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ABSTRACT
We present a dynamical measurement of the tangential motion of the Andromeda system,
the ensemble consisting of the Andromeda galaxy (M31) and its satellites. The system is
modelled as a structure with cosmologically motivated velocity dispersion and density profiles,
and we show that our method works well when tested using the most massive substructures
in high-resolution � cold dark matter (�CDM) simulations. Applied to the sample of 40
currently known galaxies of this system, we find a value for the velocity along the East and
North directions of vEast = −111.5 ± 70.2 km s−1 and vNorth = 99.4 ± 60.0 km s−1, implying a
transverse velocity significantly higher than previous estimates of the proper motion of M31
itself. This result has significant implications on estimates of the mass of the Local Group, as
well as on its past and future history.

Key words: galaxies: dwarf – Local Group.

1 IN T RO D U C T I O N

Determining accurately the motion of the M31 system with respect
to the Milky Way is fundamental for constraining the mass, dynam-
ical history and the future evolution of the Local Group (LG). The
line-of-sight velocity of M31 was measured for the first time even
before it became clear that the Andromeda Nebula was a galaxy
(Slipher 1913), and it was then already shown to be moving to-
wards the Milky Way. Ever since, measuring its proper motion or
transverse velocity has proven to be much more complicated, and
more than a hundred years after this first line-of-sight velocity mea-
surement, the transverse velocity remains hard to constrain reliably.

In this respect, a first giant leap was made by van der Marel &
Guhathakurta (2008, hereafter vdMG08) who used the line-of-sight
kinematics of M31 satellites as a probe of the global transverse
velocity of the M31 system. The key assumption in this work was
that the satellites of M31 on average follow the motion of M31
through space. The Heliocentric distances to the M31 satellites were
nevertheless not used in that study. This yielded a median transverse
velocity of 42 km s−1 with a one standard deviation confidence
interval ≤56 km s−1, consistent with zero at the 1σ level.

Ideally, one would use direct proper motion measurements, based
on well-defined point sources such as water masers whose position
with respect to background sources can be measured very accu-
rately. This approach has been used with radio interferometry to

� E-mail: jean-baptiste.salomon@astro.unistra.fr

measure the proper motion of M33 (Brunthaler et al. 2005) and that
of IC10 (Brunthaler et al. 2007). Unfortunately, however, most LG
galaxies do not contain known masers, and it was only recently that
five masers were discovered in M31 (Darling 2011). To date, no
proper motion for M31 has been published based on these masers,
which are located along the star-forming ring. In any case, when
such measurements become available, it will be necessary to prop-
erly model the annular structure of the star-forming ring, to link the
kinematics of the masers to that of the galaxy as a whole.

The proper motion of M31 itself was measured for the first time
by Sohn, Anderson & van der Marel (2012) with Hubble Space
Telescope (HST) data with 5–7 yr time baselines in three fields, using
compact galaxies as background reference objects. The surprising
result of this study was that the transverse velocity was found to
be 17 ± 17 km s−1, consistent with a purely radial orbit (van der
Marel et al. 2012).

While being an extremely impressive technical tour-de-force, the
Sohn et al. (2012) study had to make several assumptions that could
have led to a biased result. The three fields probed in that contri-
bution possess stellar populations with very different kinematics:
primarily the extended M31 disc, their so-called disc field, the stel-
lar halo in their ‘spheroid’ field, and the giant stellar stream in their
‘stream’ field. Sohn et al. (2012) modelled the kinematic behaviour
of these components to access the underlying M31 transverse mo-
tion. However, it is clear that the kinematics of these populations
are currently not fully understood, and this introduces significant
model-dependent uncertainties into their result. Their final proper
motion value is derived from a weighted average of the data in all
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three fields, but given the uncertainties, it is the ‘spheroid’ field that
contributes most significantly to that final value. Inspection of star-
counts maps (e.g. Ibata et al. 2014) shows that the ‘spheroid’ field
lies at the edge of an inner shell-like structure, where several kine-
matic substructures have been identified (Gilbert et al. 2007). If the
field contains a substantial fraction of stars that do not belong to the
spheroid (which is assumed to share the average motion of M31),
this could seriously affect any derived proper motion measurement.

Further concerns include colour-dependent point spread function
differences between the reference population and the stars of in-
terest, and the variation and degradation of the HST cameras over
time.

The astrophysical implications of this measurement are immense,
so we judged it to be important to undertake a completely indepen-
dent estimate of the M31 transverse motion using a different method
to Sohn et al. (2012). Furthermore, since we are primarily interested
in recovering the past history of the LG, we desire to uncover the
motion of the M31 system of galaxies rather than just the motion
of M31 itself. After all, the disc galaxy may itself be moving in
an orbit within the larger structure. Given that a large number of
new M31 satellite galaxies were discovered as part of the PAndAS
survey (McConnachie et al. 2009; Martin et al. 2013), we embarked
on the present project to use these halo tracers together with a new
maximum likelihood method to probe the transverse motion of the
M31 system.

