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ABSTRACT
The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external
gravitational field in which a system is embedded can produce effects on its internal dynamics.
In this communication, we first show that this external field effect (EFE) can significantly
improve some galactic rotation curves fits by decreasing the predicted velocities of the external
part of the rotation curves. In modified gravity versions of MOND, this EFE also appears in
the Solar system and leads to a very good way to constrain the transition function of the theory.
A combined analysis of the galactic rotation curves and Solar system constraints (provided by
the Cassini spacecraft) rules out several classes of popular MOND transition functions, but
leaves others viable. Moreover, we show that Laser Interferometer Space Antenna Pathfinder
will not be able to improve the current constraints on these still viable transition functions.
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1 IN T RO D U C T I O N

With only six free parameters, the standard � cold dark matter
(�CDM) cosmological model fits no less than 2500 multipoles in
the cosmic microwave background (CMB) angular power spectrum
(Planck Collaboration XVI 2014), the Hubble diagram of Type Ia
supernovae, the large-scale structure matter power spectrum, and
even the detailed scale of baryonic acoustic oscillations. It thus pro-
vides the current basis for simulations of structure formation, and
is extremely successful down to the scale of galaxy clusters and
groups. Nevertheless, it still faces numerous challenges on galaxy
scales. Among these, the most important ones are the too-big-to-
fail problem (Boylan-Kolchin, Bullock & Kaplinghat 2011) and
the satellite-plane problem (e.g. Pawlowski, Pflamm-Altenburg &
Kroupa 2012; Ibata et al. 2014) for dwarf galaxies, the tightness of
the baryonic Tully–Fisher relation (McGaugh 2012; Vogelsberger
et al. 2014), or the unexpected diversity of rotation curve shapes at a
given mass scale (Oman et al. 2015). The latter problem is actually
a subset of a more general problem, i.e. that the shapes of rotation
curves indeed do not depend on the Dark Matter (DM) halo mass,
contrary to what would be expected in �CDM, but rather on the
baryonic surface density, as has long been noted (e.g. Zwaan et al.
1995). This makes the problem even worse, since the rotation curve
shapes are not only diverse at a given mass scale, but uniform at a
given baryonic surface density scale, implying a completely unun-
derstood fine-tuning of putative feedback mechanisms. On the other
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hand, this behaviour of rotation curves is an a priori prediction of
the formula proposed by Milgrom more than 30 yr ago (Milgrom
1983a,b), relating the total gravitational field to the Newtonian field
generated by baryons alone, and which can be interpreted as a mod-
ification of Newtonian dynamics on galaxy scales below a char-
acteristic acceleration (Modified Newtonian Dynamics (MOND),
for a review see Famaey & McGaugh 2012; Milgrom 2014). With
this simple formula, high surface brightness (HSB) galaxies are
predicted to have rotation curves that rise steeply before becom-
ing essentially flat, or even falling somewhat to the not-yet-reached
asymptotic circular velocity, while low surface brightness (LSB)
galaxies are predicted to have rotation curves that rise slowly to the
asymptotic velocity. This is precisely what is observed, and was
predicted by Milgrom long before LSB galaxies were even known
to exist. The formula also predicts the tightness of the baryonic
Tully–Fisher relation.

Since the original formulation of the MOND paradigm, a lot of
relativistic theories of gravitation reproducing the MOND regime in
very weak fields have been developed. Usually, these general relativ-
ity (GR) extensions imply the presence of additional scalar or vector
fields in addition to the standard metric to mediate the gravitational
interaction. These relativistic MOND theories include the origi-
nal Bekensetein tensor–vector–scalar theory (Sanders 1997, 2005;
Bekenstein 2004), Einstein–Aether theories (Jacobson & Mattingly
2001; Zlosnik, Ferreira & Starkman 2006, 2007), bimetric theories
(Milgrom 2009a), or non-local theories (Deffayet, Esposito-Farèse
& Woodard 2014). Reviews of the relativistic extensions of the
MOND paradigm can be found in Bruneton & Esposito-Farèse
(2007) and in Famaey & McGaugh (2012). More recently, new
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interpretations of MOND in terms of a non-standard DM fluid have
been developed (Blanchet 2007; Blanchet & Le Tiec 2008, 2009;
Bernard & Blanchet 2015; Blanchet & Heisenberg 2015; Khoury
2015; Berezhiani & Khoury 2015), in which case Milgrom’s for-
mula is akin to an effective modification of gravity on galaxy scales.
These latter theories have the advantage of naturally reproducing
the CMB power spectrum, and to basically differ from �CDM only
on galaxy scales and below.

In the non-relativistic regime on galaxy scales and below, al-
most all1 these theories boil down to two types of modified Poisson
equations, which we explicitly discuss in Section 2. One feature
of MOND is that it generically (at least for all modified gravity
theories) predicts a violation of the strong equivalence principle.
This implies that the internal gravitational dynamics of a system
depends on the external gravitational field in which the system is
embedded (Milgrom 1983b). This external field effect (EFE) oc-
curs even for a constant external gravitational field,2 and it can have
observational effects, in particular for computing the escape speed
from galaxies (Famaey, Bruneton & Zhao 2007; Wu et al. 2008),
in the rotation curve of the outskirts of galaxies (Wu & Kroupa
2015), and even in the Solar system (Milgrom 2009b; Blanchet &
Novak 2011a). The latter can put stringent constraints on the tran-
sition behaviour between the high-acceleration Newtonian regime
and the low-acceleration MOND regime, which we investigate in
details in the present contribution. Another question is whether de-
viations from GR could be detected close to the saddle point of
the gravitational potential in the Solar system (e.g. Bekenstein &
Magueijo 2006), thereby putting additional constraints on MOND.
Here we check in particular whether measurements from the Laser
Interferometer Space Antenna (LISA) pathfinder mission could add
new constraints to existent ones from other Solar system tests.

In Section 2, we review the basics of MOND, in Section 3 we
produce rotation curve fits to a sample of galaxies with various
transition functions, including for the first time the EFE in the
fits, in Section 4 we combine the best-fitting values of the rotation
curve MOND fits with existing Solar system constraints to exclude
a large range of transition functions, and check whether improved
constraints could be obtained with LISA pathfinder. We conclude
in Section 5.

