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Introduction

A crucial challenge in multiclass learning is to provide algorithms designed to handle temporal data. In the present paper, we tackle the multiclass classification problem where the features are time event sequences. More precisely, we assume that the data come from a mixture of Hawkes processes. For instance, in neuroscience, we can consider event sequences as recorded spike trains on several neurons from different populations (healthy or sick subjects, for instance). The goal is then to predict the status (healthy or not) of a new subject from the associated recording, see e.g. [START_REF] Lambert | Reconstructing the functional connectivity of multiple spike trains using Hawkes models[END_REF].

Hawkes processes, originally introduced in [START_REF] Hawkes | Spectra of some self-exciting and mutually exciting point processes[END_REF], are proposed to model tricky event sequences where the past events influence the future events. Hawkes processes arise in a wide variety of fields ranging from neuroscience to finance. In mathematical finance, see e.g. [START_REF] Bacry | Hawkes processes in finance[END_REF] for a complete review; in the social network literature, see e.g. [START_REF] Zhou | Learning triggering kernels for multi-dimensional hawkes processes[END_REF] and [START_REF] Lukasik | Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter[END_REF]. In neuroscience, Hawkes processes have a statistical interest for modeling neuron spike occurrences, see e.g. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF], [START_REF] Ditlevsen | Multi-class oscillating systems of interacting neurons[END_REF], [START_REF] Foschi | Measuring discrepancies between poisson and exponential hawkes processes[END_REF].

Seminal work for Hawkes process properties is [START_REF] Brémaud | Stability of nonlinear hawkes processes[END_REF]. Furthermore, there are numerous statistical methods of inference for Hawkes processes. For instance, one can cite [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF], [START_REF] Bacry | First-and second-order statistics characterization of hawkes processes and non-parametric estimation[END_REF] and more recently [START_REF] Bacry | Sparse and low-rank multivariate hawkes processes[END_REF], or in a Bayesian framework, [START_REF] Rasmussen | Bayesian inference for hawkes processes[END_REF]. Besides, Favetto (2019) focuses on parameter estimation for Hawkes processes from repeated observations in the context of electricity market modeling.

However, the aim of the paper is a multiclass classification task and not the parameter inference. To the best of our knowledge, except the paper of [START_REF] Lukasik | Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter[END_REF], there is no work which deals with supervised classification for Hawkes processes. In [START_REF] Lukasik | Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter[END_REF], the authors propose to use multivariate Hawkes processes for classifying sequences of temporal textual data, with an application to rumours coming from Twitter datasets. They highlight that a model based on Hawkes processes is a competitive approach which takes into account the temporal dynamic of the data. But, they do not provide any theoretical properties.

In this work, we observe repeatedly jump times coming from the mixture of Hawkes processes, on a fixed time interval [0, T ]. The classes are characterized by different triggering kernels. We first formally define the model and provide the explicit form of the Bayes classifier in Section 2. The expression of the Bayes classifier suggests to consider a plug-in approach to estimate the optimal predictor. Section 3 is devoted to the definition of plug-in type classifier and the study of its properties. We show how the misclassification error, for any plug-in predictor is linked to the estimation error of the process parameters. We propose in Section 4 a two-step procedure to build a plug-in type classifier. A first step is dedicated to the estimation of the weights of the mixture. In a second step the parameters of the process are estimated through an empirical risk minimization procedure by using similar ideas as in [START_REF] Denis | Consistent procedures for multiclass classification of discrete diffusion paths[END_REF]. The resulting algorithm benefits from the attractive properties of the empirical risk minimizer: it is computationally efficient and offers good theoretical properties. In particular, under mild assumptions, we show that the proposed procedure performs as well as the Bayes classifier. Section 5 illustrates the performance and the robustness of the method in the case where the triggering kernels are assumed to belong to the parametric exponential family. Finally, a discussion which highlights some directions for future works is proposed in Section 6. The proofs are relegated at the end of the paper.

General framework

Section 2.1 introduces the considered model, some notation and explains the objective of the paper. In Section 2.2, we provide an explicit formula of the optimal predictor.

Statistical setting

Let Y a random variable which takes its values in Y = {1, . . . , K}, with K ≥ 2, representing the label of the observations. The distribution of Y is denoted by p * = (p * k ) k∈Y and is unknown. We assume that the observations come from a mixture N of simple linear Hawkes processes observed on the time interval [0, T ]. Precisely, conditionally on Y , N is a simple linear Hawkes process. The number of points that lie in [0, t] is denoted by N t and the corresponding counting process is (N t ) 0≤t≤T . The jump times of N are denoted T 1 , . . . , T N T . The filtration (or history) at time t -is denoted F t -and contains all the necessary information for generating the next point of N .

Conditional intensity

The intensity of the process N at time t ≥ 0, with respect to the filtration

(F t ) t≥0 , is defined as λ * Y (t) := λ (µ * ,h * Y ) (t) := µ * + T i <t h * Y (t -T i ), (1) 
where the first term µ * > 0 is the baseline, or exogenous intensity, and the second term is a weighted sum over past events. For each class k ∈ Y, the function h * k is the triggering kernel which is nonnegative and supported on R + . Besides, both parameters µ * and h * = (h * 1 , . . . , h * K ) are assumed to be unknown. Note that the baseline intensity is assumed to be common to all classes. This assumption is notwithstanding consistent according to the neuronal experimental setting described in Section 1. Indeed, if the spike trains are recorded on the same type of neurons (e.g. neurons which play the same role), it seems relevant to assume that the exogenous intensity is homogeneous between the classes.

