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AN ALGORITHM TO DETERMINE REGULAR SINGULAR

MAHLER SYSTEMS

COLIN FAVERJON AND MARINA POULET

Abstract. This paper is devoted to the study of the analytic properties of Mahler
systems at 0. We give an effective characterisation of Mahler systems that are
regular singular at 0, that is, systems which are equivalent to constant ones. Similar
characterisations already exist for differential and (q-)difference systems but they do
not apply in the Mahler case. This work fill in the gap by giving an algorithm which
decides whether or not a Mahler system is regular singular at 0.
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1. Introduction

Let K be the field of Puiseux series with algebraic coefficients i.e. the field

K :=
⋃
d∈N?

Q
((
z1/d

))
.

For an integer p ≥ 2 we define the operator

φp : K → K
f(z) 7→ f (zp)

.

The map φp naturally extends to matrices with entries in K. A p-Mahler system or,
for short, a Mahler system is a system of the form

(1) φp (Y ) = AY, A ∈ GLm
(
Q (z)

)
.
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The study of Mahler systems began with the work of Mahler in 1929 [Mah29, Mah30a,
Mah30b]. Nowadays, there is an increased interest in their study because they are
related to many areas such as automata theory or divide-and-conquer algorithm (see
for example [Cob68, MF80, Dum93, Nis97, Phi15, AF17, AF20] for a non-exhaustive
bibliography). In this paper, we focus on the singularity at 0 of Mahler systems.
Similarly to the case of differential or (q-)difference systems, a singularity at 0 of a
Mahler system can be regular. In that case, we say that the Mahler system is regular
singular at 0. Otherwise, the system is irregular at 0. Precisely, we have the following
definition.

Definition 1. A p-Mahler system (1) is regular singular at 0, or for short regular
singular, if there exists Ψ ∈ GLm (K) such that φp(Ψ)−1AΨ is a constant matrix.

The singularities of differential or (q-)difference systems have been widely studied
and algorithms have been given. One of the main interests in studying the regular
singular systems is the good analytic properties of their solutions. Linear differential
systems have been some of the first ones to be studied. A linear differential system
is regular singular at z = 0 if and only if all of its solutions have moderate growth
at z = 0, that is, at most a polynomial growth (see for example [vdPS03, theorem
5.4]). Some criteria and algorithms have been given for a linear differential system to
have a regular singularity, see for example [Bir13, Mos59, HW86, Hil87, Bar95]. Then,
algorithms have been given for other systems such as difference systems and q-difference
systems (see for instance [Pra83, Bar89, BP96, BBP08]). In [BBP08], the authors give
a general algorithm for recognizing the regular singularity of linear functional equations
satisfying some general properties. This algorithm applies to many systems such as
differential systems and (q−)difference systems. However, this general algorithm does
not apply to the study of the regular singularity at 0 of Mahler systems because the
Mahler operator φp does not preserve the valuation at 0. The aim of this paper is to
fill in this gap and to present an algorithm which decides whether or not a Mahler
system is regular singular at 0.

In general, a Mahler system does not admit a fundamental matrix of solutions in
GLm (K). To find such a matrix, one has to consider some extensions of K. Let H
denote the field of Hahn power series. One can extend the operator φp to H. In
[Roq20], Roques proved that for every p-Mahler system there exists a matrix Ψ ∈
GLm(H) such that φp(Ψ)−1AΨ is a constant matrix. In the mean time, for any
constant Mahler system one can build a fundamental matrix of solutions using the
functions log log(z) and loga(z), a ∈ C (see [Roq18]). Thus, any Mahler system has a
fundamental matrix of solutions of the form ΨΘ, where Ψ is matrix with entries in H
and Θ is a fundamental matrix of solutions of a constant system. Among them, the
regular singular systems are those for which the matrix Ψ belongs to GLm(K). The
restriction to the subfield K of H is essential to preserve the analytic properties of
the system. In particular, if f ∈ Km is a column vector, solution of a Mahler system,
it follows from Randé’s Theorem [Ran92, BCR13] that the entries of f are ramified
meromorphic functions inside the unit disk.

Definition 2. Let p ≥ 2 be an integer, and let A,B ∈ GLm
(
Q(z)

)
. Let k ⊂ H be a

field. The p-Mahler systems

φp(Y ) = AY and φp(Y ) = BY
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are said to be k-equivalent if there exists a matrix Ψ ∈ GLm(k) such that

φp(Ψ)B = AΨ .

In that case, the matrix Ψ is called the associated gauge transformation.

This choice for the equivalence class ensures that if Y is such that φp(Y ) = AY then
φp
(
Ψ−1Y

)
= B

(
Ψ−1Y

)
. With this definition, the regular singular systems are the

ones that are K-equivalent to a constant system.

A Mahler system is said to be Fuchsian at 0 if the entries of A are analytic functions
at 0 and A(0) ∈ GLm

(
Q
)
. To say it differently, a system is Fuchsian at 0 if 0 is not

a singularity of this system. It follows from [Roq18, Prop. 34] that systems which are
Fuchsian at 0 are regular singular at 0. Since the multiplication by a rational function
of a system does not modify its equivalence class, there exist systems which are regular
singular at 0 but are not Fuchsian at 0. Note that not all Mahler systems are regular
singular at 0. For example, the system

φ2(Y ) =
1

2

(
1 1
1
z
−1
z

)
Y

associated with the generating series of the Rudin-Shapiro sequence is not regular
singular at 0 (see Section 6). The main result of this paper reads as follow.

Theorem 1. Let A ∈ GLm
(
Q(z)

)
and p ≥ 2. There exists an algorithm which

determines whether or not the Mahler system (1) is regular singular at 0. This is done
by computing the dimension of an explicit Q-vector space. If the system is regular
singular at 0 the algorithm computes a constant matrix to which the system is equivalent
and a truncation at an arbitrary order of the Puiseux development of the associated
gauge transformation.

In [CDDM18], the authors built an algorithm to decide whether or not a Mahler
system has a fundamental matrix of solutions in GLm(K). In that case, the system is
regular singular at 0 and K-equivalent to the identity matrix. From this point of view,
Theorem 1 can be seen as a generalisation of the results of [CDDM18].

Remark 1. It is also interesting to look at Mahler systems around other fixed points
of φp such as 1 and ∞. Using the change of variable z = eu one can test the regular
singularity at 1 using the theory of q-difference linear systems. Furthermore, one
can know if a system is regular singular at ∞ by applying Theorem 1 to the system
A(1/z). In particular, when a Mahler system is regular singular at 0, 1 and ∞, the
second author [Pou20] has proved a density theorem for the Galois group of the system.

The paper is organised as follows. In section 2 we state Theorem 2, which refines the
first part of Theorem 1. We define a vector space whose dimension gives a necessary
and sufficient condition for a Mahler system to be regular singular at 0. Assuming
that the system is regular singular at 0, we determine in section 3 an upper bound
for the degree of ramification of the gauge transformation Ψ and a lower bound for
the valuation of its entries. Our proof relies on the Cyclic Vector Lemma for Mahler
systems for which we provide a simple proof together with an algorithm. Section 4 is
then devoted to the proof of Theorem 2. We build an isomorphism between the Q-
vector space spanned by the columns of Ψ and the vector space described in Theorem
2. The algorithm of Theorem 1 is described in section 5 and a bound for its complexity
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is given. Section 6 is devoted to the study of some examples. Eventually, in Section 7
we discuss some open problems.

Notation. We let Q denote the algebraic closure of Q in C and Q?
= Q \ {0}. We

let v0 : Q[[z]] 7→ Q denote the valuation at z = 0: for f ∈ Q[[z]], v0(f) is the greatest
integer v such that f belongs to the ideal zvQ[[z]]. It extends uniquely to K. We also
extend it to the set of matrices with entries in K where v0(U) denotes the minimum
of the valuations at 0 of the entries of a matrix U . For a matrix U ∈ Mm1,m2 (K) we
write

U =
∑

n≥v0(U)

Unz
n/d with Un ∈Mm1,m2

(
Q
)
, d ∈ N?.

and we let Un denote the zero matrix of size m1×m2, when n < v0(U). Let R = P/Q be
a rational function, P,Q ∈ Q[z] relatively prime. We let deg(R) denote the maximum
of the degrees of P and Q. This notation extends to matrices with entries in Q(z),
taking the maximum of the degrees of the entries.

Our bounds for the complexity of the algorithms presented here are given in terms
of arithmetical operations in Q. Given f, g : N 7→ R≥0 we use the classical Landau
notation f(n) = O(g(n)) if there exists a positive real number κ such that f(n) ≤ κg(n)
for every integer n large enough. Given an integer n, we let M(n) denote the complexity
of the multiplication of two polynomials of degree at most n, and MM(n) denote the
complexity of the multiplication of two matrices of size n.

