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AN ALGORITHM TO RECOGNIZE REGULAR SINGULAR

MAHLER SYSTEMS

COLIN FAVERJON AND MARINA POULET

Abstract. This paper is devoted to the study of the analytic properties of Mahler
systems at 0. We give an effective characterisation of Mahler systems that are
regular singular at 0, that is, systems which are equivalent to constant ones. Similar
characterisations already exist for differential and (q-)difference systems but they do
not apply in the Mahler case. This work fills in the gap by giving an algorithm which
decides whether or not a Mahler system is regular singular at 0. In particular, it gives
an effective characterisation of Mahler systems to which an analog of Schlesinger’s
density theorem applies.
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1. Introduction

Let K be the field of Puiseux series with algebraic coefficients i.e. the field

K :=
⋃
d∈N⋆

Q
((
z1/d

))
.

For an integer p ≥ 2, we define the operator

ϕp : K → K
f(z) 7→ f (zp) .

The map ϕp naturally extends to matrices with entries in K. A p-Mahler system or,
for short, a Mahler system is a system of the form

(1.1) ϕp (Y ) = AY, A ∈ GLm

(
Q (z)

)
.
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The study of Mahler systems began with the work of Mahler in 1929 [Mah29, Mah30a,
Mah30b]. Nowadays, there is an increased interest in their study because they are
related to many areas such as automata theory or divide-and-conquer algorithms (see
for example [AF17, AF20, Cob68, Dum93, MF80, Nis97, Phi15] for a non-exhaustive
bibliography). In this paper, we focus on the singularity of Mahler systems at 0.
Similarly to differential or (q-)difference systems, a singularity at 0 of a Mahler system
can be regular. In that case, we say that the Mahler system is regular singular at 0.

Definition 1.1. A p-Mahler system (1.1) is regular singular at 0, or for short regular
singular, if there exists a matrix Ψ ∈ GLm (K) such that ϕp(Ψ)−1AΨ is a constant
matrix.

Note that some authors use the term “Fuchsian” to mean “regular singular”. The
singularities of differential systems and then of (q-)difference systems have been widely
studied and algorithms have been given. One of the main interests in studying the
regular singular systems is the good analytical properties of their solutions. A linear
differential system is regular singular at z = 0 if and only if all of its solutions have
moderate growth at z = 0, that is, at most a polynomial growth (see for example
[vdPS03, Th. 5.4]). There exist criteria and algorithms to recognize regular singular
differential systems, see for example [Bar95, Bir13, Hil87, HW86, Mos59]. Then, algo-
rithms have been given for other systems such as difference systems and q-difference
systems (see for instance [Bar89, BBP08, BP96, Pra83]). In [BBP08], the authors give
a general algorithm for recognizing the regular singularity of linear functional equa-
tions satisfying some general properties. This algorithm applies to many systems such
as differential systems and (q-)difference systems. However, this general algorithm
does not apply to Mahler systems for the Mahler operator ϕp does not preserve the
valuation at 0. The aim of this paper is to fill this gap and to present an algorithm
which decides whether or not a Mahler system is regular singular at 0.

A remarkable property of linear differential systems at regular singular points is
that Schlesinger’s density theorem applies: the monodromy group is Zariski-dense in
the Galois group of the system [vdPS03, Cor. 5.2]. An analog of this theorem was
proved for (q-)difference systems also using the regular singular property (see [vdPS97,
Cor. 9.10], [vdPS97, Th. 12.14] or [Sau03]). Recently, the second author has proved an
analog of the Schlesinger’s density theorem for Mahler systems [Pou20] under regular
singular conditions. Thus, the present work gives an algorithm to determine whether
this theorem applies or not.

In general, a Mahler system does not admit a fundamental matrix of solutions in
GLm (K). To find such a matrix, one has to consider some field extensions of K. Let
H denote the field of Hahn series, that is the set of series of the form

∑
n∈N anz

n,
N ⊂ Q, where {n ∈ N | an ̸= 0} is a well-ordered set (see [Roq20, Sec. 2]). One
can extend the operator ϕp to H. In [Roq20], Roques proved that for every p-Mahler
system there exists a matrix Ψ ∈ GLm(H) such that ϕp(Ψ)−1AΨ is a constant matrix.
Moreover, any constant Mahler system has a fundamental matrix of solutions in some
ring containing some determinations of the functions log log(z) and loga(z), a ∈ Q\{0}
(see [Roq18]). Thus, any Mahler system has a fundamental matrix of solutions of the
form ΨΘ, where Ψ is matrix with entries in H and Θ is a fundamental matrix of
solutions of a constant system. Among them, the regular singular systems are those
for which one can choose Ψ in GLm(K). The restriction to the subfield K of H is
essential to preserve the analytic properties of the system. In particular, if f ∈ Km

is a column vector, solution of a Mahler system, it follows from Randé’s Theorem
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[BCR13, Ran92] that the entries of f are ramified meromorphic functions inside the
unit disk.

Definition 1.2. Let p ≥ 2 be an integer, and let A,B ∈ GLm

(
Q(z)

)
. Let k ⊂ H be

a field. The p-Mahler systems

ϕp(Y ) = AY and ϕp(Y ) = BY

are said to be k-equivalent if there exists a matrix Ψ ∈ GLm(k) such that

ϕp(Ψ)B = AΨ .

In that case, the matrix Ψ is called an associated gauge transformation.

This choice of equivalence class ensures that if Y is such that ϕp(Y ) = AY then
ϕp
(
Ψ−1Y

)
= B

(
Ψ−1Y

)
. With this definition, the regular singular systems are the

ones that are K-equivalent to constant systems.
A Mahler system is said to be strictly Fuchsian at 0 if the entries of A are analytic

functions at 0 and A(0) ∈ GLm

(
Q
)
. In other words, a system is strictly Fuchsian at 0

if 0 is not a singularity of this system. It follows from [Roq18, Prop. 34] that systems
which are strictly Fuchsian at 0 are regular singular at 0. Since the p-Mahler system
associated with some matrix A and the p-Mahler system associated with the matrix
zνA for some ν ∈ Z are K-equivalent, there exist systems which are regular singular
at 0 but are not strictly Fuchsian at 0. Note that not all Mahler systems are regular
singular at 0. For example, the system

ϕ2(Y ) =
1

2

(
1 1
1
z

−1
z

)
Y

associated with the generating series of the Rudin-Shapiro sequence is not regular
singular at 0 (see Section 5). The main result of this paper reads as follows.

Theorem 1.3. Let A ∈ GLm

(
Q(z)

)
and p ≥ 2. There exists an algorithm which

determines whether or not the Mahler system (1.1) is regular singular at 0. This is
done by computing the dimension of an explicit Q-vector space. If the system is regular
singular at 0 the algorithm computes a constant matrix to which the system is equivalent
and a truncation at an arbitrary order of the Puiseux expansion of an associated gauge
transformation.

In [CDDM18], the authors built an algorithm to decide whether or not a linear
homogeneous Mahler equation has a complete basis of solutions in K. If it is the
case, the associated Mahler system is regular singular at 0 and K-equivalent to the
identity matrix. However, in general one does not know a priori the constant matrix
to which a regular singular Mahler system is K-equivalent. The algorithm mentioned
in Theorem 1.3 not only recognizes regular singular systems but also computes this
constant matrix. From this point of view, the present work is a generalisation of this
result of [CDDM18]. From [Roq20], we know that every Mahler system is H-equivalent
to a constant system but this work is not effective so it does not enable us to recognize
regular singular Mahler systems. Our algorithm has been implemented in Python 31.
Some bounds for the complexity are given in Section 4.

Remark 1.4. It is also interesting to look at Mahler systems around other fixed points
of ϕp such as 1 or ∞. We say that a p-Mahler system is regular singular at 1 (resp.

1The implemented algorithm is available at the following URL address:
https://hal.archives-ouvertes.fr/hal-03147365/file/AlgoRegularSingularMahlerSyst.py.

https://hal.archives-ouvertes.fr/hal-03147365/file/AlgoRegularSingularMahlerSyst.py
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at ∞) if it is L-equivalent to a constant matrix system, where we let L denote the

field of Puiseux series
⋃

d∈N⋆ Q
((
(z − 1)1/d

))
(resp.

