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Abstract

We investigate the multiclass classification problem where the features are event sequences. More
precisely, the data are assumed to be generated by a mixture of simple linear Hawkes processes.
In this new setting, the classes are discriminated by various triggering kernels. A challenge is then
to build an efficient classification procedure. We derive the optimal Bayes rule and provide a two-
step estimation procedure of the Bayes classifier. In the first step, the weights of the mixture are
estimated; in the second step, an empirical risk minimization procedure is performed to estimate
the parameters of the Hawkes processes. We establish the consistency of the resulting procedure
and derive rates of convergence. Finally, the numerical properties of the data-driven algorithm
are illustrated through a simulation study where the triggering kernels are assumed to belong to
the popular parametric exponential family. It highlights the accuracy and the robustness of the
proposed algorithm. In particular, even if the underlying kernels are misspecified, the procedure
exhibits good performance.

1 Introduction

A crucial challenge in multiclass learning is to provide algorithms designed to handle temporal data.
In the present paper, we tackle the multiclass classification problem where the features are time event
sequences. More precisely, we assume that the data come from a mixture of Hawkes processes. For
instance, in neuroscience, we can consider event sequences as recorded spike trains on several neurons
from different populations (healthy or sick subjects, for instance). The goal is then to predict the
status (healthy or not) of a new subject from the associated recording, see e.g. Lambert et al. (2018).

Hawkes processes, originally introduced in Hawkes (1971), are proposed to model tricky event
sequences where the past events influence the future events. Hawkes processes arise in a wide variety
of fields ranging from neuroscience to finance. In mathematical finance, see e.g. Bacry et al. (2015) for
a complete review; in the social network literature, see e.g. Zhou et al. (2013) and Lukasik et al. (2016).
In neuroscience, Hawkes processes have a statistical interest for modeling neuron spike occurrences,
see e.g. Hansen et al. (2015), Ditlevsen & Löcherbach (2017), Foschi (2020).

Seminal work for Hawkes process properties is Brémaud & Massoulié (1996). Furthermore, there
are numerous statistical methods of inference for Hawkes processes. For instance, one can cite Hansen
et al. (2015), Bacry & Muzy (2016) and more recently Bacry et al. (2020), or in a Bayesian framework,
Rasmussen (2013). Besides, Favetto (2019) focuses on parameter estimation for Hawkes processes from
repeated observations in the context of electricity market modeling.

However, the aim of the paper is a multiclass classification task and not the parameter inference.
To the best of our knowledge, except the paper of Lukasik et al. (2016), there is no work which deals
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with supervised classification for Hawkes processes. In Lukasik et al. (2016), the authors propose to use
multivariate Hawkes processes for classifying sequences of temporal textual data, with an application
to rumours coming from Twitter datasets. They highlight that a model based on Hawkes processes is
a competitive approach which takes into account the temporal dynamic of the data. But, they do not
provide any theoretical properties.

In this work, we observe repeatedly jump times coming from the mixture of Hawkes processes,
on a fixed time interval [0, T ]. The classes are characterized by different triggering kernels. We first
formally define the model and provide the explicit form of the Bayes classifier in Section 2. The
expression of the Bayes classifier suggests to consider a plug-in approach to estimate the optimal
predictor. Section 3 is devoted to the definition of plug-in type classifier and the study of its properties.
We show how the misclassification error, for any plug-in predictor is linked to the estimation error
of the process parameters. We propose in Section 4 a two-step procedure to build a plug-in type
classifier. A first step is dedicated to the estimation of the weights of the mixture. In a second step the
parameters of the process are estimated through an empirical risk minimization procedure by using
similar ideas as in Denis et al. (2020). The resulting algorithm benefits from the attractive properties
of the empirical risk minimizer: it is computationally efficient and offers good theoretical properties.
In particular, under mild assumptions, we show that the proposed procedure performs as well as the
Bayes classifier. Section 5 illustrates the performance and the robustness of the method in the case
where the triggering kernels are assumed to belong to the parametric exponential family. Finally, a
discussion which highlights some directions for future works is proposed in Section 6. The proofs are
relegated at the end of the paper.

2 General framework

Section 2.1 introduces the considered model, some notation and explains the objective of the paper.
In Section 2.2, we provide an explicit formula of the optimal predictor.

2.1 Statistical setting

Let Y a random variable which takes its values in Y = {1, . . . ,K}, with K ≥ 2, representing the label
of the observations. The distribution of Y is denoted by p∗ = (p∗k)k∈Y and is unknown. We assume
that the observations come from a mixture N of simple linear Hawkes processes observed on the time
interval [0, T ]. Precisely, conditionally on Y , N is a simple linear Hawkes process. The number of
points that lie in [0, t] is denoted by Nt and the corresponding counting process is (Nt)0≤t≤T . The
jump times of N are denoted T1, . . . , TNT . The filtration (or history) at time t− is denoted Ft− and
contains all the necessary information for generating the next point of N .

Conditional intensity The intensity of the process N at time t ≥ 0, with respect to the filtration
(Ft)t≥0, is defined as

λ∗Y (t) := λ(µ∗,h∗Y )(t) := µ∗ +
∑
Ti<t

h∗Y (t− Ti), (1)

where the first term µ∗ > 0 is the baseline, or exogenous intensity, and the second term is a weighted
sum over past events. For each class k ∈ Y, the function h∗k is the triggering kernel which is nonnegative
and supported on R+. Besides, both parameters µ∗ and h∗ = (h∗1, . . . , h

∗
K) are assumed to be unknown.