Objective Given a sequence T T = {T 1 , . . . , T N T } of observed jump times of N over the fixed interval [0, T ], the goal is then to build a predictor, namely a classifier g, a measurable function such that g(T T ) is a prediction of the associated label Y . The performance of a classifier g is then measured through its misclassification risk R(g) := P (g(T T ) = Y ) .

In the following, we denote by G the set of classifiers.

Bayes rule

The unknown minimizer of R over G is the so-called Bayes classifier, denoted by g * , and is characterized by

g * (T T ) ∈ argmax k∈Y π * k (T T ), with π * k (T T ) = P (Y = k|T T ).
The following proposition gives the expression of the conditional probabilities π * k and then provides a closed form of the Bayes classifier.

Proposition 2.1. Let T ≥ 0. For each k ∈ Y, we define

F * k (T T ) = F (µ * ,h * k ) (T T ) := - T 0 λ (µ * ,h * k ) (s) ds + T i ∈T T log(λ (µ * ,h * k ) (T i )). (2) 
Therefore, the sequence of conditional probabilities satisfies

π * k (T T ) = φ p * k (F * (T T )) P -a.s.,
where

F * = (F * 1 , . . . , F * K ) and φ p * k : (x 1 , . . . , x K ) → p * k e x k K j=1 p * j e x j
are the softmax functions.

Note that conditionally on the event Y = k, F * k (T T ) is the likelihood function of the sequence T T . Proposition 2.1 highlights the dependencies of the optimal Bayes classifier w.r.t. the unknown parameters. In the following, for a given classifier g ∈ G, we define its excess risk as

E (g) := R(g) -R(g * ).

Plug-in type classifier

We first introduce assumptions related to the model in Section 3.1 and then define a set of classifiers which relies on the plug-in principle in Section 3.2. Finally, the main properties of the plug-in classifier are provided in Section 3.3.

Assumptions

We first make the following assumptions on the triggering kernels.

Assumption 3.1 (Stability condition). For each k ∈ Y, h k : R + → R + is bounded and satisfies h k (t) dt < 1.

Assumption 3.2. There exist 0 < µ 0 < µ 1 such that µ 0 ≤ µ * ≤ µ 1 .

Assumption 3.3. There exists a positive constant p 0 such that min(p * ) > p 0 .

Assumption 3.1 guarantees that N T admits finite exponential moments, that is, there exists a > 0 such that E[exp(a|N T |)] < ∞, see for instance [START_REF] Roueff | Locally stationary Hawkes processes[END_REF]. In particular the exponential and power-law kernels satisfy this assumption (with additional assumptions on the corresponding parameters). Assumption 3.2 is a technical assumption and Assumption 3.3 ensures that all the components of the mixture occur with non-zero probability.

Let us denote the following subset of probability weights

P p 0 := {p ∈ R K + : K i=1 p i = 1, min(p) > p 0 }.

Definitions

In this section, we present the construction of the plug-in type classifiers. First we introduce a set H of nonnegative functions supported on R + . For a K-tuple h = (h 1 , . . . , h K ) in H K , we associate p a vector of probability weights and a baseline intensity µ > 0.

For each k ∈ Y, we then define

λ k (t) = λ (µ,h k ) (t) = µ + T i <t h k (t -T i ), t ∈ [0, T ].
Hence, the random functions (λ k ) k=1,...,K are approximations of the conditional intensities λ * k defined by (1). Besides, similarly with the definition (2) of F * k (T T ), we define

F k (T T ) = F (µ,h k ) (T T ) = - T 0 λ k (s) ds + T i ∈T T log(λ k (T i )).
We also consider

π k p,µ,h (.) := φ p k (F µ,h (.)), (3) 
with the φ p k 's defined in the same manner of the φ p * k 's given in Proposition 2.1. Finally, we denote π p,µ,h (.) = π k p,µ,h (.) k∈Y and π := π p,µ,h .

A plug-in type classifier g π is naturally defined as

g π (T T ) = argmax k∈Y π k (T T ). (4) 

Properties

In this section, we establish important properties of plug-in type classifiers. For a vector of functions h ∈ H K , let us denote the supremum norm

h ∞,T = max k∈Y sup t∈[0,T ] |h k (t)|.
We introduce for a positive constant A the following set

H K A := h ∈ H K s.t. sup h∈H K h ∞,T ≤ A
and the set of probabilities

Π = π p,µ,h : p ∈ P p 0 , µ ∈ (µ 0 , µ 1 ), h ∈ H K A . (5) 
The first result is a key step to obtain the consistency of the classification procedure presented in Section 4.

Proposition 3.4. Let us consider π and π two vectors functions belonging to the set Π defined by (5) with respective parameters (p, µ, h), and (p , µ , h ). Grant Assumptions 3.1, 3.2, 3.3, the following holds

E π -π 1 ≤ C µ -µ + h -h ∞,T + h -h 2 ∞,T + p -p 1 ,
where C is a constant depending on K, T , h * , µ 0 , µ 1 , p 0 and A.