⋃
d∈N⋆ Q

((
z−1/d

))
). Using the

change of variables z = eu one can test the regular singularity at 1 using the theory
of q-difference linear systems (with q = p). Furthermore, one can know if a system is
regular singular at ∞ by applying Theorem 1.3 to the system with matrix A(1/z).

We present our strategy of proof. Assume that the Mahler system is K-equivalent
to a constant matrix Λ with an associated gauge transformation Ψ ∈ GLm(K). We
can assume that Λ is a Jordan matrix. Thus, using the relation ϕp(Ψ)Λ = AΨ, the
columns ψ1, . . . ,ψm of Ψ are solutions of equations of the form

(1.2) λiϕp(ψi) + ϵiϕp(ψi−1) = Aψi

where ϵi ∈ {0, 1}, λi is an eigenvalue of Λ and ψ0 := 0. Thus, to prove that some
Mahler system is regular singular at 0, we will have to solve equations of the form (1.2).
Section 2 is devoted to the study of the solutions of such equations. We compute some
bounds for their valuations and we find some admissible ramification indexes. Then we
exhibit some linear equations which must be satisfied by the first coefficients of such
solutions. In Section 3 we consider the vector space of solutions of such linear equations.
Then we prove our main theorem (Theorem 3.1) which states that the system is regular
singular at 0 if and only if the dimension of this vector space is precisely m. Then, in
Section 4 we describe the algorithm of Theorem 1.3 and we compute a bound for its
complexity. Section 5 is devoted to the study of some examples. Finally, in Section 6
we discuss some open problems.

Notation. We let Q denote the algebraic closure of Q in C and Q⋆
= Q \ {0}. We

let v0 : Q[[z]] 7→ Z ∩ {∞} denote the valuation at z = 0: for f ∈ Q[[z]], v0(f) is the
supremum of the integers v ∈ N such that f belongs to the ideal zvQ[[z]]. It extends
uniquely as a valuation from K to Q. We also extend it to the set of matrices with
entries in K where v0(U) denotes the minimum of the valuations at 0 of the entries
of a matrix U . Let f be a polynomial. We let deg(f) denote the degree of f . If
M is a matrix with coefficients in Q(z), and f is the least common multiple of the

denominators of the entries of M , we define M̃ := fM and

deg(M) := max
(
deg(f),deg

(
M̃
))

.

Our bounds for the complexity of the algorithms presented here are given in terms
of arithmetical operations in Q. Given f, g : N 7→ R≥0 we use the classical Landau
notation f(n) = O(g(n)) if there exists a positive real number κ such that f(n) ≤
κg(n) for every large enough integer n ∈ N. Similarly, we write f(n) = Õ(g(n)) if
f(n) = O(g(n) log(n)c) for some c ∈ N. Given a n > 0, we let M(n) denote the
complexity of the product of two polynomials of degree at most n, and MM(n) denote
the complexity of the product of two matrices with at most n rows and n columns.

For the sake of clarity, we shall denote by roman capital letters A,B, . . . matrices
whose coefficients are effectively known and by Greek capital letters Ψ,Θ,Λ, . . . the
other matrices. While matrices are denoted by capital letters Ψ,Θ, . . ., the columns of
these matrices should be denoted by bold lowercase letters ψ,θ, . . .

2. Vector solutions of some Mahler equations

We fix some Mahler system (1.1). Consider a vector of Puiseux series g ∈ Km

and some nonzero algebraic number λ ∈ Q⋆
. The aim of this section is to study the
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solutions f ∈ Km of the system

(2.1) λϕp(f) + ϕp(g) = Af .

Precisely, we compute some integer d such that any solution of this equation belongs to
Q
((
z1/d

))m
assuming that g also belongs to Q

((
z1/d

))m
. Then, this integer d being

fixed, we exhibit an integer νd such that v0(f), the minimum of the valuations of the
entries of the vector f , is at least νd/d, assuming that v0(g) ≥ νd/d. Finally, we prove
that f is uniquely determined by its first coefficients and that these coefficients must
satisfy some linear equations.

2.1. The cyclic vector lemma. In [CDDM18], the authors developed a method to
solve linear Mahler equations, that is, equations of the form

(2.2) q0y + q1ϕp(y) + q2ϕ
2
p(y) + · · ·+ qm−1ϕ

m−1
p (y)− ϕmp (y) = 0 ,

with q0, . . . , qm−1 ∈ Q(z). Actually, one can use these results to solve linear systems of
the form (2.1). In order to do that, we use a result known as the cyclic vector lemma.
For the sake of completeness, we develop here a proof of this result.

Theorem 2.1 (cyclic vector lemma). Any Mahler system (1.1) is Q(z)-equivalent to
a companion matrix system, i.e., there exist a matrix P ∈ GLm

(
Q(z)

)
and rational

functions q0, . . . , qm−1 ∈ Q(z) such that ϕp(P )AP
−1 = Acomp where

(2.3) Acomp :=


0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1
q0 · · · · · · · · · qm−1

 .

Proof. We adapt the proof of Birkhoff given in [Bir30, §1] and of Sauloy given in [Sau00,
Annexe B.2]. In order to build such a matrix P , we build its rows r1, . . . , rm. These
rows must be linearly independent and must satisfy

(2.4) ϕp (ri)A = ri+1 for 1 ≤ i ≤ m− 1.

Therefore, we are looking for a vector r ∈ Q(z)m such that the vectors r1 := r,
ri+1 := ϕp (ri)A, 1 ≤ i ≤ m − 1 form a basis of Q(z)m. For this purpose, we choose

z0 ∈ Q⋆
not a root of unity such that A (z0) , . . . , A

(
zp

m−2

0

)
∈ GLm

(
Q
)
(such a z0

exists because the matrix A has finitely many singularities). Since z0, z
p
0 , . . . , z

pm−1

0

are distinct, we can choose, by a polynomial interpolation process, a vector r ∈ Q[z]m

such that

(2.5)


r(z0) = e1
r(zp0) = e2A(z0)

−1

...

r(zp
m−1

0 ) = emA(z0)
−1 . . . A

(
zp

m−2

0

)−1

where e1, . . . , em is the canonical basis of Qm
. Write r1 := r and define recursively

ri+1 := ϕp (ri)A, 1 ≤ i ≤ m− 1. By construction,

ri(z0) = ei ,
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and the matrix P whose rows are the vectors r1, . . . , rm satisfies P (z0) = Im. Thus,
P ∈ GLm

(
Q(z)

)
. Write

(q0, . . . , qm−1) := ϕp(rm)AP−1 .

Then Acomp = ϕp(P )AP
−1 is a companion matrix of the form (2.3). □

Remark 2.2. If one chooses e1, . . . , em to be any basis of Qm
, instead of the canonical

basis, a different rational interpolation, and another z0 in the proof of Theorem 2.1,
one would obtain a different matrix P and different rational functions q0, . . . , qm−1.
The different companion matrices obtained after this process, with these different
choices, are Q(z)-equivalent. Actually, any companion matrix system equivalent to
(1.1) can be obtained by this process in the following way. Indeed, let us assume that
P ∈ GLm(Q(z)) is such that ϕp(P )AP

−1 is a companion matrix. Let z0 be chosen as
in the proof of Theorem 2.1 with the additional assumption that P is well defined and
non-singular at z0. We now let e1, . . . , em denote the rows of P (z0), instead of the
canonical basis. Let r denote the first row of P . Since ϕp(P )AP

−1 is a companion
matrix, r satisfies the interpolation conditions (2.5). Then, let r1, . . . , rm be defined
from r and A as in the proof of Theorem 2.1. One easily checks that r1, . . . , rm are
the rows of P .

2.2. Ramification index of vector solutions of Mahler systems. In this section,
we study the ramification index of solutions of linear systems of the form (2.1). Let D
denote the set of integers d ∈ {1, . . . , pm − 1} such that p and d are relatively prime.

Lemma 2.3. Let A ∈ GLm

(
Q(z)

)
. There exists an integer d ∈ D such that for any

λ ∈ Q⋆
and f ∈ Km satisfying

(2.6) λϕp(f) + ϕp(g) = Af

with g ∈ Q
((
z1/d

))m
, we have f ∈ Q

((
z1/d

))m
.

In the sequel, we let D0 ⊂ D denote the set of all such integers d ∈ D. Note that,
if d1, d2 ∈ D0 then so does gcd(d1, d2). Indeed, if d0 := gcd(d1, d2), then Q((z1/d0)) =

Q((z1/d1)) ∩Q((z1/d2)).