Note that the baseline intensity is assumed to be common to all classes. This assumption is
notwithstanding consistent according to the neuronal experimental setting described in Section 1.
Indeed, if the spike trains are recorded on the same type of neurons (e.g. neurons which play the same
role), it seems relevant to assume that the exogenous intensity is homogeneous between the classes.
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Objective Given a sequence TT = {T1, . . . , TNT } of observed jump times of N over the fixed interval
[0, T ], the goal is then to build a predictor, namely a classifier g, a measurable function such that g(TT )
is a prediction of the associated label Y . The performance of a classifier g is then measured through
its misclassification risk

R(g) := P (g(TT ) 6= Y ) .

In the following, we denote by G the set of classifiers.

2.2 Bayes rule

The unknown minimizer ofR over G is the so-called Bayes classifier, denoted by g∗, and is characterized
by

g∗ (TT ) ∈ argmax
k∈Y

π∗k(TT ),

with π∗k (TT ) = P (Y = k|TT ). The following proposition gives the expression of the conditional proba-
bilities π∗k and then provides a closed form of the Bayes classifier.

Proposition 2.1. Let T ≥ 0. For each k ∈ Y, we define

F ∗k (TT ) = F (µ∗,h∗k)(TT ) := −
∫ T

0
λ(µ∗,h∗k)(s) ds+

∑
Ti∈TT

log(λ(µ∗,h∗k)(Ti)). (2)

Therefore, the sequence of conditional probabilities satisfies

π∗k (TT ) = φp
∗

k (F∗(TT )) P− a.s.,

where F∗ = (F ∗1 , . . . , F
∗
K) and φp

∗

k : (x1, . . . , xK) 7→
p∗ke

xk∑K
j=1 p

∗
je
xj

are the softmax functions.

Note that conditionally on the event Y = k, F ∗k (TT ) is the likelihood function of the sequence
TT . Proposition 2.1 highlights the dependencies of the optimal Bayes classifier w.r.t. the unknown
parameters. In the following, for a given classifier g ∈ G, we define its excess risk as

E (g) := R(g)−R(g∗).

3 Plug-in type classifier

We first introduce assumptions related to the model in Section 3.1 and then define a set of classifiers
which relies on the plug-in principle in Section 3.2. Finally, the main properties of the plug-in classifier
are provided in Section 3.3.

3.1 Assumptions

We first make the following assumptions on the triggering kernels.

Assumption 3.1 (Stability condition). For each k ∈ Y, hk : R+ → R+ is bounded and satisfies∫
hk(t) dt < 1.

Assumption 3.2. There exist 0 < µ0 < µ1 such that µ0 ≤ µ∗ ≤ µ1.

Assumption 3.3. There exists a positive constant p0 such that min(p∗) > p0.
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Assumption 3.1 guarantees that NT admits finite exponential moments, that is, there exists a > 0
such that E[exp(a|NT |)] < ∞, see for instance Roueff et al. (2016). In particular the exponential
and power-law kernels satisfy this assumption (with additional assumptions on the corresponding
parameters). Assumption 3.2 is a technical assumption and Assumption 3.3 ensures that all the
components of the mixture occur with non-zero probability.

Let us denote the following subset of probability weights

Pp0 := {p ∈ RK+ :
K∑
i=1

pi = 1, min(p) > p0}.

3.2 Definitions

In this section, we present the construction of the plug-in type classifiers.
First we introduce a set H of nonnegative functions supported on R+. For a K-tuple h =

(h1, . . . , hK) in HK , we associate p a vector of probability weights and a baseline intensity µ > 0.
For each k ∈ Y, we then define

λk(t) = λ(µ,hk)(t) = µ+
∑
Ti<t

hk(t− Ti), t ∈ [0, T ].

Hence, the random functions (λk)k=1,...,K are approximations of the conditional intensities λ∗k defined
by (1). Besides, similarly with the definition (2) of F ∗k (TT ), we define

Fk(TT ) = F (µ,hk)(TT ) = −
∫ T

0
λk(s) ds+

∑
Ti∈TT

log(λk(Ti)).

We also consider
πkp,µ,h(.) := φpk (Fµ,h(.)), (3)

with the φpk ’s defined in the same manner of the φp
∗

k ’s given in Proposition 2.1. Finally, we denote
πp,µ,h(.) =

(
πkp,µ,h(.)

)
k∈Y

and π := πp,µ,h.
A plug-in type classifier gπ is naturally defined as

gπ(TT ) = argmax
k∈Y

πk(TT ). (4)

3.3 Properties

In this section, we establish important properties of plug-in type classifiers. For a vector of functions
h ∈ HK , let us denote the supremum norm

‖h‖∞,T = max
k∈Y

sup
t∈[0,T ]

|hk(t)|.

We introduce for a positive constant A the following set

HKA :=

{
h ∈ HK s.t. sup

h∈HK
‖h‖∞,T ≤ A

}
and the set of probabilities

Π =
{
πp,µ,h : p ∈ Pp0 , µ ∈ (µ0, µ1), h ∈ HKA

}
. (5)

The first result is a key step to obtain the consistency of the classification procedure presented in
Section 4.
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Proposition 3.4. Let us consider π and π′ two vectors functions belonging to the set Π defined by (5)
with respective parameters (p, µ,h), and (p

′
, µ
′
,h
′
). Grant Assumptions 3.1, 3.2, 3.3, the following

holds

E
[∥∥∥π − π′∥∥∥

1

]
≤ C

(∣∣∣µ− µ′∣∣∣+
∥∥∥h− h

′
∥∥∥
∞,T

+
∥∥∥h− h

′
∥∥∥2

∞,T
+
∥∥∥p− p

′
∥∥∥

1

)
,

where C is a constant depending on K, T , h∗, µ0, µ1, p0 and A.

Proposition 3.4 provides a bound on L1-distance between two elements of the set Π. It shows
that this distance is bounded by the distance between the corresponding parameters of the associated
models. From this result, for a plug-in type classifier g, we can easily deduce a bound of its excess risk.

