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Fast non-stationary deconvolution of ultrasonic
beamformed images for nondestructive testing

Nans Laroche, Sébastien Bourguignon, Jérôme Idier, Ewen Carcreff, and Aroune Duclos

Abstract—This paper addresses high-resolution ultrasonic im-
age reconstruction from Full Matrix Capture (FMC) data in
the context of nondestructive testing (NDT). In order to reduce
the numerical complexity, the time-domain data and ultrasonic
model are projected into the image domain through a linear
beamforming procedure. The resulting model is interpreted as
a shift-variant convolution process, affected by non-stationary
and colored noise. An interpolation procedure is built in order
to account for the spatial variations of the resulting point
spread function. Under the same methodological framework, an
approximate whitening filter is proposed and incorporated in the
forward model. Both constructions then allow fast computations
and limited memory storage. Deconvolution is performed by
minimizing the least-squares data misfit error, with a penalization
term favoring sparsity and spatial continuity of the output
images. Results with synthetic data show that the proposed
approach gives performances close to the inversion of raw FMC
data, while being computationally much more efficient. The
method is finally applied to laboratory data for the inspection of
a stainless steel block containing closely spaced and small side-
drilled holes calibrated flaws. Successful detection and separation
is achieved for flaws with diameters six times smaller than the
wavelength, and distant from each other by four times less than
the resolution limit given by the Rayleigh criterion.

I. INTRODUCTION

A. State-of-the-art in NDT ultrasonic imaging

MODERN ultrasonic array probes contain a large number
of transducers, offering high performance in terms of

flexibility, speed and quality of inspection. In the field of non-
destructive testing (NDT), the main advantage of the array-
based ultrasonic modality is its ability to produce images
from a single acquisition sequence through beamforming tech-
niques [1]. Beamforming has been first hardware-implemented
by applying different delay laws to the transducers in order to
focus the beam at different locations of the inspected region.
Nowadays, software-implemented beamforming is generally
preferred, being obviously more flexible. In particular, the
recent growth of Graphic Processing Units (GPU) capabil-
ities has significantly improved the speed of beamforming
algorithms, which can now compute hundreds of images per
second [2].

Until recently, software-implemented beamforming was
mostly performed using the Synthetic Aperture Focusing Tech-
nique (SAFT) [3], which consists in recording the pulse-echo
responses of a moving single-element transducer. However,
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SAFT is becoming obsolete with the emergence of array
probes, which enable more efficient data acquisition schemes.
In medical ultrasound imaging, Plane Wave Imaging (PWI) [4]
is now the standard method, where all elements emit plane
wave fronts at different angles and receive synchronously. This
technique maximizes the transmitted energy to the tissue at a
high frame rate (up to several thousand images per second),
which is critical in order to capture motion information [5].

In NDT, which is the target application area of this paper,
obtaining high-resolution information is necessary in order
to detect and characterize accurately possible flaws in the
inspected piece [6], [7]. Typical examples of interest are the
control of additively manufactured parts [8], [9], welds [10]
or power generation units [11]. In such contexts, it is a
priority to collect more exhaustive information than in medical
imaging, at the price of slower acquisition rates. Therefore, a
beamforming method of choice is the Total Focusing Method
(TFM) [7], [12] applied to Full Matrix Capture (FMC), that
is, the collection of all inter-element responses from an array
probe. FMC has become a reference acquisition method for
various typical applications in NDT. It is highly sensitive
to small defects and is used for sub-wavelength reflectors
detection [6]. It provides valuable information for the sizing
and characterization of crack-like defects using diffraction
and specular echoes [10], [13]–[15]. It is also efficiently
used for the separation of close scatterers [16]–[19]. Let us
also mention that this acquisition scheme was also used for
particular applications in medical imaging, e.g., blood flow
estimation [20].

Due to its finite aperture, each transducer composing a
multi-element probe has a limited bandwidth. Consequently,
all linear beamforming techniques (SAFT, PWI, TFM) pro-
duce images of limited spatial resolution, in particular showing
oscillations due to the shape of ultrasonic pulses. In order to
improve the resolution and the contrast of ultrasonic images,
previous works adopted an inverse problem approach [19],
[21]–[23]. In [19], we proposed a linear forward model which
relates the FMC data to the reflectivity map of the inspected
region, accounting for the acoustic responses of the transduc-
ers. The corresponding inversion method is able to reconstruct
highly resolved images, but at the price of a computationally
expensive procedure due to the large size of FMC datasets,
which makes it hardly compatible with some industrial NDT
applications.

This paper proposes an inversion procedure which aims
to preserve the resolution quality of FMC data inversion,
while reducing the computation time, by reducing the size of
the dataset. More precisely, we transfer the raw FMC data
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model (i.e., a collection of time-domain signals related to
the unknown reflectivity inside the inspected medium) into
the TFM beamformed image. A new forward model between
the searched reflectivity map and the beamformed image is
considered. The reconstruction of the reflectivity map then
amounts to an image “deconvolution” problem, where the
Point Spread Function (PSF) is spatially variant.