Proof. By Theorem 2.1 there exists P ∈ GLm(Q(z)) such that Acomp = ϕp(P )AP
−1

is a companion matrix, that is, a matrix of the form (2.3). We let f , g, λ be as in the
lemma. We have

λϕp(Pf) + ϕp(Pg) = AcompPf

so, without loss of generality, we replace Pf with f and Pg with g, which does not
modify the ramification index, and we assume that A = Acomp. Let f1, . . . , fm ∈ K and

g1, . . . , gm ∈ Q
((
z1/d

))
be the entries of f and g respectively. Since A is a companion

matrix, we infer from (2.6) that, for every i ∈ {1, . . . ,m− 1},

(2.7) fi+1 = ϕp(gi) + λϕp(fi) = · · · = λiϕip (f1) +
i∑

j=1

λj−1ϕjp(gi−j+1).

To find an integer d satisfying the conclusion of Lemma 2.3 we first assume that g = 0.
Considering the last row of the system (2.6), it follows from (2.7) that f1 is a solution
of the Mahler equation

(2.8) q0y + λq1ϕp(y) + · · ·+ λm−1qm−1ϕ
m−1
p (y)− λmϕmp (y) = 0.
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Let H ∈ R2 denote the lower hull of the set of pairs
(
pi, v0(λ

iqi)
)
, 0 ≤ i ≤ m, with

qm := 1. Let d ∈ N⋆ be the least common multiple of the denominators of the slopes of
H which are coprime with p. If there are no such denominators we write d := 1. Since
v0(λ

iqi) = v0(qi), this integer d does not depend on λ. From [CDDM18, Prop. 2.19],

d ∈ D and any solution y ∈ K of (2.8) belongs to Q
((
z1/d

))
. Therefore, f1 ∈ Q((z1/d)).

We now prove that Lemma 2.3 holds with this integer d. Let g ∈ Q((z1/d))m. From

(2.7), we only have to prove that f1 ∈ Q((z1/d)). Considering the last row of the
system (2.6), it follows from (2.7) that

(2.9) q0f1 + λq1ϕp(f1) + · · ·+ λm−1qm−1ϕ
m−1
p (f1)− λmϕmp (f1) = g0,

where g0 ∈ Q
((
z1/d

))
is a Q(z)-linear combination of the ϕjp(gi), i, j ∈ {1, . . . ,m}.

First, we prove that f1 ∈ k, where k :=
⋃

ℓ∈NQ
((
z1/(dp

ℓ)
))

⊂ K. The function

f1 ∈ K can be written as

f1 = h0 + h1

where h0 ∈ k and none of the monomials in the Puiseux expansion of h1 belong to

k. Then, none of the monomials of the Puiseux expansion of ϕjp(h1), j ∈ {0, . . . ,m},
belong to k. Hence, since g0 ∈ Q

((
z1/d

))
⊂ k, it follows from (2.9) that h1 is a

solution of (2.8). From the first part of the proof, h1 ∈ Q
((
z1/d

))
. Thus h1 = 0

and f1 = h0 ∈ k. Let ℓ0 be the smallest integer such that f1 ∈ Q
((
z1/(dp

ℓ0 )
))

. We

assume by contradiction that ℓ0 > 0. From (2.9), f1 is a Q(z)-linear combination of g0

and the ϕjp(f1) for j ∈ {1, . . . ,m}, which are all elements of Q
((
z1/(dp

ℓ0−1)
))

. Thus,

f1 ∈ Q
((
z1/(dp

ℓ0−1)
))

, which provides a contradiction. As a consequence, ℓ0 = 0 and

f1 ∈ Q
((
z1/d

))
as wanted. □

Corollary 2.4. Assume that the Mahler system (1.1) is regular singular at 0 and let
Ψ ∈ GLm(K) be such that ϕp(Ψ)−1AΨ is a constant matrix. Then Ψ belongs to⋂

d∈D0

GLm

(
Q
((
z1/d

)))
.

Proof. We can assume that ϕp(Ψ)−1AΨ is a Jordan matrix. Thus (1.2) holds. Let
d ∈ D0. Using the notations of (1.2), we prove by induction on i ∈ {1, . . . ,m} that

the columns ψ1, . . . ,ψm of Ψ belong to Q
((
z1/d

))m
. From (1.2) we have

λ1ϕp(ψ1) = Aψ1 .

Thus, it follows from Lemma 2.3 applied with λ = λ1, f = ψ1 and g = 0 that

ψ1 ∈ Q
((
z1/d

))m
. Assume that i ≥ 2 and that ψi−1 ∈ Q

((
z1/d

))m
. Then, it

follows from (1.2) and Lemma 2.3 applied with λ = λi, f = ψi and g = ϵiψi−1 that

ψi ∈ Q
((
z1/d

))m
. □

One could be tempted to work with the smallest integer d ∈ D0. However, while
Algorithm 2 below returns an integer d ∈ D0, there is no guaranty that this integer is
minimal. Thus, in what follows, we shall work with any d ∈ D0.

2.3. Valuation of vector solutions of Mahler systems. In this subsection, we fix
an integer d ∈ D0 and we consider

(2.10) νd := ⌈dv0(A)/(p− 1)⌉.
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We prove that the valuation of vector solutions of systems of the form (2.1) is at least
νd/d assuming that the valuation of g is at least νd/d.

Lemma 2.5. Let λ ∈ Q⋆
and let g ∈ Q((z1/d))m be a vector of Puiseux series whose

valuation is at least νd/d. The valuation at 0 of a solution f ∈ Q((z1/d))m of

(2.11) λϕp(f) + ϕp(g) = Af ,

is at least νd/d.

Proof. From (2.11) we have

pv0(f) ≥ min (v0(A) + v0(f), pv0(g)) := n0.

Two cases occur:

• If n0 = v0(A) + v0(f), then pv0(f) ≥ v0(A) + v0(f) and

v0(f) ≥
v0(A)

p− 1
.

Since dv0(f) is an integer we have dv0(f) ≥ νd, as wanted.
• If n0 = pv0(g) then v0(f) ≥ v0(g) ≥ νd/d, which concludes.

□

We then have the following corollary.

Corollary 2.6. Let d ∈ D0. Suppose that the system (1.1) is regular singular at 0

and let Ψ ∈ GLm

(
Q
((
z1/d

)))
be such that ϕp(Ψ)−1AΨ is a constant matrix. Then,

v0(Ψ) ≥ νd/d.

Proof. Let d ∈ D0. From Corollary 2.4, Ψ ∈ GLm(Q
((
z1/d

))
. Then, arguing as in the

proof of Corollary 2.4, we prove by induction, using (1.2) and Lemma 2.5, that the
valuations of the columns of Ψ are at least νd/d. □

2.4. Coefficients of vector solutions of Mahler systems. Let d ∈ D0 be an
integer and let νd be defined by (2.10). Instead of studying solutions in Q((z1/d))m of
(2.11), we use the operator ϕd : z 7→ zd to work in the field Q((z)) of Laurent series.
To compute the coefficients of such vectors of solutions, we need to inverse the Mahler
system. We write Bd := ϕd(A)

−1 and we let

Bd :=
∑

n≥dv0(A−1)

Bd,nz
n

denote the Laurent expansion of Bd. Let f ∈ Q((z))m be a solution of the linear
system

λf = Bdϕp(f) ,

for some λ ∈ Q⋆
. By Lemma 2.5, the valuation of f is at least νd. We write f =∑

n≥νd
fnz

n, fn ∈ Qm
, and fn = 0 if n < νd. Then, for every n ∈ Z, we have

λfn =
∑

(k,ℓ) : k+pℓ=n

Bd,kf ℓ .

Write

(2.12) µd := ⌈−dv0
(
A−1

)
/(p− 1)⌉ .

Since AA−1 = Im, we have v0(A) + v0(A
−1) ≤ 0 so νd ≤ µd. The vectors f ℓ which are

taken into account on the right-hand side of the equation have an index ℓ ≤ n−dv0(A−1)
p .
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Then, if n > µd, we have n−dv0(A−1)
p < n. Thus, fn is uniquely determined by the

vectors f ℓ, ℓ < n. Moreover, the coefficients of the vectors f ℓ, νd ≤ ℓ ≤ µd, are
solutions of some linear equations depending on λ and Bd. Thus, the problem of
determining f can be transformed into a finite dimensional problem. To capture this
we introduce the following map:

πd : Q((z))m → Qm(µd−νd+1)

∑
n∈Z

gnz
n 7→

gνd...
gµd

 .

