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Measure data problems for a class of elliptic
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Laurent Véron ‡

Abstract

We study the existence of nonnegative solutions to the Dirichlet problem
LMp,qu := −∆u+up−M |∇u|q = µ in a domain Ω ⊂ RN where µ is a nonnegative
Radon measure, when p > 1, q > 1 and M ≥ 0. We also give conditions under
which nonnegative solutions of LMp,qu = 0 in Ω\K where K is a compact subset
of Ω can be extended as a solution of the same equation in Ω.
2010 Mathematics Subject Classification: 35J62-35J66-31C15-28A12

Keywords: Elliptic equations, singularities, Bessel capacities, Riesz potential,
maximal functions.

Contents

1 Introduction 2

2 Removable singularities 5
2.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Measure data 16
3.1 Proof of Theorem 1.3: the case 1 < q < N

N−1 . . . . . . . . . . . 16
3.2 Proof of Theorem 1.3: the general case . . . . . . . . . . . . . . . 20
3.3 Proof of the Corollaries . . . . . . . . . . . . . . . . . . . . . . . 23
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1 Introduction

Let Ω be a bounded domain of RN , N ≥ 2, and LMp,q be the operator

u 7→ LMp,qu := −∆u+ |u|p−1u−M |∇u|q for all u ∈ C2(Ω) (1.1)

where M ≥ 0 and p, q > 1. We first provide an a priori estimate for a positive
solution of (1.1) and its gradient in the range 1 < q < p. Then we study under
what conditions on the parameters any solution of

LMp,qu = 0 in Ω \K, (1.2)

where K is a compact subset of Ω, can be extended as a solution of the same
equation in whole Ω, and if it is the case, whether the solution is bounded or
not in Ω. We also consider the Dirichlet problem with measure data

LMp,qu = µ in Ω
u = 0 in ∂Ω,

(1.3)

where µ is a nonnegative bounded Radon measure in Ω and exhibit conditions
which guarantee the existence of nonnegative solutions to this problem.

If M = 0, LMp,q reduces to the Emden-Fowler operator

u 7→ Lpu := −∆u+ |u|p−1u. (1.4)

Singularity problems for solutions of Lpu = 0 have been investigated since fourty
years, starting with the work of Brezis and Véron [13] who gave conditions
for the removability of an isolated singularity. Later on Baras and Pierre [3]
extended the result in [13] to more general removable sets, introducing the
good framework. They obtained a necessary and sufficient condition expressed

in terms of the Bessel capacities capR
N

2,p′ (p′ = p
p−1 ) both for the removability

of compact subsets of Ω and the solvability of the associated Dirichlet problem
with measure data. Another class of operator strongly related to LMp,q is the
Riccati operator

u 7→ RM
q u := −∆u−M |∇u|q. (1.5)

The Dirichlet problem with measure data

−∆u−M |∇u|q = µ in Ω
u = 0 on ∂Ω

(1.6)

has been studied by Maz’ya and Verbitsky [19] and Hansson, Maz’ya and Ver-
bitsky [16] when q > 2 (and also in RN when q > 1) and Phuc [23]. Their
results necessitate an extensive use of Riesz potentials.

When M > 0 there is a balance between the absorption term |u|p−1u and
the source term M |∇u|q, and this interaction is the origin of many unexpected
new effects. In the study of singularity problems the effect of the diffusion
can be neglectable compared to the two nonlinear terms. The scale of the two
opposed reaction terms depends upon the position of q with respect to 2p

p+1 .

This is due to the fact that if q = 2p
p+1 , (1.1) is equivariant with respect to the

scaling transformation T` defined for ` > 0 by

T`[u](x) = `
2
p−1u(`x) = `

2−q
q−1u(`x). (1.7)
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If q < 2p
p+1 , the absorption term is dominant and the behaviour of the singular

solutions is modelled by the equation Lpu = 0 studied in [28]. If q > 2p
p+1 , the

diffusion is negligible and the behaviour of the singular solutions is modelled by
positive separable solutions of EMp,qu = 0 where EMp,q is an eikonal type operator
defined by

EMp,qu = up −M |∇u|q. (1.8)

This problem is studied in the forthcoming article [8]. If q = 2p
p+1 , the coefficient

M > 0 plays a fundamental role in the properties of the set of solutions, in
particular for the existence of singular solutions and removable singularities;
this is not the case when q 6= 2p

p+1 since by an homothety M can be assumed to
be equal to 1.

Brezis and Véron proved in [13] that isolated singularities of solutions of
Lpu = 0 are removable when p ≥ N

N−2 . The removability property has been
extended to more general sets using a capacity framework in [3]. Using a change
of variable inspired by [6] where boundary singularities of solutions of (1.8) are
considered we prove a series of removability results for solutions of

LMp,qu = 0. (1.9)

Theorem 1.1 Assume 0 ∈ Ω ⊂ RN , N ≥ 3, M > 0, p ≥ N
N−2 , 1 < q ≤ 2p

p+1

and (p, q) 6= ( N
N−2 ,

N
N−1 ). Then any nonnegative solution u ∈ C2(Ω \ {0}) of

(1.9) in Ω \ {0} belongs to W 1,q
loc (Ω)∩Lploc(Ω), and it can be extended as a weak

solution of (1.9) in Ω.

Furthermore, if we assume either

(i) p ≥ N
N−2 and 1 < q < 2p

p+1 , or

(ii) p > N
N−2 , q = 2p

p+1 and

M < m∗ := (p+ 1)

(
(N − 2)p−N

2p

) p
p+1

, (1.10)

then u ∈ C2(Ω).

The existence of radial singular solutions when (p, q) = ( N
N−2 ,

N
N−1 ) and

M > 0, or when p > N
N−2 , q = 2p

p+1 and M ≥ m∗ shows the optimality of

the statements (see [8]). A series of pointwise a priori estimates concerning u
and ∇u are presented in the first section. They are obtained by a combination
of Keller-Osserman type estimates, rescaling techniques and Bernstein method.
They play a key role for analyzing the case p = N

N−2 in the previous theorem,
and will be of fundamental importance in the forthcoming paper [8].

The method introduced in the proof of Theorem 1.1 combined with the
result of [3] yields a more general removability result. For such a task we

denote by capR
N

k,b the Bessel capacity relative to RN with order k > 0 and power
b ∈ (1,∞). If k ∈ N∗ it coincides with the Sobolev capacity associated to the
space W k,b(RN ) by Calderon’s theorem (see e.g. [1] for a detailed presentation).

Theorem 1.2 Let p > N
N−2 and N

N−2 < r < p. Suppose that one of the
following conditions is verified:
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(i) either q = 2p
p+1 and

0 < M < m∗(r) := (p+ 1)

(
p− r
p(r − 1)

) p
p+1

, (1.11)

(ii) or 1 < q < 2p
p+1 and M > 0.

Then, if K is a compact subset of Ω such that capR
N

2,r′(K) = 0, any nonnegative

solution u ∈ C2(Ω \ K) of (1.9) in Ω \ K can be extended to Ω as a solution
still denoted by u in the sense of distributions in Ω. Furthermore, if r ≤ 2N

N−2 ,

then u ∈ C2(Ω).

Next we obtain sufficient conditions on a positive measure in Ω in order (1.3)
be solvable. In the sequel we assume that Ω ⊂ RN , N ≥ 2, is a bounded smooth
domain. We denote by M(Ω) (resp. Mb(Ω)) the set of Radon measures (resp.
bounded Radon measures) in Ω and by M+(Ω) (resp. Mb

+(Ω)) its positive cone.
The total variation norm of a bounded measure µ is ‖µ‖M.

Since for any µ ∈Mb
+(Ω) the nonnegative solutions of Lpv = µ and RMq w =

µ are respectively a subsolution and a supersolution of equation (1.3) and they
satisfy 0 ≤ v ≤ w, the construction of v and w is the key-stone for solving (1.3).
It is known that these two problems can be solved when the measure µ satisfies
some continuity properties with respect to some specific capacities.