Corollary 3.5. For all π = πp,µ,h ∈ Π, we have that

E (gπ) ≤ C
(
|µ− µ∗|+ ‖h− h∗‖∞,T + ‖h− h∗‖2∞,T + ‖p− p∗‖1

)
,

where C is a constant depending on K, T , h∗, µ0, µ1, p0 and A.

An important consequence of this result is that a plug-in type classifier which relies on consistent
estimators of p∗, µ∗ and h∗ is then consistent w.r.t. misclassification risk.

4 Classification procedure

This section is devoted to the presentation and the study of the proposed data-driven procedure that
mimics the Bayes classifier. Our estimation method is then presented in Section 4.1 and theoretical
guarantees of the procedure are derived in Section 4.2.

4.1 Estimation strategy

Based on the results of Section 3, we propose an hybrid classification procedure which involves both
plug-in and empirical risk minimization (E.R.M.) principles. To this end, we introduce a learning
sample Dn = {(T iT , Y i), i = 1, . . . , n}, which consists of n independent copies of (TT , Y ).

We propose a two-step procedure. In a first step, we estimate the vector p∗ by its empirical
counterpart p̂. The second step relies on the empirical risk minimization over a suitable set. In view
of the results obtained in Section 3.3, we introduce the following approximation of the set Π:

Π̂ =
{
πp̂,µ,h : p ∈ Pp0 , µ ∈ (µ0, µ1), h ∈ HKA

}
(6)

and the corresponding set of classifiers:

G
Π̂

= {gπ : π ∈ Π̂}.

Since g∗ is the minimizer of the misclassification risk, a natural estimator of g∗ would be the empirical
risk minimizer over the family G

Π̂

ĝ = argmin
g∈Π̂

1

n

n∑
i=1

1{g(T iT ) 6=Y i}.

Nevertheless, as a solution of non convex minimization problem, it is known that this estimator is
computationally intractable.
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Convexification To avoid computational issues, it is then natural to replace the classical 0-1 loss
with a convex surrogate (see Zhang (2004)). Let us denote the scores functions set:

F := {f = (f1, . . . , fK) : · → RK}.

As convex surrogate, we consider the square loss and then define for a score function f , the following
risk measure

R(f) := E

[
K∑
k=1

(
Zk − fk(TT )

)2
]
,

with Zk = 21{Y=k} − 1.
The choice of the square loss as a convex surrogate is motivated by the fact that, if we define

g(·) = argmax
k∈Y

fk(·), then

E [R(g)−R(g∗)] ≤ 1√
2

(
E [R(f)−R(f∗)]

)1/2
, (7)

with f∗k(TT ) = 2π∗k(TT ) − 1 which satisfies f∗ ∈ argmin
f∈F

R(f). Hence, consistent procedure w.r.t. to

the L2-risk involves consistent classification procedure w.r.t. the misclassification risk.

Resulting estimator As suggested by the form of the optimal score function f∗, we then consider
the set of scores functions

F̂ = {2π − 1 : π ∈ Π̂},

and then consider the empirical risk minimizer over F̂ :

f̂ ∈ argmin
f∈F̂

R̂(f), (8)

with

R̂(f) :=
1

n

n∑
i=1

K∑
k=1

(
Zik − f(T iT )

)2
. (9)

Finally, the resulting classifier ĝ is the plug-in type classifier associated to f̂ defined as

ĝ = argmax
k∈Y

f̂k. (10)

Note that, in order to reduce the computational burden, we have chosen to not introduce the esti-
mation of the probability weights p∗ in the minimization problem given in Equation (8). Nevertheless
it remains a possible strategy.

In the next section, we establish rates of convergence of our classification procedure.

4.2 Rates of convergence

The study of the statistical performance of ĝ defined by (10) relies on the following assumption.

Assumption 4.1. Let ε > 0, we assume that there exists a ε-net Hε ⊂ HKA , w.r.t. sup-norm ‖ · ‖∞,T
such that

log(Cε) ≤ C log
(
ε−d
)
,

where Cε is the number of elements of Hε, d ≥ 1 and C is a positive constant which does not depend
on ε.
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Theorem 4.2. Grant Assumptions 3.1, 3.2 and 3.3 and Assumption 4.1. If h∗ ∈ HKA , the following
holds

E [R(ĝ)−R(g∗)] ≤ C
(
d log(n)

n

)1/4

,

where C > 0 depends on K, T , h∗, µ0, µ1, p0 and A.

Theorem 4.2 establishes that, when n goes to infinity, the proposed classification procedure is
consistent provided that h∗ belongs to HKA . If h∗ does not belong to HKA , a classical additional bias
term appears.

We also have to note that Theorem 4.2 applies for a broad class of functions H. In particular,
Assumption 4.1 covers the case where H is a bounded linear subspace of functions. Let (ψj)j≥1 an
orthonormal basis such that the basis functions are uniformly bounded and then we consider for θ0 > 0

H =

t 7→
 d∑
j=1

θjψj(t)


+

: ‖θ‖2 ≤ θ0

 ,

as Laguerre basis for example. Another important example is the parametric exponential family

H = {t 7→ αβ exp(−βt), 0 < α < 1, 0 < β ≤ β0},

with β0 > 0. Finally, it is possible to obtain better rate of convergence when the estimation of the
probability weights and the estimation of (µ∗,h∗) are performed on two different independent datasets,
this is the purpose of the next paragraph.

Alternative strategy Hereafter, we consider an alternative strategy. First, we split the dataset Dn
into two independent samples D1

n and D2
n. Fore sake of simplicity, we assume that n is even and that

the two datasets D1
n and D2

n have same size n/2. Based on D1
n, we estimate p∗, and based on D2

n we
estimate f∗. The resulting classifier ĝ satisfies the following theorem.

Theorem 4.3. Grant Assumptions 3.1, 3.2, 3.3 and 4.1. If h∗ ∈ HKA , we have

E [R(ĝ)−R(g∗)] ≤ C
(
d log(n)

n

)1/2

,

with C > 0 a numerical constant.