Then we define two block matrices

Md := (Bd,i−pj)νd≤i,j≤µd
, and

Nd := (Bd,i−pj)dv0(A−1)+pνd≤i≤νd−1, νd≤j≤µd .

We proceed to check that the map πd and these matrices are well defined. Since
νd ≤ µd, πd and the matrix Md are well defined. Now, νd < µd if and only if
νd < −dv0

(
A−1

)
/(p − 1). In that case, dv0(A

−1) + pνd ≤ νd − 1 and the matrix

Nd is well defined. If νd = µd, then dv0(A
−1) + pνd > νd − 1 and the matrix Nd shall

be considered as a matrix with no rows.

Lemma 2.7. Let γ ∈ Q⋆
and let h ∈ Q((z))m be a vector of Laurent series whose

valuation is at least νd. If f ∈ Q((z))m is a solution of

(2.13) γf + h = Bdϕp(f) ,

then,
Ndπd(f) = 0, and Mdπd(f) = γπd(f) + πd(h) .

Note that, if µd = νd and Nd is a matrix with no rows, the condition Ndπd(f) = 0 is
automatically satisfied for every f . We shall consider that, in that case, the right-kernel

of Nd is the whole space Qm(µd−νd+1)
.

Proof. From (2.13), we have ϕp (f) = ϕd(A) (γf + h). It follows that pv0 (f) ≥
dv0 (A) + min (v0 (f) , v0 (h)). Arguing as in the proof of Lemma 2.5, one checks that
the valuation of f is at least νd. Write

f =
∑
n≥νd

fnz
n, h =

∑
n≥νd

hnz
n, fn,hn ∈ Qm

,

and fn,hn := 0, when n < νd. The series f is a solution of (2.13) if and only if

(2.14) ∀n ∈ Z, γfn + hn =
∑

(k,ℓ) : k+pℓ=n

Bd,kf ℓ .

When n < νd, the left-hand side is 0. If ℓ > µd, then n − pℓ < v0(Bd) = dv0(A
−1).

Thus, we have

∀n < νd,

µd∑
ℓ=νd

Bd,n−pℓf ℓ = 0 .

In particular, Ndπd (f) = 0. Now, looking at equation (2.14) for all n, νd ≤ n ≤ µd,
we have, similarly,

Mdπd (f) = πd(γf + h) = γπd (f) + πd (h) ,

as wanted. □
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3. A characterisation of regular singular Mahler systems at 0

In Section 2, we studied the vector solutions of Mahler systems of the form (2.1) in
Km. We computed the possible ramification indexes, a lower bound for the valuation
of such solutions, and proved that their coefficients must satisfy certain linear relations
over Q. Let d ∈ D0 be an integer. The conclusion of Lemma 2.7 invites us to define
the following vector spaces:

X+
d :=

⋂
n∈N

Mn
d ker(Nd) , X−

d :=
⋂
n∈N

ker(NdM
n
d )

and

Xd = X+
d

⋂
X−
d .

The main result of this paper states as follows.

Theorem 3.1. The three following propositions are equivalent:

(1) The Mahler system (1.1) is regular singular at 0,
(2) dimXd ≥ m for some integer d ∈ D0,
(3) dimXd = m for every integer d ∈ D0.

In that case, the system is Q((z1/d))-equivalent to a constant system for every d ∈ D0.

Thus, to prove that some Mahler system is regular singular at 0, one only needs
to check point (2). Before proving Theorem 3.1 we need two lemmas. The first one
is about the linear independence of vector solutions of linear Mahler systems. The
second one gives an implicit characterisation of the vector space Xd.

Lemma 3.2. Let T be a matrix with entries in Q((z)) and D be a constant invertible
matrix such that

(3.1) TD = Bdϕp(T ) .

If the columns of T are linearly dependent over Q((z)), then they are linearly dependent
over Q.

Proof. Let P be a constant invertible matrix such that the matrix PDP−1 is upper
triangular. Then, (TP−1)(PDP−1) = Bdϕp(TP

−1). Thus, without loss of generality,
we replace T with TP−1 and we assume that D is upper triangular. We can also
assume that the first column of T is nonzero, otherwise the conclusion of the lemma
is immediate. Let a be the least integer such that the first a columns of the matrix
T are linearly dependent over Q((z)). By assumption, a ≥ 2. There exists a column
vector g := (g1, . . . , ga−1, 1, 0, . . . , 0)

⊤ ∈ Q((z))m, m ∈ N, such that

(3.2) Tg = 0 .

Mutliplying (3.1) by ϕp(g) one obtains

(3.3) TDϕp(g) = Bdϕp(T )ϕp(g) = Bdϕp (Tg) = 0.

Since D is upper triangular, the ath coordinate of Dϕp(g) is some eigenvalue η ∈ Q⋆

of D and the m− a last coordinates of Dϕp(g) are zero. By minimality of a, we infer
from (3.2) and (3.3) that

Dϕp(g) = ηg .

From [Nis97, Thm. 3.1], g ∈ Qm
and Equation (3.2) provides a linear relation over Q

between the columns of T , as wanted. □
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Lemma 3.3. Let d ∈ D0. The vector space Xd is the largest subspace of ker(Nd) on
which Md acts as an isomorphism.

Proof. By definition, Xd ⊂ ker(Nd) and Xd is invariant under the action of Md. Since
Xd is finite dimensional, to prove thatMd acts as an isomorphism on Xd we only have to
prove that ker(Md)∩Xd = {0}. Let x ∈ ker(Md)∩Xd, and let s×s denote the size ofMd.
Then ker(M s

d) = ker(M s+1
d ). Since x ∈ Xd ⊂ M s

d ker(Nd), there exists y ∈ ker(Nd)

such that x =M s
dy. Then, M

s+1
d y =Mdx = 0. Thus, y ∈ ker(M s+1

d ) = ker(M s
d) and

x =M s
dy = 0. It follows that ker(Md) ∩ Xd = {0}.

Now, let V ⊂ ker(Nd) be a vector space on which Md acts as an isomorphism. On
the one hand, Mn

d V = V ⊂ ker(Nd) for every n ∈ N. Thus, V ⊂ ker(NdM
n
d ) for every

n ∈ N. On the other hand, V = Mn
d V ⊂ Mn

d ker(Nd) for every n ∈ N. Therefore,
V ⊂ Xd. □

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Consider the following proposition :

(4) dimXd ≥ m for every d ∈ D0.

We prove that (1) implies (4), that (4) implies (3) and that (2) implies (1). Since (3)
trivially implies (2), this shall prove Theorem 3.1.

Let d ∈ D0 and suppose that the system is regular singular at 0. Then, it follows
from Corollaries 2.4 and 2.6 that there exists Ψ ∈ GLm

(
Q((z1/d))

)
such that Λ :=

ϕp(Ψ)−1AΨ is a constant matrix and v0(Ψ) ≥ νd/d. Write Θ := ϕd(Ψ) and recall that
Bd := ϕd(A

−1). We have

(3.4) ΘΛ−1 = Bdϕp (Θ) .

We can assume that Λ−1 is a Jordan matrix that is

Λ−1 :=


Js1(γ1)

Js2(γ2)
. . .

Jsr(γr)


where γ1, . . . , γr are nonzero algebraic numbers and Jsi(γi) is the Jordan block of size
si associated with the eigenvalue γi. Let

θ1,1, . . . ,θ1,s1 ,θ2,1, . . . ,θ2,s2 , . . . ,θr,1, . . . ,θr,sr

denote the columns of Θ indexed according to the Jordan block decomposition of Λ−1.
We infer from (3.4) that the columns of Θ satisfy

γiθi,1 = Bdϕp(θi,1) 1 ≤ i ≤ r(3.5)

γiθi,j + θi,j−1 = Bdϕp(θi,j) 1 ≤ i ≤ r, 2 ≤ j ≤ si.