In Section 2, we describe our method in detail, and test it on
cosmological simulations of LG analogues. The method is then ap-
plied to actual observations of the M31 satellite system in Section 3
where we present our results. Conclusions are drawn in Section 4.

2 M E T H O D

2.1 Basic idea

We build on the approach devised by vdMG08, using precise in-
formation on the phase-space distribution of the satellite system
of M31 to infer the proper motion of the host. The key ingredient
which allows us to derive a precise value of the transverse velocity
is the use, for the first time, of precise distances for the satellite
galaxies of M31 (Conn et al. 2012) plus a greater number satellites
thanks to recent discoveries.

The Heliocentric velocity vector vsat,i of each ith satellite galaxy
with respect to the Sun can be decomposed into

vsat,i = vM31 + vpec,i − vLSR − vpec,� , (1)

where vM31 is the velocity of M31 with respect to the Milky Way,
vpec,i the peculiar velocity of the satellite in the frame of M31, vLSR

is the circular speed of the local standard of rest (LSR) at the Solar
position in the Milky Way, and vpec,� the peculiar velocity of the
Sun with respect to the LSR. We use for these values a combination
of the peculiar motion derived in Schönrich, Binney & Dehnen
(2010) and of the total tangential motion from Reid et al. (2014)
using the Galactocentric distance of Gillessen et al. (2009). The
line-of-sight component of the velocity of M31 is also taken from
de Vaucouleurs et al. (1991). In the following, we will use a frame
centred on the Sun with the z-axis pointing towards M31, the x-axis
pointing to the east, and the y-axis pointing to the north. The two
unknowns we are searching for are thus vM31x and vM31y.

The peculiar velocity vpec,i of a satellite galaxy is seen as coming
from the equilibrium velocity distribution around the host. The dark
matter profile of the host, within which the satellites orbit, is taken
to be given by a NFW profile (Navarro, Frenk & White 1997) with

virial radius r200 = 300 kpc, concentration c = 12, and virial mass
M200 = 1 × 1012 M�, corresponding to mean values of recent
results (Watkins, Evans & An 2010; Fardal et al. 2013). We then
consider the velocity distribution within this halo to be isotropic,
which yields, after equation (14) of Łokas & Mamon (2001):
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where V200 is the circular velocity at the virial radius, s = r/r200

where r is the distance between the centre of the satellite and the
centre of M31, g(c) = 1/(ln (1 + c) − c/(1 + c)), and Li2 is the
dilogarithm function.

A Markov chain Monte Carlo (MCMC) method (typically with
4 × 106 steps) is used to find the parameters vM31x and vM31y in
equation (1) yielding the highest likelihood (L) weighted by the
above dispersion, for the observed line-of-sight velocities and for
the given 3D positions of the entire sample of satellites (nsat):
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, (3)

with vMCMCi
the MCMC-method predicted velocity on the line of

sight for satellite i, and vobsi , the observed line-of-sight velocity for
the satellite i; Fig. 1 provides a visual demonstration of how the
method works.

2.2 Testing the method with cosmological simulations

First of all, we validate our method by applying it to the z = 0
snapshots of high-resolution cosmological simulations of LG ana-
logues undertaken by the ‘exploring the Local Volume in simula-
tions (ELVIS)’ collaboration (Garrison-Kimmel et al. 2014). With
this simulation, we have at our disposal a zoom on 12 host halo
pairs and 24 isolated host haloes, all in the mass range of the Milky
Way and M31. For each central halo, a large number of particles are
accessible beyond the virial radius, where the high resolution allows
us to have access to satellites down to a virial mass of 108 M�. In
order to validate our method, we select for each host halo the 39
most massive satellites, i.e. the same number of satellites as in the
observational sample of Section 3.

2.2.1 ELVIS : isolated haloes

We first apply the method on the 24 isolated haloes in ELVIS. Each
of the haloes is ‘observed’ from 10 different points of view, ran-
domly distributed on a sphere of radius 783 kpc, which corresponds
to the MW–M31 distance we adopted. This gives a total of 240 ‘ob-
served’ systems. We place ourselves in the ‘observer’ frame, where
the z-axis is along the line of sight, and the x and y axes arbitrarily
chosen while respecting the orthonormality of the coordinate sys-
tem. For each ‘observed’ halo, Markov chains of 2 × 106 steps are
built.