For the sake of clarity, we shall denote by roman capital letters A,B,C, . . . matrices
whose coefficients are effectively known and by Greek capital letters Ψ,Θ,Λ, · · · the
other matrices. While matrices are denoted by capital letters Ψ,Θ, U, . . ., the columns
of these matrices should be denoted by bold lowercase letters ψ,θ,u, . . ..

2. A characterisation of regular singularity at 0

Let d ≥ 1 be an integer. We set B(d) := φd(A)−1 and we denote by

B(d) :=
∑

n≥dv0(A−1)

Bn(d)zn

the development of B(d) in Laurent power series. Set

(2) µd := d−dv0

(
A−1

)
/(p− 1)e, and νd := ddv0(A)/(p− 1)e.

Since AA−1 = Im, we have v0(A) + v0

(
A−1

)
≤ 0 so

dv0(A)/(p− 1) ≤ −dv0

(
A−1

)
/(p− 1)

and eventually, νd ≤ µd. We let Md and Nd denote the block matrices

Md := (Bi−pj(d))νd≤i,j≤µd

and

Nd :=

{
(Bi−pj(d))dv0(A−1)+pνd≤i≤νd−1, νd≤j≤µd if νd < µd

0 ∈M1,m(µd−νd+1)

(
Q
)

if νd = µd

Remark 2. The condition νd < µd ensures that the matrix is well-defined because it is
equivalent to

(3) dv0(A−1) + pνd ≤ νd − 1 .
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Indeed, if νd satisfies (3), then

νd ≤
−dv0(A−1)

p− 1
− 1

p− 1
< µd .

Conversely, if νd < µd, then

νd ≤ µd − 1 =

⌈
−dv0(A−1)

p− 1

⌉
− 1 ≤ −dv0(A−1)

p− 1
− 1

p− 1
,

which is equivalent to (3). The last inequality comes from the fact that the number⌈
−dv0(A−1)

p−1

⌉
− −dv0(A−1)

p−1 is of the form b/(p− 1) with b ∈ {0, . . . , p− 2}.

Let ker(Nd) denote the (right) kernel of Nd in Qm(µd−νd+1)
. When νd = µd we have

ker(Nd) = Qm(µd−νd+1)
. For an integer n ∈ N we set

M−nd · ker(Nd) = ker(NdM
n
d ) .

We also let

(4) D = {d ∈ N, 1 ≤ d ≤ pm − 1 | gcd(d, p) = 1} ⊂ N

The following result gives a necessary and sufficient condition for a system to be regular
singular at 0.

Theorem 2. The system (1) is regular singular at 0 if and only if there exists an
integer d ∈ D such that the dimension of the Q-vector space

Xd :=
⋂
n∈Z

Mn
d · ker(Nd)

is greater than or equal to m. In that case, it is equal to m and the system (1)

is Q((z1/d))-equivalent to a constant system. Furthermore, there is an algorithm to
compute this integer d.

Remark 3. We show in Lemma 16 that

Xd =
⋂

−cd≤n≤cd

Mn
d · ker(Nd)

where cd := m (µd − νd + 1).

3. Index of ramification and valuation at 0 of a gauge transformation

Assume that the system is regular singular at 0. The entries of the associated gauge
transform belong to zvQ[[z1/d]] for some integers v ∈ Z and d ≥ 1. The aim of this
section is to provide an upper bound for the ramification index d and a lower bound
for the valuation v.

3.1. The Cyclic Vector Lemma. For the sake of completeness, we develop here a
proof of a result called the Cyclic Vector Lemma. Any Mahler system is associated
with an homogeneous Mahler equation, that is an equation of the form

q0y + q1φp(y) + q2φ
2
p(y) + · · ·+ qm−1φ

m−1
p (y)− φmp (y) = 0 ,

with q0, . . . , qm−1 ∈ Q(z). This result is known as the Cylic Vector Lemma. We provide
a proof of this result here, together with an algorithm to realize it.
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Theorem 3 (Cyclic Vector Lemma). Every Mahler system (1) is Q(z)-equivalent to
a companion matrix system, i.e., there exist P ∈ GLm

(
Q(z)

)
and q0, . . . , qm−1 ∈ Q(z)

such that φp(P )AP−1 = Acomp where

(5) Acomp =


0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1
q0 · · · · · · · · · qm−1

 .

Proof. We adapt the proof of Birkhoff given in [Bir30, §1.] and of Sauloy given in
[Sau00, Annexe B.2]. In order to build such a matrix P , we build its rows r1, . . . , rm.
These rows must be linearly independent and must satisfy

φp (ri)A = ri+1 for 1 ≤ i ≤ m− 1.

Therefore, we are looking for a vector r ∈ Q(z)m such that the vectors r1 := r,
ri+1 := φp (ri)A, 1 ≤ i ≤ m − 1 form a basis of Q(z)m. For this purpose, we choose

a z0 ∈ Q?
not a root of unity such that A (z0) , . . . , A

(
zp

m−2

0

)
∈ GLm

(
Q
)

(such a z0

exists because the matrix A has finitely many singularities). Now, by interpolation,

since z0, z
p
0 , . . . , z

pm−1

0 are all different, we may choose r ∈ Q(z)m such that

(6)


r(z0) = e1

r(zp0) = e2A(z0)−1

...

r(zp
m−1

0 ) = emA(z0)−1 . . . A
(
zp

m−2

0

)−1

where e1, . . . , em is the canonical basis of Q(z)m. Set r1 := r and define recursively
ri+1 := φp (ri)A, 1 ≤ i ≤ m− 1. By construction,

ri(z0) = ei .

The matrix P whose rows are r1, . . . , rm satisfies P (z0) = Im. Thus, P ∈ GLm
(
Q(z)

)
.

Set

(q0, . . . , qm−1) := φp(rm)AP−1 .

Then Acomp = φp(P )AP−1 is a companion matrix of the form (5). �

Recall that, from the Lagrange Theorem, the roots of a polynomial

p := p0 + p1z + p2z
2 + · · ·+ phz

h with p0, . . . , ph−1 ∈ C, ph ∈ C?

have a module strictly less than 1 plus the max of |pk||ph| , 0 ≤ k ≤ h− 1. We thus set

‖p‖ := 1 + max

{
|pk|
|ph|

, 0 ≤ k ≤ h− 1

}
.

The following algorithm takes a Mahler system as input and returns a matrix P such
that φp(P )AP−1 is a companion matrix together with the last row of φp(P )AP−1.
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Algorithm 1: Find a cyclic vector associated with the Mahler system (1)

Input: A, p.
Output: The last row of a companion matrix Q(z)-equivalent to A and its

associated gauge transform.
Set m the size of A.
Set f the numerator of det(A) and z0 := ‖f‖.
for 1 ≤ i, j ≤ m do

Let g ∈ Q[z] stand for the denominator of the entry (i, j) of A.
if ‖g‖ ≥ z0 then

z0 := ‖g‖.
end

end

Let r ∈ Q[z]m satisfy the interpolation (6).
Set P the matrix with rows r1 := r, ri+1 := φp(ri)A, 1 ≤ i ≤ m− 1.
return P and φp(rm)AP−1.

Proposition 4. Algorithm 1 has complexity

O(MM(m)M(pm(deg(A) +m))) .

Proof. The computation of det(A) has complexity O(MM(m)M(deg(A))). Given a
polynomial P , the complexity of computing ‖P‖ is O(deg(P )). Thus, the computation
of z0 has complexity

O(m2 deg(A) + MM(m)M(deg(A))) .

To obtain r we need to compute the matrices(
A (z0)A (zp0)A

(
zp

2

0

)
. . . A

(
zp

k

0

))−1
, 1 ≤ k ≤ m− 2 .

This has complexity O
(
m3 deg(A) +mMM(m)

)
. Then, we must interpolate at m

points, for each of the m entries of r, which has complexity O(mM(m) log(m)). Since
r has degree m−1 the computation of P has complexity O(m2M(pm−1(deg(A)+m))).
Then we need to compute the inverse of P which takes

O(MM(m)M(pm−1(deg(A) +m))).

Thus, the computation of φp(rm)AP−1 has complexityO(MM(m)M(pm(deg(A)+m))).
Eventually, Algorithm 1 has complexity

O(MM(m)M(pm(deg(A) +m))) .

�

3.2. On the possible ramification indexes of a gauge transformation. Recall
that, from (4), D is the set of d ∈ {1, . . . , pm − 1} such that p and d are relatively
prime. The aim of this subsection is to prove the following result.

Proposition 5. Assume that the system (1) is regular singular at 0 with an associated

gauge transformation Ψ ∈ GLm (K). Then, the matrix Ψ belongs to GLm
(
Q((z1/d))

)
for some d ∈ D. Furthermore, Algorithm 2 below computes such an integer d.



8 COLIN FAVERJON AND MARINA POULET

Let

(7) Λ := φp(Ψ)−1AΨ ∈ GLm(Q)

denote the constant matrix which is K-equivalent to A. Without loss of generality, we
assume that Λ has a Jordan normal form that is

Λ :=


Js1(λ1)

Js2(λ2)
. . .