It follows from (3.5) and Lemma 2.7 applied with g = θi,j−1 that πd(θi,j) ∈ ker(Nd)
and that

(3.6) Mdπd(θi,j) = γiπd(θi,j) + πd(θi,j−1),

for every i, j, 1 ≤ i ≤ r, 1 ≤ j ≤ si, where θi,0 = 0 for every i. Let V denote
the vector space spanned by the vectors πd(θi,j), 1 ≤ i ≤ r, 1 ≤ j ≤ si. Then,
V ⊂ ker(Nd). It immediately follows from (3.6) that V is invariant under the left
multiplication by Md. We prove that the m vectors πd(θi,j) are linearly independent

over Q. By contradiction, assume that they are not linearly independent. Let k be



12 COLIN FAVERJON AND MARINA POULET

the least integer such that the image by πd of the first k columns of Θ are linearly

dependent. There exists a non-zero vector λ := (λ1, . . . , λk−1, 1, 0, . . . , 0)
⊤ ∈ Qm

such
that n0 := v0(Θλ) > µd. Multiplying (3.4) with λ and looking at the valuations on
both sides gives

v0
(
ΘΛ−1λ

)
≥ dv0

(
A−1

)
+ pn0 ≥

−dv0
(
A−1

)
p− 1

+ p(n0 − µd) .

Therefore, we have

(3.7) v0
(
ΘΛ−1λ

)
≥ µd + p(n0 − µd) .

Since Λ−1 is upper triangular (because we assumed that it is a Jordan matrix), the

vector Λ−1λ is also of the form (η1, . . . , ηk, 0, . . . , 0)
⊤ with ηk ̸= 0. By (3.7), we have

v0
(
ΘΛ−1λ

)
> µd. Thus, πd

(
ΘΛ−1λ

)
= 0. Then, by minimality of k, Λ−1λ = ηkλ.

Thus, v0
(
ΘΛ−1λ

)
= v0 (ηkΘλ) = n0. Then, from the inequality (3.7), we have µd ≥

n0, which is a contradiction. Thus, the m vectors πd(θi,j) are linearly independent and
they form a basis of V. Now, from (3.6), the representation of the action of Md on V
in the basis (πd(θi,j))1≤i≤r, 1≤j≤si is just the matrix Λ−1. Since it is nonsingular, Md

acts as an isomorphism on V. Hence, by Lemma 3.3, V ⊂ Xd and

dimXd ≥ dimV = m.

Thus (1) implies (4).
We let d ∈ D0 and assume that dimXd := n ≥ m. We prove that n = m and that

the Mahler system (1.1) is regular singular at 0. We deduce that (4) implies (3) and
(2) implies (1). Let e1, . . . , en denote a basis of Xd and let E be the m(µd−νd+1)×n
matrix whose columns are e1, . . . , en. Since Md acts as an isomorphism on Xd, there
exists R ∈ GLn

(
Q
)
such that

(3.8) MdE = ER.

We make a block decomposition of E into µd − νd + 1 matrices Eνd , . . . , Eµd
of size

m× n:

E =

 Eνd
...

Eµd

 .

We then define by induction on j > µd a matrix Ej , setting

(3.9) Ej =

 ∑
(k,ℓ) : k+pℓ=j

Bd,kEℓ

R−1

where we recall that
∑

n∈ZBd,nz
n = Bd = ϕd(A)

−1. Since j > µd, the matrices Eℓ

contributing to the right-hand side of the equality have an index ℓ < j. Hence the
matrices Ej are well defined. If j < νd, we define Ej := 0. We stress that (3.9) actually
holds for any j ∈ Z :

• by definition, it holds when j > µd ;
• when νd ≤ j ≤ µd, it follows from the fact that ER =MdE ;
• when j < νd, it follows from the fact that NdE = 0, for Xd ⊂ ker(Nd).

We now write U :=
∑

j≥νd
Ejz

j . It is a matrix with m rows, n columns and entries in

Q((z)). It follows from (3.9) that

(3.10) UR = Bdϕp(U) .
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Since e1, . . . , en is a basis of Xd, the columns of U are linearly independent over Q.
It follows from Lemma 3.2 that they are linearly independent over Q((z)) so n ≤ m.
Thus n = m and the matrix U is invertible. In particular (4) implies (3). Now, let us
define Ψ := ϕ1/d(U). It follows from (3.10) that

(3.11) ϕp(Ψ)−1AΨ = R−1 ∈ GLm

(
Q
)
.

Thus, the system is regular singular at 0 and Q((z1/d))-equivalent to a constant system
with matrix R−1. The matrix Ψ is an associated gauge transformation. This proves
that (2) implies (1). □

Let k ⊂ Q denote a number field such that A ∈ GLm(k(z)). Then the vector space
Xd is defined over k and the matrices E and R in the proof of Theorem 3.1 can be
chosen with their entries in k.

Corollary 3.4. Let k ⊂ Q be a number field and A ∈ GLm(k(z)). The system (1.1) is

regular singular at 0 if and only if it is k̂(z)-equivalent to a matrix in GLm(k), where

k̂(z) :=
⋃
d∈N

k
((
z1/d

))
,

is the field of Puiseux series with coefficients in k.

4. A concrete algorithm for Theorem 1.3

Theorem 3.1 gives the description of a vector space whose dimension characterises
the regular singularity at 0 of a Mahler system (1.1). In this section we show that
the construction of Theorem 3.1 is algorithmic. This provides a proof of Theorem 1.3.
Then, we discuss the complexity of this algorithm.

Remark 4.1. In what follows, when discussing the complexity of our algorithms, we
shall count the number of operations in Q. However, if k ⊂ Q is the smallest number
field such that A ∈ GLm(k(z)), our operations are done with elements of k. To
count the number of operations over the rational numbers, one should add a factor
O(M([k : Q])), where [k : Q] is the degree of k over Q, to the bounds we give.

4.1. Description of an algorithm computing a ramification index. To apply
the result of Theorem 3.1, we first have to find an element d in the set D0. This
integer is related to the valuations at 0 of the entries of a companion matrix Acomp,

Q(z)-equivalent to A, which we obtain thanks to the cyclic vector lemma (Theorem
2.1).

Recall that, from the Cauchy’s Theorem (see [Mar66, Th. 27,2]), the modulus of
any root of a nonzero polynomial

f := f0 + f1z + f2z
2 + · · ·+ fhz

h with f0, . . . , fh−1 ∈ C, fh ∈ C \ {0}

is smaller than 1 plus the max of |fk|
|fh| , 0 ≤ k ≤ h − 1. However, number fields are

not necessarily invariant under the map x 7→ |x|. To stay in the initial base field,
we shall not consider directly the absolute value. Let k denote a number field such
that A ∈ GLm(k(z)). We fix an embedding k ↪→ C. We can obtain an upper bound
V (ξ) ∈ Q for the absolute value of any ξ ∈ k. Then, for f = f0 + f1z + · · · + fhz

h,
fi ∈ k, fh ̸= 0, we write

∥f∥ := 1 + max

{
V

(
fk
fh

)
, 0 ≤ k ≤ h− 1

}
≥ 1 + max

{∣∣∣∣fkfh
∣∣∣∣ , 0 ≤ k ≤ h− 1

}
> 1,
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if h ≥ 1 and ∥f∥ = 2 otherwise. Hence, ∥f∥ ∈ Q is greater than the modulus of every
root of f . We assume that V (ξ) is computable in O(1) for any ξ ∈ k so that ∥f∥ is
computable in O(deg(f)).

The following algorithm takes a Mahler system as input, computes a companion
matrix Acomp such that the systems associated with A and Acomp are Q(z)-equivalent,
and returns the valuations of the last row of this companion matrix.

Algorithm 1: Find the valuation of the entries of the last row of Acomp

Input: A ∈ GLm

(
Q(z)

)
, p ∈ N≥2.

Output: The valuations of the last row of a companion matrix
Q(z)-equivalent to A.

Compute f the lcm of the denominators of the entries of A.

Write Ã = fA ∈ GLm

(
Q[z]

)
.

Consider z0 := max
(
∥f∥, ∥ det(Ã)∥

)
.

Compute a solution r ∈ Q[z]m of (2.5) by Newton interpolation.
Let P be the matrix whose rows are r1 := r, ri+1 := ϕp(ri)A, 1 ≤ i ≤ m− 1.
return the valuation of the entries of ϕp(rm)AP−1.

It is clear, from the proof of Theorem 2.1, that the matrix ϕp(P )AP
−1 is a companion

matrix and that its last row is ϕp(rm)AP−1. Now, the following algorithm finds an
element of D0 – though not necessarily the smallest– as it was done in the proof of
Lemma 2.3.