2 MO N D BA SIC S

The original idea of the MOND paradigm is to modify the standard
Newtonian gravitation law a = gN (where a is the acceleration of
a body and gN is the Newtonian gravitational field) by the relation
a = g with g determined by the relation

μ

(
g

a0

)
g = gN . (1)

or

ν

(
gN

a0

)
gN = g . (2)

In these expressions, μ or ν is the MOND interpolating function
or transition function. The MOND regime appears in weak grav-
itational fields (g < < a0) where the transition function needs to

1 For instance, in the case of non-standard DM theories reproducing MOND,
this can nevertheless depend on the presence or not of the DM fluid in the
systems under consideration.
2 Of course, if the external field is not constant, it will produce additional
standard tidal effects.

satisfy μ(x) → x or ν(y) → y−1/2 in order to explain the galactic
rotation curves (Milgrom 1983a,b). On the other hand, in order to
recover the very well constrained Newtonian regime in the Solar
system, the MOND transition function has to satisfy μ(x) → 1 or
ν(y) → 1 for g > > a0.

An equation such as equation (1) or (2) cannot be valid outside
of spherical symmetry for any type of orbit (Felten 1984). A first
approach for a more fundamental underlying theory is known as
modified inertia. implying that the particle equations of motion
are modified while the gravitational potential is still given by the
standard Newtonian potential (Milgrom 1994, 2011). These theories
are typically non-local and equation (1) or (2) is then valid only for
circular orbits.

All relativistic theories of MOND are rather modified gravity
theories (or effective modified gravity in the case of non-standard
DM), and in the non-relativistic regime they basically reduce to two
types of modified Poisson equation:

(i) The first one takes the non-linear form (Bekenstein & Milgrom
1984)

∇.

[
μ

( |∇�|
a0

)
∇�

]
= 4πGρ = ∇2�N , (3)

with G the Newtonian constant, ρ the matter density, �N the New-
tonian gravitational potential solution of the standard Poisson equa-
tion. The gravitational potential � is the MONDian gravitational
potential that enters the particle’s equations of motion a = −∇�.
This is typically the weak-field limit of MOND-inspired Einstein–
Aether theories (Zlosnik et al. 2007).

(ii) The second is called quasi-linear MOND (or QUMOND;
Milgrom 2010). In QUMOND, the gravitational field is the solution
of the equation

∇2� = ∇.

[
ν

( |∇�N|
a0

)
∇�N

]
. (4)

This approach requires solving two linear Poisson equations to find
the gravitational potential � (for the previous approach, we had to
solve a non-linear Poisson equation). This can be the weak-field
limit of bimetric MOND theories (Milgrom 2009a).

It is known that these two equations are fully equivalent in spheri-
cally symmetric situations (Milgrom 2010; Zhao & Famaey 2010).
In that case, the transition functions μ and ν are related by ν(y) =
1/μ(x) with x and y related through xμ(x) = y (Milgrom 2010).

Different types of MOND transition function have been used
in the literature, the most common families of functions being
(Famaey & McGaugh 2012)

να(y) =
[

1 + (
1 + 4y−α

)1/2

2

]1/α

, (5a)

ν̃α(y) = (1 − e−y)−1/2 + α e−y, (5b)

ν̄α(y) = (1 − e−yα

)−1/2α + (1 − 1/2α)e−yα

, (5c)

ν̂α(y) = (1 − e−yα/2
)−1/α. (5d)

For instance, ν1 is the so-called simple interpolating function
(Famaey & Binney 2005; Zhao & Famaey 2006), ν2 is the standard
one, and ν̄0.5 has been extensively used in Famaey & McGaugh
(2012). Fig. 1 represents all these different transition functions.
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Figure 1. Representation of different MOND transition functions ν (see
equations 5 for their expression).

The family of functions ν̄α is presented for different values of α

as we will see in Section 4 that this family is the most promising
one to fit rotation curves and to satisfy Solar system constraints
simultaneously.

The EFE mentioned in the previous section is due to the fact
that the MOND equations (3) and (4) are non-linear and involve
the total gravitational acceleration with respect to a pre-defined
frame (e.g. the CMB frame). Decomposing the total gravitational
field ∇� into an internal part g and an external field ge and using
a similar decomposition for the Newtonian gravitational accelera-
tion (∇�N = gN + gNe) allows us to solve the equations by taking
into account the external field. This must typically be done with
a numerical Poisson solver (Wu et al. 2008; Angus et al. 2012;
Lüghausen, Famaey & Kroupa 2015). Nevertheless, fits to rotation
curves in MOND usually neglect the small corrections due to the
non-spherical symmetry of the problem, in order to allow for a
direct fit of the rotation curve. In the same spirit, and in order to
get a first glimpse of the influence of the EFE on rotation curves,
we generalize the one-dimensional solution, by using the following
formula to fit rotation curves, namely equation (60) from Famaey &
McGaugh (2012):

g = ν

( |gN + gNe|
a0

) (
gN + gNe

) − ν

(
gNe

a0

)
gNe . (6)

The 1D version of this formula has been shown to be a good approx-
imation of the true 3D solution from a numerical Poisson solver for
a random orientation of the external field, at least for computing the
Galactic escape speed (Famaey et al. 2007; Wu et al. 2008). Further
work should investigate the range of variation of the actual rotation
curve compared to the one obtained in this way, for full numerical
solutions of the modified Poisson equation and various orientations
of the EFE. As mentioned in Famaey & McGaugh (2012), the EFE
is negligible if ge < < g but can play a significant role when the
gravitational field g ∼ ge < a0. This condition is always reached
at some point in the external part of the galaxies. In this case, the

relation (6) shows that the EFE will induce a decrease in the internal
gravitational field. In other words, the EFE can lead to a decrease
of the external part of the rotation curves. We will study this effect
more carefully in Section 3.

On the other hand, the EFE also subtly affects the internal dynam-
ics of the Solar system. It has been shown that within the MOND
paradigm, the external field of our Galaxy produces a quadrupolar
modification of the Newtonian potential (Milgrom 2009b; Blanchet
& Novak 2011a) which is present even in the case of a rapidly
vanishing transition function. As mentioned in Milgrom (2009b),
Blanchet & Novak (2011a), Blanchet & Novak (2011b), and Hees
et al. (2012), planetary ephemerides analysis (in particular from
Saturn) is sensitive to this effect. An estimation of this quadrupolar
modification of the Newtonian potential has been performed us-
ing Cassini radioscience data (Hees et al. 2014). We will use this
estimation here to constrain the transition functions in Section 4.