Proposition 3.4 provides a bound on L 1 -distance between two elements of the set Π. It shows that this distance is bounded by the distance between the corresponding parameters of the associated models. From this result, for a plug-in type classifier g, we can easily deduce a bound of its excess risk.

Corollary 3.5. For all π = π p,µ,h ∈ Π, we have that

E (g π ) ≤ C |µ -µ * | + h -h * ∞,T + h -h * 2 ∞,T + p -p * 1 ,
where C is a constant depending on K, T , h * , µ 0 , µ 1 , p 0 and A.

An important consequence of this result is that a plug-in type classifier which relies on consistent estimators of p * , µ * and h * is then consistent w.r.t. misclassification risk.

Classification procedure

This section is devoted to the presentation and the study of the proposed data-driven procedure that mimics the Bayes classifier. Our estimation method is then presented in Section 4.1 and theoretical guarantees of the procedure are derived in Section 4.2.

Estimation strategy

Based on the results of Section 3, we propose an hybrid classification procedure which involves both plug-in and empirical risk minimization (E.R.M.) principles. To this end, we introduce a learning sample D n = {(T i T , Y i ), i = 1, . . . , n}, which consists of n independent copies of (T T , Y ). We propose a two-step procedure. In a first step, we estimate the vector p * by its empirical counterpart p. The second step relies on the empirical risk minimization over a suitable set. In view of the results obtained in Section 3.3, we introduce the following approximation of the set Π:

Π = π p,µ,h : p ∈ P p 0 , µ ∈ (µ 0 , µ 1 ), h ∈ H K A (6)
and the corresponding set of classifiers:

G Π = {g π : π ∈ Π}.
Since g * is the minimizer of the misclassification risk, a natural estimator of g * would be the empirical risk minimizer over the family

G Π ĝ = argmin g∈ Π 1 n n i=1 1 {g(T i T ) =Y i } .
Nevertheless, as a solution of non convex minimization problem, it is known that this estimator is computationally intractable.

Convexification To avoid computational issues, it is then natural to replace the classical 0-1 loss with a convex surrogate (see [START_REF] Zhang | Statistical behavior and consistency of classification methods based on convex risk minimization[END_REF]). Let us denote the scores functions set:

F := {f = (f 1 , . . . , f K ) : • → R K }.
As convex surrogate, we consider the square loss and then define for a score function f , the following risk measure

R(f ) := E K k=1 Z k -f k (T T ) 2 , with Z k = 21 {Y =k} -1.
The choice of the square loss as a convex surrogate is motivated by the fact that, if we define

g(•) = argmax k∈Y f k (•), then E [R(g) -R(g * )] ≤ 1 √ 2 E [R(f ) -R(f * )] 1/2 , ( 7 
) with f * k (T T ) = 2π * k (T T ) -1 which satisfies f * ∈ argmin f ∈F R(f ).
Hence, consistent procedure w.r.t. to the L 2 -risk involves consistent classification procedure w.r.t. the misclassification risk.

Resulting estimator As suggested by the form of the optimal score function f * , we then consider the set of scores functions

F = {2π -1 : π ∈ Π},
and then consider the empirical risk minimizer over F:

f ∈ argmin f ∈ F R(f ), (8) 
with

R(f ) := 1 n n i=1 K k=1 Z i k -f (T i T ) 2 . (9)
Finally, the resulting classifier g is the plug-in type classifier associated to f defined as

g = argmax k∈Y f k . ( 10 
)
Note that, in order to reduce the computational burden, we have chosen to not introduce the estimation of the probability weights p * in the minimization problem given in Equation ( 8). Nevertheless it remains a possible strategy.

In the next section, we establish rates of convergence of our classification procedure.

Rates of convergence

The study of the statistical performance of g defined by (10) relies on the following assumption.

Assumption 4.1. Let ε > 0, we assume that there exists a ε-net

H ε ⊂ H K A , w.r.t. sup-norm • ∞,T such that log(C ε ) ≤ C log ε -d ,
where C ε is the number of elements of H ε , d ≥ 1 and C is a positive constant which does not depend on ε.

Theorem 4.2. Grant Assumptions 3.1, 3.2 and 3.3 and Assumption 4.1. If h * ∈ H K A , the following holds

E [R( g) -R(g * )] ≤ C d log(n) n 1/4
, where C > 0 depends on K, T , h * , µ 0 , µ 1 , p 0 and A.

Theorem 4.2 establishes that, when n goes to infinity, the proposed classification procedure is consistent provided that h * belongs to H K A . If h * does not belong to H K A , a classical additional bias term appears.

We also have to note that Theorem 4.2 applies for a broad class of functions H. In particular, Assumption 4.1 covers the case where H is a bounded linear subspace of functions. Let (ψ j ) j≥1 an orthonormal basis such that the basis functions are uniformly bounded and then we consider for θ 0 > 0

H =    t →   d j=1 θ j ψ j (t)   + : θ 2 ≤ θ 0    ,
as Laguerre basis for example. Another important example is the parametric exponential family

H = {t → αβ exp(-βt), 0 < α < 1, 0 < β ≤ β 0 }, with β 0 > 0.
Finally, it is possible to obtain better rate of convergence when the estimation of the probability weights and the estimation of (µ * , h * ) are performed on two different independent datasets, this is the purpose of the next paragraph.