Theorem 1.3 Assume p > 1, 1 < q < 2. Let µ ∈Mb
+(Ω). If µ satisfies

µ(E) ≤ C min
{
capR

N

2,p′(E), capR
N

1,q′(E)
}

for all Borel sets E ⊂ Ω, (1.12)

there is a constant c0 > 0 such that for any 0 ≤ c ≤ c0 there exists a function
u ∈W 1,q

0 (Ω) ∩ Lp(Ω), u ≥ 0, satisfying

−
∫

Ω

u∆ζdx+

∫
Ω

(up −M |∇u|q) ζdx = c

∫
Ω

ζdµ for all ζ ∈ C2
c (Ω). (1.13)

The condition on the measure is satisfied if W−1,q(Ω) ↪→W−2,p(Ω), and we
prove the following:

Corollary 1.4 Let Np
N+p ≤ q < 2 and µ ∈Mb

+(Ω) be such that

µ(E) ≤ CcapRN1,q′(E) for all Borel set E ⊂ Ω, (1.14)

for some C > 0, then there exists a constant c1 > 0 such that for any 0 ≤ c ≤ c1
there exists a nonnegative function u ∈W 1,q

0 (Ω) ∩ Lp(Ω) satisfying (1.13).

By comparison results between capacities we have another type of result:

Corollary 1.5 Let N
N−1 ≤ q ≤

2p
p+1 . If µ ∈Mb

+(Ω) satisfies,

µ(E) ≤ CcapRN2,p′(E) for all Borel set E ⊂ Ω, (1.15)

for some C > 0, then there exists c2 > 0 such that for any 0 ≤ c ≤ c2 there
exists a nonnegative function u ∈W 1,q

0 (Ω) ∩ Lp(Ω) satisfying (1.13).
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As an application of the previous results, we prove the following

Corollary 1.6 Let p > 1, 1 < q < 2 and µ ∈Mb
+(Ω). There exists a function

u ∈ W 1,q
0 (Ω) ∩ Lp(Ω) solution of (1.13) if one of the following conditions is

satisfied:

(i) When p < N
N−2 and q < N

N−1 , if ‖µ‖M ≤ c3 for some c3 > 0.

(ii) When p < N
N−2 and N

N−1 ≤ q < 2, if µ satisfies (1.14) for some C > 0. In
that case there exists c4 > 0 such that there must hold 0 < c < c4 in problem
(1.12).

(iii) When p ≥ N
N−2 and q < N

N−1 , if ‖µ‖M ≤ c∗4M
− 1
q−1 for some c∗4 =

c∗4(N, q,Ω) > 0 which can be estimated, and if

µ(E) = 0 for all Borel set ⊂ Ω such that capR
N

2,p′(E) = 0. (1.16)

In the case (i) we show in a forthcoming article [8] and by a completely
different method that there is no restriction on c if µ = cδa for some a ∈ Ω. In
the above mentioned article we construct many types of local or global singular
solutions using methods inherited from dynamical systems.

Acknowledgements This article has been prepared with the support of the
FONDECYT grants 1210241 and 1190102 for the three authors.

2 Removable singularities

Throughout this article we denote by c and C generic constants the value of
which may vary from one occurrence to another even within a single string of
estimates, and by cj , (j = 1, 2, ...) some constants which have a more important
significance and a more precise dependence with respect to the parameters.

2.1 A priori estimates

We give two estimates for positive solutions of (1.1) which differ according to
the sign of M . If G is an open subset of RN we set d

G
(x) = dist (x, ∂G)

Proposition 2.1 Let G ⊂ RN be an open subset, M > 0 and 1 < q < p. If
u ∈ C1(G) is a nonnegative solution of (1.1), there holds,

u(x) ≤ c5 max
{
M

1
p−q (d

G
(x))−

q
p−q , (d

G
(x))−

2
p−1

}
for all x ∈ G, (2.1)

for some c5 = c5(N, p, q) > 0.

Proof. Following the method of Keller [17] and Osserman [22], we fix x ∈ G
and 0 < a < d

G
(x) , and introduce U(z) = λ(a2 − |z − x|2)−b for some b > 0.

Then putting r = |x− z| and Ũ(r) = U(z), we have in Ba(x)

LŨ = −Ũ ′′ − N − 1

r
Ũ ′ −M |Ũ ′|q + Ũp

= λ(a2 − r2)−2−b [λp−1(a2 − r2)2−b(p−1) + 2b(N − 2(b+ 1))r2 − 2Nba2

−M2qbqλq−1rq(a2 − r2)2+b−q(b+1)
]
.
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If M > 0, the two necessary conditions on b > 0 to be fulfilled is order that Ũ
is a supersolution in B|a|(a) are

(i) 2− b(p− 1) ≤ 0⇐⇒ b(p− 1) ≥ 2,

(ii) 2 + b− q(b+ 1) ≥ 2− b(p− 1)⇐⇒ b(p− q) ≥ q.

The above inequalities are satisfied if

b = max

{
2

p− 1
,

q

p− q

}
. (2.2)

If q > 2p
p+1 then b = q

p−q and

LŨ ≥ λ
(
a2 − r2

)− 2p−q
p−q

[
λq−1

(
λp−q −M2qbqρq

) (
a2 − r2

) 2p−q(p+1)
p−q − (3b+ 1)Na2

]
.

There exists c15 > 0 depending on N , p and q such that if we choose

λ = c15 max
{
M

1
p−q a

q
p−q , a

2p(q−1)
(p−1)(p−q)

}
,

there holds
LŨ ≥ 0 in Ba(x). (2.3)

Since Ũ(z)→∞ when r → a, we derive by the maximum principle that u ≤ Ũ
in Ba(x). In particular

u(x) ≤ Ũ(x) = λa−
2q
p−q = c15 max

{
M

1
p−q a−

q
p−q , a−

2
p−1

}
. (2.4)

If q ≤ 2p
p+1 then b = 2

p−1 and

LŨ ≥ λ
(
|a|2 − ρ2

)− 2p
p−1

[
λp−1 +

2

p− 1

(
N − 2(p+ 1)

p− 1

)
ρ2 − 2N

p− 1
|a|2

−M2q
(

2

p− 1

)q
λq−1ρq

(
|a|2 − ρ2

) 2p−q(p+1)
p−1

]
≥ λ

(
|a|2 − ρ2

)− 2p
p−1

[
λp−1 − c2|a|2 − c3λq−1M |a|

4p−q(p+3)
p−1

]
.

Hence, if q = 2p
p+1 , (2.3) holds if for some c25 > 0 depending on N, p, q,

λ = c25 max
{
M

p+1
p(p−1) , 1

}
|a|

2
p−1 ,

which yields

u(x) ≤ Ũ(x) = λa−
4
p−1 = c25 max

{
M

p+1
p(p−1) , 1

}
a−

2
p−1 . (2.5)

While if q < 2p
p+1 , we choose

λ = c35 max
{
M

1
p−q a

4p−q(p+3)
(p−1)(p−q) , a

2
p−1

}
,
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where c35 > 0 = c35(N, p, q), which implies

u(x) ≤ Ũ(x) = λa−
4
p−1 = c35 max

{
M

1
p−q a−

q
p−q , a−

2
p−1

}
. (2.6)

By letting a ↑ d
G

(x) we derive (2.1) with a constant c5 = c35, depending on
N, p, q. �

Corollary 2.2 Under the assumptions of Proposition 2.1 with G = B2R \ {0},
there holds for x ∈ BR \ {0},

u(x) ≤ c5 max
{
M

1
p−q |x|−

q
p−q , |x|−

2
p−1

}
. (2.7)

We infer from Proposition 2.1 an estimate of the gradient of a positive
solution when M > 0. We set σ = 2p − q(p + 1), then σ > 0 (resp. σ < 0)
according 2p > q(p+ 1) (resp. 2p < q(p+ 1)).

Proposition 2.3 Let p > q > 1. For any M0 > 0 and R > 0 there exists a
constant c8 = c8(N, p, q,M0R

σ
p−1 ) such that, for 0 < M ≤M0 there holds:

(i) If q ≤ 2p
p+1 (then σ ≥ 0), any positive solution u of (1.1) in B2R\{0} satisfies

|∇u(x)| ≤ c8 max
{
M

1
p−q |x|−

p
p−q , |x|−

p+1
p−1

}
, (2.8)

for all x ∈ BR \ {0}.
(ii) If 2p

p+1 ≤ q ≤ 2 (then σ ≤ 0), any positive solution u of (1.1) in RN \ B R
2

satisfies (2.1) for all x ∈ RN \BR.

Proof. (i) For 0 < r < 2R we set

u(x) = r−
2
p−1ur(

x
r ) = r−

2
p−1ur(y) with y = x

r .