Therefore, the classifier ĝ achieves parametric rate of convergence up to a logarithmic term. Note
that from practical point of view, the splitting of the sample does not affect the performance of the
classifier ĝ. Therefore, we do not consider this strategy in the numerical section.

4.3 Comments

In this section we make comments about the proposed procedure.

Parameter µ Contrary to the parameter p0, the estimation procedure requires the knowledge of µ0

and µ1. This assumption is important to obtain the consistency property. However, we shall show in
Section 5 that the procedure has good performance if we only assume that µ∗ > 0.
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Other approach Another strategy is possible motivated by Proposition 3.4. For example, assuming
that the triggering kernels belong to the exponential kernel family, then classical estimators of the
parameters can be used. Therefore, with these estimators we can compute a plug-in type classifier.
For this task, the methods implemented in the tick library as Maximum Likelihood or Least-Squares
estimator can be used. In the next section we illustrate this strategy with the Least-Squares estimator.

5 Numerical experiments

In this section, we present numerical experiments to illustrate the performance of the procedure de-
scribed in Section 4.1 and refer to the resulting algorithm as ERM. We focus on the case where the set H
is the parametric exponential family. Then our method is compared to the plug-in strategy presented
in Section 4.3 which is referred as PG.

The details of the implementation of the ERM estimator are given in Section 5.1. Then, we describe
the experimental setting in Section 5.2 and discuss the obtained results in Section 5.3. The source
code we used to perform the experiments can be found at https://github.com/charlottedion/
HawkesClassification.

5.1 Implementation

We present the implementation of our classification procedure in the case where the set of kernel
functions H is the parametric exponential family defined as

H = {t 7→ αβ exp(−βt), 0 < α < 1, β > 0}.

We define for α, β ∈ R the function

hα,β(t) = expit(α) exp(β) exp(− exp(β)t),

where expit denotes the inverse-logit function. Then, we can write H as H = {t 7→ hα,β(t), α, β ∈ R}.
For α and β in RK , we denote by hα,β the corresponding function of HK . Therefore the set Π̂ defined
in Equation (6) can be rewrite as

Π̂ = {πp̂,exp(µ),hα,β
, µ ∈ R, α,β ∈ RK}.

Hence the minimization step is performed w.r.t. µ, α, and β. Note that the formulation of the above
set Π̂ shows that the optimization part of our classification procedure does not require any constraint
on the parameters. The minimization is performed with the Python function minimize with argument
method BFGS. Algorithm 1 sums up the main steps of the procedure.

Algorithm 1 Classification algorithm
Input: T , Dn, and new observation Tn+1 end time T

Estimate p∗ on Dn
Solve the minimization problem (8) based on Dn
Compute ĝ the resulting classifier (10)
Compute Ŷn+1 = ĝ(Tn+1)

Output: Predicted label Ŷn+1

For the procedure PG, we use the tick function HawkesExpKern with argument gofit = least-squares.
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Figure 1: Kernel functions of Top: Model 1 and Bottom: Model 2 for Left: class Y = 1, Middle: class
Y = 2 and Right: class Y = 3.

5.2 Experimental setting

We consider K = 2 or K = 3 classes in the following. We propose two different models for the
experiments that we refer to as Model 1 and Model 2. For Model 1, we consider the case where the
triggering kernel belongs to the parametric exponential family. For Model 2, we investigate a more
general form for the kernels (see below). We set the baseline intensity µ = 1. We use the library tick
to generate the sequence of jump times of the Hawkes processes.

Synthetic data The label Y is drawn from a uniform distribution on {1, . . . ,K}. Conditionally on
Y , we simulate the jump times according to Model 1 and Model 2 which are defined as follows:

Model 1 exponential kernels h(t) = αβ exp (−βt), with (α, β) = (0.7, 1.3) for class Y = 1, (0.2, 3) for
class Y = 2, and if K = 3, (0.5, 5) for class Y = 3.

Model 2 interpolation function kernels with parameters (a, b, c):

h(t) =


b
a t, t ∈ [0, a],
b−c
a−1 t+ (b− b−c

a−1a), t ∈]a, 1[

0, t ≥ 1

with for (a, b, c) = (0.2, 0.8, 0.2) for class Y = 1, (0.1, 0.4, 0.2) for Y = 2, and if K = 3,
(0.8, 0.3, 0.7) for class Y = 3.

As an illustration, Figure 1 displays the considered kernels for both models. We can see from this figure
that for Model 1 the kernel of the class Y = 1 seems to be different of the kernels of the classes Y = 2
and Y = 3 which are more closed. Hence, it should be easy to discriminate between observations from
class Y = 1 and observations from class Y ∈ {2, 3}. On the contrary, observations from class Y = 2
and class Y = 3 would be overlapped. Similar comments can be made for Model 2 with observations
from class Y ∈ {1, 2} and observations from class Y = 3.

We also investigate the role of parameter T on the difficulty of classification problem. To this end,
Figure 2 displays the error rate of the Bayes classifier as a function of T for Model 1 and K = 3. This
error quickly decreases from 0.3 to 0.05 as T goes from 10 to 40. In the following, we shall give results
for T = 20.
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Figure 2: Error of the Bayes classifier as a function of T for K = 3, n = 100.

Simulation scheme In order to assess the performance of our procedure, we evaluate the misclas-
sification risk of the Bayes classifier, ERM and PG through Monte-Carlo repetitions. More precisely, for
n ∈ {100, 1000} and ntest = 1000, we repeat independently 50 times the following steps:

1. simulate two datasets Dn and Dntest ,

2. from Dn compute the classifier ĝ, and

3. based on Dntest , compute the empirical error rate of the three classifiers.

