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Abstract: Pseudomonas aeruginosa (P.a) is one of the most critical antibiotic resistant bacteria in the 25 

world and is the most prevalent pathogen in cystic fibrosis (CF), causing chronic lung infections that 26 

are considered one of the major causes of mortality in CF patients. Although several studies have 27 

contributed to understanding P.a within-host adaptive evolution at a genomic level, it is still 28 

difficult to establish direct relationships between the observed mutations, expression of clinically 29 

relevant phenotypes, and clinical outcomes. Here, we performed a comparative untargeted 30 

LC/HRMS-based metabolomics analysis of sequential isolates from chronically infected CF patients 31 

to obtain a functional view of P.a adaptation. Metabolic profiles were integrated with expression of 32 

bacterial phenotypes and clinical measurements following multiscale analysis methods. Our results 33 

highlighted significant associations between P.a “metabotypes”, expression of antibiotic resistance 34 

and virulence phenotypes, and frequency of clinical exacerbations, thus identifying promising 35 

biomarkers and therapeutic targets for difficult-to-treat P.a infections 36 

Keywords: cystic fibrosis, metabolomics, multiscale data analysis, LC-HRMS, P. aeruginosa, 37 

polyamines, Ala-Glu-mesodiaminopimelate. 38 

 39 

 40 
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1. Introduction 41 

Cystic fibrosis (CF) is a severe genetic disorder caused by mutations in the gene 42 

encoding the CF transmembrane conductance regulator (CFTR). In the lungs, CFTR ion 43 

channel dysfunction triggers impairement of the mucociliary clearance process, which 44 

promotes poly-microbial infections [1–3]. Pseudomonas aeruginosa (P.a) is the most 45 

frequently isolated pathogen from the sputum of CF adult patients [4–7]. Highly resistant 46 

to antibiotics, P.a often causes long-lasting chronic infections responsible for chronic 47 

inflammation and subsequent decline of the lung function, as well as episodes of acute 48 

exacerbations. P.a is thus considered as a leading cause of morbidity and mortality in CF 49 

[3,8–12]. 50 

Over the years of chronic respiratory infection, P.a adapts to this environment and 51 

evolves within its host [13,14]. Frequent phenotypic adaptations include acquisition of 52 

antibiotic resistances, decreased expression of virulence factors, loss of motility, slower 53 

growth, switch to a mucoid phenotype due to overproduction of alginates, and increased 54 

formation of biofilm and development of micro-colonies, which all reduce the recognition 55 

of the pathogen by the immune system [5,6,15–17]. Metabolic changes also occur in 56 

response to the nutritional conditions prevailing in CF mucus, such as the emergence of 57 

amino acids auxotrophs, likely due to the high cost of metabolic production and ready 58 

availability of nutrients in the lung mucus [18,19]. 59 

Whole genome sequencing has been useful to identify functional processes triggering 60 

P.a adaptations to the CF lung [20–22]. However, given the complexity of the different 61 

levels of regulation of living organisms (post-transcriptional, post-translational, enzymatic 62 

kinetics, etc.), the relationships between genome mutations and their effects on relevant 63 

phenotypes, such as their resistance to antibiotics or their virulence profile, remain 64 

difficult to find [23]. Moreover, recent studies have shown that convergent metabolic 65 

adaptations of strains infecting independent patients could be obtained through distinct 66 

mutational paths [24], and that isolates with almost identical genome sequences sampled 67 

from different patients can express highly divergent transcriptomic, metabolic and 68 

phenotypic profiles [25]. Together, these findings highlighted the need to get a more 69 

functional view of P.a’s within-host evolution, in order to draw links between bacterial 70 

adaptations, expression of clinically relevant phenotypes, and ultimate impact of the 71 

infection on the patient’s health status. To achieve this goal, metabolomics (that refers to 72 

the measure of the small molecules, or metabolites, present in a biological system) 73 

constitutes a promising tool [26] as it allows to get a snapshot of bacterial metabolic 74 

activities [27]. Comparing internal P.a metabolomics profiles obtained during the course 75 

of an infection thus provides a functional view of bacterial adaptation to the CF lung 76 

environment, at the closest to the phenotype. Precursor studies have shown the potential 77 

of metabolomics to study P.a metabolic adaptation during chronic infections [18] as well 78 

as the link between metabolic profiles and bacterial phenotypes [28,29]. 79 

In this paper, we present the first untargeted, non-hypothesis-driven metabolomics 80 

study using Liquid Chromatography coupled with High Resolution Mass Spectrometry 81 

(LC/HRMS), to access within-host adaptive evolution of P.a metabolism within the lungs 82 
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of chronically infected CF patients. Antibiotic resistance and virulence profiles as well as 83 

patients’ clinical health status were also characterized, and the results were integrated with 84 

metabolomics footprints in a multiscale statistical approach. This strategy allowed us to 85 

define bacterial metabolic profiles that we named “metabotypes”, that are significantly 86 

associated with clinically relevant bacterial phenotypes and to the patients’ respiratory 87 

disease. As such, our results demonstrate the potential of untargeted metabolomics to get 88 

insights into bacterial adaptation processes that can be connected to pathogenicity and 89 

clinical outcome. This study thus constitutes a first and important step in the identification 90 

of future metabolites that could be used as biomarkers and metabolic targets for next- 91 

generation therapies to support the clinical care of these difficult-to-treat infections. 92 

2. Results 93 

2.1. Evolutionary relationships of P.a clinical isolates 94 

In order to study P.a metabolism over the course of chronic CF lung infections, a 95 

retrospective longitudinal collection of P.a clinical isolates sampled from expectorations of 96 

chronically infected adult CF patients was built. Thirty-four patients were included into 97 

the study (clinical description of the cohort in Supp. Table S1). For each patient, 3 to 5 98 

isolates sampled at different time points of the 2010-2015 follow-up period were arbitrarily 99 

selected for Pulsed-Field Gel Electrophoresis (PFGE) of SpeI-restricted total DNA 100 

genotyping (Figure 1a). Evolutionary clonal lines were defined as isolates sampled from 101 

the same patient at different time points but sharing PFGE profiles that clustered into a 102 

same clonal complex (CC) as defined by Römling et al.[30,31] (Figure 1b). This analysis 103 

identified clonal evolutionary lines for 32/34 patients, confirming the chronic nature of P.a 104 

infection (Figure 1c). Only two patients (17 and 86) have been excluded from further 105 

analysis due to no detection of an evolutive clonal line. To note, one patient (patient 27) 106 

appeared to be co-infected by two distinct clonal lines, and both have been included in the 107 

study. We also observed 3 CCs (CC1, 2 and 3) shared between different patients. From this 108 

analysis, a Final Cell Bank was built by pairing the earliest and the latest isolates from each 109 