Jsr(λr)


where λ1, . . . , λr are algebraic numbers and Jsi(λi) is the Jordan block of size si asso-
ciated to the eigenvalue λi. Let

ψ1,1, . . . ,ψ1,s1 ,ψ2,1, . . . ,ψ2,s2 , . . . ,ψr,1, . . . ,ψr,sr

denote the columns of Ψ indexed according to the Jordan normal form of Λ. From (7),
for any i, j ∈ N such that 1 ≤ i ≤ r, 2 ≤ j ≤ si one has

(8) λiφp(ψi,1) = Aψi,1, and λiφp(ψi,j) + φp(ψi,j−1) = Aψi,j .

Before proving Proposition 5 we need two lemmas about the solutions of homogeneous
and inhomogeneous linear Mahler equations.

Lemma 6. For any system (1), there exists an integer d ∈ D such that for any λ ∈ Q?

and f ∈ Km satisfying

(9) λφp(f) = Af

we have f ∈ Q
((
z1/d

))m
.

Proof. By Theorem 3 there exists P ∈ GLm(Q(z)) such that Acomp = φp(P )AP−1 is
a companion matrix, that is,

(10) Acomp =


0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1
q0 · · · · · · · · · qm−1

 where q0, . . . , qm−1 ∈ Q(z) .

We let f , λ be as in the lemma. We have

λφp(Pf) = AcompPf .

Substituting Pf to f , we might assume that A = Acomp. Let f1, . . . , fm ∈ K be the
entries of f . Since A is a companion matrix, for every i ∈ {1, . . . ,m− 1},

fi+1 = λφp(fi).

Thus, in order to prove that f ∈ Q
((
z1/d

))m
, it is enough to prove that f1 ∈ Q((z1/d)).

It follows from (9) and (10) that f1 is a solution of the Mahler equation

(11) q0y + λq1φp(y) + · · ·+ λm−1qm−1φ
m−1
p (y)− λmφmp (y) = 0.

From [CDDM18, Prop. 2.19], there exists an integer d ∈ D such that any solution

y ∈ K of (11) belongs to Q
((
z1/d

))
. Furthermore, as shown in [CDDM18], this integer

d depends only on the valuation of the rational functions which are the coefficients of
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the Mahler equation (11). In particular, it does not depend on λ. Precisely, let H ∈ R2

denote the lower hull of the set

{(pi, v0(qi)} ∪ {(pm, 0)} .

The integer d can be taken to be the least common multiple of the denominators of
the slopes of H which are prime together with p. We fix such an integer d. Therefore,
f1 ∈ Q((z1/d)) and d does not depend on λ. �

Lemma 7. Consider a system (1) and let d be the integer obtained in the Lemma 6

for this system. If g ∈ Q((z1/d))m, λ ∈ Q?
and f ∈ Km satisfy

(12) φp(f)λ+ g = Af

then f ∈ Q((z1/d))m.

Proof. By Theorem 3, there exists P ∈ GLm(Q(z)) such that Acomp = φp(P )AP−1 is
a companion matrix of the form (10). We let f , g, λ be as in the lemma. We have

φp(Pf)λ+ φp(P )g = AcompPf

so up to replace Pf with f and φp(P )g with g, we might assume that A = Acomp.
Since A is a companion matrix, for every i ∈ {1, . . . ,m− 1},

fi+1 = gi + λφp(fi).

Thus, it is enough to prove that f1 ∈ Q((z1/d)). It follows from (10) and (12) that

(13) q0f1 + λq1φp(f1) + · · ·+ λm−1qm−1φ
m−1
p (f1)− λmφmp (f1) = g0,

where g0 ∈ Q
((
z1/d

))
is a Q(z)-linear combination of the φjp(gi), i ∈ {1, . . . ,m},

j ∈ {0, . . . ,m−1}. Assume that f1 does not belong to Q
((
z1/d

))
and let h be the sum

of all the monomials in the Puiseux series development of f1 whose power cannot be
written as k/d, with k ∈ Z. Since gcd(d, p) = 1, none of the monomials of the power

series φ`p(h), ` ∈ N, belong to Q
((
z1/d

))
. On the other hand, since f1−h ∈ Q

((
z1/d

))
,

φ`p(f1 − h) ∈ Q
((
z1/d

))
for every ` ∈ N. It thus follows from (13) that h is a solution

of (11), the Mahler homogeneous equation associated with (13). From Lemma 6,

h ∈ Q
((
z1/d

))
, a contradiction. �

The following algorithm computes an integer d ∈ D satisfying the properties of
Lemma 6.

Algorithm 2: The integer d

Input: A, p.
Output: An integer d satisfying the properties of Lemma 6
Compute the last row (q0, . . . , qm−1) of the matrix Acomp with Algorithm 1.
Compute the lower hull H of the set {(pi, v0(qi)} ∩ {(pm, 0)}.
Compute S the set of denominators of the slopes of H which are prime
together with p.

return lcm(S).

We can now prove Proposition 5.
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Proof of Proposition 5. Let d denote the integer given by Lemma 6. Fix an integer
i ∈ {1, . . . , r}. We prove by induction on j ∈ {1, . . . , si} that ψi,j ∈ Q

((
z1/d

))m
for

every j ∈ {1, . . . , si}. From (8), the vector ψi,1 satisfies

λiφp(ψi,1) = Aψi,1.

Thus, from Lemma 6, ψi,1 ∈ Q
((
z1/d

))m
. Fix an integer j ∈ {2, . . . , si} and assume

that ψi,j−1 ∈ Q
((
z1/d

))m
. From (8), ψi,j satisfies

λiφp(ψi,j) + φp(ψi,j−1) = Aψi,j

thus it follows from Lemma 7 that ψi,j ∈ Q
((
z1/d

))m
, as desired. �

3.3. A lower bound for the valuation of a gauge transformation. Assume that
the system (1) is regular singular at 0. Let Ψ ∈ GLm(K) such that φp(Ψ)−1AΨ is a
constant matrix. We let d ∈ D denote an integer such that the entries of Ψ belong to
Q((z1/d)). Write

Θ(z) := φd(Ψ)(z) =
∑

n≥v0(Θ)

Θnz
n and A(z) =:

∑
n≥v0(A)

Anz
n,

where Θn, An ∈ Mn

(
Q
)
. By definition, v0 (Θ) = v0 (φd(Ψ)). We give a lower bound

for v0 (Θ), the valuation at 0 of Θ. It follows from the identity φp (Θ) = φd(A)ΘΛ−1

that
pv0 (Θ) ≥ v0 (Θ) + dv0(A).

Hence v0 (Θ) ≥ dv0(A)
p−1 thus

v0 (Θ) ≥ νd
where νd = ddv0(A)/(p− 1)e is defined in (2). It follows that we have a decomposition

Ψ(z) :=
∑

n≥νd Θnz
n/d where Θνd might be a zero matrix. Eventually, we just proved

that the valuation at 0 of the entries of φd(Ψ) are greater than νd.

4. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. If the system is regular singular
at 0, we describe how to compute a gauge transformation Ψ such that φp(Ψ)−1AΨ is
constant with Jordan normal form. Of course, a delicate point in such a construction is
that we have to compute the eigenvalues of this Jordan normal form matrix. Moreover,
the gauge transformation Ψ appears with coefficients in an algebraic extension of the
field spanned by the coefficients of the entries of A, which is not optimal.

4.1. Equations satisfied by the columns of a gauge transformation. We recall
that the Mahler system (1) is regular singular at 0 if and only if there exist matrices
Ψ ∈ GLm (K) and Λ ∈ GLm(Q) such that

φp (Ψ) Λ = AΨ .

Assume that the system (1) is regular singular at 0 with gauge transformation Ψ and
a constant matrix Λ. One has

(14) ΨΛ−1 = A−1φp(Ψ)

Then, from Proposition 5, Ψ belongs to GLm(Q((z1/d))) for some d ∈ D. We fix such
an integer d and we apply φd to (14):

(15) ΘΛ−1 = Bφp (Θ)
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where Θ := φd (Ψ) and B := φd(A
−1). These matrices have Laurent series development

Θ(z) =
∑
n≥νd

Θnz
n and B(z) =

∑
n≥v0(B)

Bnz
n,

where Θn, Bn ∈Mm

(
Q
)

and νd = ddv0(A)/(p− 1)e.

Remark 4. We infer from (15) that for all n ∈ Z,

(16) ΘnΛ−1 =
∑

(k,l) : k+p`=n

BkΘ`.

If n > −dv0

(
A−1

)
/(p− 1) then the Θ` which are taken into account in the right hand

side of (16) are the one for which ` < n. Therefore, the sequence (Θn)n≥νd is uniquely
determined by the matrices Θ` with

νd ≤ ` ≤ µd,
where µd = d−dv0

(
A−1

)
/(p− 1)e is defined in (2).

Assume that the matrix Λ−1 has a Jordan normal form

Λ−1 :=


Js1(γ1)

Js2(γ2)
. . .