The obtained results are presented in Table 1 for n = 100 and Table 2 for n = 1000. Note that, for
ERM algorithm, the following initial guess for the optimization step is considered: µ = 0.5, α = 1 and
β = 1 for all classes.

Table 1: Classification accuracy for Bayes, ERM and PG classifiers for n = 100, T = 20.

Classifier: Bayes ERM PG

K = 2, model 1 0.07 (0.01) 0.08 (0.01) 0.08 (0.01)
K = 2, model 2 0.27 (0.01) 0.29 (0.02) 0.29 (0.01)
K = 3, model 1 0.17 (0.01) 0.18 (0.02) 0.32 (0.03)
K = 3, model 2 0.39 (0.01) 0.46 (0.02) 0.48 (0.02)

Table 2: Classification accuracy for Bayes, ERM and PG classifiers for n = 1000, T = 20.

Classifier: Bayes ERM PG

K = 2, model1 0.07 (0.01) 0.08 (0.01) 0.08 (0.01)
K = 2, model 2 0.27 (0.01) 0.28 (0.01) 0.29 (0.01)
K = 3, model 1 0.17 (0.01) 0.17 (0.01) 0.30 (0.01)
K = 3, model 2 0.39 (0.01) 0.43 (0.01) 0.46 (0.01)

5.3 Results

From the obtained results, we make several comments. For K = 2 both ERM and PG achieve similar
performance as the Bayes classifier for any model and n ∈ {100, 1000}. We now focus on the case
K = 3 which is more interesting. First for Model 1, the ERM error rate is almost equal to the Bayes
error for n ∈ {100, 1000}, while PG has worst performance. Interestingly, in this case it seems that our
procedure benefits from the fact that the model is well-specified. Second, for Model 2, we can see the
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Figure 3: Boxplots of estimates of (µ, α, β) of Model 1 for class Y = 1 for 50 repetitions. True
parameters are (1, 0.7, 1.3).

influence of parameter n. Indeed, when n increases the error rate of ERM is closer to the error rate of
the Bayes classifier. Besides, in this case, ERM outperforms PG.

Let us notice that our procedure also outputs estimations of the parameters (µ, α, β). Although
the estimation task is not our main purpose, it is interesting to evaluate the accuracy of the obtained
estimators. Figure 3 displays a visual description of the obtained estimates for n ∈ {100, 1000} for
Model 1 with observations coming from the class Y = 1. Again, we can see the impact of the pa-
rameter n. For n = 1000, the estimation of the three parameters are clearly better than for n = 100.
Furthermore, for n = 1000, the resulting estimates are quite good.

6 Discussion

We investigate the multiclass classification setting where the features come from a mixture of simple
linear Hawkes processes. In this framework, we derive the optimal predictor and provide a classification
procedure tailored to this problem. The resulting algorithm relies on both plug-in and empirical risk
minimization principles. We establish theoretical guarantees and illustrate the good performance of
the method through a numerical study.

In future works, we plan to extend our classification procedure to the case where the observations
come from a mixture of multidimensional Hawkes processes. Indeed, in neuroscience, the modeling of
multivariate neuron spike data is used for taking into account potential interactions between neurons
(see e.g. Hansen et al. (2015), Donnet et al. (2020)). Hence, it should capture the interactions between
neurons. In this framework, a challenge is to take into account the high dimension of the space of
parameters. For example, by considering exponential kernels, plug-in type classifier should benefit
from algorithm as ADM4 which is adapted for high dimensional setting Bacry et al. (2020).

Another possible development is the case of nonlinear Hawkes process. A few works focus on this
subject, see e.g. Brémaud & Massoulié (1996), Lemonnier & Vayatis (2014), Costa et al. (2020).
This allows us to consider kernels which can take negative values to model an inhibitory behaviour.
The proposed algorithm should remains efficient. Nevertheless, it will be trickier to establish rates of
convergence.

Finally, we could also extend our method to a model with a common time-inhomogeneous baseline.
This idea is considered in many applications (see e.g. Li et al. (2017)) and could be an improvement
of the present algorithm.
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Proofs

In this section, we give first a technical result in Section A. Then, Section B proposes the proofs of
main results.

For the sake of simplicity we denote T for TT . We use in the sequel the notation C which represents
a positive constant that does not depend on n. Each time C is written in some equation, one should
understand that there exists a positive constant such that the equation holds. Therefore, the values
of C may change from line to line and even change in the same equation. When an index K appears,
CK represents a constant depending on K (and not on n).

A A technical result

Let us remind the reader that E (g) = R(g)−R(g∗) for any classifier g ∈ G.

Proposition A.1. For any classifier g ∈ G, we have

E (g) = E

 K∑
i, k 6=i

|π∗i (T )− π∗k(T )|1{g∗(T )=i,g(T )=k}

 .
Proof. Let g ∈ G, we have:

E (g) = E
[
1{g(T )6=Y } − 1{g∗(T )6=Y }

]
= E

[
K∑
i=1

K∑
j=1

K∑
k=1

π∗i (T )
(
1{g(T )6=i} − 1{g∗(T )6=i}

)
1{g∗(T )=j}1{g(T )=k}

]

= E

 K∑
i=1

∑
k 6=i

π∗i (T )1{g(T )=k}1{g∗(T )=i} −
K∑
k=1

∑
i 6=k

π∗k(T )1{g(T )=k}1{g∗(T )=i}


= E

 K∑
i, k 6=i

(π∗i (T )− π∗k(T ))1{g(T )=k}1{g∗(T )=i}

 .
We deduce the result of Proposition A.1 from the following observation on the event {g∗(T ) = i}

π∗i (T )− π∗k(T ) = |π∗i (T )− π∗k(T )|.