We plot on Fig. 2 the mean deviation of our recovered vx and
vy parameters with respect to the known relative velocity of the
isolated host with respect to the observer in the simulation (grey
points). Different limits are used for the maximum distance from the
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Figure 1. Illustration of the workings of the method. The simple model
described in Section 2.3 is used to make a realization of 50 000 satellites
which are placed at the distance of M31, and set in motion such that the
system possesses the mean motion measured in this contribution. Panel
(a) shows the corresponding Heliocentric velocities, which contain a large
signal from our motion around the centre of the Milky Way. Once this Solar
motion is corrected for (panel b), the bulk motion of the system of satellites
becomes apparent as an obvious velocity gradient along the direction of
motion of the system (which is indicated by the black arrow). The angular
positions (ξ , η) are given in terms of standard coordinates with respect to
the centre of M31.

host centre, Rlim, of the 39 satellites. The small, medium and large
grey points correspond, respectively, to rlim/r200 = 1, rlim/r200 = 2
and rlim/r200 = 3 where r200 is the virial radius of the host
halo.

The transverse velocity is better estimated for rlim/r200 = 2 than
for rlim/r200 = 1. This is due to the fact that the method needs
to sample a large range of lines of sight to be effective. However,
this improvement stops being useful when the satellites are too
far away from the host because they are not bound to it anymore.
The optimum recovery is for rlim/r200 ∼ 2 with a distribution of
deviations centred on the correct value to better than 10 km s−1

with 65 km s−1 uncertainties in both directions.

Figure 2. Means and uncertainties of the distribution of deviations of the
recovered vx and vy with respect to the known ones of the ELVIS simulation,
using as probes the 39 most massive satellite haloes within a given limiting
radius Rlim in the frame of the host. Grey points correspond to the application
of the method to 240 isolated halo ‘observations’, and red points to 24 halo
pair ‘observations’. The size of the points correspond to the limiting radius:
rlim/r200 = 1 for small points, rlim/r200 = 2 for medium-sized points, and
rlim/r200 = 3 for the largest points.

2.2.2 ELVIS: halo pairs

We now apply the same procedure to the 12 halo pairs of ELVIS.
This time, the ‘observation’ is made from the point of view of an
observer located at the centre of the other halo of the pair. This
again leads to 24 ‘observations’ of satellite systems. In Fig. 2, the
mean deviation of our recovered vx and vy with respect to the true
relative velocity is plotted in red. The optimum recovery is also
attained for rlim/r200 ∼ 2, with a distribution of deviations centred
on 15 km s−1 and σ = 55 km s−1 in both directions. This slightly
smaller σ than in the isolated case is probably due to the limited
influence of the environment in the halo pair case. The gravitational
effect of the environment is dominated by the second halo in the
pair configurations, while for the isolated haloes it varies from case
to case.

In summary, the performance of the proposed method is validated
by these high-resolution cosmological simulations, and the associ-
ated typical error is very reasonable (∼55 km s−1) with respect to
previous studies that used satellites vdMG08 to constrain the M31
proper motion. Moreover, these tests show that our method, which
fits a spherically symmetric halo model, works well even when
applied to realistic triaxial haloes.

2.3 Testing the method with mock M31 satellite systems

For our observational study, all M31 satellites known to date will
be considered: And I, And II, And III, And V, And VI, And VII,
And IX, And X, And XI, And XIII, And XV, And XVI, And XVII,
And XVIII, And XIX, And XX, And XXI, And XXII, And XXIII,
And XXIV, And XXV, And XXVI, And XXVIII, And XXIX, And
XXX (Cass II), NGC 147, NGC 185, M32, NGC2 05, IC 10, LGS
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Table 1. Observational results in terms of Heliocentric velocities, corrected for the LSR rotation and the peculiar motion of the Sun.

Method and selections East North Radial
vM31x vM31y vM31z

( km s−1) ( km s−1) ( km s−1)

39 satellites, vM31z fixed −121.0 ± 69.6 80.1 ± 57.8 −103.9 ± 4.0
39 satellites, vM31z free −111.1 ± 70.0 100.3 ± 59.8 −87.0 ± 14.0

40 satellites (M31 as a ‘satellite’) − 111.5 ± 70.2 99.4 ± 60.0 − 87.5 ± 13.8

26 satellites (without VTP) −77.6 ± 70.7 1.2 ± 64.2 −84.0 ± 16.8
30 satellites (velocity limitation) −171.2 ± 79.5 96.6 ± 68.3 −98.3 ± 15.4

3, Pegasus, IC 1613, M33, Per I, Lac I, Cass III, And XII and And
XIV.

The positions on the sky and the line-of-sight velocities of
these satellites have been extracted from the recent literature (Mc-
Connachie 2012; Collins et al. 2013; Martin et al. 2014). The dis-
tances of 11 satellites are also extracted from the same papers, while
that of the 25 other satellites have been estimated by Conn et al.
(2012). The distances of Lac I, and Cass III are taken from Mar-
tin et al. (2013a) and that of Per I from Martin et al. (2013b). As
explained in Section 2.1, we will work in a frame centred on the
Sun, with the z-axis pointing towards the centre of M31, the x-axis
pointing to the east, and the y-axis pointing to the north.