If r
2 < |x| < 2r, then 1

2 < |y| < 2 and ur > 0 satisfies

−∆ur + upr −Mr
2p−q(p+1)

p−1 |∇ur|q = 0 in B2 \B 1
2
. (2.9)

Since 0 < Mr
σ
p−1 ≤M(2R)

σ
p−1 ≤M0(2R)

σ
p−1 as σ ≥ 0, it follows that

max
{
|∇ur(z)| : 2

3 < |z| <
3
2

}
≤ cmax

{
|ur(z)| : 1

2 < |z| < 2
}
, (2.10)

where c depends on N, p, q and R
σ
p−1M0 (see e.g. [14, Chapter 13]). From

Proposition 2.1 there holds

max
{
|ur(z)| : 1

2 < |z| ≤ 2
}
≤ 2

2
p−1 c5 max

{
M

1
p−q r

2p−q(p+1)
(p−1)(p−q) , 1

}
by (2.1). Therefore

max
{
|∇u(y)| : r2 < |z| < 2r

}
≤ 2

2
p−1 cc5r

− p+1
p−1 max

{
M

1
p−q r

2p−q(p+1)
(p−1)(p−q) , 1

}
≤ c8 max

{
M

1
p−q |x|−

p
p−q , |x|−

p+1
p−1

}
,

(2.11)
which implies (2.8).
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(ii) For r > R we define ur as in (i). It satisfies (2.9) and since σ ≤ 0, we have
again 0 < Mr

σ
p−1 ≤MR

σ
p−1 ≤M0R

σ
p−1 if r ≥ R. Since 1 < q < 2, (2.10) holds

and we derive (2.8). �

Remark. If q = 2p
p+1 the constant c8 depends only on N and p.

The previous estimate necessitates 1 < q ≤ 2. This limitation can be by
passed in some cases using the Bernstein approach.

Lemma 2.4 Assume p, q > 1 and M > 0. If u ∈ C2(B2R) is a nonnegative
solution of (1.1) in B2R, there holds

|∇u(x)| ≤ c9

(
|x|−

1
q−1 + max

|z−x]≤ |x|2
u
p
q (z)

)
for all x ∈ BR

2
, (2.12)

c9 > 0 depends on N , p, q and M .

Proof. Set z = |∇u|2, then by a classical computation and the use of Schwarz
inequality,

−∆|∇u|2 +
1

N
(∆u)2 + 〈∇∆u,∇u〉 ≤ 0.

Replacing ∆u by its expression from LMp,qu = 0, we obtain

−∆z +
2

N

(
u2p +M2zq − 2Mupz

q
2

)
+ 2pup−1z ≤ qMz

q
2−1〈∇z,∇u〉.

We notice that

qMz
q
2−1〈∇z,∇u〉 ≤ qMz

q
2−1|∇z|

√
z = qMz

q
2
|∇z|√
z
≤ M2zq

2N
+

2Nq2

M2

|∇z|2

z
,

and
4M

N
upz

q
2 ≤ M2zq

2N
+

8u2p

NM2
,

thus

−∆z +
M2zq

N
≤ 2Nq2

M2

|∇z|2

z
+

2

N

(
4

M2
− 1

)
u2p.

For simplicity we set

A =
M2

N
, B =

2Nq2

M2
and C =

2

N

(
4

M2
− 1

)
+

max
|z−x|≤ |x|2

u2p(z)

Then z satisfies

−∆z +Azq ≤ B |∇z|
2

z
+ C in BR

2
(x)

and obtain by [5, Lemma 3.1] (see also a simpler approach in [7, Lemma 2.2]),

z(x) ≤ c10

(
|x|−

2
q−1 + C

1
q

)
(2.13)

where c10 > 0 depends on N , p, q and M . This yields (2.12). �

Remark. The constants c9 and c10 can be expressed in terms of M , but their
stability when M → 0 is not clear since in the limit case of the equation Lpu = 0
the estimate of the gradient obtained by a very different and much simpler
method combining the Keller-Osserman estimate and scaling methods.

Using Corollary 2.2 we obtain the new estimate

8



Corollary 2.5 Assume 1 < q < p and M > 0. Then any nonnegative solution
u ∈ C2(B2R) of (1.1) satisfies

|∇u(x)| ≤ c11

(
|x|−

1
q−1 + max

{
M

p
q(p−q |x|−

p
p−q , |x|−

2p
q(p−1)

})
for all x ∈ BR

2
,

(2.14)
where c11 > 0 depends on N , p, q and M .

Then we can combine this estimate with Proposition 2.1 to complete the
cases not treated in Proposition 2.3.

Proposition 2.6 Let 1 < q < p. For any M > 0 there exists a constant
c12 = c12(N, p, q,M) > 0 such that:

(i) If 2p
p+1 ≤ q < p, any positive solution u of (1.1) in B2R \ {0} with 0 < R ≤ 1

satisfies,

|∇u(x)| ≤ c12 max
{
M

p
q(p−q) |x|−

p
p−q , |x|−

2p
q(p−1)

}
for all x ∈ BR \{0}. (2.15)

(ii) If 1 < q ≤ 2p
p+1 , any positive solution u of (1.1) in RN \ B R

2
with R ≥ 1

satisfies,

|∇u(x)| ≤ c12 max
{
M

p
q(p−q) |x|−

p
p−q , |x|−

1
q−1

}
for all x ∈ RN \BR. (2.16)

Proof. We can compare the different exponents of |x| which appear in the ex-
pressions (2.8) and (2.14)

(i)
p

p− q
<
p+ 1

p− 1
<

2p

q(p− 1)
<

1

q − 1
if 1 < q <

2p

p+ 1
,

(ii)
1

q − 1
<

2p

q(p− 1)
<
p+ 1

p− 1
<

p

p− q
if

2p

p+ 1
< q < p,

(2.17)

with equality if q = 2p
p+1 . If 1 < q ≤ 2p

p+1 (resp. 2p
p+1 ≤≤ 2), estimate (2.8) is

better than (2.14) in BR \ {0} (resp. RN \B2R). Then (2.15) and (2.16) follow
from (2.14) and (2.17). �

In the case M < 0 an upper estimate on a solution is obtained by combining
a result of Lions and the method of Keller and Osserman.

Proposition 2.7 Let G ⊂ RN be an open subset, M ≤ 0 and p, q > 1. If
u ∈ C1(G) is a nonnegative solution of LMp,qu = 0, there exists c6 = c6(N, p) > 0,
c7 = c7(N, q) > 0 and δ = δ(G) > 0 such that there holds for all x ∈ G and
Ø < δ ≤ δ(G),

u(x) ≤ min

{
c6(d

G
(x))−

2
p−1 , c7|M |−

1
q−1 (d

G
(x))−

2−q
q−1 + max

d
G

(z)=δ
u(z),

}
. (2.18)

Proof. This estimates follows from the fact that the solutions of LMp,qu = 0 are

subsolutions of Lpu = 0 and RM
q u = 0. The estimate u(x) ≤ c6(d

G
(x))−

2
p−1

corresponds to the Keller-Osserman estimate for solutions of Lpu = 0. The
second estimate corresponds to the fact that if u is a positive solution of RM

q u =
0 in G there holds (see [18, Theorem IV-1])

|∇u(x)| ≤ c′7|M |
− 1
q−1 (d

G
(x))−

1
q−1 .
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Integrating this inequality yields the second part of the inequality. �

Remark. This estimate can be transformed into the universal estimate

u(x) ≤ min
{
c6(d

G
(x))−

2
p−1 , c7|M |−

1
q−1 (d

G
(x))−

2−q
q−1 + c6δ

− 2
p−1 ,

}
, (2.19)

since max
d
G

(z)=δ
u(z) ≤ c6δ−

2
p−1 by (2.18).

The gradient estimates are due to Nguyen [20, Proposition 1.1]. Below we
recall his result proved by the Bernstein method in a more general framework
but which can also be obtained by scaling techniques in the present case.

Proposition 2.8 Let p > 1 and 1 < q < 2. For any M < 0 and R > 0 there
exists a constant c′12 = c′12(N, p, q,M, ) > 0 such that: if u is a positive solution
of (1.1) in B2R \ {0}, there holds

u(x) + |x||∇u(x)| ≤ c′12 max
{
|x|−

2
p−1 , |x|−

2−q
q−1

}
for all x ∈ BR \ {0}. (2.20)

Remark. There are many estimates of positive solutions of (1.1) (or even with
up replaced by f(u)) in a domain which tends to infinity on the boundary (large
solutions) or of solutions in RN (ground states). Many of these estimates are
obtained by comparison with one dimensional problems and they can be found
in [2], [4], [15].