B Proofs of main results

Proof of Proposition 2.1. We first denote for all k ∈ Y

Φk
t :=

dPk|FNt
dP0|FNt

,

with FNT := σ (TT ) = σ (Nt, 0 ≤ t ≤ T ). We classically obtain:

log(Φk
t ) = −

∫ t

0
(λ∗k(s)− 1) ds+

∫ t

0
log(λ∗k(s)) dNs,
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by writing w.r.t. a Poisson process measure of intensity 1 (see Chapter 13 of Daley & Vere-Jones
(2003)). Thus, for t ≥ 0, we have the following equation for the mixture measure

dP|FNt =
K∑
k=1

pkdPk|FNt =
K∑
k=1

pkΦ
k
t dP0|FNt

and then
dPk|FNt
dP|FNt

=
pkΦ

k
t dP0|FNt∑K

j=1 pjΦ
j
tdP0|FNt

=
Φk
t∑K

j=1 pjΦ
j
t

.

Finally, by using (2), it comes π∗k (TT ) =
p∗keF

∗
k∑K

j=1 p
∗
j e
F∗
j
, that concludes the proof.

Proof of Proposition 3.4. Let (p, µ,h) and (p
′
, µ
′
,h
′
) two tuples. We denote π and π′ the associated

elements in Π (see Equation (5)). We have that∥∥∥π(T )− π′(T )
∥∥∥

1
≤

∥∥∥π(T )− πp,µ′ ,h′ (T )
∥∥∥

1

+
∥∥∥πp,µ′ ,h′ (T )− π′(T )

∥∥∥
1
. (11)

Since for any k, j and (x1, . . . , xK), ∣∣∣∣∂φpk (x1, . . . , xK)

∂pj

∣∣∣∣ ≤ 1

p0
,

we deduce by mean value inequality∥∥∥πp,µ′ ,h′ (T )− π′(T )
∥∥∥

1
≤ K

p0

∥∥∥p− p
′
∥∥∥

1
.

Besides for any k, j and p, ∣∣∣∣∂φpk (x1, . . . , xK)

∂xj

∣∣∣∣ ≤ 1,

we also deduce ∥∥∥π(T )− πp,µ′ ,h′ (T )
∥∥∥

1
≤ K

K∑
k=1

∣∣∣F (µ,hk)(T )− F (µ
′
,h
′
k)(T )

∣∣∣ .
Therefore, from Equation (11), we obtain

E
[∥∥∥π(T )− π′(T )

∥∥∥
1

]
≤ K

p0

∥∥∥p− p
′
∥∥∥

1
+K

K∑
k=1

E
[∣∣∣F (µ,hk)(T )− F (µ

′
,h
′
k)(T )

∣∣∣] .
Hence, it remains to bound the second term in the r.h.s. of the above inequality. Using Cauchy-Schwarz
inequality, for each k, we have that

E
[∣∣∣F (µ,hk)(T )− F (µ

′
,h
′
k)(T )

∣∣∣] = E

[∣∣∣∣∣
∫ T

0
log

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)
dNt −

∫ T

0

(
λ(µ,hk)(t)− λ(µ

′
,h
′
k)(t)

)
dt

∣∣∣∣∣
]

≤ E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)∣∣∣∣∣ dNt

)2
1/2

+E
[∫ T

0

∣∣∣λ(µ,hk)(t)− λ(µ
′
,h
′
k)(t)

∣∣∣ dt] . (12)
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Now, we observe that ∣∣∣λ(µ,hk)(t)− λ(µ
′
,h
′
k)(t)

∣∣∣ ≤ |µ′ − µ|+ ‖h− h
′‖∞,TNT ,

where NT = N[0,T ] denotes the number of jump times of the observed process lying on [0, T ]. Therefore
we deduce

E
[∫ T

0

∣∣∣λ(µ,hk)(t)− λ(µ
′
,h
′
k)(t)

∣∣∣ dt]
≤ T

(
|µ′ − µ|+ ‖h− h

′‖∞,TE [NT ]
)
. (13)

Now, we bound the first term in the r.h.s. of Equation (12). Using that x 7→ log(1 + x) is Lipschitz
we obtain:∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)∣∣∣∣∣ ≤
∣∣∣∣log

(
µ

µ′

)∣∣∣∣+

∣∣∣∣∣λ(µ,hk)(t)

µ′
− λ(µ

′
,h
′
k)(t)

µ

∣∣∣∣∣
≤ 1

µ0

∣∣∣µ− µ′∣∣∣+
1

µ2
0

∣∣∣µλ(µ,hk)(t)− µ′λ(µ
′
,h
′
k)(t)

∣∣∣
≤ 1

µ0

∣∣∣µ− µ′∣∣∣+
1

µ2
0

(
|µ− µ′ |λ(µ

′
,h
′
k)(t)

+µ1

∣∣∣λ(µ,hk)(t)− λ(µ
′
,h
′
k)(t)

∣∣∣)
≤ 1

µ0

∣∣∣µ− µ′∣∣∣+
1

µ2
0

(
|µ− µ′ |λ(µ

′
,h
′
k)(t)

+µ1

(
|µ′ − µ|+ ‖h− h

′‖∞,TNT

))
. (14)

Using Doob’s decomposition, we get

E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)∣∣∣∣∣ dNt

)2
 = E

[∫ T

0
log2

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)
λ∗Y (t) dt

]

+E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)∣∣∣∣∣λ∗Y (t) dt

)2
 . (15)

Using that E
[
(λ∗Y (t))2

]
<∞, the first term in the r.h.s. in Equation (15) can be bounded as follows

E

[∫ T

0
log2

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)
λ∗Y (t) dt

]
≤

∫ T

0
E

[
log4

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)]1/2

E
[
(λ∗Y (t))2

]1/2
dt

≤ CT sup
t∈[0,T ]

E

[
log4

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)]1/2

.