3 ROTAT I O N C U RV E F I T S

In this section, we produce traditional MOND fits to rotation curves
(Begeman, Broeils & Sanders 1991; Sanders & Verheijen 1998; de
Blok & McGaugh 1998; Sanders & Noordermeer 2007; Gentile,
Famaey & de Blok 2011) using different transition functions. In
particular, we determine how the best-fitting value of a0 changes
with the adopted transition. Furthermore, the influence of the EFE
on galactic rotation curves will be assessed for the first time.

We use rotation curve data from 27 dwarf and LSB galaxies, for
which the MOND effect is important, and that have low-enough
accelerations in the outer parts for the EFE to perhaps play a role.
The data set used is thoroughly described in Swaters, Sanders &
McGaugh (2010, hereafter SSM10). In the following, we will study
the influence of the chosen MOND transition function ν and of the
corresponding MOND acceleration scale a0. Moreover, we will also
allow some freedom on local galactic parameters: the individual R-
band stellar mass-to-light (M/L) ratio ϒg, a rescaling of the distance
to the different galaxies (dg), and a hypothetical external Newtonian
gravitational field gNeg (the indices g refer to a particular galaxy and
indicate that the parameters are local parameters).

As stated above, the gravitational field is given by the 1D version
of equation (6). The predicted rotation velocity is given by

VM(Ridg; a0, ϒg, dg, gNeg) = √
Ridgg(Ri ; a0, ϒg, gNeg) , (7)

where VM is the predicted MONDian velocity at radius Ri, ϒg is the
stellar M/L ratio, dg is a distance scale factor dg = Dg, MOND/Dg, 0

where Dg, 0 are the distances given in table 1 of SSM10 and gNeg

is the Newtonian external field. The norm of the gravitational field
g is determined by equation (6) where the Newtonian gravitational
field is given by

gN(Ri, ϒg) = V 2
gasi

Ri

+ ϒg
V 2

�i

Ri

, (8)

where Vgasi and V�i are the contribution of the gas and of the stellar
disc (at radius Ri) to the rotation curves calculated in the Newtonian
regime. In what precedes, we have used the fact that the Newtonian
observed velocities due to the gas and to the stellar disc are rescaled
as ∝ √

d with a distance rescaling. Similarly, the measured radial
distances Ri are rescaled proportionally to d. The procedure then
consists of the two following steps:

(i) Step 1: Using a subset of 19 galaxies from SSM10, we perform
a least-squares fit of the global MOND acceleration scale a0 and
of the local ϒg and dg parameters neglecting the external field
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gNeg = 0. The galaxies not considered in this part of the analysis
are the galaxies that seem to experience a potentially non-negligible
EFE, i.e. where the MOND fit is slightly too large for the external
part of the rotation curves (this first MOND fit was actually made in
a previous step, Step 0, where all galaxies are taken into account).
The goal of this first step is to find a robust estimation of the MOND
acceleration scale a0 that is not influenced by the EFE.

(ii) Step 2: Using the optimal value of a0 obtained from the first
step, we perform a local fit of the parameters ϒg, dg, and gNeg

for each of the 27 galaxies from the data set of SSM10. This fit
is done using a standard Bayesian inversion with a Metropolis–
Hasting Monte Carlo Markov Chain (MCMC) algorithm (Gregory
2010). The marginalized posterior distribution of the parameter gNeg

allows us to identify the galaxies with a significantly non-vanishing
external field.

During the analysis, we always impose a constraint that the stellar
M/L ratios must have values included between 0.3 and 5 (in units of
(M/L)�). Similarly, we require the scaling of the distance d to be
between 0.7 and 1.3 which corresponds to the standard uncertain-
ties on the distances (Swaters & Balcells 2002). Furthermore, we
also include a Gaussian prior (characterized by a mean of 1 and a
standard deviation of 0.1) on the parameters dg. In this analysis, we
consider a large range of MOND transition functions from all the
families να , ν̄α , ν̂α , and ν̃α .

3.1 Global fit of the MOND acceleration using a subset of the
data set

We perform a global fit of the global MOND acceleration scale
a0 and the local parameters ϒg and dg using all the 27 galaxies
(Step 0). The EFE is neglected at this stage. For the function ν̄2,
which we take as a representative example throughout this analysis,
this first global fit leads to an optimal value of a0 = 7.5 × 10−11

m s−2. The purpose of this first fit is only to identify which galaxies
seem to experience a non-negligible EFE. We identify these galaxies
as being the ones where the MOND fit statistically produces a
too high velocity on the last points of the rotation curves. The so
identified galaxies are: UGC 4173, UGC 4325, UGC 7559, UGC
7577, UGC 11707, UGC 11861, UGC 12060, and F574-1. A new
global fit using the 19 other galaxies leads to a new optimal value
a0 = 8.1 × 10−11 m s−2. This new value is more robust and less
influenced by the EFE. The local optimal parameters obtained for
each galaxy for this optimal MOND acceleration scale are given in
Table 1 (let us note here again that the EFE is neglected in this first
part) and the obtained rotation curves for ν̄2 are shown in Fig. 2. The
same procedure is repeated for a large class of transition functions
and the resulting best-fitting a0 for each function is presented in
Table 2.

3.2 Local fits with the EFE

In the second step, we use the fixed value of a0 obtained previously
(i.e. a0 = 8.1 × 10−11 m s−2 for ν̄2) and we perform local fits
of ϒg, dg, and gNeg for each of the 27 galaxies from the data set.
This part of the analysis is performed using an MCMC algorithm.
Let us remind the reader that we use a flat prior on M/L between
0.3 and 5. Moreover, a Gaussian prior is used on dg (with mean
1 and standard deviation 0.1). In addition, we force dg to have a
value included between 0.7 and 1.3. This approach allows us to find
realistic confidence intervals for the three parameters and to assess
correlations.

Table 1. Best-fitting parameters obtained for the MOND transition function
ν̄2 and for a0 = 8.1 × 10−11 m s−2. Cols. 2 and 3 are the optimal values
obtained in the case where the EFE is neglected. Cols. 4–6 are optimal values
and 68 per cent Bayesian confidence intervals for the parameters when the
EFE is taken into account. The values of the external gravitational field are
mentioned only when different from 0.