Jsr(γr)


where γ1, γ2, · · · , γr are algebraic numbers and Jsi(γi) is the Jordan block of size si
associated with the eigenvalue γi. Let

θ1,1, . . . ,θ1,s1 ,θ2,1, . . . ,θ2,s2 , . . . ,θr,1, . . . ,θr,sr ∈ Q((z))m

denote the columns of Θ indexed with respect to the Jordan normal form of Λ−1. We
infer from (15) that the columns θi,j satisfy

(17)
γiθi,1 = Bφp(θi,1)

γiθi,j + θi,j−1 = Bφp(θi,j) j ≥ 2.

4.2. Computing the column’s candidates. In this section we do not assume any-
more that the system is regular singular at 0. We fix the integer d ∈ D given by
Algorithm 2. We recall that if the Mahler system (1) is regular singular at 0 then the

entries of a gauge transformation Ψ belong to Q
((
z1/d

))
. Therefore, instead of looking

for a gauge transformation with entries in Q
((
z1/d

))
, we shall apply φd to the Mahler

system and look for a gauge transformation with entries in Q((z)). Let

B := φd
(
A−1

)
.

We will show how to build a matrix U with entries in Q((z)) and with as many linearly
independent columns as possible, together with a constant square matrix C such that

UC = Bφp(U).

Our matrix U may not be a square matrix. As we shall see, it will be if and only if
the system (1) is regular singular at 0. In that case, setting Ψ := φ1/d(U) we will have

φp (Ψ)−1AΨ = C−1 ∈ GLm(Q), as wanted. It follows from (17) that to determine
the columns of this matrix U , one has to solve some homogeneous and inhomogeneous
Mahler systems. In the mean time, we infer from Remark 4 that this can be done
by solving some equations in a finite number of the coefficients of the Puiseux series
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development of the columns of U . This section is devoted to the construction of the
pair (U,C).

Let M := Md and N := Nd be defined as in section 2. We define a map

πd : Q((z))m → Qm(µd−νd+1)

g(z) =
∑

n∈Z gnz
n 7→

gνd...
gµd

 .

If γ is an eigenvalue of M , for all positive integer j, we consider the Q-vector space

Vγ,j := ker
(

(M − γI)j
)
∩

(
j−1⋂
k=0

ker
(
N(M − γI)k

))
.

We set Vγ,0 := {0}.

4.2.1. Solving the homogeneous equations.

Lemma 8. Let γ ∈ Q. If the equation

(18) γf = Bφp(f)

has a nonzero solution then γ 6= 0. In that case, the map πd induces a bijection between
the Q vector-space of solutions f ∈ Q((z))m of (18) and Vγ,1. Furthermore, given an
element y ∈ Vγ,1, there is a recurrence relation to determine the coefficients of the

Laurent series development of the vector f ∈ Q((z))m such that πd(f) = y.

Note that there might be no nonzero solution of (18), even when γ is a nonzero
eigenvalue of M . More precisely, from this lemma, there exists a nonzero solution of
(18) if and only if γ is a nonzero eigenvalue of M which satisfies dim (Vγ,1) ≥ 1.

Proof. Since the matrix B is nonsingular, we must have γ 6= 0. It follows from the
results in Section 3.3 that any solution in Q((z))m of (18) has a valuation at 0 greater
than νd. Let f ∈ Q((z))m with valuation greater than νd and set

f =
∑
n≥νd

fnz
n, fn ∈ Qm

for n ≥ νd .

The function f satisfies (18) if and only if

∀n ∈ Z, γfn =
∑

(k,l) : k+p`=n

Bkf `,

where we set fn = 0 if n < νd. This is equivalent to
Nπd (f) = 0 (coming from the cases n < νd)
Mπd (f) = γπd (f) (coming from the cases νd ≤ n ≤ µd)
∀n ≥ µd + 1, fn = 1

γ

(∑
(k,l) : k+p`=nBkf `

) .

The first and the second equality imply that πd(f) ∈ Vγ,1. As explained in Remark
4, from the third equality in this system, we deduce that the sequence (fn)n≥νd is
uniquely determined by the vectors f ` with νd ≤ ` ≤ µd, i.e. it is uniquely determined
by πd (f). Therefore, f is a solution of (18) if and only if πd(f) ∈ Vγ,1. Furthermore,
if f and g are two solutions of (18) such that πd(f) = πd(g) then f = g. Since any
y ∈ Vγ,1 is the image of some f ∈ Q((z))m of valuation greater than νd, the lemma is
proved. �
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4.2.2. Solving the inhomogeneous equations.

Lemma 9. Let γ ∈ Q?
and j ≥ 1 an integer. Let g ∈ Q((z))m be a Laurent power

series with valuation greater than νd and such that πd(g) ∈ Vγ,j. The map πd induces

is a bijection between the affine space of solutions f ∈ Q((z))m of

(19) γf + g = Bφpf ,

and the affine space of solutions y ∈ Vγ,j+1 of

(M − γI)y = πd(g) .

Proof. Set

g =
∑
n≥νd

gnz
n, gn ∈ Qm

,

From Section 3.3, any solution of (19) has a valuation greater than νd. Let

f =
∑
n≥νd

fnz
n ∈ Q((z))m, fn ∈ Qm

.

If n < νd, we set fn := 0 and gn := 0. The power serie f is a solution of (19) if and
only if

∀n ∈ Z, γfn + gn =
∑

(k,l) : k+p`=n

Bkf ` .

This is equivalent to

Nπd (f) = 0 (from the cases n < νd)

Mπd (f) = γπd (f) + πd (g) (from the cases νd ≤ n ≤ µd)

∀n ≥ µd + 1, fn = 1
γ

(∑
(k,l) : k+p`=nBkf ` − gn

)
The second equality implies that (M −γI)πd(f) ∈ Vγ,j . Hence, (M −γI)j+1πd(f) = 0

and thus πd(f) ∈ ∩jk=1 ker(N(M − γI)k). Eventually, the first equality implies that
πd(f) ∈ ker(N) = ker(N(M−γI)0). It follows that πd(f) ∈ Vγ,j+1. From Remark 4, a
sequence (fn)n≥νd verifying the third equation is uniquely determined by πd(f). Thus

f is a solution of (19) if and only if πd(f) ∈ Vγ,j+1 satisfies (M − γI)πd(f) = πd(g),
as wanted. Furthermore, πd(f) is uniquely determined by f . �

4.2.3. Computing each column. We will now select some columns for the matrix U .

Lemma 10. Let γ ∈ Q?
. We have a chain of vector spaces

Vγ,0 := {0} ⊂ Vγ,1 ⊂ Vγ,2 ⊂ · · · ⊂ Vγ,j ⊂ · · · ⊂ Qm(µd−νd+1)
.

Set

a(γ) := min{n ∈ N? | Vγ,n = Vγ,n+1}.
Then, Vγ,j = Vγ,a(γ) for all j ≥ a(γ). Moreover, for i ∈ {1, . . . , a(γ)}, if

kγ,j := dim(Vγ,j)− dim(Vγ,j−1).

then 0 < kγ,a(γ) ≤ kγ,a(γ)−1 ≤ · · · ≤ kγ,2 ≤ kγ,1.
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Proof. Let j ∈ N and v ∈ Vγ,j . Then, (M − γI)jv = 0. Thus, v ∈ ker(N(M − γI)j)
and (M − γI)j+1v = 0. This proves the first point. The second point is obvious. In
order to prove the last point, fix an integer j ∈ {1, . . . , a(γ)−1} and consider the linear
map

ψj : Vγ,j+1 → Vγ,j/Vγ,j−1

x 7→ (M − γI)x
.

Its kernel is Vγ,j so the induced map ψj : Vγ,j+1/Vγ,j → Vγ,j/Vγ,j−1 is injective. There-
fore, taking the dimensions, we have

∀j ∈ {1, . . . , a(γ)− 1}, kγ,j+1 ≤ kγ,j .
�

Lemma 11. We use the notations of Lemma 10. For all j ∈ {2, . . . , a(γ)}, there exists
a subspace Wγ,j of Vγ,j such that

Vγ,j = Vγ,j−1 ⊕Wγ,j

and such that the map

Wγ,j → Wγ,j−1

x 7→ (M − γI)x

is injective, where we set Wγ,1 := Vγ,1.

Proof. The proof is similar to a proof of Jordan theorem for nilpotent matrices using

Young tableau. We first choose a basis v
(a(γ))
1 , . . . ,v

(a(γ))
kγ,a(γ)

of the vector space Wγ,a(γ).