In order to further validate the method, we construct a simple
3D model representing the M31 satellite system observed from
a star orbiting in a neighbouring large spiral galaxy. We put 39
satellites in the mock M31 system exactly at the same position
with respect to the host as in the observed case. The observer’s
galaxy is placed at a distance of 783 kpc, with the observer orbit-
ing this galaxy at 8 kpc from its centre, at a circular velocity of
220 km s−1 and an (arbitrary) peculiar velocity (U, V, W)� = (10,
10, 10) km s−1. We then impose the relative velocity between the
two large galaxies to be (1) vM31 = (−100, 100, 100) km s−1, and
(2) vM31 = (0, 0, 100) km s−1 to check that a pure radial motion can
be recovered by the method. The 39 satellites are located at the mean
observed distances from the real M31 system, and a peculiar ve-
locity is randomly drawn in 1000 models from a NFW profile with
equation (2). First, we use the same halo parameters as in the follow-
ing MCMC fit, i.e. c = 12, r200 = 300 kpc and M200 = 1 × 1012 M�.
As expected, we then recover in both cases (1) and (2) the trans-
verse component of vM31 with a typical maximum deviation of
�vM31x = 2.4 ± 73 km s−1 and �vM31y = 0.1 ± 60 km s−1, quite
close to the values found in our tests with the ELVIS simulations.
This demonstrates that, even with a sparse spatial sampling of only
39 satellites (with only one spatial realization compared to the mul-
tiple realizations in ELVIS), the method recovers the true transverse
velocity with no bias and a reasonable uncertainty.

Then, we check the robustness of the results to a mistaken choice
of velocity distribution in equation (2). For this, we construct mod-
els with M200 varying from 0.7 to 2.0 × 1012 M�, concentrations
from 8.0 to 20.0, and virial radii from 200 to 350 kpc. We then
apply our MCMC method with the likelihood weighted by the dis-
persion coming from equation (2) with c = 12, r200 = 300 kpc and
M200 = 1 × 1012 M�. The recovered M31 velocity only typically
deviates by 0.3 km s−1 from the true ones, with the same dispersion
as before. This means that an inadequate choice of halo parameters
has a negligible impact on the uncertainties.

We also check the influence of distance uncertainties. We ap-
ply our method by using distances drawn from the observational
probability density function (PDF) (from Conn et al. (2012) for 25

satellites and from Gaussian PDF built from the observational uncer-
tainties for the others) at each step in our Markov Chains. The typical
deviations induced by these uncertainties is only 0.6 ± 0.1 km s−1 on
�vM31x and 1.5 ± 2.7 km s−1 on �vM31y. We will use this method,
based on the PDF, for the application of the method to the true
observations in the next section.

3 R ESULTS

3.1 Complete sample of satellites

We use the MCMC method described in the previous section, with
4 × 106 steps, in order to find the parameters vM31x and vM31y from
equation (1) yielding the highest likelihood weighted by the disper-
sion of equation (2) as in equation (3), for the observed line-of-sight
velocities and for the given 3D positions of the satellites. What is
used is actually the full PDF for the distances, taking into account
the uncertainties. Each Markov chain will then begin with a random
drawing among each of these distance PDFs. We use the halo pa-
rameters presented in Section 2.1 to obtain the σri , using equation
(2). We correct the peculiar velocities for the motion of the Sun us-
ing U� = 11.1+0.69

−0.75 km s−1, V� + VLSR = 255.2 ± 5.1 km s−1 and
W� = 7.25+0.37

−0.36 km s−1 (Schönrich et al. 2010; Reid et al. 2014).
Note that we draw a value for (U�, V� + VLSR, W�) at each step
of our Markov chain in order to take into account the uncertainties
on these parameters. Finally, we force the radial velocity of the
M31 system, vM31z, to be the measured radial velocity of the M31
galaxy itself, corrected for the Solar velocity in that direction, i.e.
−103.9 ± 4.0 km s−1. This prior is given as a Gaussian PDF applied
to each step of the Markov chain.

The first line of Table 1 yields the resulting corrected velocities:
vM31x = −121.0 ± 69.6 km s−1, vM31y = 80.1 ± 57.8 km s−1,
vt ∼ 145 km s−1 (modulus of the transverse component from vM31x

and vM31y) and vM31z = −103.9 ± 4.0 km s−1, i.e. the east, north,
transverse and radial components, respectively. These values are
Galactocentric, i.e. they give the relative motion of the M31 system
centre to the MW centre. The Heliocentric velocities, observed from
the Sun are, respectively, 23.6 ± 69.6 km s−1, 0.9 ± 57.8 km s−1,
∼ 24 km s−1 and −300.0 ± 4.0 km s−1. Note that the typical un-
certainties yielded by the MCMC method are of the same order of
magnitude as the typical dispersion of the results with respect to
the true values in simulations, demonstrating the coherence of the
method. These uncertainties are also very similar to those obtained
by vdMG08 when applying a different method to the M31 system.
In their study, the smaller errors they quote result from measuring
a weighted average mean to the results obtained by applying their
method to different individual objects such as M33 and objects
supposedly outside of the LG.
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3.2 Relaxing the radial velocity constraint