Alternative strategy Hereafter, we consider an alternative strategy. First, we split the dataset D n into two independent samples D 1 n and D 2 n . Fore sake of simplicity, we assume that n is even and that the two datasets D 1 n and D 2 n have same size n/2. Based on D 1 n , we estimate p * , and based on D 2 n we estimate f * . The resulting classifier g satisfies the following theorem.

Theorem 4.3. Grant Assumptions 3.1, 3.2, 3.3 and 4.1. If h * ∈ H K A , we have

E [R( g) -R(g * )] ≤ C d log(n) n 1/2
, with C > 0 a numerical constant.

Therefore, the classifier g achieves parametric rate of convergence up to a logarithmic term. Note that from practical point of view, the splitting of the sample does not affect the performance of the classifier ĝ. Therefore, we do not consider this strategy in the numerical section.

Comments

In this section we make comments about the proposed procedure.

Parameter µ Contrary to the parameter p 0 , the estimation procedure requires the knowledge of µ 0 and µ 1 . This assumption is important to obtain the consistency property. However, we shall show in Section 5 that the procedure has good performance if we only assume that µ * > 0.

Other approach Another strategy is possible motivated by Proposition 3.4. For example, assuming that the triggering kernels belong to the exponential kernel family, then classical estimators of the parameters can be used. Therefore, with these estimators we can compute a plug-in type classifier. For this task, the methods implemented in the tick library as Maximum Likelihood or Least-Squares estimator can be used. In the next section we illustrate this strategy with the Least-Squares estimator.

Numerical experiments

In this section, we present numerical experiments to illustrate the performance of the procedure described in Section 4.1 and refer to the resulting algorithm as ERM. We focus on the case where the set H is the parametric exponential family. Then our method is compared to the plug-in strategy presented in Section 4.3 which is referred as PG.

The details of the implementation of the ERM estimator are given in Section 5.1. Then, we describe the experimental setting in Section 5.2 and discuss the obtained results in Section 5.3. The source code we used to perform the experiments can be found at https://github.com/charlottedion/ HawkesClassification.

Implementation

We present the implementation of our classification procedure in the case where the set of kernel functions H is the parametric exponential family defined as

H = {t → αβ exp(-βt), 0 < α < 1, β > 0}.
We define for α, β ∈ R the function

h α,β (t) = expit(α) exp(β) exp(-exp(β)t),
where expit denotes the inverse-logit function. Then, we can write H as H = {t → h α,β (t), α, β ∈ R}. For α and β in R K , we denote by h α,β the corresponding function of H K . Therefore the set Π defined in Equation ( 6) can be rewrite as

Π = {π p,exp(µ),h α,β , µ ∈ R, α, β ∈ R K }.
Hence the minimization step is performed w.r.t. µ, α, and β. Note that the formulation of the above set Π shows that the optimization part of our classification procedure does not require any constraint on the parameters. The minimization is performed with the Python function minimize with argument method BFGS. Algorithm 1 sums up the main steps of the procedure. 

Experimental setting

We consider K = 2 or K = 3 classes in the following. We propose two different models for the experiments that we refer to as Model 1 and Model 2. For Model 1, we consider the case where the triggering kernel belongs to the parametric exponential family. For Model 2, we investigate a more general form for the kernels (see below). We set the baseline intensity µ = 1. We use the library tick to generate the sequence of jump times of the Hawkes processes.

Synthetic data

The label Y is drawn from a uniform distribution on {1, . . . , K}. Conditionally on Y , we simulate the jump times according to Model 1 and Model 2 which are defined as follows:

Model 1 exponential kernels h(t) = αβ exp (-βt), with (α, β) = (0.7, 1.3) for class Y = 1, (0.2, 3) for class Y = 2, and if K = 3, (0.5, 5) for class Y = 3.

Model 2 interpolation function kernels with parameters (a, b, c):

h(t) =      b a t, t ∈ [0, a], b-c a-1 t + (b -b-c a-1 a), t ∈]a, 1[ 0, t ≥ 1
with for (a, b, c) = (0.2, 0.8, 0.2) for class Y = 1, (0.1, 0.4, 0.2) for Y = 2, and if K = 3, (0.8, 0.3, 0.7) for class Y = 3.