Let 0 ≤ ` ≤ a(α)− 1. Assume that we have chosen a basis

v
(a(γ)−`)
1 , . . . ,v

(a(γ)−`)
kγ,a(γ)−`

of Wγ,a(γ)−`. We set Mγ := M − γiI and

v
(a(γ)−`−1)
1 := Mγv

(a(γ)−`)
1 , . . . ,v

(a(γ)−`−1)
kγ,a(γ)−`

:= Mγv
(a(γ)−`)
kγ,a(γ)−`

,

and we complete it with vectors v
(a(γ)−`−1)
kγ,a(γ)−`+1, . . . ,v

(a(γ)−`−1)
kγ,a(γ)−`−1

to form a basis of the

vector space Wγ,a(γ)−`−1. In the end, we have the following Young tableau, where the
jth column is a basis of Wγ,j .

v
(1)
1 := M

a(γ)−1
γ v

(a(γ))
1 · · · v

(a(γ)−1)
1 := Mγv

(a(γ))
1 v

(a(γ))
1

... · · ·
...

...

v
(1)
kγ,a(γ)

:= M
a(γ)−1
γ v

(a(γ))
kγ,a(γ)

· · · v
(a(γ)−1)
kγ,a(γ)

:= Mγv
(a(γ))
kγ,a(γ)

v
(a(γ))
kγ,a(γ)

v
(1)
kγ,a(γ)+1 := M

a(γ)−2
γ v

(a(γ)−1)
kγ,a(γ)+1 · · · v

(a(γ)−1)
kγ,a(γ)+1

... · · ·
...

v
(1)
kγ,a(γ)−1

:= M
a(γ)−2
γ v

(a(γ)−1)
kγ,a(γ)−1

· · · v
(a(γ)−1)
kγ,a(γ)−1

...
...

v
(1)
kγ,2+1

...

v
(1)
kγ,1

�
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Let {γ1, . . . , γt} be the set of all algebraic numbers γ for which (18) has a solution.
From Lemma 8, it is the set of nonzero eigenvalue γ of M which satisfy dim (Vγ,1) ≥ 1.
For each i ∈ {1, . . . , t}, we recall that

Vγi,j := ker
(

(M − γiI)j
)
∩

(
j−1⋂
k=0

ker
(
N(M − γiI)k

))
.

We decompose

Vγi,a(γi) =

a(γi)⊕
j=1

Wγi,j

as in Lemma 11 and for each j we consider the basis
(
v

(j)
γi,1

, . . . ,v
(j)
γi,kγi,j

)
of Wγi,j

constructed as in the Young tableau of Lemma 11. Thus,

{v(j)
γi,`

: 1 ≤ j ≤ a(γi), 1 ≤ ` ≤ kγi,j}

is a basis of Vγi,a(γi). For every ` ∈ {1, . . . , kγi,1} we let u
(1)
γi,`
∈ Q((z))mνd denote the

unique solution of

γif = Bφp (f)

such that πd

(
u

(1)
γi,`

)
= v

(1)
γi,`

. The existence and unicity of this solution follows from

Lemma 8. Now, we define recursively on j ∈ {2 . . . , a(γi)} vectors u
(j)
γi,`
∈ Q((z))mνd ,

with 1 ≤ ` ≤ kγi,j , solutions of

γif + u
(j−1)
γi,`

= Bφp (f)

and such that πd

(
u

(j)
γi,`

)
= v

(j)
γi,`

. The existence and unicity of such vectors follows

from Lemma 9. In fine, we have constructed vectors

(20) u
(1)
γi,1

, . . . ,u
(1)
γi,kγi,1

,u
(2)
γi,1

, . . . ,u
(2)
γi,kγi,2

, . . . ,u
(a(γi))
γi,1

, . . . ,u
(a(γi))
γi,kγia(γi)

,

such that πd(u
(j)
γi,`

) = v
(j)
γi,`

for every (j, `) ∈ {1, . . . , a(γi)}×{1, . . . , kγi,j}. In particular,

the family (20) is linearly independent over Q.

4.2.4. Building the matrix. Let Ui be the matrix whose columns are the elements in
(20) re-ordered using the lexical order on the indices, that is:

u
(1)
γi,1

,u
(2)
γi,1

, . . . ,u
(1)
γi,2

,u
(2)
γi,2

, . . . ,u
(1)
γi,kγi,1

, . . .

As already noticed, the columns of Ui are linearly independent. Let Ci be the normal
Jordan form matrix whose Jordan blocks are

Jγi(si,1), · · · , Jγi(si,k1)

where we let si,` denote the number of column vector of the form u
(.)
γi,`

(that is the

number of columns in the `th row of the above table). For example, si,1 = a(γi). Then,

UiCi = Bφp (Ui) .
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We let U := (U1 | . . . | Ut) denote the matrix whose columns are the ones of the Ui and
C denote the Jordan normal form matrix whose blocks are C1, . . . , Ct that is

C :=

C1

. . .

Ct

 .

The matrix U is not necessarily a square matrix but it follows from our construction
that

(21) UC = Bφp(U).

Consider a pair of matrices (U ′, C ′) such that U ′C ′ = Bφp(U
′). It follows from Lem-

mas 8 and 9 that U ′ has less columns than U . Furthermore, since the vector spaces
Vγ1,a(γ1), . . . , Vγt,a(γt) are in direct sum, the columns of U - which are the elements of

(20) - are linearly independent over Q. It follows from the following lemma that they
are actually linearly independent over Q((z))

Lemma 12. Let T be a matrix with entries in Q((z)) and D be a constant matrix
such that

(22) TD = Bφp(T ) .

If the columns of T are linearly dependent over Q((z)) then they are linearly dependent
over Q.

Proof. We might assume, without loss of generality, that D is upper triangular. Let
a ≥ 2 be the least integer such that the columns t1, . . . , ta are linearly dependent over
Q((z)). Then there exists a column vector g =: (g1, . . . , ga−1, 1, 0, . . . , 0)⊥ ∈ Q((z))m

such that

(23) Tg = 0 .

Mutliplying (22) by φp(g) one obtains

(24) TDφp(g) = Bφp(T )φp(g) = Bφp (Tg) = 0.

Since D is upper triangular, only the a first coordinates of Dφp(g) can be nonzero and

its ath coordinate is a some eigenvalue η ∈ Q of D. By minimality of a, we infer from
(23) and (24) that

Dφp(g) = ηg .

From [Nis97, Thm. 3.1], g ∈ Qm
so (23) gives a Q-linearly dependence of the columns

of T , as wanted. �

4.3. A new characterisation of the regular singularity at 0. The following
proposition states that U is a square matrix if and only if the system (1) is Q

((
zd
))

-
equivalent to a constant system. This give a characterisation of Mahler systems that
are regular singular at 0.

Proposition 13. The system (1) is Q
((
zd
))

-equivalent to a constant system if and
only if the number of columns of U is greater than m. In that case, it is equal to m
and, setting Ψ := φ1/d(U) ∈ GLm

(
Q
((
z1/d

)))
, one has

(25) φp(Ψ)−1AΨ = C−1 ∈ GLm
(
Q
)
.
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Proof. Since the columns of U are linearly independent over Q((z)), its number is less
than m. Assume that U is a square matrix. Then, it is nonsingular, and equality (25)
follows from (21) and the system (1) is Q

((
zd
))

-equivalent to a constant system.

Assume now that the system (1) is Q
((
zd
))

-equivalent to a constant system with

gauge transformation Ψ ∈ GLm
(
Q
((
z1/d

)))
. Since the columns of Ψ are Q-linearly

independent, it follows from Remark 4 that their images under πd are Q-linearly inde-
pendent. Thus, from (17) they belong to the vector space

Vγ1,a(γ1) ⊕ · · · ⊕ Vγt,a(γt) .

Thus, the number of columns of U , which is the dimension of this vector space, is
greater than m, as wanted. �

Therefore, Proposition 13 gives a first algorithm to test whether or not a system is
regular singular at 0: it can be done by computing the solutions of some homogeneous
and inhomogeneous Mahler systems. However, this algorithm in not necessarily very
efficient, since one has to find eigenvalues and eigenvectors for M .

4.4. An equality of vector space. We let U denote the Q-vector space spanned by
the columns of U , that is

U := spanQ

{
u

(j)
γi,`

: 1 ≤ i ≤ t, 1 ≤ j ≤ a(γi), 1 ≤ ` ≤ kγi,j
}
,

and set

(26) V = Vγ1,a(γ1) ⊕ · · · ⊕ Vγt,a(γt)

From Lemma 8 and Lemma 9, πd induces an isomorphism between these two vector
spaces. Recall that we set

X := Xd :=
⋂
n∈Z

Mn
d ker(Nd) .

We have the following equality of vector spaces.

Lemma 14. We have
V = X.

Proof. We first prove that V ⊂ X. From (26) is it enough to prove that Vγi,a(γi) ⊂ X
for every i ∈ {1, . . . , t}. Fix an integer i ∈ {1, . . . , t}. We recall that for all k ≥ a(γi),

Vγi,a(γi) = Vγi,k := ker
(

(M − γiI)k
)
∩

k−1⋂
j=0

ker
(
N (M − γiI)j

) .

One can check that

Vγi,k = ker
(

(M − γiI)k
)
∩

k−1⋂
j=0

ker
(
NM j

) .