Algorithm 2: Find some integer d ∈ D0

Input: A ∈ GLm

(
Q(z)

)
, p ∈ N≥2.

Output: An integer d ∈ D0

Compute (v0, . . . , vm−1) the valuations of the last row of a companion matrix
Q(z)-equivalent to A, with Algorithm 1.
Compute the lower hull H of the set of pairs

(
pi, vi

)
, 0 ≤ i ≤ m, with vm := 0.

Compute the set S of denominators of the slopes of H which are coprime with
p.
return lcm(S).

We compute an upper bound for the complexity of Algorithm 2. Let us first recall
some notations and results. Given a n > 0, we let M(n) denote the complexity of the
product of two polynomials of degree at most n, and MM(n) denote the complexity of
the product of two matrices with at most n rows and n columns. Let C ∈ Mm

(
Q[z]

)
with det(C) ̸= 0 and let δ := deg(C). The complexity of computing

• the determinant of C is O
(
MM(m)M(δ) (log(m))2

)
, see [Sto03];

• the product vC−1 is O (MM(m)M(δ) log(m) log(δ)), assuming that we know
some point at which C is invertible and that the degree of v ∈ Q[z]m is at most
δ, see [Sto03, Cor. 16];

• the inverse of C is O
(
m2M(mδ) log(mδ)

)
, see [ZLS15].

Proposition 4.2. The complextiy of Algorithm 2 is

O (MM(m) log(m)M (u) log(u)) with u := (m+ deg(A))pm.

Proof. We start by computing an upper bound for the complexity of Algorithm 1.
Assume first that the matrix A has its entries in Q[z]. The complexity of computing
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det(A) is

O
(
MM(m)M(δ) (log(m))2

)
where δ = deg(A). Then, since f = 1 here and since det(A) is a polynomial of degree
O(mδ), the computation of z0, which is equal here to max{2, ∥ det(A)∥}, can be done
with O(mδ) operations. To obtain a solution r of (2.5), we first need to compute the
matrices

(4.1)
(
A
(
zp

k

0

)
. . . A

(
zp

2

0

)
A (zp0)A (z0)

)−1
, 1 ≤ k ≤ m− 2 .

The complexity of taking the pth power of a number is O(log(p)), thus computing

z0, z
p
0 , . . . , z

pm−2

0 necessitates O(m log(p)) operations. A straightforward evaluation of
a polynomial with degree ℓ at n points necessitates O (nℓ) operations. Since the
m2 entries of A(z) are polynomials with degree δ, the complexity of computing the

matrices A(z0), A(z
p
0), . . . , A(z

pm−2

0 ) is O
(
m3δ

)
. We now have to compute m products

and inverses of these constant matrices. To sum up, the computation of (4.1) can be
done with

O
(
m log(p) +m3δ +mMM(m)

)
operations. Then, we compute each of the m entries of r by doing a Newton interpo-
lation at m points. There, the complexity is

O(mM(m) log(m))

(see [BS05]). We use that r = r1 and rk+1 = ϕp(rk)A for every k, 1 ≤ k ≤ m− 1, to
compute the rows r1, . . . , rm of P . In particular,

deg(rk) ≤ (m+ δ)pk−1 .

The computation of ϕp(rk)A necessitates m2 sums and products of polynomials with

degree at most (m+ δ)pk. Thus, O
(
m2M

(
(m+ δ)pk

))
operations suffice to compute

rk+1 from rk. Hence, once r is known, one may compute the matrix P with

O

(
m2

m−1∑
k=1

M
(
(m+ δ)pk

))
operations. Then, the complexity of computing ϕp (rm)A is

O
(
m2M(u)

)
,

where u := (m+ δ)pm, and the the one of computing ϕp (rm)AP−1 is

(4.2) O (MM(m) log(m)M (u) log(u)) .

Since (4.2) is greater than the complexity of all the previous steps in Algorithm 1, the
complexity of Algorithm 1 is (4.2), when A is a matrix with entries in Q[z]. Assume

now that A has rational coefficients. Write Ã = fA, with f ∈ Q[z] the least common

multiple of the denominators of the entries of A. Then, by definition, deg(Ã) ≤ deg(A).

Now, the operations with A = 1/fÃ have the same complexity as the ones with Ã

and the cost of the computation of f and Ã is negligible compared to (4.2). Thus,
the complexity of Algorithm 1 is (4.2) for any matrix A. Then, the complexity of
computing the lower hull in Algorithm 2 is negligible compared to (4.2). This ends the
proof. □
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4.2. Description of the algorithm of Theorem 3.1. The following algorithm tests
if a given Mahler system is regular singular at 0.

Algorithm 3: Test for the regular singularity of a Mahler system at 0

Input: A ∈ GLm

(
Q(z)

)
, p ∈ N≥2 and the order n ≥ 0 of truncation.

Output: Whether or not the system (1.1) is regular singular at 0 and in that
case the constant matrix Λ to which it is equivalent and a truncation
of an associated gauge transformation Ψ at order n.

Compute d with Algorithm 2.
Compute νd, µd,Md, Nd.
Set t := ⌈log2(m(µd − νd + 1))⌉.
for j from 1 to t do

Compute M2j

d .

Set I0 := ker(Nd)
for ℓ from 1 to t do

Set I to {x ∈ I |M2t−ℓ

d x ∈ I}.
Set X :=M2t

d I.
if dimX = m then

From a basis of X, compute R and Eνd , . . . , Eµd
as in the proof of Theorem

3.1.
for j from µd + 1 to max{µd + 1; dn} do

Compute Ej from (3.9).

Define Λ := R−1.
return “True”, Λ and

∑dn
j=νd

Ejz
j/d.

else
return “False”.

Then, Theorem 1.3 is a consequence of the following proposition that we will prove
in Section 4.4.

Proposition 4.3. Algorithm 3 satisfies the hypothesis of Theorem 1.3. Apart from
the computation of the Puiseux expansion of Ψ, the complexity of Algorithm 3 is

Õ (mMM(m)M((m+ δ)pm) +mpmMM(mv))

where δ := deg(A) and v := −(v0(A) + v0(A
−1)) + 1 ≥ 1.

In [Roq20] the author explained how to find the eigenvalues of a constant matrix
H-equivalent to a Mahler system, and the dimension of the associated characteristic
space. This is done by solving some explicit equations associated to the slopes of the
lower hull of the set of points (pi, v0(qi)) and by counting the multiplicity. When the
system is regular singular at 0, these eigenvalues are precisely the eigenvalues of the
matrix Md whose associated eigenvectors belong to kerNd. Then, there are only a
finite number of constant matrices in Jordan normal form having this precise set of
eigenvalues. Thus, one could test if, for each one of these matrices, there is a basis
of solutions in the Puiseux series by applying the cyclic vector lemma (Algorithm 1)
and by solving m equations of the form (2.6), where A is a companion matrix, by
extending the results of [CDDM18, Algo. 7] to the inhomogeneous case. By doing so,
one could determine if a given Mahler system is regular singular at 0. However, this
method seems less efficient than the one presented in Algorithm 3. Furthermore, by
doing so, one would possibly have to work in finite extensions of the base number field
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k instead of the base field k (see Corollary 3.4), in contrast to the method presented
in this paper.

When the system (1.1) is regular singular at 0, Algorithm 3 computes aK-equivalent
constant matrix. Furthermore, Roques [Roq18, §5.2] described fundamental matrices

of solutions for constant systems. Precisely, for c ∈ Q⋆
we let ec and ℓ denote functions

such that ϕp (ec) = cec and ϕp(ℓ) = ℓ+1. Any constant system has a basis of solutions

in Q
[
(ec)c∈Q⋆ , ℓ

]
.

Corollary 4.4. Consider a system (1.1) which is regular singular at 0. From Algo-
rithm 3, one can compute a fundamental matrix of solutions of (1.1) with entries in

K
[
(ec)c∈Q⋆ , ℓ

]
.

For example, one can take respectively for ec and ℓ, the functions log(z)log(c)/ log(p)

and log (log(z)) / log(p). Before proving Proposition 4.3, we make some observations
about the shape of the matrices Md and Nd.

4.3. On the shape of Md and Nd. Algorithm 3 requires some calculations with the
matrices Md and Nd. Naively, it should necessitate MM(n) operations where n is at
least the number of rows and the number of columns of Md and Nd. However, by
looking more closely at the shape of Md and Nd, we will show that it can be lowered
to dMM(n/d).