As an illustration, Figure 1 We also investigate the role of parameter T on the difficulty of classification problem. To this end, Figure 2 displays the error rate of the Bayes classifier as a function of T for Model 1 and K = 3. This error quickly decreases from 0.3 to 0.05 as T goes from 10 to 40. In the following, we shall give results for T = 20. The obtained results are presented in Table 1 for n = 100 and Table 2 for n = 1000. Note that, for ERM algorithm, the following initial guess for the optimization step is considered: µ = 0.5, α = 1 and β = 1 for all classes. Classifier: Bayes ERM PG K = 2, model1 0.07 (0.01) 0.08 (0.01) 0.08 (0.01) K = 2, model 2 0.27 (0.01) 0.28 (0.01) 0.29 (0.01) K = 3, model 1 0.17 (0.01) 0.17 (0.01) 0.30 (0.01) K = 3, model 2 0.39 (0.01) 0.43 (0.01) 0.46 (0.01)

Results

From the obtained results, we make several comments. For K = 2 both ERM and PG achieve similar performance as the Bayes classifier for any model and n ∈ {100, 1000}. We now focus on the case K = 3 which is more interesting. First for Model 1, the ERM error rate is almost equal to the Bayes error for n ∈ {100, 1000}, while PG has worst performance. Interestingly, in this case it seems that our procedure benefits from the fact that the model is well-specified. Second, for Model 2, we can see the influence of parameter n. Indeed, when n increases the error rate of ERM is closer to the error rate of the Bayes classifier. Besides, in this case, ERM outperforms PG.

Let us notice that our procedure also outputs estimations of the parameters (µ, α, β). Although the estimation task is not our main purpose, it is interesting to evaluate the accuracy of the obtained estimators. Figure 3 displays a visual description of the obtained estimates for n ∈ {100, 1000} for Model 1 with observations coming from the class Y = 1. Again, we can see the impact of the parameter n. For n = 1000, the estimation of the three parameters are clearly better than for n = 100. Furthermore, for n = 1000, the resulting estimates are quite good.

Discussion

We investigate the multiclass classification setting where the features come from a mixture of simple linear Hawkes processes. In this framework, we derive the optimal predictor and provide a classification procedure tailored to this problem. The resulting algorithm relies on both plug-in and empirical risk minimization principles. We establish theoretical guarantees and illustrate the good performance of the method through a numerical study.

In future works, we plan to extend our classification procedure to the case where the observations come from a mixture of multidimensional Hawkes processes. Indeed, in neuroscience, the modeling of multivariate neuron spike data is used for taking into account potential interactions between neurons (see e.g. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF], [START_REF] Donnet | Nonparametric bayesian estimation for multivariate hawkes processes[END_REF]). Hence, it should capture the interactions between neurons. In this framework, a challenge is to take into account the high dimension of the space of parameters. For example, by considering exponential kernels, plug-in type classifier should benefit from algorithm as ADM4 which is adapted for high dimensional setting [START_REF] Bacry | Sparse and low-rank multivariate hawkes processes[END_REF].

Another possible development is the case of nonlinear Hawkes process. A few works focus on this subject, see e.g. [START_REF] Brémaud | Stability of nonlinear hawkes processes[END_REF], [START_REF] Lemonnier | Nonparametric markovian learning of triggering kernels for mutually exciting and mutually inhibiting multivariate hawkes processes[END_REF], [START_REF] Costa | Renewal in hawkes processes with selfexcitation and inhibition[END_REF]. This allows us to consider kernels which can take negative values to model an inhibitory behaviour. The proposed algorithm should remains efficient. Nevertheless, it will be trickier to establish rates of convergence.

Finally, we could also extend our method to a model with a common time-inhomogeneous baseline. This idea is considered in many applications (see e.g. [START_REF] Li | Detecting changes in dynamic events over networks[END_REF]) and could be an improvement of the present algorithm.

Proofs

In this section, we give first a technical result in Section A. Then, Section B proposes the proofs of main results.

For the sake of simplicity we denote T for T T . We use in the sequel the notation C which represents a positive constant that does not depend on n. Each time C is written in some equation, one should understand that there exists a positive constant such that the equation holds. Therefore, the values of C may change from line to line and even change in the same equation. When an index K appears, C K represents a constant depending on K (and not on n).

A A technical result

Let us remind the reader that E (g) = R(g) -R(g * ) for any classifier g ∈ G.

Proposition A.1. For any classifier g ∈ G, we have

E (g) = E   K i, k =i |π * i (T ) -π * k (T )|1 {g * (T )=i,g(T )=k}   .
Proof. Let g ∈ G, we have:

E (g) = E 1 {g(T ) =Y } -1 {g * (T ) =Y } = E K i=1 K j=1 K k=1 π * i (T ) 1 {g(T ) =i} -1 {g * (T ) =i} 1 {g * (T )=j} 1 {g(T )=k} = E   K i=1 k =i π * i (T )1 {g(T )=k} 1 {g * (T )=i} - K k=1 i =k π * k (T )1 {g(T )=k} 1 {g * (T )=i}   = E   K i, k =i (π * i (T ) -π * k (T ))1 {g(T )=k} 1 {g * (T )=i}   .
We deduce the result of Proposition A.1 from the following observation on the event {g * (T ) = i}

π * i (T ) -π * k (T ) = |π * i (T ) -π * k (T )|.

B Proofs of main results

Proof of Proposition 2.1. We first denote for all k ∈ Y

Φ k t := dP k | F N t dP 0 | F N t , with F N T := σ (T T ) = σ (N t , 0 ≤ t ≤ T ).
We classically obtain: (2003)). Thus, for t ≥ 0, we have the following equation for the mixture measure

log(Φ k t ) = - t 0 (λ * k (s) -1)
dP| F N t = K k=1 p k dP k | F N t = K k=1 p k Φ k t dP 0 | F N t and then dP k | F N t dP| F N t = p k Φ k t dP 0 | F N t K j=1 p j Φ j t dP 0 | F N t = Φ k t K j=1 p j Φ j t . Finally, by using (2), it comes π * k (T T ) = p * k e F * k K j=1 p * j e F * j
, that concludes the proof.