of the 33 clonal lines (same CC). They represent different evolutionary stages (hereafter 110 

referred to as early and late) of the within-host adaptation of the clone which had initiated 111 

the chronic infection in the past before the first sample collection. 112 
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Figure 1. Temporal collection and PFGE genotyping of clinical P.a isolates responsible for 114 

chronic lung infection in CF patients. (a) Representative example of PFGE gels (pulsotypes) of P.a 115 

clinical isolates sampled from patients 60 and 141 (1, 2 and 3 represent the sampling time of each 116 

isolate: beginning, middle or end of the 2010-2015 follow-up period, respectively; M=marker 117 

fragment size); (b) Pairwise comparison of 122 P.a PFGE pulsotypes. Clonal complexes (CCs) and 118 

clones have been defined according to Römling et al. criteria [31]: no clonal link if the pulsotypes 119 

showed more than 6 different bands, Clonal Complex (CC) if the pulsotypes showed less than 6 120 

different bands, and clonal if the pulsotypes were identical; (c) Temporal series of PFGE-genotyped 121 

isolates sampling from patients’ expectorations between 2010 and 2015. Small grey crosses represent 122 

all the P.a. isolation time points between 2010 and 2015 for each patient. The symbol shape of the 123 

bigger dots represents the CC of the isolates that have been analyzed by PFGE (unique clones are 124 

represented by a black cross). For 32/34 patients, the earliest and latest sampled isolates belonging to 125 

a same CC have been selected for the Final Cell Bank. 126 

 127 

2.2. Acquisition of P.a metabolomic profiles by untargeted LC-HRMS 128 

The isolates of the Final Cell Bank were analyzed by untargeted LC/HRMS to 129 

determine their intracellular metabolic content (Figure 2a). Isolates were first grown in 130 

synthetic CF medium 2 (SCFM2), without mucin, which mimics the nutritional conditions 131 

in CF pulmonary mucus ([32], see Methods). Intracellular extracts of mid-log cultures were 132 

harvested by fast-filtration and mechanical lysis, and the contents were normalized by 133 

considering the ratio between colony-forming units (CFU) over optical density at 595nm 134 

(OD595) (CFU/OD595) as indicated in Aros-Calt et al. [33]. Metabolomic analysis was 135 

performed using two complementary LC/HRMS methods to maximize chemical coverage, 136 

and data were processed and normalized following the most up-to-date methods (see 137 
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Methods). Comparison of spectral data with public and in-house databases allowed 138 

annotation of 271 metabolites (Supp. Table S2). Intensities of these 271 putatively 139 

annotated metabolites were analyzed using multivariate statistical methods described in 140 

the following sections. Statistically significant metabolites were finally formally identified 141 

by matching their tandem MS/MS fragmentation profiles with a standard or by manual 142 

interpretation (see Methods, Figure 2a, Supp. Table S3). 143 

2.3. Diversity of P.a metabolic evolution within CF patients’ lungs 144 

To investigate intra-host modifications of P.a metabolic profiles during the course of 145 

CF chronic lung infections, we computed metabolic Polarity degreesi,j (Pi,j) as an indicator 146 

of the modifications of the metabolomic signatures between early and late isolates (see 147 

Methods). Metabolic Pi,j allows to distinguish the "core metabolome" of each clonal line, 148 

which remains unchanged over time (Pi,j close to 0), from the "variable metabolome", which 149 

varies during infection (Pi,j≠0) (Figure 2b). Metabolic Pi,j were computed to describe the 150 

within-host changes in the production of the 271 annotated metabolites measured by LC- 151 

HRMS over our 33 evolutionary lines (Figure 2c). Statistical analysis of the metabolic Pi,j 152 

showed the existence of several within-host evolutionary paths of the P.a metabolomes, 153 

highlighting the diversity of the metabolic adaptations (Supp. Figure S1).  154 

2.4. Intra-host metabolic adaptation is associated with the acquisition of antibiotic resistance 155 

Given that acquisition of antibiotic resistances is a hallmark of chronic infection, and 156 

is of major clinical importance in CF lung infections, we next investigated the within-host 157 

modifications of P.a metabolomic profiles associated with concomitant antibiotic 158 

resistance changes. Resistance profiles of each P.a isolate against 14 antibiotics of clinical 159 

importance were determined in vitro (Supp. Table S4). Pi,j computation was then applied 160 

to this phenotypic dataset to capture within-host modifications of the resistance 161 

phenotypes j for each clonal line i and identified either gain, loss or unchanged resistance 162 

phenotype between early and late isolates. Hierarchical cluster analysis (HCA) showed a 163 

segregation of the clonal lines according to the overall gain, loss or unchanged antibiotics 164 

resistance profiles (row clustering, Figure 2d). Interestingly, resistance profiles to the 165 

beta-lactams family as well as to the two aminoglycosides gentamicin and amikacin 166 

evolved in a similar manner within the patient’s airways, suggesting acquisition or loss 167 

of cross-resistance mechanisms (column clustering, Figure 2d).  168 

This antibiotic resistance Pi,j was then integrated with the previously described 169 

metabolic Pi,j following a multiscale statistical workflow (Figure 2e). Briefly, we performed 170 

a hierarchical clustering on principal components (HCPC) inferred from a multiple factor 171 

analysis (MFA) to jointly extract the information from both metabolomics and antibiotic 172 

resistance datasets. This analysis led to the identification of 3 clusters representing P.a 173 

clonal lines with similar "metabo-resistome" modifications between early and late 174 

isolates. Cluster 1 (Figure 2e, in red) was significantly associated with the acquisition of 175 

resistance for 11/14 of the tested antibiotics (of which 9/9 beta-lactams), and with intra- 176 

host modifications of 5/271 annotated metabolites. These modifications included 177 
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increased levels of 13-Hydroxyoctadeca-9,11-dienoic acid, methyl-4- 178 

hydroxyphenylacetate, Ala-Glu-meso-diaminopimelate and decreased levels of both 179 

isobutyric and diaminopimelic acids (Figure 2e). Clusters 2 and 3 were associated with 180 

an unchanged or decreased antibiotic resistance, respectively (in white and blue, Figure 181 

2e).  182 

The 5 metabolites associated with Cluster 1 were selected to build a supervised 183 

logistic model, in order to predict acquisition of beta-lactams resistance from a reduced 184 

number of metabolite modifications (Figure 2e). Step-by-step forward selection and 185 

internal cross-validation of the best model showed that identification of clonal lines that 186 

had gained beta-lactam resistance over time could be predicted based on changes in their 187 

metabolome. More specifically, the sole increase in Ala-Glu-meso-diaminopimelate 188 

production between early and late isolates predicted the acquisition of beta-lactams 189 

resistance with a moderate sensitivity (67%) but excellent specificity (92%) (Figure 2f). 190 