In a second implementation, we relaxed the constraint on the
radial velocity vM31z, which is now considered fully as a
third unknown in equation (1). Line 2 of Table 1 gives the
recovered Galactocentric velocities (vM31x = −111.0 ± 70.0
km s−1, vM31y = 100.3 ± 59.8 km s−1, vt ∼ 150 km s−1 and
vM31z = −87.0 ± 14.0 km s−1). The Heliocentric values are:
vM31x = 33.5 ± 70.1 km s−1, vM31y = 20.6 ± 59.8 km s−1,
vt ∼ 39 km s−1 and vM31z = −282.1 ± 14.4 km s−1. The 1σ un-
certainty of the obtained radial velocity component and of the ob-
served value are overlapping, which provides strong evidence that
M31 resides at the centre of its satellite system.

3.3 Andromeda considered as yet another ‘satellite’ in the
halo satellite system

In a third implementation, which we consider as the most robust,
we add M31 itself as an additional ‘satellite’ in the halo with radial
velocity −103.9 ± 4.0 km s−1. The MCMC method is thus now
applied to a system of 40 satellites. The distance of each satellite
from the Sun is drawn at each step from the observational PDF on
the distance. Then the distance to the M31 galaxy itself from the
centre of the system is drawn from a Gaussian PDF with 25 kpc
dispersion, and the distance from each galaxy to the centre of the
M31 system is then recomputed. In the case of the M31 galaxy, the
distance to itself is obviously zero with no error, and the distance
from the centre of the system is just drawn from a Gaussian PDF
with 25 kpc dispersion.

The resulting transverse and radial velocities of the M31 system
are indicated in the third line of Table 1 (vM31x = −111.5 ± 70.2
km s−1, vM31y = 99.4 ± 60.0 km s−1, vt ∼ 149 km s−1 and
vM31z = −87.5 ± 13.8 km s−1). The Heliocentric values are:
vM31x = 33.1 ± 70.2 km s−1, vM31y = 19.6 ± 60.0 km s−1,
vt ∼ 38 km s−1, and vM31z = −282.6 ± 14.3 km s−1.

The velocities are very similar to the ones obtained with 39 satel-
lites, and the error on the radial velocity of the whole M31 system
overlaps at the 1σ level with the velocity of the M31 ‘satellite’.
This value is the least model-dependent one, and is based on the
largest sample, meaning that the Galactocentric transverse velocity
of ∼ 149 km s−1 is considered as our best estimate.

3.4 Influence of the plane of satellites

It has recently been claimed that approximately 50 per cent of the
satellite galaxies of M31 are confined to a vast thin plane (VTP) of
satellites (Ibata et al. 2013). The presence of this structure could,
in principle, bias our transverse motion estimates, so we decided to
also apply the method to the 26 satellites that are not part of the
VTP. The recovered values are listed in line 4 of Table 1 (vM31x =
−77.6 ± 70.7 km s−1, vM31y = 1.2 ± 64.2 km s−1, vt ∼ 78 km s−1

and vM31z = −84.0 ± 16.8 km s−1), corresponding to Heliocentric
values of vM31x = 67.0 ± 70.7 km s−1, vM31y =−78.5 ± 64.2 km s−1,
vt ∼ 103 km s−1 et vM31z = −279.1 ± 17.2 km s−1. The 1σ errors
from this and the previous estimations based on 39 and 40 objects
are overlapping. Since the VTP has a north–south orientation, a lot
of information has nevertheless been lost, and the north component
vM31y has been the most affected.

Nevertheless, to be sure that a corotating plane cannot substan-
tially affect the results, we have applied our method on satellite
planes selected from the ELVIS simulations. Once again, the 24
isolated haloes are ‘observed’ from 10 different MW-like points of

view. We first define an edge-on plane of satellites, by selecting the
set of 13 satellite haloes that have velocities most consistent with
being in corotation with thickness <20 kpc (but no mass criterion
is used for the selection). The simulation is then rotated so that the
plane is seen edge-on in the north–south direction to the fictitious
observer. To obtain a full sample of 39 satellites, we complement
the corotating sample by adding in the 26 most massive satellites
from the simulation. This selection procedure therefore produces
systems with an apparent corotating plane of satellites similar to
that of M31, and with coherent dynamics. Note that the maximum
distance of satellites from the host is always limited to 2 virial radii.
We applied the method to the 240 observations. The mean deviation
of our recovered vx and vy parameters with respect to the known
relative velocity of the isolated host is �vx = −4.0 ± 89.6 km s−1

and �vy = 52.1 ± 87.6 km s−1. The uncertainties are ∼15 km s−1

larger than those obtained in Section 2.2, which seems reasonable
given that we have forced a correlation in the data. In the direction
perpendicular to the plane (vx), we recover the correct velocity, yet
even in the direction parallel to the edge-on plane (vy), our strict
selection has only a limited impact since the systematic deviation is
smaller than the uncertainties. Consequently, we see that even with
13 satellites in a 3D corotating plane, the method is robust enough
to find the tangential velocity of the host halo.