Proof of Proposition 3.4. Let (p, µ, h) and (p , µ , h ) two tuples. We denote π and π the associated elements in Π (see Equation ( 5)). We have that

π(T ) -π (T ) 1 ≤ π(T ) -π p,µ ,h (T ) 1 + π p,µ ,h (T ) -π (T ) 1 . (11) 
Since for any k, j and (x 1 , . . . , x K ),

∂φ p k (x 1 , . . . , x K ) ∂p j ≤ 1 p 0 ,
we deduce by mean value inequality

π p,µ ,h (T ) -π (T ) 1 ≤ K p 0 p -p 1 .
Besides for any k, j and p, ∂φ p k (x 1 , . . . , x K ) ∂x j ≤ 1, we also deduce

π(T ) -π p,µ ,h (T ) 1 ≤ K K k=1 F (µ,h k ) (T ) -F (µ ,h k ) (T ) .
Therefore, from Equation (11), we obtain

E π(T ) -π (T ) 1 ≤ K p 0 p -p 1 + K K k=1 E F (µ,h k ) (T ) -F (µ ,h k ) (T ) .
Hence, it remains to bound the second term in the r.h.s. of the above inequality. Using Cauchy-Schwarz inequality, for each k, we have that

E F (µ,h k ) (T ) -F (µ ,h k ) (T ) = E T 0 log λ (µ,h k ) (t) λ (µ ,h k ) (t) dN t - T 0 λ (µ,h k ) (t) -λ (µ ,h k ) (t) dt ≤ E   T 0 log λ (µ,h k ) (t) λ (µ ,h k ) (t) dN t 2   1/2 +E T 0 λ (µ,h k ) (t) -λ (µ ,h k ) (t) dt . (12) 
Now, we observe that

λ (µ,h k ) (t) -λ (µ ,h k ) (t) ≤ |µ -µ| + h -h ∞,T N T ,
where N T = N [0,T ] denotes the number of jump times of the observed process lying on [0, T ]. Therefore we deduce

E T 0 λ (µ,h k ) (t) -λ (µ ,h k ) (t) dt ≤ T |µ -µ| + h -h ∞,T E [N T ] . (13) 
Now, we bound the first term in the r.h.s. of Equation ( 12). Using that x → log(1 + x) is Lipschitz we obtain:

log λ (µ,h k ) (t) λ (µ ,h k ) (t) ≤ log µ µ + λ (µ,h k ) (t) µ - λ (µ ,h k ) (t) µ ≤ 1 µ 0 µ -µ + 1 µ 2 0 µλ (µ,h k ) (t) -µ λ (µ ,h k ) (t) ≤ 1 µ 0 µ -µ + 1 µ 2 0 |µ -µ |λ (µ ,h k ) (t) +µ 1 λ (µ,h k ) (t) -λ (µ ,h k ) (t) ≤ 1 µ 0 µ -µ + 1 µ 2 0 |µ -µ |λ (µ ,h k ) (t) +µ 1 |µ -µ| + h -h ∞,T N T . (14) 
Using Doob's decomposition, we get

E   T 0 log λ (µ,h k ) (t) λ (µ ,h k ) (t) dN t 2   = E T 0 log 2 λ (µ,h k ) (t) λ (µ ,h k ) (t) λ * Y (t) dt +E   T 0 log λ (µ,h k ) (t) λ (µ ,h k ) (t) λ * Y (t) dt 2   . ( 15 
)
Using that E (λ * Y (t)) 2 < ∞, the first term in the r.h.s. in Equation ( 15) can be bounded as follows

E T 0 log 2 λ (µ,h k ) (t) λ (µ ,h k ) (t) λ * Y (t) dt ≤ T 0 E log 4 λ (µ,h k ) (t) λ (µ ,h k ) (t) 1/2 E (λ * Y (t)) 2 1/2 dt ≤ CT sup t∈[0,T ] E log 4 λ (µ,h k ) (t) λ (µ ,h k ) (t) 1/2
.

Similarly, we obtain:

E   T 0 log λ (µ,h k ) (t) λ (µ ,h k ) (t) λ * Y (t) dt 2   ≤ T E T 0 log 2 λ (µ,h k ) (t) λ (µ ,h k ) (t) (λ * Y (t)) 2 dt ≤ CT 2 sup t∈[0,T ] E log 4 λ (µ,h k ) (t) λ (µ ,h k ) (t) 1/2
. Then, by Assumption 3.1, we get

E   T 0 log λ (µ,h k ) (t) λ (µ ,h k ) (t) dN t 2   ≤ C |µ -µ | 2 + h -h 2 ∞,T ≤ C 2µ 1 |µ -µ | + h -h 2 ∞,T ,
where C is constant which depends on µ 0 , µ 1 , h * , A 1 , and T . Finally, combining the above equation, Equations ( 13) and ( 12) yields the desired result.