To our best knowledge, the principle of retrieving a re-
flectivity map from a beamformed image has never been
considered in NDT, while it has already raised interest in
medical imaging. In [24], [25], a regularized procedure is
applied to the beamformed image, but no PSF is consid-
ered. The deconvolution of beamformed medical images is
addressed in [26], where a shift-invariant PSF is calibrated
from experimental data. In [27], an axially variant PSF is
introduced by setting an analytical ad-hoc PSF model for each
axial position. The recent contribution [28] also tackles non-
stationary PSFs. It focuses on ultrafast ultrasound imaging,
where datasets are obtained using compressed beamforming
schemes. Unfortunately, it is hardly tranposable to the context
of FMC imaging modality in NDT, since it would rely on
repeated computations involving huge FMC datasets.

B. Contribution
The proposed method is specifically dedicated to ultrasonic

imaging in NDT. We interpret the TFM beamformed image
as the back-projection of the FMC data in the space domain.
The resulting forward model directly relates the reflectivity
map to the beamformed data through a spatially variant two-
dimensional (2D) convolution, which accounts for both the
time-domain impulse response of the transducers and the
geometrical structure of the acquisition process. However,
manipulating the set of exact PSFs at all points is not nu-
merically feasible in realistic scenarios. Akin to previous con-
tributions to shift-variant blur approximation in astronomical
imaging [29], [30], we propose to accurately describe the PSF
at all possible locations from the interpolation of a smaller
set of reference PSFs, which are computed in two steps. First,
synthetic ultrasonic data are generated considering pointwise
excitations at different locations in the medium reflectivity,
using the ultrasonic response model. Second, the TFM image
is computed for each synthetic dataset, thereby identifying the
PSF at each specific location.

A second specificity of our approach considers a forward
model where the measurement noise affecting the raw FMC
data is linearly transformed by the beamforming process. Such
a “beamformed noise component” is not white, and its corre-
lation structure is spatially varying. In the proposed inversion
method, we account for this specific noise model, using the
same methodology that was used to build the non-stationary
convolution model. Finally, our inversion strategy relies on
the minimization of a penalized least-squares criterion, where
the penalization terms favor the presence of sparse regions of
limited spatial extent.

The remainder of the paper is organized as follows. Sec-
tion II introduces the data acquisition procedure, and states
the corresponding model relating the FMC data to the un-
known reflectivity map. In Section III, the output of the TFM

procedure is related to the reflectivity image by a shift-variant
2D convolution model, for which a PSF interpolation model is
built. The non-stationarity of the resulting error term is studied
in Section IV, where an approximate whitening procedure is
built. Then, our inversion procedure is detailed in Section V.
The performance of the method in terms of image quality and
of computing time is evaluated in Section VI on synthetic data.
In Section VII, it is applied on NDT laboratory data acquired
from a stainless steel block containing a set of close side-
drilled holes. A discussion is finally given in Section VIII.

II. FULL MATRIX CAPTURE DATA MODEL

The Full Matrix Capture acquisition modality collects the
ultrasonic signals that are emitted independently by each
transducer and received by all of them. For an array probe
containing Nel transducers, N2

el A-scan signals ya,b(t) are
recorded, where a and b respectively index the emitter and
the receiver. An example of (partial) FMC data is shown in
Figure 1, corresponding to the inspection of the specimen that
will be described in the experimental Section VII. Typical A-
scans extracted from this data set are shown in Figure 2. We
can identify frontwall and backwall echoes, as well as the
signature of close side-drilled holes generating mixed echoes.

Each A-scan can be modeled as the superposition of time-
delayed echoes of the ultrasonic wave that propagates into
the medium, where each echo corresponds to the reflection
at each point of the medium, weighted by the corresponding
reflectivity value [31]. Akin to [19], we adopt the following
model for the FMC data:

y = Hto+ nt, (1)

where y ∈ RN2
elNt is a column vector gathering all discrete-

time A-scans (each of which has Nt samples), o ∈ RNxNz is
the column vector containing the reflectivity value at any point
of an Nx ×Nz discrete grid in the medium, and nt ∈ RN2

elNt

stands for noise and model errors. Matrix Ht ∈ RN2
elNt×NxNz

is the waveform matrix containing the pulse waveforms shifted
at the corresponding times of flight for all combinations of A-
scans and pixels.
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Fig. 1. Typical FMC data in NDT, obtained with a 128-element probe (partial).
Five blocks are represented, corresponding to the 128 collected signals after
emission by transducer 1, 32, 64, 96 and 128.
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Fig. 2. Some time-domain signals from the FMC data set in Figure 1. In
red, the estimated elementary waveform that will be used in the model (see
Section VII).