Similarly, we obtain:

E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)∣∣∣∣∣λ∗Y (t) dt

)2
 ≤ TE

[∫ T

0
log2

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)
(λ∗Y (t))2 dt

]

≤ CT 2 sup
t∈[0,T ]

E

[
log4

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)]1/2

.
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Then, by Assumption 3.1, we get

E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ′ ,h
′
k)(t)

)∣∣∣∣∣ dNt

)2
 ≤ C

(
|µ− µ′ |2 + ‖h− h

′‖2∞,T
)

≤ C
(

2µ1|µ− µ
′ |+ ‖h− h

′‖2∞,T
)
,

where C is constant which depends on µ0, µ1,h
∗, A1, and T . Finally, combining the above equation,

Equations (13) and (12) yields the desired result.

Proof of Corollary 3.5. Let π ∈ Π. We recall that

gπ(T ) = argmax
k∈Y

πk(T )

for h ∈ H. By Proposition A.1 we then get

0 ≤ E(gπ) = E

 K∑
i, k 6=i

|π∗i (T )− π∗k(T )|1{gπ(T )=k}1{g∗(T )=i}


≤ 2E

[
max
k∈Y
|πk(T )− π∗k(T )|1{gπ(T ) 6=g∗(T )}

]
≤ 2

K∑
k=1

E
[
|πk(T )− π∗k(T )|

]
.

Finally, applying Proposition 3.4, we obtain the desired result.

Proof of Theorem 4.2. Let us remind the reader that p̂ = (p̂k)k=1,...,K with p̂k = 1
n

∑n
i=1 1Yi=k. We

consider the following set A =
{
p̂ : min(p̂) ≥ p0

2

}
, where p0 is defined in Assumption 3.3.

On the one hand, note that on Ac we have

|min(p∗)−min(p̂)| ≥ p0

2
,

which implies that there exists k ∈ Y s.t. |p∗k − p̂k| ≥
p0
2 . Thus, by using Hoeffding’s inequality we get

P(Ac) ≤
K∑
k=1

P
(
|p∗k − p̂k| ≥

p0

2

)
≤ 2Ke−np

2
0/2. (16)

On the other hand, we focus on what happens on the event A. First, we define

f̃ = f(p̂,µ̃,h̃) = argmin
f∈F̂

R(f), (17)

and then consider the following decomposition

R(f̂)−R(f∗) = (R(f̂)−R(f̃)) + (R(f̃)−R(f∗))

=: T1 + T2.
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By Equation (17), we have that

T2 = R(f̃)−R(f∗)

= R(f(p̂,µ̃,h̃))−R(f(p̂,µ∗,h∗)) +R(f(p̂,µ∗,h∗))−R(f(p∗,µ∗,h∗))

≤ R(f(p̂,µ∗,h∗))−R(f(p∗,µ∗,h∗)).

Therefore, on A, we deduce from the mean value inequality that

T2 ≤ CK
K∑
k=1

|p̂k − p∗k|2, (18)

where CK is a constant depending on K. For establishing an upper bound for T1, we first recall the
definition (8) of the empirical risk minimizer over F̂ :

f̂ ∈ argmin
f∈F̂

R̂(f),

with

R̂(f) =
1

n

n∑
i=1

K∑
k=1

(
Zik − fk(T i)

)2
.

Besides, let us introduce the set of parameters

S = {(p, µ,h) : p ∈ Pp0/2, µ ∈ [µ0, µ1], h ∈ HKA }.

Then, on A, we have by definition (17) of f̃ ,

T1 = R(f̂)−R(f̃)

= R(f̂)− R̂(f̂) + R̂(f̂)−R(f̃)

≤ R(f̂)− R̂(f̂) + R̂(f̃)−R(f̃)

≤ 2 sup
(p,µ,h)∈S

|R(f(p,µ,h))− R̂(f(p,µ,h))|. (19)

By combining (18) and (19), we obtain

E[R(f̂)−R(f∗)] ≤ 2E

[
sup

(p,µ,h)∈S
|R(f(p,µ,h))− R̂(f(p,µ,h))|1A

]

+E

[
CK

K∑
k=1

|p̂k − p∗k|21A

]
+ E

[(
R(f̂)−R(f∗)

)
1Ac

]
.

Since for k ∈ Y, E[|p̂k − p∗k|2] ≤ C/n with C an absolute constant and f̂ and f∗ are bounded, by using
Equation (16), we obtain:

E[R(f̂)−R(f∗)] ≤ 2E

[
sup

(p,µ,h)∈S
|R(f(p,µ,h))− R̂(f(p,µ,h))|

]
+ CK

(
1

n
+ exp

(
−np

2
0

2

))
. (20)

It remains to control the first term in the right hand side of the above inequality. By Assumption 4.1
with ε = 1/n and since p ∈ Pp0/2, and µ ∈ [µ0, µ1], there exists a finite set Sn ⊂ S such that for each
(p, µ,h) ∈ S, there exists (pn, µn,hn) ∈ Sn satisfying

‖pn − p‖1 ≤
CK
n
, |µn − µ| ≤

1

n
, ‖hn − h‖∞,T ≤

1

n
.
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Moreover, we have log(card(Sn)) ≤ CK log(nd). For (p, µ,h) ∈ S, let us denote f = f(p,µ,h) and
fn = f(pn,µn,hn) the corresponding element of Sn. Then, we have

|R(f)− R̂(f)| ≤ |R(f)−R(fn)|+ |R(fn)− R̂(fn)|+
∣∣∣R̂(fn)− R̂(f)

∣∣∣ .
Moreover, since f and fn are bounded, we deduce that by denoting πn := πpn,µn,hn

E [|R(f)−R(fn)|] ≤ E [‖π(T )− πn(T )‖1] ≤ C

n
,

where the last inequality is obtained with the same arguments as in the proof of Proposition 3.4. In
the same way, we also get

E
[∣∣∣R̂(f)− R̂(fn)

∣∣∣] ≤ C

n
.