Interestingly, this metabolite is known to be involved in the recycling process of the 191 

peptidoglycan cell wall, which is the primary target of beta-lactam antibiotics [34].  192 
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Figure 2. Multiscale analysis identifies within-host metabolic modifications of P.a associated 193 

with the acquisition of beta-lactam resistances. (a) Schematic summary of untargeted LC-HRMS 194 

metabolomic analysis workflow for acquisition of P.a isolates’ metabolic profiles; (b) Intra-host 195 

modifications between early and late isolates from 33 evolutive lines have been assessed by 196 

calculating the Pi,j value for each line i, metabolite or resistance phenotype j; (c) Distributions of 197 

metabolite Pi,j representing intra-host modifications of 271 annotated metabolite intensities; (d) 198 

Hierarchical cluster analysis of antibiotic resistance Pi,j representing intra-host modifications of 199 

resistance against 14 antibiotics (*); (e) Multiscale data integration workflow for the identification of 200 

metabolic signatures associated with the acquisition of antibiotic resistance: (i) unsupervised HCPC 201 
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identified 3 clusters of P.a lines with similar modifications of both antibiotic resistances and 202 

metabolite intensities; (ii) cluster 1 (in red) is significantly associated with acquisition of antibiotic 203 

resistances, especially against beta-lactams (χ2 p-value<0.05), and with modifications in the 204 

abundance of 5 metabolites; (iii) selection of significantly associated metabolites and antibiotics to 205 

build a supervised logistic model predicting acquisition of antibiotic resistances from metabolic 206 

changes; (f) cross-validation of the best logistic regression model, which predicts the acquisition of 207 

beta-lactam resistance from an increased production of Ala-Glu-meso-diaminopimelate. 208 

(*) abbreviations: FQ: fluoroquinolones; AKN: amikacin, ATM: aztreonam, CIP: ciprofloxacin, CZD: 209 

ceftazidime, FEP: cefepime, GMN: gentamicin, IPM: imipenem, LVX: levofloxacin, MEM: meropenem, PIL: 210 

piperacillin, PTZ: piperacillin-tazobactam, TCC: ticarcillin-clavulanic acid, TIC: ticarcillin, TMN: 211 

tobramycin. 212 

2.5. P.a metabotypes segregated by differential levels of polyamines and their metabolites  213 

In order to highlight potential metabolic signatures of clinical relevance, we also 214 

analyzed P.a metabolic profiles, without integrating the temporality of the samplings 215 

(Figure 3a). Sixty-six P.a isolates were described by 2 data blocks: LC-HRMS intensities 216 

of 151 selected metabolites (Figure 3b, 3c, 3f, left side), and presence/absence of 6 217 

virulence phenotypes (Figure 3d, 3e, 3f, right side)  218 

For the metabolite analysis, metabolites presenting differential expression levels 219 

within the bank (variation coefficient>0.5), that are most likely associated with clinically 220 

relevant bacterial phenotypes, were selected. HCPC analysis of the 151/271 selected 221 

metabolites led to the identification of 3 groups of P.a isolates with similar metabolic 222 

profiles, which will hereafter be termed metabotypes (Figure 3b). The 10 most significant 223 

metabolites associated with these 3 metabotypes are listed in Table 1 (one-way analysis 224 

of variance (ANOVA) F-test p-value<0.05). In order to put these data into a biological 225 

perspective, metabolic pathways associated with these metabolites were inferred using 226 

the PAMDB database [35].  227 

Interestingly, metabotype 1 was characterized by significantly lower levels of 228 

spermidine and putrescine, nucleotides, nucleosides, hexosamines or precursors of 229 

glycosaminoglycan (AMP, ADP, CDP, GDP, cytosine, guanosine, UDP-galactose and 230 

UDP-N-acetylgalactosamine). Metabotype 2 was characterized by higher levels of the 231 

ornithine catabolite N2-succinylornithine,. Finally, metabotype 3 was characterized by 232 

higher levels of the ornithine precursor N-acetyl-L-ornithine and lower levels of the 233 

ornithine catabolite N2-succinylglutamate-semialdehyde. Metabotype 3 was also 234 

characterized by a higher level of 1-hydroxy-2-nonyl-4(1H)-quinolinone (NQNO) (Table 235 

1). 236 

These results highlighted metabolites involved in the polyamines (e. g. putrescine, 237 

spermidine) metabolism as strongly discriminant between the various P.a metabotypes 238 

(Figures 3c, 3g, pairwise Student t test, FDR adjusted<0.05, except for spermidine level 239 

between metabotypes 2 and 3, p-value=0.076). Polyamines are known to be involved in 240 

DNA replication, gene expression and protein synthesis. They can also act as growth 241 
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factors [36–38], which could explain the concordance between the levels of metabolites 242 

involved in polyamines and nucleic acids synthesis (Table 1).  243 

 244 

 245 

Figure 3. Multiscale analysis identified associations between P.a metabotypes and expression of 246 

virulence phenotypes. (a) Summary of multiscale statistical workflow; (b) Representation of 3 HCPC 247 

clusters of isolates expressing similar metabolic profiles (metabotypes) in the first 2 PCs of the MFA. 248 

Cluster centroids are shown as larger dots; (c) Simplified view of the polyamines (putrescine, 249 
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spermidine) synthesis pathway (adapted from [39]). Significant metabolites are highlighted by 250 

arrows, indicating whether the metabolite is found in higher or lower abundance in the color- 251 

matching metabotype; (d) Representation of 3 HCPC clusters of isolates expressing similar virulence 252 

phenotypes in the first 2 PCs of Multiple Correspondence Analysis (MCA). Clusters centroids are 253 

shown as larger dots; (e) Representation of the virulence categories in the first 2 PCs of the MCA; (f) 254 

Dendrograms and summary of the main characteristics of HCPC clusters identified on each data 255 

block, and associations between P.a virulence level and metabotype (Fisher test p-values<0.05 are 256 

indicated by (*)); (g) Boxplots showing bivariate relationships between putrescine and spermidine 257 

levels with the expression of individual virulence factors (Student t test p-values<0.1 and <0.05 are 258 

indicated by (.) and (*), respectively). 259 

Table 1. List of the 10 metabolites most strongly associated with the three metabotypes 260 

observed among the P.a clinical isolates.  261 

Metabotype Metabolite 
Relative 

abundance 

p-value  

(one-way ANOVA) 

Identification 

status (*) 