III. FORWARD SHIFT-VARIANT CONVOLUTION MODEL ON
THE BEAMFORMED IMAGE

In [19], an inversion procedure was proposed to estimate the
reflectivity map o from the data y based on model (1), allow-
ing high-resolution reconstructed images. However, dealing
with the huge FMC data y makes this method impractical in
many NDT situations, where relatively high-speed inspection
may be necessary. In this section, we reduce the data size,
by considering the image produced by the Total Focusing
Method [12] as the new input of our reconstruction method.

A. Total Focusing Method

The Total Focusing Method is the standard beamforming
procedure from FMC data. We consider the (x, z) coordinate
system (see for example Figure 3), where emitter a and
receiver b are respectively located at (xa, 0) and (xb, 0). In
the standard configuration where the probe is in contact with
the medium to inspect, the travel time from the emitter a to
a given location r = (x, z), augmented with the return travel
time to receiver b, reads:

τ(r, xa, xb) =

√
(x− xa)2 + z2 +

√
(x− xb)2 + z2

c
, (2)

where c is the ultrasonic velocity. The TFM image at pixel
r is then defined by adding all signals delayed by the corre-
sponding times of flight [12]:

OTFM(r) :=

Nel∑
a=1

Nel∑
b=1

ya,b
(
τ(r, xa, xb)

)
. (3)

In discrete form, this reads:

oTFM = By (4)

where oTFM ∈ RNxNz collects the values of the TFM image in
a column vector, and the binary matrix B ∈ {0; 1}NxNz×N2

elNt

will be called the beamforming operator: for each pixel of the
TFM reconstruction grid, the corresponding row in B selects
the indices corresponding to the appropriate (rounded) times
of flight in each A-scan according to Eq. (2).

B. Shift-variant convolution model

We consider the projection of the FMC data model into
the spatial domain using the TFM beamforming operator.
Combining Eqs. (1) and (4), we obtain:

oTFM = Hso+ ns, (5)

with Hs := BHt and ns := Bnt. Matrix Hs ∈ RNxNz×NxNz

is now a square operator converting the discretized reflectivity
map into the TFM image. Considering model (5) instead of (1)
relies on the idea that the loss of information between the
FMC data and the TFM image is limited, and that it can
be partly compensated by accurately modeling the resulting
PSF and the noise statistical properties. Each column of Hs

represents the PSF at a given pixel, that is, the TFM image
of a pointwise reflector at this location. Due to the acquisition
geometry, the shape of the PSF is different for each pixel
location, that is, the product Hso represents a shift-variant
2D convolution operation.

Figure 3 shows typical PSFs obtained at four different
locations in a 30 mm × 30 mm image. The time-domain
transducer pulse is a symmetric Gaussian wavelet [32], with
central frequency f0 = 5MHz and bandwidth ratio (the
frequency bandwidth over f0) at −3 dB equal to 0.4. The
sound velocity is 5000 m/s, such that the wavelength in the
material is λ = c/f0 = 1 mm. Synthetic data were generated
with a 64-element array probe, with an inter-element spacing
equal to λ/2 = 0.5 mm. The reflectivity image was composed
of four point sources located at (x, z) = (7.5, 7.5), (7.5, 22.5),
(22.5, 7.5), and (22.5, 22.5)mm, then yielding the four PSFs
at these pixels. As expected, the PSF is wider as the depth
increases, and its orientation depends on the pixel location.

C. PSF interpolation

Although the PSF can be computed at any point of the
image, computing one PSF per pixel would not be reasonable
nor really useful. In [28], a model accounting for an exact
PSF at each location of the reconstruction grid was proposed.
However, this model relies on the data propagation operator,
which would be too expensive computationally with large-
size FMC data. Here, we rather rely on the fact that the PSF
variations between close pixels are smooth (see the examples
in Figure 3). Consequently, an interpolation model can be used
to approximate the PSF shape at any location from a small
number of reference PSFs with controlled accuracy.

The interpolation model proposed in this paper is inspired
by previous works in Astrophysics [29], [30]. In the following,
we denote by rn the coordinate vector for the pixel indexed by
n in a vectorized image. We first define a set of reference PSFs,
say href

i , i ∈ [1, N ref], corresponding to the PSFs computed at
pixels ri. Moreover, we introduce weight maps wi to modulate
their contributions to PSF interpolation. That is, the PSF at any
pixel rn, say hrn , is approximated as follows:

hrn(r) ≈
N ref∑
i=1

wi(rn)h
ref
i (r). (6)
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Fig. 3. Variability of the PSF corresponding to model (5). (a): four PSFs computed at several pixels of the reconstruction grid (centered on the black squares).
(b)-(e): zooms on the corresponding zones.
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Fig. 4. PSF interpolation: illustration on the synthetic example in Figure 3. (a): exact PSF hrc (r) at the center rc of the image. (b): interpolation by
h̃rc (r) =

∑4
i=1 wi(rc)href

i (r). (c): interpolation error image hrc − h̃rc (r). (d): relative `2-norm interpolation error map ‖hrn − h̃rn‖2/ ‖hrn‖2 for all
pixels rn.