2.2 Proof of Theorem 1.1

Without loss of generality we can assume that u ∈ C2(Ω \ {0} and B2R0
⊂ Ω

with 2R0 ≤ 1. If M ≤ 0, u is a nonnegative subsolution of −∆u+up = 0, hence
it is bounded in Ω by [13].

Step 1. We assume M > 0 and we prove first that under condition (i) or (ii),
|∇u|q ∈ L1(Ω), u ∈ Lp(Ω), and then∫

Ω

(−u∆ζ + upζ −M |∇u|qζ) dx = 0 ∀ζ ∈W 2,∞(Ω) ∩ C1
c (Ω). (2.21)

By Proposition 2.3

|∇u|q ≤ c|x|−
(p+1)q
p−1 in BR0 ,

since q ≤ 2p
p+1 , and where c depends also on M . By (i) or (ii), (p+1)q

p−1 < N .

Hence ∇u ∈ Lqloc(Ω).

For any ε > 0 small enough we denote by ρε a nonnegative C∞-function
such that supp(ρε)⊂ Bε, 0 ≤ ρε ≤ 1, |∇ρε| ≤ 2ε−1χ

Bε
and we set ηε = 1− ρε.

Then

−
∫
B2R0

〈∇u,∇ρε〉dx+

∫
B2R0

upηεdx+

∫
∂B2R0

∂u

∂n
dS = M

∫
B2R0

|∇u|qηεdx.

(2.22)
Next∣∣∣∣∣

∫
B2R0

〈∇u,∇ρε〉dx

∣∣∣∣∣ ≤ 2cN ε
N
q′−1

(∫
Bε

|∇u|qdx
) 1
q

→ 0 as ε→ 0, (2.23)
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since 1 < q ≤ N
N−1 . Since |∇u|q ∈ L1(B2R0) we deduce by monotone conver-

gence that up ∈ L1(B2R0
). Finally, if ζ ∈ C∞0 (Ω) and ζε = ζηε, we have∫

Ω

〈∇u,∇ζε〉dx+

∫
Ω

upζεdx−M
∫

Ω

|∇u|qζεdx = 0.

Letting ε→ 0 and using (2.23), we infer that u satisfies∫
Ω

〈∇u,∇ζ〉dx+

∫
Ω

upζdx−M
∫

Ω

|∇u|qζdx = 0.

Hence it is a weak solution of (1.9) in Ω.

Step 2. Let us assume that p > N
N−2 . If u is nonnegative and not identically

zero, it is positive in Ω \ {0} by the maximum principle. We set u = vb with
0 < b ≤ 1. Then

−∆v − (b− 1)
|∇v|2

v
+

1

b
v1+(p−1)b −Mbq−1v(b−1)(q−1)|∇v|q = 0. (2.24)

For ε > 0,

v(b−1)(q−1)|∇v|q ≤ qε
2
q

2

|∇v|2

v
+

2− q
2ε

2
2−q

v1+
2b(q−1)

2−q .

Therefore

−∆v+

(
1− b−M qbq−1ε

2
q

2

)
|∇v|2

v
+

1

b
v1+b(p−1)−Mbq−1 2− q

2ε
2

2−q
v1+

2b(q−1)
2−q = 0.

(2.25)

We notice that 1 + 2b(q−1)
2−q = 1 + b(p− 1)− a with a = b 2p−(p+1)q

2−q ≥ 0. We fix
b as follows,

(p− 1)b+ 1 =
N

N − 2
⇐⇒ b =

2

(N − 2)(p− 1)
, (2.26)

hence p > N
N−2 if and only if 0 < b < 1. Next we impose

1− b−M qbq−1ε
2
q

2
= 0⇐⇒ ε =

(
2(1− b)
Mqbq−1

) q
2

=

(
2((N − 2)p−N)

Mqbq−1(N − 1)(p− 1)

) q
2

.

(2.27)
This transforms (2.25) into

−∆v +
(N − 2)(p− 1)

2
v

N
N−2 − (2− q)bq−1

2

(
q

2(1− b)

) q
2−q

M
2

2−q v
N
N−2−a ≤ 0.

(2.28)
We first assume that 0 < q < 2p

p+1 . Then a > 0, hence there exists A > 0,
depending on M , such that

−∆v +
(N − 2)(p− 1)

4
v

N
N−2 ≤ A. (2.29)

Set ṽ = (v − cAN−2
N )

N
N−2

+ with c =
(

4
(N−2)(p−1)

) N
N−2

satisfies

−∆ṽ +
(N − 2)(p− 1)

4
ṽ

N
N−2 ≤ 0. (2.30)
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By [13], ṽ ≤ max
∂Ω

ṽ which implies v ≤ cA
N−2
N + max

∂Ω
v and therefore u(x) ≤ B

for some B ≥ 0 in Ω. Furthermore |∇u|q−1 ∈ L
q
q−1 (Ω) since ∇u ∈ Lq(Ω), and

q
q−1 > N as we assume q < N

N−1 . Writing (1.9) under the form

−∆u+ up −MC(x)|∇u| = 0,

with C(x) = |∇u(x)|q−1, it follows from Serrin’s theorem [25, Theorem 10] that
the singularity at 0 is removable and u can be extended as a regular solution of
(1.9) in Ω. Hence u ∈ C2(Ω).

Then we assume that q = 2p
p+1 . By the choice of b in (2.26), inequality (2.25)

becomes

−∆v+

(
1− b− Mpb

p−1
p+1 ε

p+1
p

p+ 1

)
|∇v|2

v
+

(
1

b
− Mb

p−1
p+1

(p+ 1)εp+1

)
v

N
N−2 ≤ 0. (2.31)

Notice that

1

b
− Mb

p−1
p+1

(p+ 1)εp+1
= 0⇐⇒ ε =

(
M

p+ 1

) 1
p+1

b
2p

(p+1)2 , (2.32)

and therefore

1− b− Mpb
p−1
p+1 ε

p+1
p

p+ 1
= 1− b− pb

(
M

p+ 1

) p+1
p

. (2.33)

This coefficient vanishes if

p

(
M

p+ 1

) p+1
p

=
p(N − 1)− (N + 1)

2
.

Therefore, if M satisfies

p

(
M

p+ 1

) p+1
p

=
p(N − 2)−N

2
, (2.34)

we can choose ε > 0 so that the coefficient of v(p−1)b+1 in (2.34) is equal to
some τ > 0. Therefore v satisfies

−∆v + τv
N
N−2 ≤ 0 in Ω \ {0}. (2.35)

It follows by [13], v ≤ max
∂Ω

v and the same type of uniform estimate holds for

u. This ends the case p > N
N−2 .

Step 3. Finally we assume p = N
N−2 and 1 < q < 2p

p+1 = N
N−1 . From (2.12),

M |∇u(x)|q ≤ c9|x|−q
p+1
p−1 = c9|x|−q(N−1) := Q(x).

and Q ∈ L1(B2R0
). Let {σn} ⊂ C∞0 (RN ) such that 0 ≤ σn ≤ 1

σn(x) =

{
1 if 2

n ≤ |x| ≤ R0

0 if |x| ∈ [0, 1
n ] ∪ [2R0,∞),
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and
|∆σn| ≤ 2Nn2χ

B 2
n
\B 1

n

+ φ,

where φ is a smooth nonnegative function with support in B2R0
\BR0

. Then

−
∫
{ 1
n≤|x|≤

2
n}

u∆σndx−
∫
{R0≤|x|≤2R0}

u∆σndx+

∫
1
n≤|x|

upσndx = M

∫
1
n≤|x|

|∇u|qσndx.