1 

 Spermidine - 2.8e-11 a, c, d 

 Cytosine - 5.2e-10 a, b, d 

 Putrescine - 1.3e-09 a, c, d 

 Adenosine monophosphate (AMP) - 3.6e-09 a, b, d 

 Uridine diphosphate (UDP)-Galactose 

(UDP-Glucose) 
- 4.6e-09 a, b, d 

 Cytidine diphosphate (CDP) - 5.9e-09 a 

 Adenosine diphosphate (ADP) - 8.1e-09 a, b, d 

 Guanosine - 1.9e-08 a, c, d 

 N2-Succinyl-L-ornithine - 2.6e-08 a 

 UDP-N-acetylgalactosamine  

(UDP-N-acetylglucosamine) 
- 4.1e-08 a, b, d 

2 

 Guanine + 1.4e-06 a, b, d 

 UDP-N-acetylgalactosamine  

(UDP-N-acetylglucosamine) 
+ 1.8e-06 a, b, d 

 12-Hydroxydodecanoic acid + 2.6e-06 a, b, d 

 Guanosine monophosphate + 4.5e-06 a, c, d 

 Pentoses phosphate + 1.7e-05 a, b, d 

 N2-Succinyl-L-ornithine + 2.3e-05 a 

 Glucosamine 6-phosphate  

(Galactosamine 6-phosphate) 
+ 2.4e-05 a, b, d 

 Cytosine + 3.7e-05 a, b, d 

 Guanosine + 5.2e-05 a, c, d 

 UDP-Galactose (UDP-Glucose) + 1.5e-04 a, b, d 

3 
 1-Hydroxy-2-nonyl-4(1H)-

quinolinone 
+ 7.5e-08 a 
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 Palmitoleic acid + 2.5e-07 a 

 Glycerylphosphorylethanolamine/ 

 sn-glycero-3- phosphoethanolamine 
+ 3.0e-07 a, f 

 AMP + 2.2e-06 a, b, d 

 N2-Succinyl-L-glutamic acid 5-

semialdehyde 
- 3.3e-06 a 

 Heptadecenoic acid + 3.6e-06 a 

 N-Acetylornithine + 5.4e-06 a, c, d 

 Tetradecanoyl-phosphate (n-C14:0) + 1.0e-05 a 

 Indoleglycerol phosphate + 1.2e-05 a 

Glycerol + 1.2e-05 a 

(*) Identification status: (a) based on accurate mass, (b) based on ZIC-pHILIC column retention time similarity 262 

with a standard, (c) based on C18 column retention time similarity with a standard, (d) based on MS/MS 263 

spectrum similarity with a standard, (e) based on the MS/MS spectra similarity with those from the METLIN 264 

public database, (f) based on the MS² spectra. 265 

2.6. Multivariate-based analysis of bacterial virulence 266 

To access the relationships between P.a metabotypes and virulence properties of each 267 

isolate, we investigated six different phenotypes: cytotoxicity on macrophages and 268 

epithelial cells, epithelial cells stress response induced by P.a infection (see Supp. Figure 269 

S2), formation of mucoid colonies, pigment production and bacterial growth rate. 270 

Experimental results were converted into a binary presence/absence matrix and analyzed 271 

in a multivariate fashion by HCPC analysis. HCPC clustering revealed 3 groups of isolates 272 

that can be defined according to their relative level of virulence (Figure 3d) as follow: (i) 273 

avirulent isolates (n=30/66), which are generally non-cytotoxic on J774 macrophages and 274 

A549 epithelial cells, do not cause stress on A549 and have a slow growth rate; (ii) 275 

moderately virulent isolates (n=17/66), which cause stress on A549, are cytotoxic on J774 276 

but not on A549, and have a fast growth rate; and (iii) highly virulent isolates (n = 19/66), 277 

which are cytotoxic on both cell types and cause stress on A549 cells (χ2 p-values<0.05, 278 

Figure 3e).  279 

2.7. Polyamines production is associated with the level of P.a virulence 280 

Significant associations between established virulence levels and metabotypes were 281 

observed: metabotype 1 matched with avirulent isolates; metabotype 2, with moderately 282 

virulent isolates, and metabotype 3, with highly virulent isolates (Fisher exact test p- 283 

value=0.01, Figure 3f). Considering that the polyamines’ metabolic pathway was among 284 

the most discriminant between the different metabotypes, the relationships between the 285 

virulence phenotypes and the intensity of putrescine and spermidine were further 286 

investigated. Firstly, the relative changes in the proportion of these two metabolites were 287 

found to be highly correlated (Pearson’s R=0.91, p-value<2.10-16), confirming the link 288 

between the production of spermidine and the level of its precursor putrescine, and 289 
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therefore the modifications of the metabolic flux related to this pathway between 290 

metabotypes. Secondly, analysis of the relationships between the level of these 2 291 

metabolites and virulence properties revealed that spermidine levels were significantly 292 

higher in the isolates which were cytotoxic on J774 macrophages, and significantly lower 293 

in the isolates forming mucoid colonies. Moreover, spermidine and putrescine levels were 294 

higher in fast-growing isolates (p-value of Student t-tests<0.05). Although not statistically 295 

significant, a trend toward a gradual increase of polyamines’ production was detected in 296 

the bacterial isolates with higher virulence (Figure 3g).  297 

We then analyzed the modifications of P.a virulence level occurring overtime within 298 

the patients’ airway. The overall level of virulence was lowered between early and late 299 

isolate for 9/33 clonal lines (27%) (for example, with the early isolate being defined as 300 

highly virulent, and the late isolate defined as moderately or non-virulent, see Figure 3d, 301 

3e, 3f), increased for 3/33 clonal lines (9%), and no change was observed for the remaining 302 

21/33 clonal lines (64%). This is consistent with previous studies that showed a tendency 303 

of P.a to lower the expression of virulence factors during its adaptation to CF airways 304 

[5,16,17]. Interestingly, Kruskal-Wallis testing showed a significant decrease in the 305 

spermidine level between early and late isolates, when the virulence level decreased (p- 306 

value of Kruskal-Wallis test=0.03). A similar trend was observed for putrescine, although 307 

not significant (p-value of Kruskal-Wallis test=0.11) (Supp. Figure S3). Overall, these data 308 

showed significant and consistent relationships between putrescine and spermidine 309 

production, and the expression of P.a virulence-associated phenotypes. 310 

2.8. High polyamines production by P.a is associated with frequent clinical exacerbations 311 

The patients’ clinical records were used to build clinical indicators of respiratory 312 

health, in order to explore the relationships between P.a metabotypes and clinical outcome. 313 