3.5 Influence of the satellites with high velocities

It was shown previously in section 2.3 that the assumed velocity
distribution has little impact on the obtained result even when wrong
values for the velocity distribution parameters in equation (2) are
used. However, the true halo mass has another effect, namely its
capacity to bind satellites. Given a certain halo profile, the speed of
a satellite can be too high for it to be bound to the system, namely
when it exceeds the escape speed

vesc =
√

2 GM200

r
. (4)

This can be the case for satellites that have just arrived and are
passing by, or if they have undergone strong interactions involving
a gravitational kick. In such a situation, the method clearly sees
the given line-of-sight velocity of the satellite as an exception and
attempts to minimize the deviation. Previous tests on cosmological
simulations have shown that this was, in principle, not a big issue,
mainly because such exceptions tend to compensate each other. We
nevertheless decided to make a further measurement, restricting our
sample to satellites with

vesc >
√

3 |vlos − vM31z| , (5)

following the criterion of McConnachie (2012) where the escape
speed is calculated for the NFW model used in the MCMC method.
This criterion limits our sample to 30 satellites where And XIX,
And XX, And XXII, And XXIV, And XXV, AndXXX, Pega-
sus, M33, And XII and And XIV are excluded. The mock M31
model used in the previous section is used again with 30 satel-
lites, and it is then found that the associated sparse sampling
induces a systematic deviation from the true transverse velocity,
�vM31x = 38.6 ± 50.1 km s−1, �vM31y = −12.5 ± 41.5 km s−1 and
�vM31z = −2.5 ± 11.8 km s−1. This is because the observational
criterion to exclude galaxies depends on the line of sight, and on the
actual orientation of the velocity vector of the satellite. We subtract
theses systematic deviations from our obtained results, and report
the final values in the final line of Table 1 (vM31x = −171.2 ± 79.5
km s−1, vM31y = 96.6 ± 68.3 km s−1, vt ∼ 197 km s−1 and
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Transverse velocity of the M31 system 4437

Figure 3. Probability density functions of the motion of the M31 system for vM31x, vM31y, vt and vM31z resulting from our MCMC method. The black line
represents the PDFs for 39 satellites when vM31z is fixed whereas the red line traces the PDFs for 40 objects (39 satellites plus M31) with vM31z considered as
a free parameter. In the bottom right-hand panel, the vertical line shows the fixed value of vM31z for the experiment with 39 satellites.

vM31z = −98.3 ± 15.4 km s−1). The Heliocentric values are:
vM31x = −26.6 ± 79.5 km s−1, vM31y = 16.9 ± 68.3 km s−1,
vt ∼ 31 km s−1 and vM31z = −293.3 ± 15.8 km s−1. Because of
the reported systematic deviations that we had to subtract from our
results, we consider this case less reliable than the previous ones.
Indeed, a slight increase of the mass of the halo would allow almost
all satellites to be bound, thus getting back to the previous cases,
without any systematic bias on the result.

The effect of outliers in a sample can also be assessed in an au-
tomatic way (Sivia & Skilling 2006). To this end, we adopted the
‘conservative formulation’ of Sivia & Skilling (2006), which in-
volves a modification of the likelihood equation (equation 3), where
the contribution of outliers are marginalized in the calculation:

lnL =
nsat∑
i=1

{
− ln(σri

√
2π) + ln

[
1 − e(−T 2

i /2)
]

− ln
(
T 2

i

) }
, (6)

where Ti = (vMCMCi
− vobsi )/σri . We first applied this method to

the satellites of the 24 ELVIS-isolated haloes observed from 10
different MW-like points of view (as previously selected in Sec-
tion 2.2). For the two parameters of interest, vx and vy, we
obtained the same central values. The uncertainties are about
5 km s−1 larger than those calculated with the standard likeli-
hood formulation (equation 3). Then, to compare the two meth-
ods on the observations, we applied the ‘conservative formula-

tion’ to the complete sample of 40 satellites where the third
parameter (vz) is also relaxed. The Heliocentric values are:
vM31x = 55.1 ± 133.6 km s−1, vM31y = 12.6 ± 107.8 km s−1,
vt ∼ 56 km s−1 and vM31z = −277.1 ± 24.8 km s−1 (correspond-
ing to Galactocentric velocities of: vM31x = −89.5 ± 133.6 km s−1,
vM31y = 92.3 ± 107.8 km s−1, vt ∼ 129 km s−1 and vM31z =
−82.0 ± 24.6 km s−1). These values are in good agreement with the
values calculated with the standard likelihood formulation (which
are listed in the third line of Table 1). Thus, the central values
obtained both on cosmological simulations and observations are
consistent, which proves that our approach is robust to the presence
of outliers. Nevertheless, the uncertainties are significantly larger
with the ‘conservative formulation’, which is what is expected with
this method (Sivia & Skilling 2006), as it effectively reduces the
information content of the data.

