

This system is not regular singular. Indeed, Algorithm 2 returns d = 3 and we have
dim X3 = 1. Thus, Algorithm 3 returns “ False ”.

The regular singular property can be seen as “normal” for Mahler systems since a
sufficient condition is to be strictly Fuchsian at 0. However, the generating series of
an automatic sequence satisfies a Mahler system with a very precise shape: A=1(0) is
well defined and has at most one nonzero entry in each column. Among these systems,
the strictly Fuchsian property is more occasional.
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6. OPEN PROBLEMS

We discuss here some open problems about the regular singularity at 0 of a Mahler
System.

6.1. The inverse matrix system. Let A € GL,,(Q(z)) and p > 2 be an integer. If
the p-Mahler system with matrix A is strictly Fuchsian at 0, then the p-Mahler system
with matrix A~! is also strictly Fuchsian at 0 (and hence, regular singular at 0). This
property does not extend to regular singular systems. For example, if A denotes the
matrix of the regular singular system in subsection 5.2, the 3-Mahler system associated
with A~! is not regular singular at 0. We ask the following question.

Is there a characterisation of matrices A such that the p-Mahler systems associated
with both A and A~' are reqular singular at 07

6.2. Changing the Mahler operator. Assume that a system is strictly Fuchsian at
0. If we change the integer p then the system remains strictly Fuchsian at 0 (hence
regular singular at 0). This property does not extend to regular singular systems.
Indeed, the 3-Mahler system of subsection 5.2 is regular singular at 0, while the 2-
Mabhler system with the same matrix is not. Similarly, the p-Mahler system associated
with this matrix is not regular singular when p € {4,...,30} (and probably beyond).
Similarly, the companion system associated with the p-Mahler equation

("M + 2R () + (—1/z— 2= 22+ 2'0)p(y) + (1 - 2)y =0

is regular singular at 0 for p = 2 and p = 4 but not for p € {3,5,6,...,100} (and
probably beyond). It seems that for a matrix A € GL,, (@(z)) the p-Mahler system
associated with A is either regular singular at 0 for every integer or for finitely many
(possibly none) integers p > 2.

Is that true that only these two situations may occur?
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