Finally, from the above inequalities, we obtain that

E
[
sup
S

∣∣∣R(f)− R̂(f)
∣∣∣] ≤ 2C

n
+ E

[
max
Sn

∣∣∣R(f)− R̂(f)
∣∣∣] .

Moreover, by Hoeffding’s inequality, it comes for t ≥ 0,

P
(

max
Sn
|R̂(f)−R(f)| ≥ t

)
≤ min(1, 2 card(Sn) exp(−2nt2)).

Integrating the previous equation leads to

E
[
max
Sn
|R̂(f)−R(f)|

]
≤

∫ ∞
0

min(1, exp(log(2 card(Sn))− 2nt2)) dt

≤
∫ ∞

0
exp

(
−(2nt2 − log(2 card(Sn)))+

)
dt

≤
√

log(2 card(Sn))

2n
+

√
π

2
√

2n
.

Finally, since there are at least two elements in Sn, combining the above inequality and Equa-
tion (20) yields

E[R(f̂)−R(f∗)] ≤
√

log(2 card(Sn))

2n
+
C

n
,

which concludes the proof.

Proof of Theorem 4.3. Let us denote

∆n :=
K∑
k=1

(p̂k − p∗k)2,

where based on Dn1 := D1
n, p̂k = 1

n1

∑n1
i=1 1Yi=k. Note that ∆n is independent from Dn2 := D2

n. Recall
that n is assumed to be even and n1 = n2 = n/2.

Let us work again on the set A =
{
p̂ : min(p̂) ≥ p0

2

}
. As in proof of Theorem 4.2, we can write

R(f̂)−R(f∗) ≤ R(f̂)−R(f̃) +R(f̃)−R(f∗),

and from Equation (18), the second term in the right hand side of the above inequality is bounded by
CK∆n.
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Let us denote
Df := R(f)−R(f̃)

and
D̂f := R̂(f)− R̂(f̃).

Furthermore, let us introduce

S̃ = {(µ,h) : µ ∈ [µ0, µ1], h ∈ HKA }.

By Assumption 4.1, there exists a subset S̃n ⊂ S̃ with log(card(S̃n)) ≤ C log(nd) , such that for each
(µ,h) ∈ S̃, there exists (µn,hn) ∈ S̃n satisfying

|µn − µ| ≤
1

n
and ‖hn − h‖∞,T ≤

1

n
.

For (µ,h) ∈ S̃, let us denote f = f(p̂,µ,h) and fn = f(p̂,µn,hn) the associated element of S̃n. Then, the
following decomposition holds

D
f̂
≤ D

f̂
− 2D̂

f̂

= (D
f̂
−Dfn) + (2D̂fn − 2D̂

f̂
)

+(Dfn − 2D̂fn)

=: T1 + T2 + T3.

As in proof of Theorem 4.2 and using same arguments as in proof of Proposition 3.4, we have

E [Ti] ≤
C

n
, for i = 1, 2.

Besides,
T3 ≤ max

S̃n
(Df − 2D̂f ).

Therefore, gathering the previous inequalities, we deduce that

E[R(f̂)−R(f∗)] ≤ E
[
max
S̃n

(Df − 2D̂f )1A

]
+ CK

(
1

n
+ exp

(
−np

2
0

4

))
. (21)

Therefore to finish the proof it remains to control the first term in the right hand side of Inequality (21).
For u ≥ 0, on A and conditionally on Dn1 , it holds that,

E
[
max
S̃n

(Df − 2D̂f )

]
≤ u+

∫ ∞
u

P
(

max
S̃n

(Df − 2D̂f ) ≥ t
)
dt. (22)

Let us introduce the least squares function

lf (Z, T ) :=

K∑
k=1

(Zk − fk(T ))2.

Since for each (µ,h) ∈ S̃, f(p̂,µ,h) are uniformly bounded by 1, we get from Bernstein’s inequality,
conditionally on Dn1 , for t ≥ 0

P
(
Df − 2D̂f ≥ t

)
≤ P

(
2(Df − 2D̂f ) ≥ t+Df

)
≤ exp

(
−n(t+Df )

2/8

Bf + (t+Df )4K/3

)
, (23)
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with
Bf := E

[(
lf (Z, T )− lf̃ (Z, T )

)2]
.

Besides, conditionally on Dn1 , we have

lf (Z, T )− lf∗(Z, T ) ≤ C
K∑
k=1

(
fk(T )− f∗k(T )

)
.

Therefore, conditionally on Dn1 , we deduce from Cauchy-Schwartz Inequality

E
[
(lf (Z, T )− lf∗(Z, T ))2

]
≤ CK

K∑
k=1

E
[
(fk(T )− f∗k(T ))2

]
= CK (R(f)−R(f∗)) .

Thus,
Bf ≤ CK

(
R(f)−R(f̃) +R(f̃)−R(f∗)

)
.

Therefore, conditionally on Dn1 and on the event A, we deduce from the above inequality and Equa-
tion (18) that

Bf ≤ CK (Df + ∆n) .

Hence, from Inequality (23), we get for t ≥ ∆n,

P
(
Df − 2D̂f ≥ t

)
≤ exp (−CKnt) ,

which leads to
P
(

max
S̃n

(Df − 2D̂f ) ≥ t
)
≤ card(S̃n) exp (−CKnt) .

In view of Equation (22), we then obtain that, conditionally on Dn1 ,

E
[
max
S̃n

(Df − 2D̂f )1A

]
≤ max

(
∆n,

CK log(S̃n)

n

)
+

∫ +∞

CK log(S̃n)/n
exp(−CKnt)dt.

Finally, integrating the above inequality ,w.r.t. Dn1 , yields

E
[
max
S̃n

(Df − 2D̂f )1A

]
≤ CK log(S̃n)

n
.

Hence, this inequality combined with Equation (21) give the desired result.
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