Name No EFE With EFE
ϒg dg ϒg dg log gep

(M/L)� (M/L)� (m s−2)

UGC 731 5.0 0.82 5.0+0.0
−0.5 1.03+0.04

−0.19 −11.80+0.44
−1.12

UGC 3371 3.2 0.86 3.3+0.4
−0.6 0.99+0.00

−0.19 –

UGC 4173 0.3 0.70 0.8+0.5
−0.4 0.99+0.10

−0.12 −11.20+0.37
−0.22

UGC 4325 3.1 0.94 3.7+0.5
−0.6 1.10+0.07

−0.10 −11.30+0.26
−0.39

UGC 4499 0.3 0.97 0.3+0.0
−0.0 1.03+0.00

−0.11 –

UGC 5005 0.6 0.93 0.9+0.1
−0.6 1.01+0.02

−0.16 −12.70+0.76
−5.37

UGC 5414 0.6 0.84 1.0+0.1
−0.5 0.93+0.01

−0.18 −11.90+1.60
−4.92

UGC 5721 2.4 1.23 2.4+0.3
−0.2 1.23+0.07

−0.04 –

UGC 5750 0.3 1.02 0.3+0.2
−0.0 1.02+0.04

−0.13 –

UGC 6446 1.8 0.72 1.6+0.4
−0.1 0.91+0.00

−0.21 −12.20+0.62
−1.53

UGC 7232 0.8 1.03 0.8+0.4
−0.3 1.04+0.09

−0.12 –

UGC 7323 0.6 1.01 0.6+0.2
−0.1 1.01+0.08

−0.09 –

UGC 7399 5.0 1.30 5.0+0.0
−0.1 1.30+0.00

−0.01 –

UGC 7524 1.8 0.70 1.9+0.3
−0.3 0.91+0.03

−0.20 −11.70+0.47
−0.72

UGC 7559 0.0 0.79 0.0+0.6
−0.4 0.96+0.00

−0.22 −12.50+0.61
−4.27

UGC 7577 0.0 0.76 0.0+0.6
−0.4 1.00+0.11

−0.11 −12.00+0.57
−0.29

UGC 7603 0.4 1.17 0.4+0.1
−0.1 1.17+0.05

−0.08 –

UGC 8490 1.4 1.30 1.4+0.7
0.0 1.30+0.00

−0.14 –

UGC 9211 2.3 0.94 3.0+0.6
−1.4 1.00+0.03

−0.14 −12.70+0.00
−5.78

UGC 11707 2.6 0.70 3.9+0.3
−0.8 0.71+0.10

−0.01 −12.10+0.60
−0.13

UGC 11861 2.4 0.77 2.5+0.3
−0.3 0.97+0.06

−0.13 −11.30+0.26
−0.39

UGC 12060 2.8 0.73 4.9+0.1
−1.3 1.00+0.09

−0.11 −10.80+0.06
−0.47

UGC 12632 4.7 0.75 5.0+0.0
−0.8 0.95+0.07

−0.17 −11.80+0.38
−0.99

F568-V1 4.9 0.91 5.0+0.0
−0.8 1.04+0.03

−0.13 −12.10+0.45
−5.18

F574-1 3.7 0.78 5.0+0.0
−0.8 0.98+0.05

−0.17 −11.10+0.21
−0.81

F583-1 2.3 0.95 2.3+0.5
−0.5 0.97+0.00

−0.11 –

F583-4 1.7 0.99 3.3+0.0
−2.0 1.00+0.08

−0.13 −11.70+0.76
−6.46

The marginalized 68 per cent Bayesian confidence intervals on
the parameters are presented in Table 1 and represented in Fig. 3. For
the EFE parameters, we only present the estimations that produce a
non-vanishing gNeg. The obtained rotation curves are also presented
in Fig. 2. In addition, this analysis shows a correlation between the
dg and the ϒg parameters. A higher estimation of the M/L ratio will
lead to a lower estimation of the distance ratio. Moreover, as can be
seen from Fig. 3, taking into account the EFE produces estimations
of d that are slightly higher, while the estimations of the stellar M/L
ratios do not change significantly.

The EFE improves spectacularly a few of the rotation curves fits.
In particular, rotation curves for galaxies UGC 4173 and UGC 7577
are now very well fitted whereas the quality of the fit was quite poor
when neglecting the EFE. The case of the galaxy UGC12060 is also
very interesting since the fit is also improved at low radii because
of an increase of the inner part of the rotation curves, which is
mainly due to an increase of the optimal M/L. A similar situation
is encountered for UGC 11707. The fits of UGC 731, UGC5005,
UGC 7559, UGC 9211, F568-V1, and F574-1 are slightly improved
by the addition of the EFE.
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Figure 2. Results of the fit using the MOND transition function ν̄2, which is compatible with Solar system constraints (see Section 4), for the optimal value
a0 = 8.1 × 10−11 m s−2. The dashed (red) thick lines represent the optimal fit without any EFE; the thick (green) solid line represents the optimal fit with
EFE ; the thin solid line represents the Newtonian contributions of the stars; and the thin dashed line represents the gas contribution. Since the optimal fits
with and without EFE do not necessarily produce the same distance scale factor, the radial scales may not be the same. On the top of the plots, we mention
the radial scale obtained without EFE (corresponding to the dashed red thick lines), at the bottom of the plots we mention the radial scale obtained with EFE
(corresponding to the thick green solid lines).
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Table 2. Col. 2: optimal value of the MOND acceleration scale a0 found by rotation curve fits. Col. 3: reduced χ2 computed on all 27 galactic
rotation curves presented in Section 3. Col. 4: value of the ratio η = ge/a0 with ge = 1.9 × 10−10m s−2. Col. 5: value of −q computed with
equation (12) for the value of η from Col. 4. Col. 6: value of Q2 obtained using equation (10) and the value of −q from Col. 5. Col. 7: value of η

for ge = 2.4 × 10−10m s−2. Col. 8: value of −q computed with equation (12) for the value of η from Col. 7. Col. 9: value of Q2 obtained using
equation (10) and the value of −q from Col. 8. The values of Q2 that are in bold are included in the 1σ Cassini estimation 0 ≤ Q2 ≤ 6 × 10−27s−2.

ge = gemin ge = gemax

a0 χ2
red η −q Q2 η −q Q2

10−10 10−2 10−27 10−2 10−27

(m s−2) (s−2) (s−2)