Proof of Corollary 3.5. Let π ∈ Π. We recall that

g π (T ) = argmax k∈Y π k (T )
for h ∈ H. By Proposition A.1 we then get

0 ≤ E(g π ) = E   K i, k =i |π * i (T ) -π * k (T )|1 {gπ(T )=k} 1 {g * (T )=i}   ≤ 2E max k∈Y |π k (T ) -π * k (T )|1 {gπ(T ) =g * (T )} ≤ 2 K k=1 E |π k (T ) -π * k (T )| .
applying Proposition 3.4, we obtain the desired result.

Proof of Theorem 4.2. Let us remind the reader that p = ( p k ) k=1,...,K with p k = 1 n n i=1 1 Y i =k . We consider the following set A = p : min( p) ≥ p 0 2 , where p 0 is defined in Assumption 3.3. On the one hand, note that on A c we have

| min(p * ) -min( p)| ≥ p 0 2 , which implies that there exists k ∈ Y s.t. |p * k -p k | ≥ p 0 2
. Thus, by using Hoeffding's inequality we get

P(A c ) ≤ K k=1 P |p * k -p k | ≥ p 0 2 ≤ 2Ke -np 2 0 /2 . ( 16 
)
On the other hand, we focus on what happens on the event A. First, we define

f = f ( p,μ, h) = argmin f ∈ F R(f ), (17) 
and then consider the following decomposition

R( f ) -R(f * ) = (R( f ) -R( f )) + (R( f ) -R(f * )) =: T 1 + T 2 .
By Equation ( 17), we have that

T 2 = R( f ) -R(f * ) = R(f ( p,μ, h) ) -R(f ( p,µ * ,h * ) ) + R(f ( p,µ * ,h * ) ) -R(f (p * ,µ * ,h * ) ) ≤ R(f ( p,µ * ,h * ) ) -R(f (p * ,µ * ,h * ) ).
Therefore, on A, we deduce from the mean value inequality that

T 2 ≤ C K K k=1 | p k -p * k | 2 , ( 18 
)
where C K is a constant depending on K. For establishing an upper bound for T 1 , we first recall the definition (8) of the empirical risk minimizer over F:

f ∈ argmin f ∈ F R(f ), with R(f ) = 1 n n i=1 K k=1 Z i k -f k (T i ) 2 .
Besides, let us introduce the set of parameters

S = {(p, µ, h) : p ∈ P p 0 /2 , µ ∈ [µ 0 , µ 1 ], h ∈ H K A }.
Then, on A, we have by definition (17) of f ,

T 1 = R( f ) -R( f ) = R( f ) -R( f ) + R( f ) -R( f ) ≤ R( f ) -R( f ) + R( f ) -R( f ) ≤ 2 sup (p,µ,h)∈S |R(f (p,µ,h) ) -R(f (p,µ,h) )|. (19) 
By combining ( 18) and ( 19), we obtain

E[R( f ) -R(f * )] ≤ 2E sup (p,µ,h)∈S |R(f (p,µ,h) ) -R(f (p,µ,h) )|1 A +E C K K k=1 | p k -p * k | 2 1 A + E R( f ) -R(f * ) 1 A c . Since for k ∈ Y, E[| p k -p * k | 2 ] ≤ C/n
with C an absolute constant and f and f * are bounded, by using Equation ( 16), we obtain:

E[R( f ) -R(f * )] ≤ 2E sup (p,µ,h)∈S |R(f (p,µ,h) ) -R(f (p,µ,h) )| + C K 1 n + exp - np 2 0 2 . ( 20 
)
It remains to control the first term in the right hand side of the above inequality. By Assumption 4.1 with ε = 1/n and since p ∈ P p 0 /2 , and µ ∈ [µ 0 , µ 1 ], there exists a finite set S n ⊂ S such that for each (p, µ, h) ∈ S, there exists (p n , µ n , h n ) ∈ S n satisfying

p n -p 1 ≤ C K n , |µ n -µ| ≤ 1 n , h n -h ∞,T ≤ 1 n .
Moreover, we have log(card(S n )) ≤ C K log(n d ). For (p, µ, h) ∈ S, let us denote f = f (p,µ,h) and f n = f (pn,µn,hn) the corresponding element of S n . Then, we have

|R(f ) -R(f )| ≤ |R(f ) -R(f n )| + |R(f n ) -R(f n )| + R(f n ) -R(f ) .
Moreover, since f and f n are bounded, we deduce that by denoting π n := π pn,µn,hn

E [|R(f ) -R(f n )|] ≤ E [ π(T ) -π n (T ) 1 ] ≤ C n ,
where the last inequality is obtained with the same arguments as in the proof of Proposition 3.4. In the same way, we also get

E R(f ) -R(f n ) ≤ C n .
Finally, from the above inequalities, we obtain that

E sup S R(f ) -R(f ) ≤ 2C n + E max Sn R(f ) -R(f ) .
Moreover, by Hoeffding's inequality, it comes for t ≥ 0,

P max Sn | R(f ) -R(f )| ≥ t ≤ min(1, 2 card(S n ) exp(-2nt 2 )).
Integrating the previous equation leads to i=1 1 Y i =k . Note that ∆ n is independent from D n 2 := D 2 n . Recall that n is assumed to be even and n 1 = n 2 = n/2.