Definition 4.5. Let D = (Di,j)1≤i≤r,1≤j≤s be a block matrix with Di,j ∈ Mm

(
Q
)
.

We say that D is a d-gridded matrix if for all (i0, j0) ∈ {1, . . . , r}×{1, . . . , s} such that
Di0,j0 is nonzero, the matricesDi0,j , Di,j0 with i ̸≡ i0 mod (d) and j ̸≡ j0 mod (d) are
zero matrices. Let σ be a permutation of the set {1, . . . , d}. We say that σ is associated
with the d-gridded matrix D if Di,j = 0 for every (i, j) ∈ {1, . . . , r} × {1, . . . , s} with
j ̸≡ σ(i) mod (d).

Lemma 4.6. Let D = (Di,j)1≤i≤r,1≤j≤s and E = (Ei,j)1≤i≤s,1≤j≤t be two d-gridded

matrices with Di,j , Ei,j ∈ Mm

(
Q
)
and, respectively, σD and σE their associated per-

mutation. We write u := max (r, s, t). The computation of the product DE can be
done with complexity

O(dMM(mu/d)).

Furthermore, DE is a d-gridded matrix with associated permutation σE ◦ σD.

Proof. We let Dn (respectively En) denote the block matrices (Dn+kd,σD(n)+ℓd)k,ℓ
(respectively (En+kd,σE(n)+ℓd)k,ℓ) for any n ∈ {1, . . . , d}. Let n0 ∈ {1, . . . , d}, write
Fn0 := Dn0EσD(n0) and consider Fn0 := (Fn0,k,ℓ)k,ℓ its block decomposition, where

Fn0,k,ℓ ∈ Mm

(
Q
)
. For any i ∈ {1, . . . , r}, write i = n0 + kd with n0 ∈ {1, . . . , d},

k ∈ N and for any j ∈ {1, . . . , t}, let

Gi,j :=

{
Fn0,k,ℓ if j = σE ◦ σD(n0) + ℓd for some ℓ ∈ N ,

0 otherwise .

Then DE = (Gi,j)i,j and it is a d-gridded matrix whose associated permutation is
σE ◦ σD. The complexity of computing the product of two permutations of {1, . . . , d}
is O(d). Then, the complexity of computing each matrix Fn is O(MM(mu/d)). Thus,
the complexity of computing DE is

O(d+ dMM(mu/d)) = O(dMM(mu/d)) .

□



18 COLIN FAVERJON AND MARINA POULET

Remark 4.7. The computation of a basis of the (right-)kernel of a d-gridded matrix
can be done with the same complexity as the product of two d-gridded matrices. Note
that we can add some zero column vectors to the column vectors of the kernel obtained
in this way in order to form a d-gridded matrix. Similarly, one can compute a basis of
the intersection of the vector spaces spanned by the columns of two d-gridded matrices
with the same complexity. The basis obtained being a subset of the columns of one of
the matrices, one can complete it with some zero column vectors in order to form a
new d-gridded matrix.

Lemma 4.8. Let d ∈ D0. The matrices Md and Nd are d-gridded matrices.

Proof. Recall that

Md := (Bd,i−pj)νd≤i,j≤µd
and Nd := (Bd,i−pj)v0(B)+pνd≤i≤νd−1, νd≤j≤µd

where ϕd(A
−1) :=

∑
nBd,nz

n. In particular, Bd,i−pj = 0 if d does not divide i − pj.
Thus if Bd,i0−pj0 ̸= 0 then Bd,i−pj0 = 0 for all i such that i ̸≡ i0 (mod d). Moreover,
since p and d are relatively prime, if Bd,i0−pj0 ̸= 0 then Bd,i0−pj = 0 for all j such that
j ̸≡ j0 (mod d). Associated permutations to these matrices are σM and σN such that,
for every k ∈ {1, . . . , d},

pσM (k) ≡ (p− 1)(1− νd) + k (mod d)

pσN (k) ≡ v0 (Bd) + p− 1 + k (mod d) .

□

4.4. Proof of Proposition 4.3. We recall that

Xd = X+
d

⋂
X−
d

where
X+
d :=

⋂
n∈N

Mn
d ker(Nd) , X−

d :=
⋂
n∈N

ker(NdM
n
d ).

We first use the two following lemmas to prove that the vector space X in Algorithm
3 is equal to the vector space Xd.

Lemma 4.9. Let cd := m (µd − νd + 1). For any c ≥ cd, the vector space Xd is the

image of
⋂c−1

n=0 ker(NdM
n
d ) under the left multiplication by M c

d.

Proof. We first prove that X−
d =

⋂c−1
n=0 ker(NdM

n
d ). Write Vn = ∩n−1

k=0 ker
(
NdM

k
d

)
. It

is clear that if Vn = Vn+1 then Vℓ = Vn for all ℓ ≥ n. Thus the sequence (Vn)n≥1 is
decreasing and then stationary. Since dimV1 ≤ cd ≤ c, we must have Vc = Vc+1 and
X−
d = limn→∞Vn = Vc.

Now, write Wn = Mn
d X

−
d . Since MdX

−
d ⊂ X−

d , the sequence (Wn)n∈N is non-

increasing. We prove that Xd = limn→∞Wn. Since X−
d ⊂ ker(Nd) we have

lim
n→∞

Wn =
⋂
n∈N

Mn
d X

−
d ⊂

⋂
n∈N

Mn
d ker(Nd) ∩ X−

d ⊂ Xd .

It remains to prove that Xd ⊂ Wn for every n. We argue by induction on n. When
n = 0 it is immediate since W0 = X−

d . Assume now that Xd ⊂ Wn for some n ≥ 0.
Let x ∈ Xd. It follows from Lemma 3.3 that MdXd = Xd. Hence, there exists y ∈ Xd

such x = Mdy. By assumption, y ∈ Wn = Mn
d X

−
d so x ∈ Mn+1

d X−
d = Wn+1, which

concludes the induction. Now, arguing as in the first part of the proof, (Wn)n∈N is
stationary after the rank cd. In particular, since c ≥ cd, Xd = limn→∞Wn = Wc.

□
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Let t be the least integer such that 2t ≥ m(µd − νd + 1). We now define recursively
a finite sequence of vector spaces (Iℓ)0≤ℓ≤t setting

I0 := ker(Nd) and Iℓ := {x ∈ Iℓ−1 |M2t−ℓ

d x ∈ Iℓ−1}

Lemma 4.10. We have

Xd =M2t

d It .

Proof. One checks by induction on ℓ ∈ {0, . . . , t} that

Iℓ =
2ℓ−1⋂
n=0

ker
(
NdM

n2t−ℓ

d

)
.

Thus, It =
⋂2t−1

n=0 ker(NdM
n
d ) and the result follows from Lemma 4.9. □

Proof of Proposition 4.3. Let d ∈ D0 be given by Algorithm 2. We infer from Lemma
4.10 that the vector space X in Algorithm 3 is equal to Xd. Thus, from Theorem 3.1,
Algorithm 3 returns “true” if and only if the system is regular singular at 0. Then,
arguing as in the proof of Theorem 3.1, one checks that A is K-equivalent to R−1 and

that
∑dn

j=νd
Ejz

j/d are the first coefficients in the Puiseux expansion of an associated
gauge transformation.

To compute the complexity, we follow the script of Algorithm 3. Let δ := deg(A).
From Proposition 4.2 Algorithm 2 computes the integer d with

(4.3) O (MM(m) log(m)M (u) log(u))

operations, where u := (m+ δ)pm. To compute Md and Nd one needs to compute the
Laurent series expansion of A−1 between v0

(
A−1

)
and (µd−pνd)/d. The computation

of the inverse of A can be done with complexity

(4.4) O(m2M(mδ) log(mδ))

Newton’s method allows to compute the n first terms in the Laurent series expansion
of a rational function of degree at most n with complexity O(M(n)). One checks that
deg

(
A−1

)
≤ mδ. Let v := −(v0(A) + v0(A

−1)) + 1 ≥ 1. One has

n0 :=
µd − pνd

d
− v0

(
A−1

)
= O (v)

and v ≤ mδ. Thus the complexity of computing the first n0 terms of the Laurent
expansion of the m2 entries of A−1 is O

(
m2M(mδ)

)
, which is negligible compared

to (4.4). Thus, the computation of Md and Nd can be done with complexity (4.4).
Let t be the least integer such that 2t > m(µd − νd + 1). The cost of computing t

is negligible. We compute Md,M
2
d , . . . ,M

2t−1

d . The number of rows and columns of
Md being O(mdv/p), it follows from Lemma 4.6 that is necessitates O(tdMM(mv/p))
operations. We compute I0, . . . ,It. Since Nd has O(mdv) rows and columns, the com-
plexity of computing I0 is O(dMM(mv)). Knowing Iℓ−1, the complexity of computing
Iℓ is O(dMM(mv/p)). Thus, the complexity of computing the whole sequence is

O (tdMM(mv/p) + dMM(mv)) .