ν2 1.60 2.02 1.20 10. 26. 1.50 11.3 30.
ν3 1.55 1.97 1.20 8.29 21. 1.50 7.82 20.
ν4 1.51 1.94 1.30 6.76 16. 1.60 5.34 13.
ν5 1.49 1.93 1.30 5.51 13. 1.60 3.71 8.7
ν6 1.46 1.92 1.30 4.55 11. 1.60 2.67 6.2
ν7 1.45 1.92 1.30 3.82 8.7 1.70 2.01 4.6
ν8 1.44 1.92 1.30 3.27 7.3 1.70 1.58 3.5

ν̃0.5 1.48 2.16 1.30 14.8 35. 1.60 18.5 44.
ν̃1 1.38 2.12 1.40 18.3 38. 1.70 25. 53.
ν̃1.5 1.18 2.16 1.60 24.1 40. 2.00 34.2 57.
ν̃2 0.815 2.24 2.30 44.8 43. 2.90 47.9 46.
ν̃2.5 0.977 2.23 1.90 33.1 42. 2.50 51.7 65.
ν̃3 0.743 1.07 2.60 56.8 47. 3.20 65.5 55.
ν̃4 0.723 2.01 2.60 54.8 44. 3.30 85.9 69.
ν̃5 0.715 1.97 2.70 48.1 38. 3.40 94.7 75.

ν̄0.5 1.48 2.15 1.30 13.1 31. 1.60 17.5 41.
ν̄1 1.38 2.12 1.40 16.1 34. 1.70 19.5 41.
ν̄1.5 1.18 2.16 1.60 19.3 32. 2.00 15.8 26.5
ν̄2 0.815 2.24 2.30 6.2 5.9 2.90 2.63 2.52
ν̄3 0.743 2.07 2.60 1.9 1.6 3.20 0.82 0.68
ν̄4 0.723 2.01 2.60 1.3 1. 3.30 0.56 0.45
ν̄5 0.715 1.97 2.70 1.08 0.85 3.40 0. 0.
ν̄6 0.713 1.95 2.70 1.02 0.8 3.40 0. 0.
ν̄7 0.729 1.95 2.60 1.07 0.87 3.30 0. 0.

ν̂1 1.48 2.15 1.30 13.1 31. 1.60 17.5 41.
ν̂2 1.59 2.01 1.20 10.2 27. 1.50 11.4 30.
ν̂3 1.55 1.96 1.20 8.32 21. 1.60 7.49 19.
ν̂4 1.51 1.94 1.30 6.66 16. 1.60 4.79 12.
ν̂5 1.48 1.93 1.30 5.34 13. 1.60 3.1 7.3
ν̂6 1.46 1.92 1.30 4.31 9.9 1.60 2.11 4.9
ν̂7 1.45 1.92 1.30 3.55 8. 1.70 1.55 3.5

In Appendix A, in addition to ν̄2, we present fits using two other
transition functions: ν8 and ν̂6. We will show in the next section that
these functions (ν̄2, ν8, and ν̂6), while produce good fits to rotation
curves, are not rejected by Solar system constraints.

4 SO L A R S Y S T E M C O N S T R A I N T S

4.1 The Solar system EFE and its constraint using Cassini data

As shown in the previous section, the MOND EFE can have a non-
negligible effect on the outer parts of some galaxy rotation curves.
This effect turns out to be crucial within the Solar system. Indeed,
within the MOND paradigm, the external gravitational field of our
Galaxy produces interesting modifications in the internal dynamics
of the Solar system (Milgrom 2009b; Blanchet & Novak 2011a).
The main effect consists in a quadrupole correction to the Newtonian
potential. This correction can phenomenologically be parametrized
by Q2 and the gravitational potential can be written as

� = −GM

r
− Q2

2
xixj

(
eiej − 1

3
δij

)
, (9)

where e is a unitary vector pointing towards the Galactic centre and
−GM/r is the standard Newtonian potential due to the Sun. This
correction produces an anomalous force which, along the Galactic
external field direction, rises linearly with distance from the Sun,
whilst it decreases linearly along the two other Cartesian axes (for
a positive value of Q2). From a theoretical point of view, the value
of Q2 depends on the MOND transition function, on the value of
the external gravitational field ge, and on the value of the MOND
acceleration scale a0. Instead of working with Q2, one can introduce
a dimensionless parameter q defined by (Milgrom 2009b)

q = −2Q2(GM)1/2

3a
3/2
0

. (10)

This dimensionless parameter depends only on the MOND transi-
tion function and on the ratio

η = ge

a0
(11)

between the external field and the MOND acceleration scale.
In the context of the QUMOND formulation (4), Milgrom

(2009b) has derived an exact expression for the q parameter given
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Figure 3. Blue: 68 per cent Bayesian confidence intervals obtained with
local fits on each of the 27 galaxies with the transition function ν̄2 and
a0 = 8.1 × 10−11 m s−2. The blue dots represent the best fit. The red
squares represent the optimal values obtained without any external field
effect.

by

q(η) = 3

2

∫ ∞

0
dv

∫ 1

−1
dξ (ν − 1)

[
ηN(3ξ − 5ξ 3) + v2(1 − 3ξ 2)

]
,

(12)

with ν = ν[
√

η2
N + v4 + 2ηNv2ξ ] and ηN = ημ(η) (or equivalently

ηN is solution of ηNν(ηN) = η). As mentioned by Milgrom (2009b),

the term −1 in ν − 1 can be replaced by −ν
[√

ν2
N + v4

]
or by

−ν
[|η2

N ± v2|] to improve the numerical convergence of the inte-
gral.

In the case of the Bekenstein approach (equation 3), the above
integral leads only to an approximate value for the q parameter. In
this approach, the q parameter can only be computed by numerically
solving the non-linear Poisson equation as done in Milgrom (2009b)
and Blanchet & Novak (2011a).

From an observational point of view, the modification of the
Newtonian potential (equation 9) will modify the trajectories of
planets, asteroids and comets (Milgrom 2009b; Blanchet & No-
vak 2011a,b; Hees et al. 2012; Maquet & Pierret 2015). Using
9 yr of Cassini range and Doppler tracking measurements, the
value of the parameter Q2, for an external field assumed to point
towards the Galactic enter, has been estimated by (Hees et al.
2014)

Q2 = (3 ± 3) × 10−27 s−2 . (13)

In the following, we will use the expression from equation (12) to
estimate the value of the q parameter for different MOND transition
functions and different values of the ratio η. Then, using the optimal
value of a0 obtained from the fit to galaxy rotation curves from
Section 3, we estimate the value of the Q2 parameter using the

relation from equation (10). This value of Q2 characterizes the Solar
system deviation from Newtonian gravity predicted by MOND for
values of a0 that optimally explain galactic rotation curves. Finally,
the obtained value of Q2 can be compared to the Cassini estimations
from (Hees et al. 2014) to assess what transition functions are
compatible with galactic rotation curves and with Solar system
observations simultaneously.