Let us work again on the set A = p : min( p) ≥ p 0 2 . As in proof of Theorem 4.2, we can write

R( f ) -R(f * ) ≤ R( f ) -R( f ) + R( f ) -R(f * ),
and from Equation ( 18), the second term in the right hand side of the above inequality is bounded by

C K ∆ n .
with

B f := E l f (Z, T ) -l f (Z, T ) 2 .
Besides, conditionally on D n 1 , we have

l f (Z, T ) -l f * (Z, T ) ≤ C K k=1 f k (T ) -f * k (T ) .
Therefore, conditionally on D n 1 , we deduce from Cauchy-Schwartz Inequality

E (l f (Z, T ) -l f * (Z, T )) 2 ≤ C K K k=1 E (f k (T ) -f * k (T )) 2 = C K (R(f ) -R(f * )) .
Thus,

B f ≤ C K R(f ) -R( f ) + R( f ) -R(f * ) .
Therefore, conditionally on D n 1 and on the event A, we deduce from the above inequality and Equation (18) that

B f ≤ C K (D f + ∆ n ) .
Hence, from Inequality (23), we get for t ≥ ∆ n ,

P D f -2 D f ≥ t ≤ exp (-C K nt) ,
which leads to

P max Sn (D f -2 D f ) ≥ t ≤ card( Sn ) exp (-C K nt) .
In view of Equation ( 22 Finally, integrating the above inequality ,w.r.t. D n 1 , yields

E max Sn (D f -2 D f )1 A ≤ C K log( Sn ) n .
Hence, this inequality combined with Equation ( 21) give the desired result.

Algorithm 1

 1 Classification algorithm Input: T , D n , and new observation T n+1 end time T Estimate p * on D n Solve the minimization problem (8) based on D n Compute g the resulting classifier (10) Compute Ŷn+1 = g(T n+1 ) Output: Predicted label Ŷn+1 For the procedure PG, we use the tick function HawkesExpKern with argument gofit = least-squares.

Figure 1 :

 1 Figure 1: Kernel functions of Top: Model 1 and Bottom: Model 2 for Left: class Y = 1, Middle: class Y = 2 and Right: class Y = 3.

  displays the considered kernels for both models. We can see from this figure that for Model 1 the kernel of the class Y = 1 seems to be different of the kernels of the classes Y = 2 and Y = 3 which are more closed. Hence, it should be easy to discriminate between observations from class Y = 1 and observations from class Y ∈ {2, 3}. On the contrary, observations from class Y = 2 and class Y = 3 would be overlapped. Similar comments can be made for Model 2 with observations from class Y ∈ {1, 2} and observations from class Y = 3.

Figure 2 :

 2 Figure 2: Error of the Bayes classifier as a function of T for K = 3, n = 100.

Figure 3 :

 3 Figure 3: Boxplots of estimates of (µ, α, β) of Model 1 for class Y = 1 for 50 repetitions. True parameters are (1, 0.7, 1.3).

  there are at least two elements in S n , combining the above inequality and Equation (20) yieldsE[R( f ) -R(f * )] ≤ log(2 card(S n )

  ), we then obtain that, conditionally onD n 1 , E max Sn (D f -2 D f )1 A ≤ max ∆ n , C K log( Sn ) n + +∞ C K log( Sn)/n exp(-C K nt)dt.

Table 1 :

 1 Classification accuracy for Bayes, ERM and PG classifiers for n = 100, T = 20.

	Classifier:	Bayes	ERM	PG
	K = 2, model 1 0.07 (0.01) 0.08 (0.01) 0.08 (0.01)
	K = 2, model 2 0.27 (0.01) 0.29 (0.02) 0.29 (0.01)
	K = 3, model 1 0.17 (0.01) 0.18 (0.02) 0.32 (0.03)
	K = 3, model 2 0.39 (0.01) 0.46 (0.02) 0.48 (0.02)

Table 2 :

 2 Classification accuracy for Bayes, ERM and PG classifiers for n = 1000, T = 20.

  ds + by writing w.r.t. a Poisson process measure of intensity 1 (see Chapter 13 of Daley & Vere-Jones

	t
	log(λ * k (s)) dN s ,
	0

Let us denote

Furthermore, let us introduce

By Assumption 4.1, there exists a subset Sn ⊂ S with log(card( Sn )) ≤ C log(n d ) , such that for each (µ, h) ∈ S, there exists (µ n , h n ) ∈ Sn satisfying

For (µ, h) ∈ S, let us denote f = f ( p,µ,h) and f n = f ( p,µn,hn) the associated element of Sn . Then, the following decomposition holds

As in proof of Theorem 4.2 and using same arguments as in proof of Proposition 3.4, we have

Besides,

Therefore, gathering the previous inequalities, we deduce that

Therefore to finish the proof it remains to control the first term in the right hand side of Inequality (21).

For u ≥ 0, on A and conditionally on D n 1 , it holds that,

Let us introduce the least squares function

Since for each (µ, h) ∈ S, f ( p,µ,h) are uniformly bounded by 1, we get from Bernstein's inequality, conditionally on D n 1 , for t ≥ 0