Here, we use the Inverse Distance Weighting (IDW)
model [29]:

wi(rj) = δi,j ∀ j ∈ [1, N ref], (7a)

wi(rn) =
‖rn − ri‖−12∑N ref

j=1 ‖rn − rj‖
−1
2

∀ n 6∈ [1, N ref], (7b)

where ‖·‖2 denotes the Euclidean norm.
An example is shown in Figure 4, using the four PSFs

introduced in Section III-B as references. Figures 4(a)-(c)
respectively show the exact PSF at the center of the image,
its interpolation and the corresponding error. The main lobes
are quite accurately modeled, and the relative error is ap-
proximately 30%. Finally, Figure 4(d) shows the relative PSF
interpolation error at each point of the image. It is less than
30% at the center part of the image (where the acoustic field
is homogeneous). Due to the inspection geometry, the PSFs at
the top and on the sides of the image suffer from distortions
that are more difficult to consider. These inconsistencies are
related to the TFM process. Indeed, the acoustic field is not
homogeneous on the sides of the grid corresponding to the
edges of the probe. The PSF spatial variations are also stronger
in the near surface area, therefore reducing the interpolation
accuracy. However, this has a limited impact since the top of
the image is strongly affected by the surface echo in contact
inspection, and is usually discarded in the image analysis.

Now, let O(r) denote the reflectivity value at pixel with
coordinates r. From model (6), the spatially-variant 2D con-

volution at a given pixel rn reads:

∑
r

hr(rn − r)O(r) ≈
∑
r

N ref∑
i=1

wi(r)h
ref
i (rn − r)O(r)

=

N ref∑
i=1

∑
r

href
i (rn − r)Owi(r)

=

N ref∑
i=1

href
i ∗Owi

 (rn), (8)

where Owi(r) := O(r)wi(r) and ∗ denotes the 2D convolu-
tion. The forward model (5) can then be evaluated by sum-
ming N ref 2D convolution products, applied to the reflectivity
images that have been weighted by the corresponding maps.

IV. COLORED, NON-STATIONARY, NOISE MODEL

The uncertainty term nt in the time-domain signal model (1)
stands for model errors and electronic noise affecting FMC
data. In NDT, it is reasonable to model them as centered
Gaussian white noise if the medium is homogeneous, i.e., if the
size of the material grain is small compared to the wavelength.
The covariance matrix of nt reads Cov(nt) = E[ntn

t
t] = σ2I,

with σ2 the noise power and I the identity matrix of size
NxNz . When dealing with the projected model in the image
domain proposed in Eq. (5), the noise term ns is filtered by
the beamforming operator B, therefore its covariance matrix
reads Γs = σ2BBt. From the definition of matrix B in
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Section III-A, one can show that the element (i, j) of matrix
Γs is:

γ(ri, rj) =σ
2 Card Sij ,with

Sij :=
{
(a, b) ∈ [1, Nel]

2 such that (9)

[τ(ri, xa, xb)Fs] = [τ(rj , xa, xb)Fs]
}
,

where Fs is the sampling frequency, τ(r, a, b) is the flight time
defined in Eq. (2), and notation [·] rounds to the closest integer.
Sij denotes the set of emitter-receiver pairs for which the
(rounded) travel times through pixels ri and rj are equal. The
noise process ns is clearly not white, but also non-stationary,
because the sets Sij depend on the acquisition geometry.

A classical approach to deal with colored noise considers
a “pre-whitening” procedure [33], [34] in order to retrieve a
simpler case, where standard techniques based on the white
noise assumption can be used. That is, we seek a whitening
operator represented by matrix Gs ∈ RNxNz×NxNz , so that
model (5) becomes:

GsoTFM = GsHso+ Gsns, (10)

where Gsns is a white noise process. Computing the ideal
whitening operator would require the computation of the
square root of Γ−1s , which is not easily usable in our case,
in particular because Γs is a huge matrix with no specific
structure.

In order to define an efficient whitening procedure that takes
into account the spatial variability of the noise, we propose
to build an approximate spatially-variant whitening filter, in
a similar way to the PSF interpolation procedure defined in
Section III-C. First, we build noise covariance functions that
are defined locally, at the same pixels as the reference PSFs.
To do so, we define the spatial covariance function γ̂ref

i , i ∈
[1, N ref] at the reference pixel ri, from the noise covariance
between pixel ri and any other pixel—defined in Eq. (9)—as:

γ̂ref
i (r) := 1

2 (γ(ri, ri + r) + γ(ri, ri − r)) for r 6= 0,
(11a)

γ̂ref
i (0) := γ(ri, ri) + η. (11b)