Therefore, for all n ∈ N, MnVγi,a(γi) ⊂ ker(N). Then, we prove by induction on
n ∈ N that for any v ∈ Vγi,a(γi), v ∈ Mn ker(N). It is clear for n = 0. Assume that

v ∈M ` ker(N) for all ` ≤ n. Since v ∈ Vγi,a(γi), for all k ≥ a(γi),

(M − γiI)k v = 0.

Thus v is a Q-linear combination of Mv, . . . ,Mkv. Moreover,
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• if j ∈ {1, . . . , n + 1} then M jv ∈ Mn+1 ker(N) because by the induction
hypothesis v ∈Mn+1−j ker(N) ;

• if j ≥ n + 1, M jv ∈ Mn+1 ker(N) because M jv = Mn+1.M j−(n+1)v and,

previously, we showed that M j−(n+1)v ∈ ker(N).

Therefore, v ∈Mn+1 ker(N). It follows that Vγi,a(γi) ⊂ X.

We now prove that X ⊂ V. Let e1, . . . , en denote a basis of X and let E be the
m(µd − νd + 1)× n matrix whose columns are the e1, . . . , en. Since X is M -invariant,
there exists R ∈Mn

(
Q
)

such that

(27) ME = ER.

The matrix R is invertible because ker(M)∩X = 0. Up to change the basis e1, . . . , en
we might assume that R has a Jordan normal form. Thus, (27) implies that the set
of eigenvalues of R is included in the set of eigenvalue of M . Let Jγ (s) be the first
Jordan block of R. Then, using the fact that the columns of E belong to ker(N), one
can prove by induction on j ∈ {1, . . . , s} that ej ∈ Vγ,j . Doing this for all the Jordan
blocks of J , we obtain that the columns of E belong to V, as wanted. �

4.5. End of the proof of Theorem 2. There is not much left to do. Assume that
the system (1) is regular singular at 0. Then, it follows from Proposition 5 that there
exists a gauge transformation Ψ with entries in Q

((
zd
))

such that φp(Ψ)−1AΨ is a
constant matrix, where d ∈ D is given by Algorithm 2. Thus, from Proposition 13,
the matrix U has m linearly independent columns, that is, dimU = dimV = m. But,
from Lemma 14, V = X. Thus X has dimension m.

Assume now that X := Xd has dimension m for some d ∈ D. Then, from Lemma 14,
dimU = dimV = m. Thus, the matrix U has m columns and it follows from Proposi-
tion 13 that the system is regular singular and that Ψ = φ1/d(U) ∈ GLm

(
Q
((
z1/d

)))
is such that φp(Ψ)−1AΨ is a constant matrix.

5. The algorithm of Theorem 1

Theorem 2 gives the description of a vector space whose dimension characterises the
regular singularity at 0 of a Mahler system. However, if the system is regular singular at
0, this theorem does not tell how to build a matrix Ψ such that φp(Ψ)−1AΨ ∈ GLm

(
Q
)
.

Such a construction has been done with the help of the matrix U in section 4. However,
the interest of this construction is more heuristic than effective for it necessitates the
extraction of roots of polynomials. In this section we describe an algorithm to compute
the matrix Ψ which does not require the determination of eigenvalues. In fine, the
coefficients of the Puiseux series defining the matrix Ψ belong to the same number
field as the coefficients of the rational functions defining the matrix A.

5.1. A direct construction of a gauge transformation. Assume that the Mahler
system (1) is regular singular at 0. From Theorem 2, there exists an integer d ∈ D
such that the dimension of Xd is equal to m. Let e1, . . . , em be a basis of Xd and let E
be the m(µd − νd + 1)×m matrix whose columns are e1, . . . , em. As in (27), we have

MdE = ER
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for some matrix R ∈ GLm
(
Q
)
. We make a block decomposition of the columns of E

into µd − νd + 1 matrices Eνd , . . . , Eµd ∈Mm

(
Q
)
:

E =

 Eνd
...

Eµd

 .

We then define by induction on n > µd a matrix En ∈Mm

(
Q
)

setting

(28) En =

 ∑
(k,l) : k+p`=n

Bk(d)E`

R−1

where B(d) =
∑

n∈ZBn(d)zn = φd(A)−1. As seen in Remark 4, when n > µd, the
matrices E` contributing to right-hand side of the equality are those for which ` < n.
Hence the matrices En are well-defined. If n < νd, we set En = 0. We stress that (28)
holds for any n ∈ Z :

• by construction, it holds when n > µd ;
• when νd ≤ n ≤ µd, it follows from the fact that ER = MdE ;
• when n < νd, it follows from the fact that NdE = 0, for X ⊂ ker(Nd).

We eventually set U :=
∑

n≥νd Enz
n. It follows from (28) that

(29) UR = B(d)φp(U) .

Since e1, . . . , em is a basis of Xd, the columns of U are linearly independent over Q.
It follows from Lemma 12 that they are linearly independent over Q((z)). Thus, the
matrix U is nonsingular. Now, set Ψ = φ1/d(U). It follows from (29) that

(30) φp(Ψ)−1AΨ = R−1 ∈ GLm
(
Q
)
.

Thus, Ψ is the gauge transformation we are looking for.

5.2. On the base field of a gauge transformation. The above construction gives
information about the field to which the coefficients of the Puiseux series development
of the entries of Ψ belong.

Proposition 15. Consider a Mahler system (1) and let K denote a number field
containing the coefficients of the rational functions defining the matrix A. Assume
that (1) is Q

((
zd
))

-equivalent to a constant system, for some integer d ∈ N. Then the

system is K
((
z1/d

))
-equivalent to a constant system.

Therefore, any Mahler system defined over some number field K which is regular
singular at 0 is equivalent to a constant matrix with entries in K. The entries of the
gauge transformation are Puiseux series with coefficients in K.

Proof. From Theorem 2, the dimension of the Q-vector space Xd equals m. Since Md

and Nd have entries in K, Xd is defined over K. Hence, the basis e1, . . . , em of Xd can
be chosen in Km(µd−νd+1). It follows that the matrix R and the matrices En, n ≥ νd
have their entries in K. As a consequence the matrix

Ψ(z) =
∑
n≥νd

Enz
n/d

belongs to GLm
(
K
((
z1/d

)))
. �
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Remark 5. The proof of Theorem 2 and the construction of the gauge transformation
in 5.1 do not rely on the base field on which the entries of A are defined. It does not
have to be a subfield of Q. Actually, this field could even have positive characteristic.

5.3. Description of the algorithm. We now describe precisely the algorithm of
Theorem 1. We first present an algorithm to determine whether or not a Mahler
system (1) is Q

((
z1/d

))
-equivalent to a constant system for some fixed integer d ∈ N.

Algorithm 3: Test to determine if a Mahler system (1) is Q
((
z1/d

))
-equivalent

to a constant system.

Input: A, p, and d.
Output: Whether or not the system (1) is Q

((
z1/d

))
-equivalent to a constant

system. In that case the constant matrix Λ and enough coefficients of
the Puiseux development of the associated gauge transformation so
that one can compute recursively the whole development.

Set m the size of A.
Compute νd, µd,Md, Nd.
Set X := kerNd and Y = Nd.
for i from 0 to m(µd − νd + 1) do

X := X ∩M i
dX.

for i from 0 to m(µd − νd + 1) do
Y := YMd ;
X := X ∩ ker(Y ).

if dimX = m then
From a basis of X, compute R and Eνd , . . . , Eµd as in section 4.
Set Λ := R−1.
return “ True ”, Λ and Eνd , . . . , Eµd .

The following lemma implies that, at the end of Algorithm 3, the vector space X is
the same as in Theorem 2.

Lemma 16. Set cd := m (µd − νd + 1). We have⋂
−cd≤n≤cd

Mn
d ker(Nd) =

⋂
n∈Z

Mn
d ker(Nd) .

Proof. We denote M := Md and N := Nd. Set Jn = ∩nk=0M
−k ker (N). It is immediate

that if Jn = Jn+1 then J` = Jn for all ` ≥ n. Therefore, ∩∞k=0M
−k ker (N) = Jcd .

Let In = ∩nk=−cdM
k ker (N) = ∩nk=−∞M

k ker (N). Since cd is the size of the matrix

M we have ker (M cd) = ker
(
M `
)

for every ` ≥ cd. Furthermore dim (ker (N)) ≤ cd.
We shall prove that Ik = Ik+1 for all k ≥ cd. The only nontrivial inclusion is Ik ⊂ Ik+1.
Fix a integer k ≥ cd. We highlight two facts.

• The Q-vector space Ik is stable by M .
• Ik∩ker

(
Mk
)

= {0}. Indeed, if x ∈ Ik∩ker
(
Mk
)

then there exists y ∈ ker (N)

such that x = My and Mk+1y = Mkx = 0. Thus, y ∈ ker
(
Mk+1

)
= ker

(
Mk
)

and x = Mky = 0.