(2.36)
The right-hand side of (2.36) is bounded since |∇u| ∈ Lq(B2R0

), the second
term on the left is also uniformly bounded. Using the fact that |x|N−2u(x) is
bounded by (2.1), we get ∣∣∣∣∣

∫
{ 1
n≤|x|≤

2
n}

u∆σndx

∣∣∣∣∣ ≤ C,
for some C > 0 independent of n. Letting n → ∞ we infer that u ∈ Lploc(Ω).
By the maximum principle

u(x) ≤ u1(x) = CGB2R0 [Q](x) + max
|z|=2R0

u(z), (2.37)

where GB2R0 denotes the Green kernel in B2R0 . Since Q(x) = C|x|−q(N−1),
a direct computation shows that u1(x) ≤ cNC|x|2−q(N−1) = cNC|x|2−N+ε for
some ε > 0. We can write (1.1) under the form

−∆u+ c(x)u+ d(x)|∇u| = 0 in Ω \ {0},

with c(x) = u
2

N−2 and d(x) = |∇u|q−1. Then c ∈ L
N
2 +ε1(B2R0

) and d ∈
LN+ε2(B2R0

); with ε1, ε2 > 0. It follows from [25, Theorem 10] that 0 is a
removable singularity for u in the sense that it can be extended as a C2 solution
in Ω. �

When the conditions of the theorem are not fulfilled there exist singular
solutions. However these singular solutions may exhibit different types of be-
haviour according 1 < q < 2p

p+1 , 2p
p+1 < q < 2 and q = 2p

p+1 . In this case there

may exist radial separable solutions of (1.9) under the form uX(r) = Xr−
2
p−1 .

Setting α = 2
p−1 , then X satisfies

Φp(X) := Xp−1 −Mα
2p
p+1X

p−1
p+1 + α(N − 2− α) = 0 (2.38)

The following result is easy to prove by a standard analysis of the function Φp.

Proposition 2.9 Let p > 1 and M ∈ R.

(i) If M is arbitrary and 1 < p < N
N−2 , or M > 0 and p = N

N−2 , there exists
one and only one positive solution X1 to (2.38).

(ii) If p > N
N−2 and M > m∗, there exist two positive solutions X1 < X2 to

(2.38).

(iii) If p > N
N−2 and M = m∗ there exists one positive solution X1 to (2.38).

(iv) If p > N
N−2 and 0 < M < m∗, or M ≤ 0 and p ≥ N

N−2 , there exists no
positive solution to (2.38).
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When q 6= 2p
p+1 the existence of singular solutions is much involved. It is

developed in the subsequent paper [8].

Remark. It is noticeable that in the case q = 2p
p+1 , p > N

N−2 and M ≥ m∗, the
equation exhibits a phenomenon which is characteristic of Lane-Emden type
equations

−∆u = up in B1 \ {0}. (2.39)

If u is nonnegative then there exists α ≥ 0 such that

−∆u = up + αδ0 in D′(B1). (2.40)

If 1 < p < N
N−2 then α can be positive, but if p ≥ N

N−2 , then α = 0. This means
that the singularity cannot be seen in the sense of distributions, however there
truly exist singular solutions, e.g. if p > N

N−2 ,

us(x) = cN,p|x|−
2
p−1 . (2.41)

Here also for q = 2p
p+1 , p > N

N−2 , the isolated singularities are not seen in the
sense of distributions.

2.3 Proof of Theorem 1.2

As in the proof of Theorem 1.1, we distinguish according 1 < q < 2p
p+1 or

q = 2p
p+1 . Without loss of generality we can suppose that u > 0. We perform

the same change of unknown as in the previous theorem putting u = vb, but
now we choose b as follows

(p− 1)b+ 1 = r ⇐⇒ b =
r − 1

p− 1
, (2.42)

and we first assume that

1− b−M qbq−1ε
2
q

2
= 0⇐⇒ ε =

(
2(1− b)
Mqbq−1

) q
2

=

(
2(p− r)

Mq(p− 1)bq−1

) q
2

. (2.43)

Hence (2.28) becomes

−∆v+
p− 1

r − 1
vr− (2− q)bq−1

2

(
q

2(1− b)

) q
2−q

M
2

2−q v
(2r−p−1)q+2(p−r)

(p−1)(2−q) ≤ 0. (2.44)

Condition r ≥ (2r−p−1)q+2(p−r)
(p−1)(2−q) is equivalent to 2p− q(p+1) ≤ r(2p− q(p+1)),

since 1 < r < p.
Assuming first that q < 2p

p+1 , we obtain from (2.44)

−∆v +
p− 1

2(r − 1)
vr ≤ A. (2.45)

for some constant A ≥ 0. Since capR
N

2,r′(K) = 0 the function v is bounded

from [3] and v ≤ cA
1
r + max

∂Ω
v for some c > 0, hence u is also uniformly upper

bounded in Ω by some constant a.
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Next we have to show that ∇u ∈ Lq(Ω). Let {ρn} be a sequence of C∞0 (Ω) non-
negative functions such that 0 ≤ ρn ≤ 1, ρn = 1 in a small enough neighborhood
of K and ‖ρn‖W 2,r′ → 0 when n→∞, and set ηn = 1− ρn. Since∫

Ω

u∆ρndx−
∫
∂Ω

∂u

∂n
dS +

∫
Ω

upηndx = M

∫
Ω

|∇u|qηndx,

and ∣∣∣∣∫
Ω

u∆ρndx

∣∣∣∣ ≤ c ‖u‖L∞ ‖ρn‖W 2,r′ → 0 as n→∞,

we get ∫
Ω

updx−
∫
∂Ω

∂u

∂n
dS = M

∫
Ω

|∇u|qdx.

Hence ∇u ∈ Lq(Ω). If ζ ∈ C∞0 (Ω) and ζn = ζηn, there holds

−
∫

Ω

ηnu∆ζdx+

∫
Ω

ζu∆ρndx+

∫
Ω

upζndx = M

∫
Ω

|∇u|qζndx.

Since the second term on the left-hand side tends to 0 and ζn → ζ when n→∞,
we obtain that

−
∫

Ω

u∆ζdx+

∫
Ω

upζdx = M

∫
Ω

|∇u|qζdx.

Hence u is a solution in the sense of distribution in Ω.
Next we show that ∇u ∈ L2(Ω). Multiplying (1.9) by uηn and integrating, we
obtain∫

Ω

|∇u|2ηndx−
∫

Ω

u〈∇u,∇ρn〉dx−
∫
∂Ω

u
∂u

∂n
dS+

∫
Ω

up+1ηndx = M

∫
Ω

u|∇u|qηndx.

As ∫
Ω

u〈∇u,∇ρn〉dx =
1

2

∫
Ω

〈∇u2,∇ρn〉dx

= −1

2

∫
Ω

u2∆ρndx,

and ∣∣∣∣∫
Ω

u2∆ρndx

∣∣∣∣ ≤ c ‖u‖2L∞ ‖ρn‖W 2,r′ = o(1) as n→∞,

we infer that∫
Ω

|∇u|2dx−
∫
∂Ω

u
∂u

∂n
dS +

∫
Ω

up+1dx = M

∫
Ω

u|∇u|qdx.

Finally if ζ ∈ C∞0 (Ω) and ζn = ζηn, then∫
Ω

ηn〈∇u,∇ζ〉dx−
∫

Ω

ζ〈∇u,∇ρn〉dx+

∫
Ω

upζndx = M

∫
Ω

|∇u|qζndx.

Since r ≤ 2N
N−2 there holds

‖ρn‖W 1,2 ≤ c ‖ρn‖W 2,r′ =⇒ ‖ρn‖W 1,2 → 0 as n→∞.
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Using the fact that ∇u ∈ L2(Ω) and Hölder’s inequality, we derive∫
Ω

ζ〈∇u,∇ρn〉dx→ 0 as n→∞.

Hence ∫
Ω

〈∇u,∇ζ〉dx+

∫
Ω

upζdx = M

∫
Ω

|∇u|qζdx.

This implies that u is a weak solution of (1.9) and it is therefore C2 in Ω.

Next we assume q = 2p
p+1 . We choose b = r−1

p−1 and (2.31) becomes

−∆v +

(
1− b− Mpb

p−1
p+1 ε

p+1
p

p+ 1

)
|∇v|2

v
+

(
1

b
− Mb

p−1
p+1

(p+ 1)εp+1

)
vr ≤ 0. (2.46)

If (2.32) holds with this choice of b, (2.33) becomes

1− b− Mpb
p−1
p+1 ε

p+1
p

p+ 1
= 1− b− pb

(
M

p+ 1

) p+1
p

=
1

p− 1

(
p− r − p(r − 1)

(
M

p+ 1

) p+1
p

)
.

(2.47)

If M < m∗r defined by (1.10), we can choose ε such that

1− b− Mpb
p−1
p+1 ε

p+1
p

p+ 1
= 0,

and
1

b
− Mb

p−1
p+1

(p+ 1)εp+1
= τ := τ(ε) > 0.

Then v satisfies
−∆v + τvr ≤ 0 in Ω \K.

Since capR
N

2,r′(K) = 0 it follows from [3] that v ≤ max
x∈∂Ω

v(x). Hence u is bounded.