Eq. (11a) ensures that the covariance function is symmetric,
so that the power spectral density, say F γ̂ref

i (the Fourier
transform of γ̂ref

i ), is real-valued. Then, if F γ̂ref
i (ν) takes

negative values, the addition of η := −minν F γ̂ref
i (ν) in (11b)

ensures that F γ̂ref
i (ν) ≥ 0 for any spatial frequency ν. Finally,

we now define the local whitening filter at pixel ri, whose
transfer function is obtained by Wiener filtering:

Fgref
i (ν) :=

√
F γ̂ref

i (ν)

F γ̂ref
i (ν) + µ

, µ > 0, (12)

where gref
i denotes the corresponding impulse response. In

order to account for non-stationary noise, we finally propose
to replace the spatially-variant PSF model in Section III-C
by the whitening PSF model, where reference PSFs href

i are
substituted for

f ref
i := gref

i ∗ href
i . (13)

Figure 5 shows the reference whitening filters gref
i associated to

the four PSFs href
i introduced in Section III-C and represented

in Figure 3. Such whitening filters show similar characteristics
to those of the PSFs href

i (similar orientations, slow spatial
variations), although with a smaller spatial extension.
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Fig. 5. Impulse responses of the whitening filters gref
i at the same locations

as the four PSFs in Figure 3. The absolute value is displayed in logarithmic
scale for a better visibility.

V. INVERSION PROCEDURE

We now design an inversion method to retrieve the reflectiv-
ity map o from the TFM image oTFM. Such an inverse problem
is ill-posed since the TFM image lacks information (in par-
ticular at high frequencies), due to the limited bandwidth of
the ultrasonic transducers. We adopt a standard regularization
strategy, where the ultrasonic image is obtained by minimizing
the penalized least-squares criterion:

os = argmin
o

JLS(o) + φreg(o). (14)

The two terms in Eq. (14) are discussed hereafter.
From the whitening procedure described in Section IV and

with similar notations, the whitened forward model (10) can
be approximated by:

oWTFM = HWs o+ n
W
s , (15)

where:
• oWTFM is the vectorized form of the approximate

whitened TFM image OWTFM :=
∑N ref

i=1 g
ref
i ∗O

wi

TFM, where
Owi

TFM(r) := OTFM(r)wi(r);
• HWs o is the vectorized form of the approximate whitened

forward model operator applied to the reflectivity image,

that is,
N ref∑
i=1

f ref
i ∗Owi .

By construction, the noise term nWs can now be considered
as stationary and white, with covariance matrix equal to I.
Then, considering the standard least-squares criterion:

JLS(o) :=
∥∥oWTFM −HWs o

∥∥2
2

(16)
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is statistically founded.
In NDT, sparsity-enhancing regularization is often con-

sidered [19], [21], [22]. It is adapted to the detection of
few reflectors in homogeneous media, and it improves the
resolution by introducing high-frequency information in the
solution. Here, we also introduce spatial smoothness in the
solution in order to enhance the reconstruction of reflectors
with some spatial extension. Hence, we define the penalization
function φreg(o) as:

φreg(o) = µ1 ‖o‖1 + µ2 ‖Do‖22 , µ1, µ2 > 0, (17)

where Do is the image gradient. The `1-norm term favors
sparsity, and the second term enhances spatial smoothness. It
can be shown that for any µ1 ≥ µmax

1 with

µmax
1 := 2

∥∥(HWs )toWTFM

∥∥
∞ , (18)

the reconstructed image is identically zero, whatever the value
of µ2 [19]. In practice, we set µ1 to a fraction of µmax

1

and µ2 is set to a small positive value (see the experimental
Sections VI and VII).

The minimization of the cost function in Eq (14) resorts
to convex, non-smooth, optimization, which is performed in
this paper with the FISTA algorithm (Fast Iterative Shrinkage
Thresholding Algorithm) [35], which is a popular iterative
algorithm for such kind of problems. It requires the evaluation
of the forward HWs · and adjoint (HWs )t· operators at each
iteration. Following the interpolation procedures described
in Sections IV and V, both operations essentially resort to
computing N ref 2D convolution products. In this work, we
exploit the fact that the practical range of each PSF is
limited to a small area, so that evaluation of convolution
products in the space domain turns out to be more efficient
than computations based on two-dimensional Fast Fourier
Transform (FFT). The FISTA algorithm is implemented in
Matlab and the convolution products are computed using
CPU-based (C++) and GPU-based (CUDA) implementation.
Indeed, since the reconstructed images are very sparse, forward
operations are more efficiently computed with CPU, whereas
non-sparse adjoint operations advantageously benefit from
GPU implementation.

VI. RESULTS WITH SYNTHETIC DATA

In this section, the proposed method is evaluated on syn-
thetic data. Section VI-A first describes the simulation setup.
Then the relevance of the proposed model (PSF interpolation,
noise prewhitening) is studied in Subsection VI-B. Its impact
on the computation time is addressed in Subsection VI-C.