First of all, we have reproduced table I from Milgrom (2009b)
to validate our calculation of q using equation (12). Then, we have
computed q for a wide range of MOND transition functions ν and
values of η. The corresponding results are shown in Table B1 in the
Appendix.

Our main result consists of a combined analysis using both galac-
tic and Solar system observations and is presented in Table 2. For
different MOND transition functions ν, the optimal MOND accel-
eration scale a0 has been estimated with galactic rotation curves
using the procedure described in Section 3 (see the second column
from Table 2). The reduced chi-square obtained for the global fit
of all galactic rotation curves is also presented. Then, using the
optimal value of a0, we have computed the value of Q2 using equa-
tions (12) and (10). This estimation of Q2 has been done using two
different values of the external gravitational field. The two values
of ge used correspond to current estimations of galactic parameters
(McMillan & Binney 2010; McMillan 2011): ge = 1.9 × 10−10 and
ge = 2.4 × 10−10m s−2. The estimated values of Q2 are exact in
the framework of QUMOND but are only approximate estimations
in the framework of the Bekenstein approach. Note that, as can
be seen from table I from Milgrom (2009b), the values obtained
with the formulas from QUMOND slightly underestimate the cor-
responding values of Q2 in the Bekenstein approach. The results
from Table 2 are therefore optimistic in the Bekenstein approach.
The estimated values of Q2 presented in Table 2 can be compared to
the estimation (13) obtained with the Cassini radioscience tracking
data (Hees et al. 2014). The values of Q2 within the 1σ estimation
are mentioned in boldface in Table 2.

Several conclusions may be drawn from this combined analysis.
First of all, the class of transition functions ν̃α seems to be com-
pletely excluded by this combined analysis. The functions να and
ν̂α are excluded for low values of α but begins to be marginally
acceptable for large values of α. The only class of functions that
seem to be able to produce a satisfactory fit to the galactic rotation
curves without producing a too large deviation in the Solar system
is ν̄α for α ≥ 2.

4.2 Prospect for the LISA pathfinder mission

Bekenstein & Magueijo (2006), Bevis et al. (2010), Trenkel et al.
(2012), Magueijo & Mozaffari (2012), and Trenkel & Wealthy
(2014) have proposed to redirect the LISA pathfinder towards the
Earth–Sun saddle point to constrain MOND in a low gravitational
field. The LISA pathfinder project (McNamara et al. 2008) is a
space mission designed to test the technology to be used in the
eLISA project. This mission allows the very accurate measure-
ment of tidal stresses by measuring the relative motion of two test
masses separated by 35 cm. The idea proposed by, e.g. Bevis et al.
(2010), Trenkel et al. (2012), and Magueijo & Mozaffari (2012) is
to measure the tidal stresses very close to the saddle point where the
Newtonian gravitational field is very low and where MOND effects
are expected to show up. In this section, we will assess the order of
magnitude of the tidal stresses produced by the MOND transition
functions used in the previous section and show that they are far too
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Figure 4. Signature of the transverse MOND tidal stress produced by the
MOND transition function ν2 (see equation 5a). In this simulation, the space-
craft misses the saddle point by 1 km (the origin of the X-axis corresponding
to the closest approach with the saddle point).

small to be detected by LISA pathfinder even in the most optimistic
scenario.

The simulations that have been performed use similar assump-
tions as in Magueijo & Mozaffari (2012). The spacecraft is supposed
to move along the X-axis, which is defined by the Sun–Earth di-
rection. Moreover, it is assumed that the direction of the observed
tidal stress would be perpendicular to this axis. In order words, the
anomalous observed tidal stress produced by MOND is given by
Syy with

Sij = ∂2�

∂xi∂xj
− ∂2�N

∂xi∂xj
, (14)

where � represents the MOND gravitational potential and �N the
Newtonian potential. Moreover, we will assume a case where the
spacecraft misses the saddle point by 1 km. This situation is very
optimistic since as mentioned by Magueijo & Mozaffari (2012),
the saddle point can be pinpointed to about a kilometre and the
spacecraft location can be determined to about 10 km.

Fig. 4 represents the evolution of the MOND tidal stress Syy pro-
duced by the MOND transition function ν2 (see equation 5a). In this
simulation, the impact factor with respect to the saddle point is 1 km.
The maximal amplitude of the absolute value of Syy is of the order
of 10−16 s−2. The accuracy of LISA Pathfinder is expected to be
of the order of 10−14 s−2 (Magueijo & Mozaffari 2012). Therefore,
LISA Pathfinder will not be able to detect this MOND transition
function (see also Galiani et al. 2012). One might argue that the
internal self-gravity of the spacecraft might however increase the
effect (Trenkel & Wealthy 2014). However, let us remember that
ν2 is actually excluded by our present analysis. The situation is
actually much worse for the other functions: the signal for ν3 is
2 orders of magnitude smaller than then one produce by ν2 while
the one for ν4 is 4 orders of magnitude smaller. Also recall that,
for that να family, only α > 6 is acceptable. For other families,
the function ν̃0.5 for instance produces a deviation of the order of
10−1000 s−2, while the other transition functions ν̃α , ν̄α , and ν̂α lead
to even smaller tidal stresses. These very small numbers reflect the
exponential convergence towards the Newtonian regime provided
by these transition functions. Even taking into account the internal
self-gravity of the spacecraft as in Trenkel & Wealthy (2014) will
thus not provide the necessary correction of literally multiple thou-
sands of orders of magnitude for making the effect detectable with
an acceptable transition function such as ν̄2.

In conclusion, LISA pathfinder does not offer any possibility to
constrain the transition functions considered in this analysis. The
Cassini constraint from Hees et al. (2014) using the EFE is much
more efficient.

5 D I S C U S S I O N A N D C O N C L U S I O N

The non-linearity inherent to the MOND paradigm leads to the fact
that the internal dynamics of a system is influenced by the external
gravitational field in which it is embedded. In this communication,
we use this EFE to derive constraints on the various MOND transi-
tion functions with a combined analysis of galactic rotation curves
and of the Solar system.