The different steps of the proof in the first case applies without any modification:
first ∇u ∈ Lq(Ω) and the equation holds in the sense of distributions in Ω, then
∇u ∈ L2(Ω) and since r ≤ 2N

N−2 we infer that u is a weak solution and thus a
strong one. �

3 Measure data

Let Ω ⊂ RN be a bounded smooth domain with diameter smaller than 2R. Also
any Radon measure in Ω is extended by 0 in Ωc with the same notation.

3.1 Proof of Theorem 1.3: the case 1 < q < N
N−1

If 1 < q < N
N−1 assumption (1.12) with µ ≥ 0 reduces to

µ(K) ≤ CcapRN2,p′(K) for all compact set K ⊂ Ω. (3.1)
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The construction of solutions is based upon the following result due to Boccardo-
Murat-Puel [10]. It is concerned with a general quasilinear equation in a domain
G ⊂ RN

Q(u) := −∆u+B(., u,∇u) = 0 in D′(G), (3.2)

where B ∈ C(G× R× RN ) satisfies

|B(x, r, ξ)| ≤ Γ(|r|)(1 + |ξ|2) for all (x, r, ξ) ∈ G× R× RN , (3.3)

for some continuous increasing function Γ from R+ to R+.

Theorem 3.1 Let G be a bounded domain in RN . If there exists a superso-
lution φ and a subsolution ψ of the equation Qv = 0 belonging to W 1,∞(G)
and such that ψ ≤ φ, then for any χ ∈ W 1,∞(G) satisfying ψ ≤ χ ≤ φ there
exists a function u ∈ W 1,2(G) solution of Qu = 0 such that ψ ≤ u ≤ φ and
u− χ ∈W 1,2

0 (G).

The sub and super solutions are linked to the two problems in which p and
q are bigger than 1, and µ and ω are Radon measures

−∆v + |v|p−1v = µ in Ω
v = 0 in ∂Ω,

(3.4)

and
−∆w −M |∇w|q = ω in Ω

w = 0 in ∂Ω.
(3.5)

It is proved in [3, Theorem 4.1] that Problem (3.4) admits a solution, v ∈ Lp(Ω),
necessarily unique, if and only if µ is absolutely continuous with respect to the

Bessel capacity capR
N

2,p′ , that is

For any compact set E ⊂ Ω , capR
N

2,p′(E) = 0 =⇒ |µ|(E) = 0. (3.6)

Concerning (3.5), from [21, Theorem 1.9] a sufficient condition for solvability is
the estimate

For any compact set E ⊂ Ω , |ω|(E) ≤ CcapRN1,q′(E), (3.7)

for some C > 0. When µ is nonnegative and has compact support in Ω, this
condition turns out to be necessary. If (3.7) is satisfied there exists ε0 > 0 such
that (3.5) admits a solution with ω replaced by εω with 0 < ε ≤ ε0. Furthermore
∇w ∈ Lq(Ω) and the following estimates hold [9, Theorem 1.2],

|∇w(x)| ≤ c13εI
2R
1 [|ω|](x), (3.8)

at least if ω has compact support or is a smooth function, and, with no such
conditions on µ,

|w(x)| ≤ c14εG
Ω[|ω|](x), (3.9)

with c13, c14 depending on N and q, where I2R
1 is the truncated Riesz potential

in RN defined for any measure µ by

I2R
1 [µ](x) =

∫ 2R

0

µ(Bρ(x))

ρN−1

dρ

ρ
for all x ∈ RN , (3.10)

and GΩ the Green potential in Ω. If R =∞ we denote by I1 := I∞1 the classical
Riesz potential and if Ω = RN the role of GΩ is played by the Newtownian
potential I2. We start with the following easy result:
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Lemma 3.2 Let r > 1, k ∈ N∗ and µ ∈M+(Ω). If µ ∈W−k,r(Ω) is nonnega-
tive, then there exists C > 0 such that

µ(E) ≤ C
(
capΩ

k,r′(E)
) 1
r′

for any compact set E ⊂ Ω. (3.11)

where r′ = r
r−1 . Conversely when k = 1, 2 and µ satisfies

µ(E) ≤ CcapΩ
k,r′(E) for all compact set E ⊂ Ω, (3.12)

for some C > 0, then,

(i) if k = 2 then µ ∈W−2,r(Ω),

(ii) if k = 1 then µ ∈W−1,r(Ω).

Proof. Assume first that µ ∈ M+(Ω) ∩W−k,r(Ω). Let ζ ∈ C∞0 (Ω) such that
0 ≤ ζ ≤ 1 and ζ ≥ χ

K
. Then

µ(E) ≤
∫

Ω

ζdµ = 〈µ, ζ〉 ≤ ‖ζ‖
Wk,r′

0

‖µ‖W−k,r .

By the definition of capacity

µ(K) ≤ ‖µ‖W−k,r
(
capΩ

k,rp′(K)
) 1
r′ .

Conversely if (3.12) holds with k = 2 there exists ε0 > 0 such that for every
ε ∈ (0, ε0], there exists z ∈ Lr(Ω) satisfying

−∆z = zr + εµ in Ω
z = 0 on ∂Ω,

(3.13)

(see [24, Theorem 2.10, Remark 2.11]). Since z ≥ GΩ[εµ], it follows that
GΩ[µ] ∈ Lr(Ω) and therefore µ ∈W−2,r(Ω). Since GΩ is an isomorphism from

Lr
′
(Ω) into W 2,r′(Ω)∩W 1,r′

0 (Ω), we infer by duality that GΩ is an isomorphism
from W−2,r(Ω) into Lr(Ω). Hence µ ∈W−2,r(Ω).

Finally, if (3.12) holds with k = 1, then there exists ε0 > 0 such that for
every ε ∈ (0, ε0] there exists z ∈W 1,r(Ω) satisfying

−∆z = |∇z|r + εµ in Ω
z = 0 on ∂Ω.

(3.14)

Then z satisfies z ≥ GΩ[εµ]. Since z ∈ Lr∗(Ω) by Sobolev imbedding theorem,
we have that GΩ[µ] ∈ Lr∗(Ω), which implies the claim. �

Proof of the theorem. We put µn = µ ∗ ηn where {ηn} ⊂ C∞0 (RN ) is a sequence
of mollifiers with supp(ηn) ⊂ B 1

n
, and we denote by vn the solution of

−∆v + vp = εµnχΩ
in Ω

v = 0 on ∂Ω.
(3.15)

Since µ satisfies (3.12) so does µn with the same constant C. Hence µn ∈
W−2,p(Ω) and µn → µ in W−2,p(Ω) as n → ∞. We also denote by zn a
nonnegative solution of

−∆z = zp + εµnχΩ
in Ω

z = 0 on ∂Ω,
(3.16)
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and by wn a nonnegative solution of

−∆w = M |∇w|q + εµnχΩ
in Ω

w = 0 on ∂Ω,
(3.17)

Since wn is C2, it is unique by the strong maximum principle. Then there holds
by (3.8), (3.9),

(i) vn ≤ εGΩ[µn] ≤ wn ≤ c14εG
Ω[µn] ≤ c14εI2[µn]bΩ,

(ii) |∇wn| ≤ c13εI
2R
1 [µn].

(3.18)
Since vn and wn are respectively a subsolution and a supersolution of

−∆u+ up = M |∇u|q + εµn in Ω
u = 0 on ∂Ω,

(3.19)

it follows by Theorem 3.1 that there exists u = un ∈W 1,∞
0 (Ω) satisfying (3.19)

in the sense that for any ζ ∈ C2
c (Ω) there holds

−
∫

Ω

un∆ζdx+

∫
Ω

(upn −M |∇un|q) ζdx = ε

∫
Ω

ζdµn. (3.20)

It is unique by the strong maximum principle and it satisfies

vn ≤ un ≤ wn ≤ c14εI2[µn]bΩ. (3.21)

Since I2[µn]bΩ is uniformly bounded in Lp(Ω), the sequence of functions {un}
shares this property. If η = GΩ[1], there holds∫

Ω

(un + ηupn) dx = M

∫
Ω

|∇un|qηdx+ ε

∫
Ω

ηdµn. (3.22)

Hence |∇un| is uniformly bounded in Lqd
Ω

(Ω) where d
Ω

(x) = dist (x, ∂Ω). By

(3.8),

|∇un| ≤ c13εI
2R
1 [|µn − upn|] ≤ c13

(
εI2R

1 [µn] + I2R
1 [upn]

)
≤ c13

(
εI2R

1 [µn] + cp14ε
pI2R

1 [(I2[µnbΩ])p]
)
.