Temporal monitoring of the Forced Expiratory Volume in 1 second (FEV1) and 314 

comparisons to a reference population are considered the most robust prognosis predictor 315 

in CF patients [8,40,41]. Three indicators describing the average level (high or low), long- 316 

term (decline or no decline) and short-term (stable or unstable) dynamics of the patients’ 317 

lung functions (see Methods, Figure 4a) were thus built based on all the FEV1 318 

measurements performed during the 2010-2015 period (5-45 measures per patient). No 319 

statistical relationship was observed between these 3 indicators, confirming that they were 320 

non-redundant describers of the patient's respiratory health status. It should be noted that 321 

highly unstable pulmonary function mostly refers to particularly severe clinical phenotype 322 

of "frequent exacerbations".  323 

Remarkably, a significant association between production of both putrescine and 324 

spermidine by the cultivated P.a isolates, and the short-term dynamic of the patient’s 325 

respiratory function (Wilcoxon test, p-values=0.030 and 0.041 for associations between an 326 

unstable FEV1 and the levels of putrescine and spermidine, respectively, Figure 4b) was 327 

observed. These significant relationships showed, for the first time, that metabolite 328 

biomarkers specifically produced by P.a are correlated to the frequency of acute clinical 329 
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exacerbations of the patient’s respiratory illness. Considering the statistical inferences of 330 

the results described in Figure 3, this relationship could be related to the expression of 331 

virulence factors in P.a isolates. 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

Figure 4.  Relations between patients’ respiratory functions and the production of polyamines 343 

by P.a isolates. (a) Temporal series of all FEV1 measurements realized on the 32 patients of the 344 

cohort during the follow-up period and construction of clinical indicators. Average FEV1 for each 345 

patient was defined as high (green background) or low (red background), by comparison to the 346 
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cohort average. FEV1 temporal dynamics was modeled using linear regression of the FEV1 347 

measurements overtime as follows: (i) long-term dynamic was classified as in decline (red lines) if 348 

the slope was significantly under 0, not declining (black lines) if not; (ii) short-term dynamics were 349 

defined as unstable (yellow background) if the standard deviation of the residuals was above 40%, 350 

or stable (blue background) if not. (b) Boxplots showing the putrescine and spermidine production 351 

(LC-HRMS peak intensity) by P.a per FEV1 based respiratory categories. The data presented in this 352 

figure have been translated into a table to make it accessible to colorblind readers (Supp. Table S5). 353 

3. Discussion 354 

Preliminary genome-based studies gave important insights into P.a patho-adaptation 355 

during CF chronic lung infections, but gene-to-phenotype relationships are, to date, still 356 

difficult to draw. The concept of this study was based on the hypothesis that downstream 357 

metabolic manifestations induced by genome-based adaptations would be more readily 358 

linkable to bacterial phenotypes and their clinical impact. A multi-factorial investigation 359 

based on the comparison of P.a population genetic structures, intracellular metabolic 360 

profiles, and patients’ health records was built. Longitudinal clinical P.a isolates, 361 

representative of different evolutionary stages of a clonal complex chronically infecting a 362 

patient’s airway, were collected and used to build the reference clonal evolutionary lines 363 

studied here. Early and late isolates of each clonal evolutionary line were extensively 364 

characterized by the analysis of virulence and antibiotic resistance properties, and the 365 

acquisition of untargeted and high-resolution in vitro metabolomic fingerprints.  366 

 367 

Pairing metabolic profiles from sequential P.a isolates of a same evolutionary line 368 

(through the calculation of Pi,j) allowed the differentiation between the “core” and the 369 

"variable” metabolomes of each P.a line. The core metabolome made of metabolites whose 370 

production remained unchanged over time (Pi,j close to 0), was discarded from the dataset, 371 

thus giving a specific emphasis to metabolites showing significant changes over time. This 372 

“variable metabolome” was made of a lower number of metabolites whose production was 373 

strongly correlated to bacterial phenotypes of clinical importance. These changes were 374 

associated with modulations of bacterial metabolic pathways in response to within-host 375 

selective pressures. 376 

In particular, the sole increase of Ala-Glu-meso-diaminopimelate production between 377 

early and late P.a isolates was found to be sufficient to predict within-host acquired beta- 378 

lactam resistance. This murein tripeptide is known to be produced during the degradation 379 

of the bacterial cell wall peptidoglycan, and directly reused in the recycling process [34]. 380 

Interestingly, the therapeutic target of beta-lactam antibiotics is primary peptidoglycan 381 

synthesis. Our results clearly support the hypothesis that the increase in Ala-Glu-meso- 382 

diaminopimelate production reveals an over-activation of the peptidoglycan recycling 383 

process, thus allowing the bacteria to escape from the effect of beta-lactam treatment. 384 

Recently, inactivation of the peptidoglycan recycling pathway has been shown to be 385 

associated with  restoration of antibiotic sensitivity, decrease in bacterial virulence, and 386 

improvement of the innate immune system response in vitro [42][43]. Our observations 387 
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support these earlier observations and underline the importance of this pathway in the 388 

acquisition of P.a beta-lactam resistances in vivo. Peptidoglycan recycling inhibitors thus 389 

represent promising targets for future antimicrobials. Our results also suggest that Ala- 390 

Glu-meso-diaminopimelate concentration can be used as a biomarker to anticipate the 391 

efficacy of beta-lactam antibiotic treatments: an increased level in Ala-Glu-meso- 392 

diaminopimelate can indeed predict the acquisition of beta-lactams resistance with 393 

moderate sensitivity (67%) but excellent specificity (92%). We could then anticipate that 394 

such metabolic readouts can be measured directly from the patients’ expectorations, and 395 

provide a fast and relevant information, which could advantageously complement 396 

routinely used bacterial culture methods (antibiograms), which require 24 to 48h of growth 397 

in conditions far from the patients’ airways. Although Ala-D-Glu-meso-diaminopimelate 398 

levels would not detect 100% of beta-lactams resistances, high levels of the metabolite 399 

would clearly indicate that a beta-lactam treatment would most likely fail to control the 400 

infection. This would thus provide fast and highly valuable information to redirect the 401 

clinical team towards the choice of a different antibiotic therapy, and avoid uneffective try- 402 

and-fail therapeutic cycles. Routine Ala-D-Glu-meso-diaminopimelate measurements will 403 

be implemented in our clinical unit to prospectively validate this observation in our CF 404 

cohort. If validated, this monitoring will efficiently contribute  to a more rational use of 405 

antibiotics, and reduce the spread of multidrug resistant bacteria. 406 

On the other hand, cross-sectional analysis of P.a’s untargeted metabolomics 407 

footprints allowed us to classify the isolates according to their metabolic profiles, and 408 

highlighted the polyamines pathway as a major discriminant between the different 409 

metabotypes. These molecules are found in all living organisms, and are notably involved 410 

in promoting cell growth [36,37]. The main polyamines found in bacteria are putrescine, 411 

spermidine and cadaverine [38,44]. As a major result, significant correlations were found 412 

between a high production of putrescine and spermidine by P.a isolates, the expression of 413 

several virulence phenotypes, as well as a high frequency of clinical exacerbations. 414 