First of all, we have derived the best-fitting value of a0 for a large
class of transition functions, and we have shown that, at the galactic
level, the EFE can lead to a velocity decrease in the external part of
the rotation curves. This helps to improve several galactic rotation
curves in our analysed data set, the most impressive being UGC
4173, UGC 7577, and UGC 12060. The typical range of optimal
values for the external gravitational field (ranging between 10−11

and 10−13 m s−2, see Table 1) is a priori realistic. It will be extremely
interesting to investigate whether a source of non-negligible external
field can be found in the environment of these galaxies. Neverthe-
less, it is not a trivial task because a massive source at large distance
can contribute more than a low-mass one at close distance. This also
depends on the MOND cosmology (e.g. Blanchet & Le Tiec 2008,
2009; Angus et al. 2013). For instance an external field of 10−12

m s−2 can be produced by a 7 × 1010 M� galaxy at a distance of
100 kpc, by a 3 × 1013 M� group/cluster at 2 Mpc or by a large
attractor of 2 × 1016 M� at 50 Mpc (the typical distance from the
Great Attractor to the Milky Way). For instance, in the case of UGC
7577, we note that there are ∼ 50 galaxies at a projected distance
of less than 40 kpc, which is roughly enough to produce an EFE of
10−12 m s−2 (see the estimated value from Table 1, also shown in
Fig. 3).

In the Solar system, the EFE produces non-negligible effects
even for transition functions that present an exponential tran-
sition towards the Newtonian regime. This allows us to test
MOND in the Solar system as mentioned by Milgrom (2009b) and
Blanchet & Novak (2011a). Cassini observations have provided
the estimation (13). We have performed a combined analysis of a
sample of galactic rotation curves and of the Cassini estimation
to constrain the MOND transition function. The galactic rotation
curves provide an estimation of the MOND acceleration scale a0

that is used to estimate the Q2 parameters. This estimation is com-
pared with the observational estimation of Q2 provided by Cassini
data (Hees et al. 2014). The results are presented in Table 2. The
functions ν̃α are completely rejected by this analysis. The transition
functions να and ν̂α can, on the other hand, still be viable for large
values of α. The only class of functions that is compatible with both
types of observations for almost all α is ν̄α , for α ≥ 2. We note
however that these constraints do not apply to, e.g. modified inertia
theories.

Finally, we have shown that for these classes of acceptable tran-
sition functions, the space mission LISA pathfinder will not be able
to detect or to constrain them.
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A P P E N D I X A : FI T TO ROTAT I O N C U RV E S W I T H ν8 A N D ν̂6

Here we present fits using the transition functions ν8 and ν̂6 which, like ν̄2, are not rejected by Solar system observations. It is interesting to
notice that, at the level of galactic rotation curves, fits using να and ν̂α are very similar. This is explained by the similarity in the profile of
the transition function as can be seen in Fig. 1 and can be noticed from the first columns of Table 2 where the optimal values for the MOND
acceleration scales and the χ2 of rotation curves is presented for different transition functions. It can be seen that values for να and ν̂α are
very similar.

Fig. A1 represents the rotation curve fits for ν8 and Fig. A2 for ν̂6. The optimal values and confidence intervals for ϒg, dg, and the EFEs
are presented in Fig. A3. The fits for both of these transition functions are qualitatively similar. The EFE improves more fits with ν8 and ν̂6

than with ν̄2. As with ν̄2, the quality of the fits of UGC 4173, UGC 11707, and UGC 7577 are significantly improved and the fit for UGC
12060 is improved for all the radii. In addition, the EFE improves the quality of the fits for UGC 731, UGC 4325, UGC 5005, UGC 6446,
UGC 7524, UGC 7559, UGC 9211, F568-V1, F574-1, F583-1, and F583-4. More fits are improved using ν8 and ν̂6 compared to ν̄2 and for
some galaxies, the improvement is more significant as well (see for example UGC 4325).
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Figure A1. Results of the fits using the MOND transition function ν8 for the optimal value a0 = 1.4 × 10−10 m s−2. The dashed (red) thick lines represent
the optimal fit without any EFE; the thick (green) solid line represents the optimal fit with EFE; the thin solid line represents Newtonian the contributions of
the stars; and the thin dashed line represents the gas contribution. Since the optimal fits with and without EFE do not necessarily produce the same distance
scale factor, the radial scales may not be the same. On the top of the plots we mention the radial scale obtained without EFE, at the bottom of the plots we
mention the radial scale obtained with EFE.
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Figure A2. Results of the fits using the MOND transition function ν̂6 for the optimal value a0 = 1.5 × 10−10 m s−2. The dashed (red) thick lines represent
the optimal fit without any EFE; the thick (green) solid line represents the optimal fit with EFE; the thin solid line represents Newtonian the contributions of
the stars; and the thin dashed line represents the gas contribution. Since the optimal fits with and without EFE do not necessarily produce the same distance
scale factor, the radial scales may not be the same. On the top of the plots, we mention the radial scale obtained without EFE, at also the bottom of the plots
we mention the radial scale obtained with EFE.

MNRAS 455, 449–461 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/455/1/449/985618 by guest on 19 February 2021



460 A. Hees et al.

Figure A3. Left: fits with ν8 and a0 = 1.4 × 10−10 m s−2. Right: fits with ν̂6 and a0 = 1.5 × 10−10 m s−2. Blue: 68 per cent Bayesian confidence intervals
obtained with local fits to each of the 27 galaxies with the transition function. The blue dots represent the best fit. The red squares represent the optimal values
obtained without any external field effect.
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A P P E N D I X B: C O M P U TAT I O N O F T H E QUA D RU P O L A R E F E IN T H E S O L A R SY S T E M

Here, we have computed q using equation (12) for a wide range of MOND transition functions ν and values of the external field η. The results
are shown in Table B1.

Table B1. Value of the parameter q computed using equation (12) for different MOND interpolating function ν and value of η.