(3.23)

Using [16, Lemma 4.2] we have equivalence between

I1[(I2[µnbΩ])
p
] ≤ c15I1[µnbΩ], (3.24)

and
I2[(I2[µnbΩ])

p
] ≤ c17I2[µnbΩ], (3.25)

and c17 ≤ c15 ≤ C(N, p)c17. Moreover, since diam(Ω) < 2R,(
I2R
1 [(I2[µ])

p
]
)q ≤ cq21(I1[µ])q ≤ cqcq21(I2R

1 [µ])q. (3.26)

for some c = c(N,R) > 0. Next, it is quoted in [16, Theorem 1.1 ] that the
inequality (3.25) is equivalent to the main assumption of Theorem 1.3,

µnbΩ(E) ≤ CcapR
N

2,p′(E) for all compact set E ⊂ Ω, (3.27)
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for some C > 0. Actually this equivalence is proved in [19]. By [1, Theorem
3.14-(a)] there exists A = A(N) > 0 such that∣∣{x ∈ RN : |I1[µnbΩ](x)| > λ}

∣∣ ≤ Aλ− N
N−1 ‖µnbΩ‖

N
N−1

L1 . (3.28)

Clearly the above inequality holds if I1 is replaced by I2R
1 and RN by Ω. This

is an estimate of I2R
1 [µnbΩ] in the Lorentz space L

N
N−1 ,∞(Ω) (or Marcinkiewicz

space). Clearly
‖µnbΩ‖L1 ≤ ‖µ‖M .

Therefore (3.23) implies that |∇un| is bounded in L
N
N−1 ,∞(Ω), hence equi-

integrable in Lq(Ω) since q < N
N−1 . By Lemma 3.2-(ii) and classical harmonic

analysis results, I2[µnbΩ→ I2[µbΩ in Lp(Ω) (see e.g. [26]). It follows from (3.21)
that un is equi-integrable in Lp(Ω). By standard results on elliptic equations
and measure theory [11, Corollary IV], the sequences {un} and {|∇un|} are
relatively compact in L1(Ω). Hence there exist a subsequence {nj}, converging

to ∞ and a function u ∈ W 1,q
0 (Ω) ∩ Lp(Ω) such that unj → u in W 1,1(Ω) and

a.e. in Ω. Since {un} and {|∇un|} are also equi-integrable in Lp(Ω) and Lq(Ω)
respectively, we infer that unj → u in W 1,q

0 (Ω)∩Lp(Ω). It follows from Vitali’s
convergence theorem that unj → u in Lp(Ω) and ∇unj → ∇u in Lq(Ω). Letting
nj →∞ in (3.20) we conclude that the identity

−
∫

Ω

u∆ζdx+

∫
Ω

(up −M |∇u|q) ζdx = ε

∫
Ω

ζdµn, (3.29)

holds for any ζ ∈ C2
c (Ω). Clearly

v ≤ u ≤ w ≤ CεI2[µ]bΩ, (3.30)

where v and w are respectively the solution of (3.4) and the minimal solution
of (3.5) with µ replaced by εµ. �

3.2 Proof of Theorem 1.3: the general case

The approach with super and sub solutions does not work directly and we follow
the method developed for proving [21, Theorem 1.9] which is a delicate extension
of the one in the subcritical case. The fact that a sequence of approximation
{un} is bounded in W 1,q

0 (Ω) ∩ Lp(Ω) does not imply the uniform integrability
of {∇un} in Lq(Ω) for q ≥ N

N−1 .

Definition 3.3 If r > 1 and k ∈ N∗ we denote by Mk,r(Ω) the set of bounded
measures µ in Ω which satisfy, for some C > 0,

|µ|(E)| ≤ CcapΩ
k,r(E) for all compact sets E ⊂ Ω. (3.31)

If Ω is replaced by RN , the set is denoted by Mk,r. The smallest constant C
such that (3.31) holds is denoted by [µ]Mk,r .

For T > 1 we denote by E1(T, µ) the subset of functions ζ ∈ W 1,q
0 (Ω) such

that ∫
Ω

|∇ζ|qwdx ≤ Tεq
∫

Ω

(I2R
1 [|µ|])qwdx for all w ∈ A1 ∩ L∞. (3.32)

The following estimate is obtained in [21, Lemma 5.2] in a more general
context.
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Lemma 3.4 Let q > 1 and µ ∈M1,q′(Ω). Then there exists c17 = c17(N, q) >
0 such that for any ζ ∈ E1(T, µ)

I2R
1 [|∇ζ|qχ

Ω
](x) ≤ c17Tε

q[µ]q−1

M1,q′ I
2R
1 [|µ|](x) (3.33)

a.e. in Ω.

Lemma 3.5 Let q > 1, ζ ∈ E1(T, µ) where µ ∈ M1,q′(Ω), and S1(ζ) be the
solution of

−∆φ+ φp = M |∇ζ|q + εµ in Ω
φ = 0 on ∂Ω.

(3.34)

Then there exists c18 = c18(N, q) > 0 such that

v ≤ S1(ζ) ≤ S(ζ) ≤ (ε+ c18ε
qT )I2[µ], (3.35)

where S(ζ) is the solution of

−∆φ = M |∇v|q + εµ in Ω
φ = 0 on ∂Ω,

(3.36)

and v is the solution of (3.4) with µ replaced by εµ.

Proof. There holds

S1(ζ) = εGΩ[µ] + GΩ[|∇ζ|q] ≤ εI2[µ] + I2[|∇ζ|q] = εI2[µ] + I1[I1[|∇ζ|q]].

By Lemma 3.4 with R =∞, I1[|∇ζ|qχΩ ] ≤ c17Tε
q[µ]q−1

M1,q′ I1[µ], hence

S1(ζ) ≤
(
ε+ c17Tε

q[µ]q−1

M1,q′

)
I2[µ] := (ε+ c18ε

qT )I2[µ], (3.37)

since T ≥ 1 and ε ∈ (0, 1]. �

Lemma 3.6 There exists T1 > 0 such that for any T > T1, there exists εT > 0
such that for all ε ∈ (0, εT ], S1 maps E(T, µ) into itself.

Proof. By [21, Theorem 1.4], and using the proof of [21, Theorem 1.9], there
exist constants c19, c20, c21 > 0 depending on N , q, R and m such that for any
w ∈ A1 ∩ L∞ such that [w]A1

≤ m∫
Ω

|∇S1(ζ)|qwdx ≤ c19

∫
Ω

(
I2R
1 [|∇ζ|qχΩ ] + εI2R

1 [µ] + I2R
1 [Sp1 (ζ)]

)q
wdx

≤ c20

∫
Ω

((
I2R
1 [|∇ζ|qχ

Ω
]
)q

+ εq(I2R
1 [µ])q

+(εpq + c21ε
pq2

T pq)
(
I2R
1 [(I2[µ])

p
]
)q)

wdx.

(3.38)
Using again the equivalence between (3.24), (3.25), (3.26) and (3.27), inequality
(3.38) is transformed in∫

Ω

|∇S1(ζ)|qwdx ≤ c22

(
εq + c24qT

qεq
2

+ cq25(εpq+ c20ε
pq2

T pq)
)∫

Ω

(I2R
1 [µ])qwdx.

(3.39)
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Finally for any T > c23 there exists ε0 such that for 0 < ε ≤ ε0, there exist
positive constants c24, c25 such that

c22

(
εq + c24qT

qεq
2

+ cq25(εpq + c20ε
pq2

T pq)
)
≤ Tεq,

which implies the claim. �

Lemma 3.7 Under the assumptions of Lemma 3.6 with T > c23 and 0 < ε ≤
εT , the mapping S1 is compact from E(T, µ) into itself.

Proof. We prove first the continuity. Let {ζj} ⊂ E(T, µ) such that ζj → ζ

in W 1,q
0 (Ω). Using monotonicity as in [12, Theorem 8] we obtain that for any

r ∈ [1, N
N−1 ), there exists α = α(N,R, r) > 0 such that

α ‖S1(ζj)− S1(ζ`)‖W 1,r
0

+ ‖Sp1 (ζj)− Sp1 (ζ`)‖L1 ≤M ‖|∇ζj |q − |∇ζ`|q‖L1 .