A. Simulation setting

We consider a synthetic array probe made of 64 elements
with inter-element distance equal to λ/2, with wavelength
λ = 1 mm. The medium is inspected in contact and
contains 25 pairs of close pointwise reflectors, separated
horizontally from dF = λ/2 = 0.5mm. Each pair of
reflectors is centered on a grid with coordinates (x, z) ∈
[5, 10, 15, 20, 25] mm × [5, 10, 15, 20, 25] mm. The pixel size
is 0.1 × 0.1 mm2. The synthetic reflectivity map equals 1

at the reflectors location and 0 elsewhere. The FMC data
are generated with model (1), where the transducer im-
pulse response is a symmetric Gaussian wavelet [32], with
central frequency 5MHz and bandwidth ratio equal to 0.4.
White Gaussian noise is added, with signal-to-noise ratio
SNR := 10 log10 ‖Hto‖22 /N2

elNtσ
2 = 10 dB.

We compare the following deconvolution methods of the
TFM image obtained by:
• using one single PSF computed at the center of the grid

and assuming white noise in the TFM data model (5),
named Deconv1;

• using four reference PSFs computed on a 3mm × 3mm
map (see Figure 3) and the PSF interpolation model
defined in Section III-C, still with the white noise as-
sumption for model (5), named Deconv4;

• using the former PSF interpolation model, but now with
the colored noise assumption and the whitened model
in (15), named DeconvW4 .

In all experiments in this section, the regularization parameter
µ1 is set to 0.8 ‖HtoTFM‖∞, where H denotes the appropriate
forward operator in each case, that is, using on single centered
PSF for Deconv1, using four reference PSFs for Deconv4 and
DeconvW4 . In the latter case, the whitened model is used and
the whitened TFM image oWTFM is considered instead of oTFM.
We also consider the inversion procedure proposed in [19]
using the full FMC data set y and based on model (1)—
the same penalization framework is used— which can be
viewed as the reference inverse solution, since there is no
information loss in the model. In that case, we similarly set
µ1 = 0.8 ‖Ht

ty‖∞. Parameter µ2 is always set to 0, since only
pointwise reflectors are considered in this section.

Optimization of criterion (14) is run with the FISTA pro-
cedure until the relative norm between successive iterates
becomes smaller than 0.1%.

B. Impact of PSF variability and colored noise models

The TFM image is shown in Figure 6, and the reconstructed
image lines at the five exact depths of the reflectors are shown
in Figure 7 (for better visibility, results are split in two panels).

All methods improve the resolution of the TFM image
and are able to separate some of the pairs of reflectors.
Deconv1 achieves good results at the center of the imaging
area, where the (invariant) PSF model is the most accurate, but
misses detections on both edges and at the top of the image.
Including the PSF interpolation model with Deconv4 improves
the detection and separation of the reflectors, in particular
at low depth where the PSF varies more strongly, but some
detections are still missed at the edges of the scene. Finally,
the inversion that includes both the PSF interpolation and the
whitening procedure is able to correctly reconstruct all the
reflectors pairs.

This experiment was repeated ten times, with different
noise realizations with SNR = 10 dB. The following metrics
were computed, where quantities were averaged over the data
realizations and over the 25 pairs of reflectors:
• The position error measures the distance between the

detected and the true reflectors. We consider that a
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Fig. 6. TFM image for a synthetic scene composed of 25 pairs of close
reflectors.

pointwise reflector is detected if a local maximum in
the reflectivity map is distant from the true reflector by
less than dF/4, that is, no farther than one of the pixels
neighboring the true location. If no reflector is detected,
a maximum distance is set to dF/2.

• The Peak to Center Intensity Difference (PCID) [18]
computes the difference in amplitude between the maxi-
mum of the estimated reflectivity due to the two reflectors
and the minimum in the area between them, in dB. If the
two reflectors are not separated, then the PCID is set
to 0. Since the image is sparse, an infinite PCID may be
reached. In this case, the value is set to −50 dB.

• The resolution capability indicator measures the ratio
of resolved pairs of reflectors, considering that the pair is
resolved if the corresponding PCID is below −6 dB [18].

• The quadratic error corresponds to the `2-norm recon-
struction error, expressed as a percentage of the `2 norm
of the true reflectivity map.

• Finally, the amplitude of the estimated reflectivity at the
reflectors locations is computed, as a percentage of the
true reflectivity value.