η 1.0 1.25 1.5 1.75 2. 2.25 2.5 2.75 3

ν2 8.8 × 10−2 1. × 10−1 1.1 × 10−1 1.2 × 10−1 1.2 × 10−1 1.2 × 10−1 1.2 × 10−1 1.2 × 10−1 1.2 × 10−1

ν3 8. × 10−2 8.3 × 10−2 7.9 × 10−2 7.3 × 10−2 6.7 × 10−2 6. × 10−2 5.4 × 10−2 4.9 × 10−2 4.5 × 10−2

ν4 7.4 × 10−2 6.8 × 10−2 5.7 × 10−2 4.7 × 10−2 3.8 × 10−2 3.1 × 10−2 2.6 × 10−2 2.1 × 10−2 1.8 × 10−2

ν5 7. × 10−2 5.7 × 10−2 4.3 × 10−2 3.1 × 10−2 2.3 × 10−2 1.8 × 10−2 1.4 × 10−2 1.1 × 10−2 8.4 × 10−3

ν6 6.6 × 10−2 4.9 × 10−2 3.3 × 10−2 2.3 × 10−2 1.6 × 10−2 1.1 × 10−2 8. × 10−3 6. × 10−3 4.5 × 10−3

ν7 6.3 × 10−2 4.3 × 10−2 2.7 × 10−2 1.7 × 10−2 1.1 × 10−2 7.6 × 10−3 5.4 × 10−3 3.9 × 10−3 2.9 × 10−3

ν8 6.1 × 10−2 3.8 × 10−2 2.2 × 10−2 1.4 × 10−2 8.6 × 10−3 5.7 × 10−3 4. × 10−3 2.8 × 10−3 2.1 × 10−3

ν̃.5 1.1 × 10−1 1.4 × 10−1 1.7 × 10−1 2. × 10−1 2.1 × 10−1 2.1 × 10−1 2. × 10−1 2. × 10−1 1.9 × 10−1

ν̃1 1.1 × 10−1 1.6 × 10−1 2.1 × 10−1 2.5 × 10−1 2.8 × 10−1 3. × 10−1 3. × 10−1 2.9 × 10−1 2.8 × 10−1

ν̃1.5 1. × 10−1 1.5 × 10−1 2.1 × 10−1 2.8 × 10−1 3.4 × 10−1 3.8 × 10−1 3.9 × 10−1 3.9 × 10−1 3.7 × 10−1

ν̃2 9.4 × 10−2 1.4 × 10−1 2.1 × 10−1 2.8 × 10−1 3.6 × 10−1 4.3 × 10−1 4.8 × 10−1 4.9 × 10−1 4.7 × 10−1

ν̃2.5 8.7 × 10−2 1.3 × 10−1 1.9 × 10−1 2.7 × 10−1 3.5 × 10−1 4.5 × 10−1 5.3 × 10−1 5.8 × 10−1 5.8 × 10−1

ν̃3 8. × 10−2 1.2 × 10−1 1.8 × 10−1 2.5 × 10−1 3.3 × 10−1 4.3 × 10−1 5.4 × 10−1 6.4 × 10−1 6.7 × 10−1

ν̃4 6.9 × 10−2 1.1 × 10−1 1.5 × 10−1 2.1 × 10−1 2.9 × 10−1 3.8 × 10−1 4.8 × 10−1 6.2 × 10−1 7.7 × 10−1

ν̃5 6.1 × 10−2 9.4 × 10−2 1.4 × 10−1 1.9 × 10−1 2.5 × 10−1 3.2 × 10−1 4.1 × 10−1 5.2 × 10−1 6.6 × 10−1

ν̄1 1.1 × 10−1 1.4 × 10−1 1.7 × 10−1 2. × 10−1 2.1 × 10−1 2.1 × 10−1 2. × 10−1 2. × 10−1 1.9 × 10−1

ν̄1.5 1.2 × 10−1 1.6 × 10−1 1.9 × 10−1 1.9 × 10−1 1.6 × 10−1 1.3 × 10−1 1.1 × 10−1 8.3 × 10−2 6.5 × 10−2

ν̄2 1.2 × 10−1 1.8 × 10−1 2. × 10−1 1.5 × 10−1 1. × 10−1 7. × 10−2 4.8 × 10−2 3.4 × 10−2 2.5 × 10−2

ν̄3 1.2 × 10−1 1.8 × 10−1 1.5 × 10−1 8.1 × 10−2 4.8 × 10−2 3.1 × 0−2 2.1 × 10−2 1.5 × 10−2 1.1 × 10−2

ν̄4 1.1 × 10−1 1.8 × 10−1 1.1 × 10−1 5.8 × 10−2 3.5 × 10−2 2.3 × 10−2 1.5 × 10−2 1.1 × 10−2 8. × 10−3

ν̄5 1.1 × 10−1 1.7 × 10−1 9.1 × 10−2 5. × 10−2 3.1 × 10−2 2. × 10−2 1.4 × 10−2 9.6 × 10−3 7.1 × 10−3

ν̄6 1.1 × 10−1 1.7 × 10−1 8.5 × 10−2 4.7 × 10−2 2.9 × 10−2 1.9 × 10−2 1.3 × 10−2 9.1 × 10−3 0.
ν̄7 1.1 × 10−1 1.7 × 10−1 2.7 × 10−1 4.6 × 10−2 2.8 × 10−2 1.8 × 10−2 1.2 × 10−2 0. 0.

ν̂1 9.5 × 10−2 1.3 × 10−1 1.6 × 10−1 1.9 × 10−1 2.2 × 10−1 2.5 × 10−1 2.8 × 10−1 3. × 10−1 3.3 × 10−1

ν̂2 9. × 10−2 1.1 × 10−1 1.1 × 10−1 1.2 × 10−1 1.2 × 10−1 1.1 × 10−1 1.1 × 10−1 1. × 10−1 9.6 × 10−2

ν̂3 8.1 × 10−2 8.3 × 10−2 7.7 × 10−2 6.7 × 10−2 5.6 × 10−2 4.6 × 10−2 3.6 × 10−2 2.9 × 10−2 2.3 × 10−2

ν̂4 7.5 × 10−2 6.7 × 10−2 5.3 × 10−2 3.9 × 10−2 2.8 × 10−2 1.9 × 10−2 1.3 × 10−2 9.4 × 10−3 6.8 × 10−3

ν̂5 7. × 10−2 5.6 × 10−2 3.8 × 10−2 2.4 × 10−2 1.5 × 10−2 9.9 × 10−3 6.7 × 10−3 4.7 × 10−3 3.4 × 10−3

ν̂6 6.6 × 10−2 4.7 × 10−2 2.9 × 10−2 1.7 × 10−2 1. × 10−2 6.5 × 10−3 4.4 × 10−3 3.1 × 10−3 2.3 × 10−3

ν̂7 6.4 × 10−2 4.1 × 10−2 2.3 × 10−2 1.3 × 10−2 7.6 × 10−3 4.9 × 10−3 3.4 × 10−3 2.4 × 10−3 1.7 × 10−3
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