Interestingly, it has been shown in vitro that P.a possesses the operons spuABCDEFGH-spuI 415 

for polyamines uptake and utilization. It was also shown that the global CbrAB two- 416 

component system senses polyamines, regulates the spu operons and modulates 236 genes 417 

which have effect on metabolism, virulence and antibioresistance in P.a [45,46]. In another 418 

study, Zhou et al. demonstrated that spermidine has a positive effect on the activation of 419 

the Type 3 Secretion System (T3SS), and found a relation with cytotoxicity on epithelial 420 

cells in P.a laboratory strains [47]. Furthermore, Twomey et al. reported an increased level 421 

of putrescine in bronchial secretions of CF patients during pulmonary exacerbations. This 422 

increase was correlated with the presence and abundance of P.a and Chrysiogenales, but the 423 

producers of these molecules remained to be defined [48]. As such, our results draw a link 424 

between these two studies, demonstrating for the first time the link between high levels of 425 

putrescine and spermidine specifically produced by P.a, high P.a virulence and clinical 426 

exacerbations. 427 
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Putrescine is also known to be a precursor for the synthesis of succinate [49], and was 428 

found to be a biomarker of acute P.a lung infection in a pre-clinical model close to CF 429 

exacerbations [50]. Moreover, Whiteson and colleagues have shown that putrescine 430 

produced by clinical P.a isolates induces the activation of human dendritic cells and the 431 

production of interleukin (IL)-12, leading to a pro-inflammatory polarization of the 432 

immune response (CD4 T cells) [51] that could in turn lead to lung inflammation and 433 

subsequent clinical exacerbation episodes and loss of lung function. Future work should 434 

address the role of polyamines production by P.a in the crosstalk with host cells. Our 435 

results suggest that a significant increase of polyamines production by P.a could induce a 436 

boost of bacterial growth and virulence, inducing an important inflammatory response 437 

and subsequent acute exacerbation. Such findings direct future developments for CF 438 

treatments towards a better control of polyamines production. Promising results have 439 

recently been reported using specific antibodies preventing the integration of extracellular 440 

polyamines by P.a, thus reducing T3SS expression, in vitro cytotoxicity against A549 cells, 441 

as well as in vivo mortality in an animal infection model [52]. 442 

Finally, and although it is often dominant, P.a is not unique but is one of the bacteria 443 

that make up the lung microbiota of CF patients. There are many interactions between the 444 

species composing the CF lung microbiota, and they can have a significant impact on the 445 

clinical outcome of the infection [53]. Thus, if phenotypic studies on pure isolates such as 446 

those presented here provide important elements for understanding the patho- 447 

evolutionary mechanisms of chronic P.a infection, the hypotheses raised need to be studied 448 

in the context of the CF pulmonary ecosystem as a whole. For example, it would be of great 449 

interest to study the influence of isolates of P.a isolates producing high levels of 450 

polyamines on the structure of the microbiota and the impact of the microbial community 451 

on host cells. Indeed, several human pathogens possess transport systems allowing the use 452 

of extracellular polyamines to support growth [37]. It is thus possible that the 453 

overproduction of polyamines by particularly virulent isolates of P.a isolates induces the 454 

overgrowth of other colonizing species in the patients’ lungs, thus causing the dysbiosis at 455 

the origin of the exacerbations. For this, microbiota culture models under conditions 456 

reproducing the CF lung environment could be used, in order to assess the impact of P.a 457 

producing different polyamines levels on the diversity and abundance of different species 458 

[54].  459 

In conclusion, the reported datasets demonstrate that non-targeted metabolomics is 460 

an efficient strategy to identify bacterial mechanisms of clinical importance, bringing out 461 

potential novel therapeutic strategies. Monitoring of metabolites found among the flexible 462 

metabolome might be used to predict exacerbations or resistance to certain antibiotic 463 

therapies. Such biomarkers could help in rationalizing the use of antibiotics and provide 464 

alternatives or supplements to conventional antibiotic therapies, ultimately improving 465 

patients' health care. 466 

4. Materials and Methods 467 
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4.1 Patients 468 

Cohort selection of patients 469 

Thirty-four patients from the Cystic Fibrosis Resource and Competence Center 470 

(CFRCC) of the Grenoble-Alpes University Hospital (CHUGA, France) were recruited 471 

retrospectively according to the following inclusion criteria: diagnosis of CF according to 472 

the national guidelines, 16 years old in 2010, chronically infected by P.a according to the 473 

EuroCareCF reference criteria [55], 3 P.a isolates sampled over a 3 years follow-up period. 474 

The data are derived from research on cystic fibrosis patient data and bacterial samples 475 

named METAPYO: "A metabolomic approach for the study of the adaptive evolution of 476 

Pseudomonas aeruginosa during chronic pulmonary infections in cystic fibrosis". This 477 

research was authorized after its filing with the CNIL according to the french procedure 478 

for a monocentric retrospective study (Reference Methodology MR004 - Compliance 479 

Commitment No. 2205066 v 0). Duly informed patients did not object to the conduct of the 480 

research. 481 

Clinical data and respiratory function modelling 482 

All the Forced Expiratory Volume in 1 Second (FEV1) measurements made between 483 

2010 and 2015 have been extracted from the medical records of the cohort’s patients. FEV1 484 

values (in L) have been converted in Z-score adjusted for age, sex and height by non-linear 485 

regression following the Global Lung Initiative recommendations. These international 486 

guidelines also advocate to adjust this Z-score according to ethnicity, but the French 487 

legislation does not allow to collect this information. Considering the greatest prevalence 488 

of CF in Caucasians, we therefore considered all our patients as of Caucasian origin in this 489 

calculation [56]. 490 

Patients have been stratified according to both the level and the temporal dynamics 491 

of all FEV1 records during the 2010-2015 follow-up period. Mean FEV1 was classified as 492 

high if above the cohort average, low if not. Long-term dynamic of the FEV1 was defined as 493 

in decline if the slope of the linear regression of the FEV1 over 5 years was significantly 494 

below 0, not declining if not. Short-term dynamic was defined as unstable if the standard 495 

deviation of the residuals around the linear regression of the FEV1 over time was above 496 

40%, stable if not. One indicator of each Mean FEV1, Long-term dynamic and Short-term 497 

dynamic have been used to describe each patient’s clinical state over the study period. 498 

4.2. P.a clinical isolates 499 

4.2.1. P.a isolates identification 500 

P.a isolates from sputum of CF patients followed at Grenoble-Alpes University 501 

Hospital were obtained from the Grenoble-Alpes University Hospital Microbiology 502 

Laboratory. Strains have been isolated and purified according to the national guidelines 503 