3.6 Summary of results

The above discussion motivates us to consider the samples with
39 or 40 satellites (i.e. the samples without object rejection) as the
preferred configurations; the probability density functions derived
from our MCMC chains from the analyses of these samples are
shown in Fig. 3. The spatial distribution of corrected velocities, and
velocity residuals for the full sample of 40 satellites is shown in
Fig. 4. Along the direction of motion our method infers (arrow in
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Figure 4. Properties of the real satellite sample: (a) the most likely He-
liocentric distances, (b) the radial velocity corrected for the Solar motion
(compare to Fig. 1b), (c) the residuals with respect to the best-fitting model.
The most robust direction of motion recovered by our method is shown
with an arrow in (b); while not completely straightforward to interpret vi-
sually due to the multidimensionality of the information, it can be seen to
correspond to a direction along which the velocity gradient is high. The
dashed-line circles mark 150 and 300 kpc (≈r200), while the irregular poly-
gon delineates the boundary of the PAndAS survey. (ξ , η) are standard
coordinates centred on M31.

panel b), one can notice visually a velocity gradient by eye. Once
this model for the motion is removed (panel c) no large-scale pattern
in the residuals is evident. It is interesting to note from panel (c)
that after accounting for the bulk motion of the system, some of the
kinematic coherence of the VTP is lost: while the VTP satellites
to the south of M31 predominantly have negative velocities (blue),
the Northern satellites no longer have large positive velocities (cf.
Ibata et al. 2013).

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have shown that the method we have developed allows the
3D velocity of the halo to be measured accurately. Our tests using
the ELVIS suite of simulations gave rise to uncertainties on the
transverse motion of less than 65 km s−1, irrespective of whether the
haloes were isolated or in LG-type pairs. The further tests, building
models similar to the observations allowed us to demonstrate that
the particular sky positions that the current sample of satellites are
situated at, do not give rise to significant biases in the measured
proper motion. Our model also showed that an incorrect estimate
of the parameters of the NFW input model (M200, r200, c and 3D
position) has a negligible effect on our results. In contrast, the
uncertainties on the 3D motion of the Sun within the Milky Way
can cause significant systematic errors. For instance, lowering the
tangential motion of the observer by 35 km s−1, causes the motion
of the Andromeda system to fall by 15 km s−1.

Due to their enormous masses, the haloes of giant galaxies should
dominate their environment, so we may expect it to be natural that
the baryonic disc formed at the centre of this structure. This was
the basis for our first set of measurements, where we analysed the
motions of the 39 satellites, assuming that the radial velocity of the
halo shares the radial velocity of M31 itself. In this way the motion
of the system was established.

In a second set of measurements, we dropped the requirement for
the radial velocity of M31 and the larger system to be identical. M31
was then considered to be just another satellite particle within this
system. By analysing several selections of satellites, we are able to
demonstrate the good coherence and stability of our results.

When placed into the Heliocentric frame, our measurements are
mostly in good agreement with the earlier study of vdMG08, see
Fig. 5, based on a much smaller sample of satellites. However, we
are forced to draw different conclusions to vdMG08, partially due
to recent improvements in the determination of the Solar motion.
The remaining differences are in the measurements themselves.
In Fig. 5, the most discrepant of the measurements by vdMG08
from our results is that due to the ‘outer LG galaxy sample’, and
it is this estimate that contributes most to the vdMG08-weighted
average. However, their outer LG galaxy sample consists of only
five galaxies, and given the statistical nature of their test, there are
strong grounds to be concerned about the tiny sample size. While
the HST measurements shown in Fig. 5 pertain to the motion of M31
rather than that of the whole system, we note that the HST disc field
measurement is completely consistent with our findings. As noted
in Section 1, it is possible that the spheroid field could contain some
unidentified kinematic substructure that biases that measurement,
and current dynamical models of the giant stellar stream may be
incomplete.