(3.40)
Since {∇ζj} is a Cauchy sequence in Lq(Ω) it follows that S1(ζj) → S1(ζ) in

W 1,r
0 (Ω) ∩ Lp(Ω). Hence

−∆S1(ζ) + Sp1 (ζ) = M |∇ζ|q + µ in Ω
S1(ζ) = 0 in ∂Ω.

(3.41)

If we take ν := νj = M |∇ζj |q + µ+ Sp1 (ζj). By (3.26)

I2R
1 [Sp1 (ζj)] ≤ I2R

1 [(I2[µ])
p
] ≤ C6I

2R
1 [µ].

Combined with (3.33) we infer that

I2R
1 [M |∇ζj |q + Sp1 (ζj) + µ] ≤ c28I

2R
1 [µ]. (3.42)

Let M1 be the first order fractional maximal function defined by

M1(µ)(x) := sup
ρ>0

ω(Bρ(x))

ρN−1
for all x ∈ RN . (3.43)

It is classical that for all ν ∈Mb(Ω),

M1[|ν|](x) ≤ m
N

I2R
1 [|ν|])(x) for a.e. x ∈ RN . (3.44)

Hence, if we set c29 = m
N

(c28 + 1), there holds.

M1[M |∇ζj |q + µ+ Sp1 (ζj)](x) ≤ c29I
2R
1 [µ]. (3.45)

Since I2R
1 [µ] ∈ Lq(Ω) we deduce that the left-hand side of (3.45) is bounded

and equi-integrable in Lq(Ω). Then we apply [21, Corollary 1.7], with w = 1
and deduce that there exists a subsequence {∇S1(ζjn)} which converges in
Lq(Ω). By uniqueness the limit is {∇S1(ζ)} and the whole sequence {∇S1(ζj)}
converges. Therefore S1 is continuous.

The proof of the compactness follows the same ideas: If {ζj} is a bounded
sequence in E(T, µ), then {∇S1(ζj)} is bounded in Lqw(Ω) by (3.38), hence
(3.40) holds. By (3.25), {S1(ζj)} is bounded in Lp(Ω) and equi-integrable since
I2[µ] belongs to Lp(Ω) (it is a consequence of (3.27)) and Lemma 3.2. By [11]
the sequence {S1(ζj)} is relatively compact in W 1,1

0 (Ω). Hence, there exist
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ζ ∈ E(T, µ) and a subsequence {ζjn} such that ζjn → ζ weakly in W 1,q
0 (Ω)

and {S1(ζjn)} converges to some S ∈ E(T, µ) in W 1,1
0 (Ω) ∩ Lp(Ω), a.e. in Ω

and weakly in W 1,q
0 (Ω). As above we derive from [21, Corollary 1.7] that the

sequence {M1[M |∇ζjn |q+µ+Sp1 (ζj)]} is bounded and equi-integrable in Lq(Ω),
hence {∇S1(ζjn)} converges to ∇S in Lq(Ω). Therefore S is a solution of

−∆S + Sp = M |∇ζ|q + µ in Ω
S = 0 on ∂Ω.

(3.46)

This implies that S = S1(ζ) and the mapping S1 is compact. �

End of the proof of Theorem 1.3. It follows from Lemma 3.7 that S1 is a compact
mapping from E(T, µ) into itself. Hence it admits a fixed point u by Schauder’s
theorem and u ∈W 1,q

0 (Ω) ∩ Lp(Ω) is nonnegative and satisfies (1.13). �

3.3 Proof of the Corollaries

Proof of Corollary 1.4. If q satisfies Np
N+p ≤ q < 2, then 1 < p < 2N

N−2 . By
Sobolev imbedding theorem there holds

‖φ‖W 1,q′ ≤ c27 ‖φ‖W 2,p′ for all φ ∈ C2(Ω),

where c27 depends on p, q and |Ω|, provided

1

q′
≥ 1

p′
− 1

N
⇐⇒ q ≥ Np

N + p
.

The condition q < 2 necessitates that Np
N+p < 2, equivalently p < 2N

N+2 . �

Proof of Corollary 1.5. We recall [1, Theorem 5.5.1] (a)-(b). If 2p′ ≤ q′ < N ,
then(

capR
N

2,p′(E)
) 1
N−2p′ ≤ A

(
capR

N

1,q′(E)
) 1
N−q′

for all Borel set E ⊂ Ω.

(3.47)

Since N−2p′

N−q′ ≥ 1 we deduce

capR
N

2,p′(E) ≤ A′capRN1,q′(E) for all Borel set E ⊂ Ω. (3.48)

Hence (1.15) implies (1.12) and existence follows from Theorem 1.3. The as-
sumption 2p′ ≤ q′ < N is equivalent to N

N−1 < q ≤ 2p
p+1 . Note that this implies

p > N
N−2 . �

Proof of Corollary 1.6. -(i) Since p and q are subcritical, (1.12) is verified as
soon as there holds for every Borel set E ⊂ Ω,

µ(E) ≤ µ(Ω)

min
{
capR

N

2,p′({0}), capR
N

1,q′({0})
} min

{
capR

N

2,p′(E), capR
N

1,q′(E)
}
.

-(ii) If p is subcritical and q supercritical, (1.14) implies (1.12).

-(iii) If q is subcritical and µ satisfies (1.15) then (1.12) holds and the existence
follows by Theorem 1.3. However the condition that µ vanishes on Borel sets
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with capR
N

2,p′ -capacity is weaker. Let T > 0 and BT be the set of ζ ∈ W 1,q
0 (Ω)

such that ‖M |∇ζ|q‖L1(Ω) ≤ T . If ζ ∈ BT there exists a unique solution S(ζ) ∈
W 1,1

0 (Ω) ∩ Lp(Ω) to

−∆φ+ φp = M |∇ζ|q + µ in Ω
φ = 0 on ∂Ω.

(3.49)

This follows from [3] since the right-hand side of the equation is a measure

absolutely continuous with respect to the capR
N

2,p′ -capacity and the solution is
nonnegative. The following estimate holds [12, Theorem 8]

(i)

∫
Ω

Sp(ζ)dx ≤ µ(Ω) +M

∫
Ω

|∇ζ|qdx

(ii) α ‖S(ζ)‖W 1,r
0
≤ 2µ(Ω) + 2M

∫
Ω

|∇ζ|qdx,
(3.50)

for any 1 < r < N
N−1 . This implies in the case q = r,

(∫
Ω

|∇S(ζ)|qdx
) 1
q

≤ Aµ(Ω) +B

∫
Ω

|∇ζ|qdx,

with

A =
2

α
and B =

2M

α
.

For X > 0 set F (X) = BXq − X + Aµ(Ω). Then F ′(X) = 0 iff X = X0 :=

(qB)−
1
q−1 and

F (X0) = Aµ(Ω)− q − 1

q
(qB)−

1
q−1 .

If we assume that

F (X0) < 0⇐⇒ µ(Ω) <
q − 1

qA
(qB)−

1
q−1 = (q − 1)

(α
2

) q
q−1

M−
1
q−1 , (3.51)

then minF (X) < 0, therefore F admits two positive roots X2 < X0 < X1.
Hence the inequality

X2 <

(∫
Ω

|∇ζ|qdx
) 1
q

≤ X1, (3.52)

implies(∫
Ω

|∇S(ζ)|qdx
) 1
q

≤ B
∫

Ω

|∇ζ|qdx+Aµ(Ω) ≤
(∫

Ω

|∇ζ|qdx
) 1
q

≤ X1, (3.53)

and if (∫
Ω

|∇ζ|qdx
) 1
q

≤ X2, (3.54)

then (∫
Ω

|∇S(ζ)|qdx
) 1
q

≤ Aµ(Ω) +BXq
2 ≤ Aµ(Ω) +BXq

1 = X1. (3.55)
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Therefore the mapping S sends BX1 into itself. It is continuous since

(i)

∫
Ω

|Sp(ζ1)− Sp(ζ2)| ≤M
∫

Ω

||∇ζ1|q − |∇ζ2|q| dx

(ii) α ‖S(ζ1)− S(ζ2)‖W 1,r
0
≤ 2M

∫
Ω

||∇ζ1|q − |∇ζ2|q| dx.
(3.56)

The fact that this operator is compact follows from the a priori estimate
(3.50) and Lemma 3.7. The conclusion is a consequence of Schauder Theo-
rem. �
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du second ordre, J. Analyse Mathématique. 45, 234-254 (1985).
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