[57]. Isolates were stored at -80°C in cryotubes with beads. P.a isolates were identified by 504 

standard biochemical testing and proteomic profiling by matrix-assisted laser desorption 505 

and ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonics, 506 
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Wissenbourg, France). Three to 5 isolates per patient (see cohort selection section) were 507 

arbitrarily selected and cultivated in SCFM2 medium for further analysis. 508 

4.2.2. Growth conditions 509 

If not specified, all pre cultures and cultures were done at 37°C, 230rpm, in SCFM2 510 

medium in aerobic conditions. Pre-cultures were done in 2.5mL SCFM2, cultures in 511 

2*2.5mL SCFM2, pooled together prior to experimental procedure. SCFM2 medium was 512 

prepared as indicated by Turner et al. [32]. Mucin was discarded from the medium 513 

composition in order to allow a precise follow-up of bacterial growth by Optical Density 514 

measurements at 595nm (OD595). 515 

4.2.3. Pulsed-Field Gel Electrophoresis clonal analysis 516 

PFGE analysis of SpeI restricted genomic DNA were performed as described 517 

previously [58]. PFGE was performed using a CHEF-DR III apparatus (Bio-Rad), set at 518 

5.0V/cm, with a linear ramping from 5 to 25s for 11h and 5 to 60s for 13h. PFGE gels were 519 

pictured using ImageLab 5.1 software (Bio-Rad). Images were then aligned and analyzed 520 

using BioNumerics software version 7.1 (Applied Mathematics). DNA patterns (or 521 

pulsotypes) were converted into a 0/1 discrete matrix of presence/absence of bands at each 522 

molecular weight, as described previously by Lavenir et al. [59]. Hamming’s distances have 523 

been calculated using R software version 3.3.2 [60] and the number of different bands 524 

between isolates have been interpreted following the criteria defined in Römling et al. 525 

(1995) [31]. Two or more pulsotypes sharing less than 7 different bands have been defined 526 

as a PFGE Clonal Complex (CC), attesting for a recent common ancestor. 527 

4.3. Metabolomics Analysis 528 

4.3.1. Sample preparation 529 

Sampling and metabolite extraction of P.a isolates grown in SCFM2 were performed 530 

as indicated by Aros-Calt and colleagues, with slight modifications [33,61] (See Supp. 531 

Methods). Bacterial culture, sample preparation, metabolomics analyses and data 532 

processing were performed in biological triplicates. 533 

4.3.2. Liquid Chromatography coupled with High Resolution Mass Spectrometry (LC- 534 

HRMS) analysis 535 

Untargeted metabolomic profiling of the bacterial samples was done using ultra high- 536 

performance liquid chromatography (Ultimate 3000 UPLC, Thermo Fisher Scientific, 537 

Waltham, MA, USA) coupled with an Exactive Orbitrap mass spectrometer (Thermo 538 

Fisher Scientific Waltham, MA, USA). In order to enhance the chemical coverage of the 539 

analysis, we used two different but complementary chromatographic columns, consisting 540 

in reversed phase chromatography (C18 chromatographic column) and Hydrophilic 541 
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Interaction Liquid Chromatography (HILIC) for the analysis of hydrophobic and polar 542 

metabolites, respectively. 543 

The C18 chromatographic separation was carried out on a Hypersil GOLD C18 544 

column (1.9µm, 150x2.1mm, Thermo Fisher Scientific) at 30°C, with flow elution rate of 545 

500μL/min. The mobile phases consisted of A (100% water+0.1% formic acid) and B (100% 546 

acetonitrile (ACN)+0.1% formic acid). Elution started with an isocratic step of 2min at 5% 547 

mobile phase B, followed by a linear gradient from 5% to 100% mobile phase B for the next 548 

11min. These proportions were kept constant for the next 12.5min before returning to 5% 549 

B for 4.5min. The HILIC chromatographic separation was carried out on a Sequant ZIC- 550 

pHILIC column (5µm, 150x2.1mm, Merck, Darmstadt, Germany) maintained at 15°C 551 

under a elution gradient of mobile phases A and B at a flow elution rate of 200μL/min. 552 

Mobile phase A was 10mM ammonium carbonate pH 10.5 (adjusted with ammonium 553 

hydroxide), and mobile phase B was 100% ACN. Elution was initiated with 80% B phase 554 

for 2min, followed by a linear gradient of 80-40% B from 2 to 12min. The chromatographic 555 

system was then rinsed for 5min at 0% B, before returning at 80% B and the and the run 556 

ended with an equilibration step of 25min at 80% B. 557 

The mass spectrometer was fitted with an electrospray source (ESI) operating in 558 

positive and negative ionization modes for C18 and ZIC-pHILIC, respectively. It was 559 

operated with capillary voltage at −3kV in the negative ionization mode and 5kV in the 560 

positive ionization and a capillary temperature set at 280°C. Temperature of the 561 

autosampler compartment was set at 4°C and the injection volume was 10μL. Detection 562 

was carried out from m/z 75 to 1000 in both ionization modes at a resolution of 50,000 at 563 

m/z 200 as reported by Aros-Calt et al. [61] (each scan taking 0.5s).  564 

4.3.3. LC-HRMS data processing 565 

Raw LC-HRMS data were converted to m/z extensible markup language (.mzXML) 566 

in centroid mode using MSConvert ProteoWizard (release version 3.0.9393). Peak 567 

detection and integration were performed using R version 3.3.2 and XCMS package 568 

version 3.0.2 [62]. Briefly, features were detected using the centWave algorithm (step=0.01, 569 

m/z deviation tolerance=10ppm, peak width=10-40s for C18, 20-120s for HILIC, signal-to- 570 

noise ratio=5). Peaks were grouped by density and retention times were nonlinearly 571 

smoothed (loess). Missing values (gap filling) were imputed by the chrom method. 572 

Annotation of adducts, fragments and isotopes were achieved using the CAMERA 573 

package [63].  574 

Features detected following XCMS-CAMERA analysis were then filtered and 575 

standardized using the Workflow4Metabolomics platform [64,65]. Data filtering was done 576 

according to the following criteria: (i) correlation coefficient between dilution factor and 577 

peak area in QC samples>0.7; (ii) ratio of mean peak area in blanks over biological 578 

samples<0.33; (iii) variation coefficient of peak area in QC samples<30%. Peak intensities 579 
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were then normalized using the Probabilistic Quotient Normalization (PQN) algorithm 580 

described by Dieterle et al. [66].  581 

4.3.4. Metabolite Annotation 582 

Feature annotation was performed by using our spectral database first according to 583 

accurate measured masses and chromatographic retention times [61,67,68], and then 584 

according to publicly available databases KEGG, PAMDB, HMDB and METLIN [35,69–71] 585 

solely using accurate masses. This data-based analysis allowed putative annotation of 271 586 

metabolites (Supp. Table S2). Metabolite identification was further confirmed for 587 

discriminant metabolites LC-MS/MS experiments using a Dionex Ultimate 588 

chromatographic system combined with a Q-Exactive mass spectrometer (Thermo Fisher 589 