Results are gathered in Figure 8, confirming the behavior
observed in Figure 7. In general, all metrics are improved
by deconvolution methods compared to the TFM–except for
amplitude estimation, because regularization introduces some
bias in the estimated reflectivity. Deconv1, however, performs
quite poorly, since less than one half of the pairs of reflectors
are resolved, with many positioning errors. Including the
PSF variability strongly improve all criteria, which are still
improved by accounting for the colored noise model. In par-
ticular, the resolving capability is 100%, with less positioning
errors and better amplitude recovery than with Deconv4. This
method performs almost as well as the inversion on the FMC
data–although it is much more efficient computationally, as
will be shown in the next subsection.
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Fig. 7. Reconstruction results on synthetic data. Intensity lines (in dB) of
reflectivity profiles at the depths of the five reflectors: TFM image (red line),
Deconv1 (blue stem), Deconv4 (green stem), DeconvW4 (magenta stem), and
FMC inversion (black stem). The true locations are represented by the cyan
crosses.
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Fig. 8. Quantitative results with different metrics on synthetic data. TFM
image (red), Deconv1 (blue), Deconv4 (green), DeconvW4 (magenta), and
FMC inversion (black).
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Fig. 9. Computation times for Deconv1 (blue), Deconv4 (green), DeconvW4
(magenta), and FMC inversion (black). Top: as a function of the number of
transducers, for a 2512-pixel image. Bottom: as a function of the image size,
with 64 transducers. Both ordinate axes are in logarithmic scale.

C. Computation times

Figure 9 shows the computation times for the different
methods, as a function of the number of transducers and of
the image size. Note that the TFM image, the reference PSFs,
whitening filters and interpolating weights can be computed
prior to optimization. Therefore, the corresponding computa-
tion time (typically a few seconds) is not considered here. All
computation times have been evaluated on a laptop computer
with 16.0 GB RAM, equipped with an Intel Core i7-7820 HK
@ 2.90 GHz quad-core processor and a NVIDIA GeForce
GTX 1080 graphics card.

As expected, the computational complexity of the different
deconvolution methods does not depend on the number of
transducers Nel, since all computations have been moved to the
image space. This is obviously not the case for FMC inversion,
where the data size is proportional to N2

el. For a 251 × 251-
pixel image, the computation time for DeconvW4 is always
about 2 seconds, while the time ratio between DeconvW4 and
FMC inversion varies from 3 (with 32 transducers) to 400
(with 256 transducers).

For all methods, the computation time increases similarly
as a function of the image size. As expected, Deconv1 is
the fastest one. With 64 transducers, accounting for the PSF
interpolation and the whitening procedure increases the com-
putation time by a factor of 1.4 for the 101×101-pixel image
(0.15 s vs. 0.23 s), and by a factor of 3.7 for the biggest,
1-million-pixel, one (32.2 s vs. 119.2 s). Finally, with 64
transducers, DeconvW4 is approximately 30 times faster than
FMC inversion, whatever the image size.

VII. RESULTS WITH EXPERIMENTAL DATA

The proposed method is now evaluated for the inspection of
a stainless steel sample from Electric Power Research Institute
(EPRI, Charlotte, North Carolina, USA). The experimental
sample represented in Figure 10 is made of 304 stainless steel
(sound speed c = 5650 m/s) and contains 41 close side-drilled

Fig. 10. Stainless steel block containing a set of 41 close aligned SDHs (∅
0.3 mm), with decreasing distance from left to right.
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Fig. 11. TFM image reconstruction of the stainless steel block shown
in Figure 10. Transducer locations are marked with green stars, and the
reconstruction grid for inversion methods is framed in red.

holes (SDHs) with diameter 0.3mm, approximately aligned
around depth zSDH = 51.6 mm. The center-to-center distance
between SDHs regularly decreases from 2.55 mm (left) to
0.4mm (right).

FMC data have been acquired using the Pioneer platform
from TPAC (West Chester, Ohio, USA). The probe is a
128-element probe designed by Imasonic (Voray-sur-l’Ognon,
France), with central frequency equal to 3 MHz, and with
an inter-element spacing equal to 0.8 mm. At this frequency,
the wavelength is λ = 1.88 mm. The Rayleigh criterion, mea-
suring the resolution limit of standard ultrasonic imaging
methods [7], [16]–[18], is defined as: R := 0.61λ/ sin θ, with
tan θ = D/(2zSDH) and D the aperture of the probe. In this
configuration setup, R = 1.64 mm, which corresponds to the
distance between the SDHs located at x ≈ 56 mm. The TFM
image of the full sample is shown in Figure 11, confirming
this resolution limit.

Image reconstruction methods are applied on the area
framed in red in Figure 11. The pixel size is 0.05× 0.05 mm2,
so that the image dimension is Nx × Nz = 1373 × 173
pixels. The elementary waveform used in model (1) and in the
generation of the reference PSFs is a Gaussian wavelet [32],
whose parameters have been estimated by fitting the backwall
echoes in the FMC data. It is represented in red on the A-
scan signals in Figure 2. Due to the image geometry, we use
three horizontally-aligned reference PSFs, that are shown in
Figure 12 (a). Their size is 3λ×3λ, which corresponds to 2D
convolution kernels of 113× 113 pixels.