Let x ∈ Ik be nonzero. The vectors x,Mx, . . . ,Mkx ∈ Ik are linearly dependant.
Thus, there exist a1, . . . , ak ∈ Q not all zero such that

a0x+ a1Mx+ · · ·+ akM
kx = 0.
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Set i := min (i ∈ {0, . . . , k} | ai 6= 0) and y = −
∑k

j=i+1
aj
ai
M j−i−1x ∈ Ik so that

M ix = M i+1y. We have x−My ∈ Ik ∩ ker
(
Mk
)

and it follows that

x = My ∈MIk ∩ Ik ⊂ Ik+1 ,

as wanted. �

Proposition 17. Algorithm 3 tests whether or not system (1) is Q
((
z1/d

))
-equivalent

to a constant system.

Proof. From Lemma 16, Algorithm 3 computes the vector space

Xd :=
⋂
n∈Z

Mn
d ker(Nd) .

From Lemma 14, dimXd = dimV = dimU. Thus, it follows from Proposition 13 that
the system (1) is Q((z1/d))-equivalent to a constant system if and only if dimXd = m.
This is precisely what Algorithm 3 tests. �

We can then describe an Algorithm for Theorem 1.

Algorithm 4: Test for the regularity singularity at 0 of a Mahler system

Input: A, p, and n ≥ 0, the order of truncation.
Output: If the system (1) is regular singular at 0 and in that case the

constant matrix Λ to which it is equivalent and a truncation of the
associated gauge transformation Ψ at order n.

Compute d with Algorithm 2.
Run Algorithm 3 with that d.
if Algorithm 3 returns “ True ” then

for ` from µd + 1 to max{µd + 1; dn} do
Compute E` from (28).

end

return “ The system is regular-singular at 0 ”, Λ and
∑dn

`≥νd E`z
`/d.

end
return “ The system is not regular singular at 0 ”.

Proposition 18. Algorithm 4 returns whether or not a system (1) is regular singular
at 0, and in that case, a constant matrix to which the system is K-equivalent and a
truncation of an associated gauge transformation at an arbitrary order.

Proof. It follows from Proposition 5 that the system is regular singular at 0 if and only
if it is Q((z1/d))-equivalent to a constant system where d is defined by Algorithm 2.
Assume that the system (1) is regular singular at 0. Then it follows from Proposition

17 that Algorithm 3 shall return ”True”. In that case, Ψ(z) =
∑

`≥νd E`z
`/d satisfies

(30).

Now, assume that the Algorithm 4 returns that the system is regular singular at
0. Then Algorithm 3 must have returned ”True”. It thus follows from Proposition 17
that the system is indeed regular singular at 0. Thus, from the first part of the proof,
Ψ(z) =

∑
`≥νd E`z

`/d satisfies (30).
�
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When the system (1) is regular singular at 0, Algorithm 4 computes a K-equivalent
constant matrix. Furthermore, Roques [Roq18, §5.2] described fundamental matrices

of solution for constant systems. Precisely, for c ∈ Q?
we let ec denote a function such

that φp (ec) = cec, and let ` denote a function such that φp(`) = ` + 1. For example,

we can take suitable determinations of log(z)log(c)/ log(p) and log (log(z)). Any constant

system has a basis of solution in Q
[
(ec)c∈Q? , `

]
. Then, we have the following.

Corollary 19. Consider a system (1) which is regular singular at 0. From Algo-
rithm 4, one can compute a fundamental matrix of solution of (1) with entries in

K
[
(ec)c∈Q? , `

]
.

5.4. On the complexity of Algorithm 4. We now propose to discuss the complexity
of this algorithm. We start with an observation about the shape of the matrices Md

and Nd.

Definition 3. Let D = (Di,j)1≤i≤r,1≤j≤s be a block matrix with Di,j ∈Mm

(
Q
)
. We

say that D is a d-gridded matrix if for all (i0, j0) ∈ {1, . . . , r} × {1, . . . , s} such that
Di0,j0 is nonzero, the matrices Di0,j , Di,j0 with i 6≡ i0 mod d and j 6≡ j0 mod d are zero
matrices. Let σ be a permutation of the set {1, . . . , d}. We say that σ is associated
with the d-gridded matrix D if Di,j = 0 for every i, j ∈ {1, . . . , d} with j 6= σ(i).

Lemma 20. The multiplication on d-gridded matrices and the computation of a kernel
can be done with complexity

O(dMM(s/d))

where s is an upper bound for the number of rows and the number of columns of the
considered matrices. Furthermore, the multiplication of two d-gridded matrices with
associated permutation σ1 and σ2 is a d-gridded matrix with associated permutation
σ2 ◦ σ1.

Proof. We describe the computation for the matrix multiplication. A similar compu-
tation can be made for the determination of a kernel. Consider two d-gridded matrices
D = (Di,j)i,j and E = (Ei,j)i,j and denote by σD and σE their associated permutations.
For i ∈ {1, . . . , d} we let Di (resp. Ei) denote the block-matrices (Di+kd,σD(i)+`d)k,`
(resp. (Ei+kd,σE(i)+`d)k,`). Let Fi = DiEσD(i) and set Fi =: (Fi,k,`)k,` its block decom-
position. For any integer i, write i = i0 + kd with i0 ∈ {1, . . . , d} and

Gi,j :=

{
Fi0,k,` if j = σE ◦ σD(i0) + `d ,

0 else .

Then

DE = (Gi,j)i,j .

The matrix (Gi,j)i,j is itself a d-gridded matrix. Its associated permutation is σE ◦σD.
The computation of the product of two permutations of {1, . . . , d} has complexity
O(d). Once σE ◦ σD is known, the computation of each matrix Fi has complexity
O(MM(s/d)). Thus, the computation of DE has complexity

O(d+ dMM(s/d)) = O(dMM(s/d)) .

�

Lemma 21. The matrices Md and Nd are d-gridded matrices.
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Proof. Recall that Md := (Bi−pj(d))νd≤i,j≤µd and

Nd :=

{
(Bi−pj(d))v0(B(d))+pνd≤i≤νd−1

νd≤j≤µd
if νd < µd

0 ∈M1,m(µd−νd+1)

(
Q
)

if νd = µd

where φd(A
−1) :=

∑
nBnz

n. In particular if d does not divide i− pj then Bi−pj = 0.
Thus if Bi0−pj0 6= 0 then Bi−pj0 = 0 for all i such that i 6≡ i0 (mod d). Moreover,
since p and d are relatively prime, if Bi0−pj0 6= 0 then Bi0−pj = 0 for all j such that
j 6≡ j0 (mod d). Associated permutations to these matrices are σM and σN such that,
for every k ∈ {1, . . . , d},

pσM (k) ≡ (p− 1)(1− νd) + k (mod d)

pσN (k) ≡ v0 (B(d)) + p− 1 + k (mod d) .

�

We can now find an upper bound for the complexity of Algorithm 4.

Proposition 22. Apart from the computation of the Puiseux development of Ψ, the
complexity of Algorithm 4 is

O
(
MM(m)M(pm(deg(A) +m)) + p2m−1mvMM(mv/p)

)
,

where v := −(v0(A) + v0(A−1) ≥ 0.

Proof. We follow the script of Algorithm 4. From Proposition 4, the complexity of
Algorithm 1 is

O (MM(m)M(pm(deg(A) +m))) .

Thus d can be computed from Algorithm 2 with the same complexity. To compute
Md and Nd one needs to compute the inverse of A and the Laurent series expansion
of A−1 between v0

(
A−1

)
and (µd − pνd)/d. The computation of the inverse of A may

be done in O(MM(m)M(deg(A))). Computing n terms of the Laurent expansion of a
rational function can be done in O(M(n)). Set v := −(v0(A) + v0(A−1) ≥ 0. One has

µd − pνd
d

− v0

(
A−1

)
= O (v) .

Once d is fixed, the computation of Md and Nd can be done with complexity

O(MM(m)M(deg(A)) + M(v)) .

Computing the intersection of two vector spaces given a basis of each is the same as
computing a kernel. Since the number of rows and the number of columns of Md and
Nd is at most O(mdv), it follows from Lemmas 20 and 21 that the computation of

Xd :=
⋂

−cd≤n≤cd

Mn ker(N) ,

necessitates 2cd + 1 steps with complexity O(dMM(mv)), where cd := m(µd − νd + 1).
Thus, the computation of Xd can be done with

O(md2v/pMM(mv))

operations. Putting all this together, since d ≤ pm, Algorithm 4 returns if a system is
regular singular or not in

O
(
MM(m)M(pm(deg(A) +m)) + p2m−1mvMM(mv)

)
.

�
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If one considers the naive bounds M(n) = O(n2) and MM(n) = O(n3), the com-
plexity of Algorithm 4 is

(31) O(m5p2m +m3p2m deg(A)2 +m4v4p2m−1) .