Scientific) under non-resonant collision-induced dissociation conditions using higher- 590 

energy C-trap dissociation (HCD). To be identified, metabolites had to match at least two 591 

orthogonal criteria (among accurate measured mass, retention time and MS/MS spectrum) 592 

to those of an authentic chemical standard analyzed under the same analytical conditions, 593 

as proposed by the Metabolomics Standards Initiative [72]. In the absence of an available 594 

authentic chemical standard, metabolites of interest were only considered as putatively 595 

annotated based on accurately measured masses and interpretation of the MS/MS spectra 596 

when available as described by Aros-Calt et al. 2015 [61]. Under these conditions, up to 51 597 

discriminant metabolites were characterized: 30 had accurate masses, retention times and 598 

MS/MS matching those of an authentic standard, 3 were putatively annotated by matching 599 

their MS/MS spectra to those from the METLIN public database or showed MS/MS spectra 600 

consistent with both the proposed structures and the spectra of structural homologues, 1 601 

shared accurate mass and retention time with an authentic standard, and 17 compounds 602 

were only annotated based on their accurate masses (Supp. Table S3). 603 

4.4. Phenotypic assays 604 

Cytotoxic potential of the P.a clinical isolates on eukaryotic cells was tested according 605 

to previously described protocols [73,74], with slight modifications. Antibiotic resistance 606 

phenotypes were tested following the recommendations of the European Committee for 607 

Antimicrobial Susceptibility Testing 2017 criteria [75]. All phenotypic assays are detailed 608 

in supplementary Methods. 609 

4.5. Polarity degreei,j  610 

To investigate intra-host modifications of P.a phenotypic and metabolic profiles 611 

during the course of CF chronic lung infections, an indicator, the Polarity degreei,j (Pi,j), of  612 

the relative differences in metabolite production between early and late isolate of each 613 

evolutionary line infecting a patient’s airway, was computed as follows: 614 

𝑃𝑖,𝑗 =
𝐿𝑖,𝑗 − 𝐸𝑖,𝑗
𝐿𝑖,𝑗 + 𝐸𝑖,𝑗

; 615 
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where Li,j and Ei,j stand for late and early isolates intensities for evolutionary line i, 616 

metabolite j, respectively. Pi,j thus returns a value in the interval [-1, 1], with 617 

positive/negative values representing an increase/decrease in intensity of metabolite j in 618 

line i overtime. 619 

4.6. Statistical analyses 620 

All statistical analyses were performed in R software version 3.3.2 (R Core Team, 621 

2016). Multivariate statistical analysis, notably Hierarchical Clustering on Principal 622 

Components (HCPC, [76]) analyses, were performed using FactoMineR R package [77] and 623 

graphical representations have been done using factoextra [78].   624 

Most of the multivariate statistical analyses presented in this work rely on the HCPC 625 

method published by Husson et al. [76]. Briefly, the HCPC algorithm is divided into 3 626 

steps. First, the dimensions are reduced by a factorial method, such as a Principal 627 

Component Analysis (PCA) for quantitative variables, a Multiple Correspondence 628 

Analysis (MCA) for categorical data, or a Multiple Factorial Analysis (MFA) to jointly 629 

integrate different data blocks [79]. Second, a Hierarchical Cluster Analysis (HCA, ward 630 

method, Euclidean distances) is performed on the components to determine groups of 631 

samples or individuals sharing similar profiles. The optimal number of clusters was 632 

calculated by analyzing the gain in inertia provided by the addition of a new group 633 

(default parameters, as described in [77]). Finally, a k-means partition [80] is applied to 634 

stabilize the previous HCA classification.  635 

4.6.1. Multiscale integration of within-host adaptation of antibiotic resistance and 636 

metabolomics profiles 637 

In order to identify metabolites predictive of acquired antibiotic resistance, we 638 

designed a multi-scale statistical workflow. First, we calculated the Pi,j representing the 639 

within-host modifications of both metabolite intensities and antibiotic resistances between 640 

early and late isolates of each evolutionary line. Then, we conducted a multiscale 641 

unsupervised HCPC based on MFA to extract the common information from the two 642 

blocks of metabolite and antibiotic resistance Pi,j. The output of the HCPC analysis was 643 

then used to select variables (metabolites and antibiotic resistance phenotypes) found as 644 

statistically associated. Finally, we built a supervised logistic model based on the selected 645 

variables, in order to predict the acquisition of antibiotic resistance phenotypes from the 646 

modifications of a minimum number of metabolites intensities. The best model was 647 

selected by step-by-step forward analysis based on the Akaike information criterion and 648 

validated by internal cross validation. 649 

4.6.2. Definition of bacterial metabotypes 650 

Variable selection of the most differentially expressed metabolites (i. e. most likely to 651 

be associated with differential phenotype expression) was performed (151/271 putatively 652 

annotated metabolites with a variation coefficient>0.5). Bacterial metabotypes were 653 
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defined by HCPC analysis based on MFA, with metabolite intensities spread over two 654 

blocks, according to the method that allowed the metabolite detection (C18 or HILIC), in 655 

order to balance the influence of each block on the final PCs.  656 

4.6.3. Definition of bacterial level of virulence 657 

HCPC analysis was performed on the bacterial phenotypes (cytotoxicity against A549 658 

and J774, stress induced on A549, growth speed, pigment production and mucoidy) coded 659 

into binary classes. Analysis of variable categories associated with each cluster allowed us 660 

to define the bacterial level of virulence. 661 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1,  662 

Figure S1: Identification of several distinct intra-host adaptation pathways of P.a metabolism 663 
responsible for chronic lung infection in adult patients with CF 664 

Figure S2: Cytotoxicity assay against epithelial and macrophage cells of clinical P.a isolates from 665 

clonal lines isolated from chronic lung infections in CF patients 666 

Figure S3: Associations between intra-host modifications of P.a virulence level and production of 667 

putrescine (left panel) and spermidine (right panel) in CF patients airways. 668 

Table S1: Global description of the study cohort 669 

Table S2: List of 271 putatively annotated metabolites detected by untargeted LC-HRMS 670 

Table S3: Summary of MS2 identification of 50 metabolites 671 

Table S4: Phenotypic assay results of 66 clinical P.a  isolates of the FCB 672 

Table S5: Clinical indicators of respiratory function for the 32 CF patients of the cohort (colorblind 673 

accessible summary of Figure 4a) 674 
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