The following methods are compared, whose names follow
the denomination introduced in Section VI-A: TFM, Deconv1,
Deconv3, and DeconvW3 . Their respective computation times
are around 0.2, 9, 24 and 20 seconds. For all methods, the
regularization parameters are set to µ1 = 1.0 ‖HtoTFM‖∞ and
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Fig. 12. Ultrasonic imaging of the stainless steel piece showed in Figure 10.
(a): the three reference PSFs used in the interpolation method (the black
frames show the considered spatial extension of the kernels). (b): TFM re-
construction. (c): reconstruction by Deconv1. (d): reconstruction by Deconv3.
(e): reconstruction by DeconvW3 .

Fig. 13. Intensity lines (in dB) of the reconstructed reflectivity images in
Figure 12, integrated in depth for z = zSDH ± 0.6 mm. TFM image (red,
Deconv1 (blue), Deconv3 (green), and DeconvW3 (magenta). Top: full x range.
Bottom: zoom on the right side with the closest SDHs.

µ2 = 10−4 ‖HtoTFM‖2, with the forward model operator and
the data adapted to the method (see the end of Section VI-A
for more details).

The reconstructed images are displayed in Figure 12. For
more precise analysis, intensity lines along the x direction
are represented in Figure 13. For each x, the intensity is
averaged over zSDH ± 0.6 mm. The TFM image shows many
artifacts and, in particular, the right side of the image is hardly
interpretable: the closest resolved SDHs (with PCID below
−6 dB) are the 22nd and 23rd ones, located around x ≈ 65mm
and distant from 1.4mm. The image obtained by Deconv1

achieves satisfactory detection and separation of the most
distant SDHs, up to x ≈ 60mm. Then, some SDHs are missed.
The last resolved SDH pair is located around x ≈ 73mm
(29th and 30th ones, distant from 1.0mm). Better separation
is achieved by considering the shift-variant PSF interpolation
model, in particular for x ∈ [65, 80]mm. For Deconv3,

the last resolved SDHs pair is located around x ≈ 76mm
(32nd and 33rd, distant from 0.7mm). Both Deconv1 and
Deconv3, however, show many artifacts below most flaws—
see in particular for x ≤ 45mm and for x ∈ [55, 65]mm
in Figure 12. Considering both the PSF interpolation model
and the whitening procedure, DeconvW3 strongly reduces these
artifacts, which are only visible at the two extremities of the
reconstructed image, and still improves the resolution. The last
resolved SDH with PCID below −6 dB is also the 33rd one, but
the PCID is around −5.5 dB between the 33rd and 34th SDHs,
and between the 34rd and 35th ones. The closest resolved flaws
with the proposed method are separated by 0.7 mm center to
center (and by 0.4 mm edge to edge), which is more than four
times smaller than the Rayleigh criterion.

VIII. CONCLUSION

Our contribution interprets the TFM image as a linear pro-
jection of the FMC data in the space domain. More precisely,
it relies on a slowly varying, non-stationary blur model to
mathematically describe the relation between the reflectivity
map of the media and the TFM image. The spatially varying
point spread function depends on both the geometrical and
the acoustical configurations of the setup. We proposed a
computationally efficient interpolation method to account for
these spatial variations. We also proposed a whitening scheme
to account for the fact that the TFM image contains spatially
correlated, non-stationary noise. The latter is also based on
an interpolation model, and its overhead computing cost is
negligible.

The resulting non-stationary deconvolution method also
relies on a sparsity assumption on the reflectivity map. In
the synthetic data case, it produced results of similar quality
as the reference inversion of FMC data. In the experimental
data case, the method was able to separate close SDHs with
a diameter six times smaller than the wavelength and distant
from a quarter of the Rayleigh criterion.

In our interpolation model, offline computations (which
are necessary to determine the reference PSFs, the whiten-
ing filters and the associated weights, for instance) can be
performed in advance as far as the geometrical and acoustical
configuration is known, which is often the case in industrial
contexts. Under our current implementation, the proposed
method cannot perform real time reconstructions. However,
for a standard configuration of 64 transducers and 251× 251
pixels, the online computation time is around one second using
a rather standard laptop computer, which is still reasonable in
some practical applications.

In practice, for more computational efficiency, we could
imagine the following inspection strategy: first, the TFM im-
age is computed. Second, if something suspicious is detected
on the TFM image, the proposed method is applied to increase
the quality of the reconstructed image. Similarly to what
was performed in the experimental section of the paper, the
reconstruction procedure could then be run only on parts of
the inspected piece where high-resolution imaging is required.

Finally, let us mention that the current model assumes the
shape invariance of the ultrasonic pulse during the propagation.
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Significant distortions could occur in attenuative and dispersive
materials [36]–[38]. Our ongoing research consists in incor-
porating such distortions in our spatially-varying PSF model,
in order to adapt our non-stationary deconvolution method to
such complex materials.
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