Remark 6. In Algorithm 4, we choose to compute first the integer d thanks to the
Cyclic Vector Lemma, Algorithm 1 and Algorithm 2. Then we run Algorithm 3 with
this precised d. This is not always the fastest way to proceed, since the computation
of d necessitates to work with possibly great numbers (see Algorithm 1). However,
the cost of manipulating great numbers is hidden by the fact that we describe the
complexity as the number of arithmetic operations in Q. Another way to proceed
would be to run Algorithm 3 for every d ∈ D. In that case the complexity is

O(MM(m)M(deg(A)) + p3m−1mvMM(mv)) .

Using the naive bounds for M(n) and MM(n) leads to a complexity in

O(m3 deg(A)2 + p3m−1m4v4) ,

which can be less than (31), especially for great deg(A).

6. Examples

In this section, we explore the regular singular property of some particular systems.

6.1. Equations of order 1.

6.1.1. Homogeneous equation of order 1. An homogeneous equation of order 1 is an
equation of the form

(32) φp(y) = ay

where a ∈ Q(z), a 6= 0.

Proposition 23. Any homogeneous equation of order 1 (32) is regular singular at 0.

Proof. Let ν denote the valuation at 0 of a and set ψ = zν/(p−1). Then, the system
φp(y) = by with b := φp (ψ)−1 aψ is Fuchsian at 0. Thus, the homogeneous equation

(32) is Q
((
zν/(p−1)

))
-equivalent to a Fuchsian equation at 0, which implies that (32)

is regular singular at 0 (see [Roq18, Prop. 34]). �

6.1.2. Inhomogeneous Mahler equations of order 1. Consider a inhomogeneous Mahler
equation of order 1

(33) q−1 + q0y + q1φp(y) = 0 ,

with q−1, q0, q1 ∈ Q[z], q0q1 6= 0. The corresponding system has for associated matrix,
the matrix

A(z) =

(
− q0
q1
− q−1

q1
0 1

)
Proposition 24. A sufficient condition for the system to be regular singular at 0 is
for (33) to have a solution in K.
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Proof. Assume that (33) has a solution f ∈ K. Let g ∈ K and γ ∈ Q?
such that

φp(g)γ = − q0
q1
g. Then

φp

(
f g
1 0

)(
1 0
0 γ

)
= A

(
f g
1 0

)
,

and the system is regular singular at 0. �

Note that it is not a necessary condition. For example, take q−1 = q0 = −1 and
q1 = 1.

6.2. An equation of order 2. Consider the 3-Mahler equation:

z3(1− z3 + z6)(1− z7 − z10)φ2
3(y)− (1− z28 − z31 − x37 − z40)φ3(y)

+ z6(1 + z)(1− z21 − z30)y = 0 .

The matrix of the 3-Mahler system associated to this equation is

A(z) :=

(
0 1

− z3(1+z)(1−z21−z30)
(1−z3+z6)(1−z7−z10)

1−z28−z31−x37−z40
z3(1−z3+z6)(1−z7−z10)

)
.

We propose to check whether or not the 3-Mahler system associated to this matrix is
regular singular at 0. Since we already know an homogeneous linear equation associated
with this system, it is not necessary to run Algorithm 1. Algorithm 2 applied to this
system returns d := 2. We now run Algorithm 3 with d = 2. We have v0(A) = −3,
v0(A−1) = −6 and thus ν2 = −3 and µ2 = 6. We can compute N and M :

N :=



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 2 −1 −1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 −2 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 2 −1 −1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

1 2 −1 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 −2 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



,
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M :=



−1 −3 1 2 −1 −1 1 0 0 0
0 0 1 0 0 0 0 0 0 0

1 2 −1 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 4 1 −2 1 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 −3 1 2 −1 −1 1 0 0 0
0 0 1 0 0 0 0 0 0 0

−1 −4 1 2 −1 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0

1 4 −1 −2 1 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0

1 4 1 −3 1 2 −1 −1 1 0
0 0 0 0 1 0 0 0 0 0

−1 −4 1 2 −1 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0

−1 −4 1 4 −1 −2 1 1 −1 0
0 0 0 0 0 0 0 0 0 0

1 4 −1 −3 1 2 −1 −1 1 0
0 0 0 0 1 0 0 0 0 0


where we left empty blocks for the ones corresponding to zero-matrices in the 2-gridded
block decomposition of M and N . In that case, the vector space X is spanned by the
transpose of the two linearly independent vectors

(0, 1, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1,−1, 0, 0,−1, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0)

In particular, X has dimension 2 and, from Theorem 2, the system is regular singular at
0. One can check that these vectors are eigenvectors of the matrix M for the eigenvalue
1. Thus the matrix R is the identity matrix of size 2. In particular, the associated
gauge transformation Ψ is a fundamental matrix of solution because it satisfies

φ3 (Ψ)−1AΨ = I2.

From these two vectors, we can compute the first terms of the Puiseux development
of Ψ

Ψ =

(
f1 f2

f3 0

)
+O(z17/2)

with

f1(z) = z−1/2 − z1/2 + z3/2 − z5/2 + z7/2 − z9/2 + z11/2 − z13/2 + z15/2 ,

f2(z) = −z3 + z4 − z5 + 2z6 − 2z7 + 2z8 ,

f3(z) = z−3/2 − z3/2 + z9/2 − z15/2 .

Remark 7. Note that this example is the same as the one that illustrates the paper
[CDDM18].

6.3. Systems coming from finite deterministic automata. As mentioned in the
introduction, Mahler systems are related with the automata theory. Indeed, the gener-
ating function of an automatic sequence (see [AS03]) is solution of a Mahler equation.
Numerous famous automatic sequences are related to homogeneous or inhomogeneous
Mahler equations of order 1. This is the case of the Thue-Morse sequence, the regular
paper-folding sequence, the sequences of power of a given integer, the characteristic
sequence of triadic Cantor integers - those whose base-3 representation contains no 1.
Thus, their associated systems are regular singular at 0.

Among the sequences satisfying equations with a greater order, an important one is
the Baum-Sweet sequence, which is the characteristic sequence of integers whose binary
development have no blocks of consecutive 0 of odd length. The system associated to
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this sequence is Fuchsian at 0 and thus regular singular at 0. An other important one
is the Rudin-Shapiro sequence whose general term is an = 1 if the number of occurence of two consecutive 1

in the binary expansion of n is even
an = −1 else.

Its generating power series f :=
∑

n∈N anz
n satisfies the equation

φ2

(
f(z)
f(−z)

)
=

1

2

(
1 1
1
z
−1
z

)(
f(z)
f(−z)

)
This system is not regular singular. Indeed, running Algorithm 3 with d = 3 shows
that the dimension of X is only 1.

The regular singular property can be seen as “ normal ” for Mahler systems because
a sufficient condition is to be Fuchsian at 0. However, the generating series of an
automatic sequence satisfy Mahler systems with a very precise shape : A−1(0) has
at most one nonzero entry in each column. Among these systems, the Fuchsian ones
appear to be the exceptions. Consider for example the following variation of the Baum-
Sweet sequence : (an)n∈N ∈ {0, 1}N, where an = 0 if and only if the binary development
of n contains a block of consecutive 1 with odd length. A Mahler system associated
to this sequence is

φ2(Y ) =

1 z 0
z 0 0
0 1 1 + z

−1

Y ,

which is not regular singular at 0.

7. Open problems

We discuss here some open problems about the regular singularity at 0 of a Mahler
system.

7.1. The inverse matrix system. Let A ∈ GLm(z) and p ≥ 2 an integer. If the p-
Mahler system with matrix A is Fuchsian at 0, then the p-Mahler system with matrix
A−1 is also Fuchsian at 0 (and hence, regular singular at 0). This property does
not extend to regular singular systems. For example, if A denotes the matrix of the
regular singular system in subsection 6.2, the 3-Mahler system associated with A−1 is
not regular singular at 0. We ask the following question.

Is there a characterisation of matrices A such that the p-Mahler systems associated
with both A and A−1 are regular singular at 0 ?

7.2. Changing the Mahler operator. Assume that a system is Fuchsian at 0. If
we change the integer p then the system remains Fuchsian at 0 (hence regular singular
at 0). This property does not extend to regular singular systems. Indeed, the 3-
Mahler system of subsection 6.2 is regular singular at 0, while the 2-Mahler system
with the same matrix is not. Similarly, the p-Mahler system associated to this matrix
is not regular singular when p ∈ {4, . . . , 30} (and probably beyond). Similarly, the
companion system associated with the p-Mahler equation

(z11 + z13)φ2
p(y) + (−1/z − z − z6 + z10)φp(y) + (1− z)y = 0,

is regular singular at 0 for p = 2 and p = 4 but not for p ∈ {3, 5, 6, . . . , 100} (and
probably beyond). It seems that for a matrix A ∈ GLm

(
Q(z)

)
the p-Mahler system
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associated with A is either regular singular at 0 for every integers or for finitely many
(possibly none) integers p ≥ 2.

Is that true that only these two situations may occur ?
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Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille
Jordan, F-69622 Villeurbanne, France

Email address: faverjon@math.univ-lyon1.fr
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