We now compute X. Since we know M2t−1

d , the complexity of computing M2t

d It is
O(dMM(mv/p)). Since d ≤ pm and since t = O(log(mpm−1v)), the complexity of the
computation of X is

(4.5) O
(
pmMM(mv/p) log(mpm−1v) + pmMM(mv)

)
.
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Now, (4.4) is negligible with respect to (4.3). Thus, Algorithm 3 returns if a system is
regular singular or not with

O
(
MM(m) log(m)M(u) log(u) + pmMM(mv/p) log(mpm−1v) + pmMM(mv)

)
operations. Using the notation Õ and, remembering that log(pm) = m log(p), we
obtain the bound we want. □

Remark 4.11. In Algorithm 3, we chose to compute first the integer d thanks to the
cyclic vector lemma, Algorithm 1 and Algorithm 2. Then we computed the vector
space Xd with this d. One could ask if running the algorithm for every d ∈ D could
be faster. It does not seem to be the case. Since we only have to compute the inverse
of A once and since D has O(pm) elements, running the algorithm for every d ∈ D,
without using Algorithm 2, would necessitate

Õ(m2M(mdeg(A)) +mp2mMM(mv))

operations. When deg(A) is large compared to other parameters, it can be smaller
than the complexity of Algorithm 3. However, we have to pay a factor p2m instead of
pm.

5. Examples

In this section, we study the regular singular property of some particular systems.

5.1. Systems of size 1. We consider a system of size 1:

(5.1) ϕp(y) = ay

where a ∈ Q(z), a ̸= 0.

Proposition 5.1. Any system of size 1 is regular singular at 0.

Proof. We consider the equation (5.1). Let ν denote the valuation at 0 of a and define

ψ := zν/(p−1). Then, the system ϕp(y) = by with b := ϕp (ψ)
−1 aψ is strictly Fuchsian

at 0. Thus, the homogeneous equation (5.1) is Q
((
zν/(p−1)

))
-equivalent to an equation

which is strictly Fuchsian at 0. A fortiori, (5.1) is regular singular at 0. □

5.2. An equation of order 2. Consider the 3-Mahler equation:

z3(1− z3 + z6)(1− z7 − z10)ϕ23(y)− (1− z28 − z31 − z37 − z40)ϕ3(y)

+ z6(1 + z)(1− z21 − z30)y = 0 .

The matrix of the 3-Mahler system associated with this equation is

A(z) :=

(
0 1

− z3(1+z)(1−z21−z30)
(1−z3+z6)(1−z7−z10)

1−z28−z31−z37−z40

z3(1−z3+z6)(1−z7−z10)

)
.

We propose to check whether or not the 3-Mahler system associated with this matrix is
regular singular at 0. Since we already know a homogeneous linear equation associated
with this system, it is not necessary to run Algorithm 1. Algorithm 2 applied to this
system returns d := 2. We now run Algorithm 3 with d = 2. We have v0(A) = −3,
v0(A

−1) = −6 and thus ν2 = −3 and µ2 = 6. In that case, the vector space X2 is
spanned by the transpose of the two linearly independent vectors

(0, 1, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1,−1, 0, 0,−1, 0, 0, 0) ,
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0) .
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In particular, X2 has dimension 2 and, from Theorem 3.1, the system is regular singular
at 0. One can check that these vectors are eigenvectors of the matrix M2 for the
eigenvalue 1. Thus the matrix R is the identity matrix of size 2. In particular, the
associated gauge transformation Ψ given by Algorithm 3 is a fundamental matrix of
solutions because it satisfies

ϕ3 (Ψ)−1AΨ = I2.

From these two vectors, we can compute the first terms of the Puiseux expansion of Ψ

Ψ =

(
f1 f2
f3 0

)
+O(z17/2)

with

f1(z) = z−1/2 − z1/2 + z3/2 − z5/2 + z7/2 − z9/2 + z11/2 − z13/2 + z15/2 ,

f2(z) = −z3 + z4 − z5 + 2z6 − 2z7 + 2z8 ,

f3(z) = z−3/2 − z3/2 + z9/2 − z15/2 .

Remark 5.2. Note that this example is the same as the one that the authors of
[CDDM18] chose to illustrate their paper.

5.3. Systems coming from finite deterministic automata. As mentioned in the
introduction, Mahler systems are related to the automata theory. Indeed, the gener-
ating function of an automatic sequence (see [AS03] for a definition) is solution of a
Mahler equation. Numerous famous automatic sequences are related to homogeneous
or inhomogeneous Mahler equations of order 1. This is, for example, the case of the
Thue-Morse sequence, the regular paper-folding sequence, the sequences of powers of
a given integer, the characteristic sequence of triadic Cantor integers – those whose
base-3 representation contains no 1. Thus, their associated systems are regular singular
at 0.

Among the sequences satisfying equations with an order greater than 1, a famous
one is the Baum-Sweet sequence, the characteristic sequence of integers whose binary
expansion has no blocks of consecutive 0 of odd length. The system associated with this
sequence is strictly Fuchsian at 0 and thus regular singular at 0. Another important
one is the Rudin-Shapiro sequence whose general term is an = 1 if the number of occurrences of two consecutive 1

in the binary expansion of n is even
an = −1 otherwise.

Its generating series f :=
∑

n∈N anz
n satisfies the equation

ϕ2

(
f(z)
f(−z)

)
=

1

2

(
1 1
1
z

−1
z

)(
f(z)
f(−z)

)
.

This system is not regular singular. Indeed, Algorithm 2 returns d = 3 and we have
dimX3 = 1. Thus, Algorithm 3 returns “ False ”.

The regular singular property can be seen as “normal” for Mahler systems since a
sufficient condition is to be strictly Fuchsian at 0. However, the generating series of
an automatic sequence satisfies a Mahler system with a very precise shape: A−1(0) is
well defined and has at most one nonzero entry in each column. Among these systems,
the strictly Fuchsian property is more occasional.
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6. Open problems

We discuss here some open problems about the regular singularity at 0 of a Mahler
system.

6.1. The inverse matrix system. Let A ∈ GLm(Q(z)) and p ≥ 2 be an integer. If
the p-Mahler system with matrix A is strictly Fuchsian at 0, then the p-Mahler system
with matrix A−1 is also strictly Fuchsian at 0 (and hence, regular singular at 0). This
property does not extend to regular singular systems. For example, if A denotes the
matrix of the regular singular system in subsection 5.2, the 3-Mahler system associated
with A−1 is not regular singular at 0. We ask the following question.
Is there a characterisation of matrices A such that the p-Mahler systems associated
with both A and A−1 are regular singular at 0?

6.2. Changing the Mahler operator. Assume that a system is strictly Fuchsian at
0. If we change the integer p then the system remains strictly Fuchsian at 0 (hence
regular singular at 0). This property does not extend to regular singular systems.
Indeed, the 3-Mahler system of subsection 5.2 is regular singular at 0, while the 2-
Mahler system with the same matrix is not. Similarly, the p-Mahler system associated
with this matrix is not regular singular when p ∈ {4, . . . , 30} (and probably beyond).
Similarly, the companion system associated with the p-Mahler equation

(z11 + z13)ϕ2p(y) + (−1/z − z − z6 + z10)ϕp(y) + (1− z)y = 0

is regular singular at 0 for p = 2 and p = 4 but not for p ∈ {3, 5, 6, . . . , 100} (and
probably beyond). It seems that for a matrix A ∈ GLm

(
Q(z)

)
the p-Mahler system

associated with A is either regular singular at 0 for every integer or for finitely many
(possibly none) integers p ≥ 2.
Is that true that only these two situations may occur?
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[BS05] A. Bostan, É. Schost, Polynomial evaluation and interpolation on special sets of points. J.
Complexity, 21(4) (2005), 420–446.
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