Another interpretation of the kinematics of the M31 satellite sys-
tem is that the observed velocity gradient reflects some intrinsic
rotation of the halo. This possibility was explored recently by Dea-
son, Belokurov & Evans (2011), who found the need for a rotation
of vφ = (62 ± 34) (R/10 kpc)−1/4 km s−1, where R is the projected
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Figure 5. Heliocentric transverse velocities of the M31 system and M31
itself. The results of the present study for 39 satellites with vM31z fixed,
and for 40 satellites with vM31z as a free parameter are shown with large
black circles. For comparison, we also show the different estimations of the
Heliocentric transverse motion of the M31 complex measured by vdMG08
with squares of different colours. The vdMG08 satellite sample is shown in
blue, the constraint from M33 in green, the constraint from IC10 in red, and
the constraint from the outer Local Group sample in magenta. The proper
motion measurements of M31 stars from the three deep HST fields studied
by van der Marel et al. (2012) are shown in grey. These three HST field
values are shown shifted to reflect the M31 centre of mass motion, i.e. the
HST PMs are corrected for the internal kinematics model and the viewing
perspective.

radius from the axis of rotation. It seems difficult to disentangle such
a rotation from a bulk motion such as that considered in the present
contribution, as the two effects will be quite similar. However, we
note that in Section 2.2, we calibrated our method against cosmo-
logical simulations that do have rotation, and found no significant
bias. Moreover, in Section 3.4, when we artificially imposed the
presence of a plane of satellites, we found only a slight effect, con-
tained within the range of uncertainties, on the recovered tangential
velocity.

4.1 Implications

The inferred transverse motion reported in this contribution turns
out to be surprisingly high. The value of what we consider to be the
most robust velocity measurement, corrected for the Solar motion,
is (−111.5 ± 70.2, 99.4 ± 60.0, −87.5 ± 13.8) km s−1, in the
east, north, and radial directions, respectively. Note that the radial
velocity of the M31 system, determined in this way, lies within
1σ of the radial velocity of M31 corrected for the Solar motion
(−103.9 ± 4.0 km s−1). This suggests that M31 does indeed share
the same kinematics as the M31 system of satellites, and the domi-
nant dark matter halo.

The transverse motion of the complex turns out to be somewhat
larger than the radial motion. By comparing the MCMC likelihood
ratios, we find that a radial orbit with respect to the Milky Way
is ∼ 12 times less likely than the measured motion. The direction
of this motion, almost normal to the supergalactic plane (and di-

rected away from it), is in excellent agreement with the prediction
of transverse motion by Peebles et al. (2001), based on the action
principle. Using the positions and redshifts of the principal galaxies
out to 20 Mpc, they predict the local distribution of mass and esti-
mate the transverse velocity for a number of galaxies. According to
their calculations, Andromeda should have a transverse velocity of
150 km s−1 directed either towards or away from the supergalactic
plane. Given this agreement with a large transverse velocity, it will
be interesting to investigate how this non-radial velocity affects the
analysis of the LG mass, via the timing argument (e.g. Peñarrubia
et al. 2014).

Over time, galaxies acquire angular momentum from the various
gravitational interactions they have with their neighbouring galax-
ies. Even if part of the torque is ‘absorbed’ by the dark matter
halo (Barnes 1988), some fraction is imparted on to the baryonic
structures. Thus, following the approach pioneered by Raychaud-
hury & Lynden-Bell (1989), it is possible to estimate the magnitude
of the tidal forces imparted on the LG over the course of its past
evolution. These authors showed that the torque imparted on the
Milky Way and Andromeda, caused by the action of external galax-
ies (within 10 Mpc), is not negligible at z = 0. They estimated
that the resulting transverse velocity of M31 should correspond to
approximately 40 km s−1. According to the uncertainties, this value
is 2σ lower than what we find in this study. However, it shows
that a transverse velocity of M31 can be expected to arise from
the tidal field that the LG is subject to. It is worth noting that the
number, distances and masses of nearby galaxies have been signif-
icantly updated since that earlier work was published, which may
be interesting to re-examine in the light of modern data.

The transverse motion of the M31 satellite system revealed by our
study should also be placed in its context in terms of the dynamics of
objects in their environment within the LG. Our result is effectively a
measurement relative to the motion of the Milky Way (and within the
uncertainties of the Sun’s motion). So the motion of the Milky Way
is implicitly subsumed within our analysis. However, recently Besla
et al. (2012) have suggested that the mass of the Large Magellanic
Cloud (LMC) is of the order of 1011 M�. The LMC appears to
be on its first passage around our Galaxy, on an orbit that exceeds
6 Gyr, and with a radial velocity whose present magnitude exceeds
300 km s−1. Qualitatively, this means that if the total halo mass of the
Milky Way lies in the vicinity of 1 × 1012 M�, our Galaxy may have
accelerated up to a velocity of ∼60 km s−1 in the direction of the
LMC. This back-of-the-envelope estimate is consistent with recent
findings by Gómez et al. (2015), who estimate an upper limit of this
velocity of 75 km s−1. In subsequent work, it will be interesting to
examine the possible effect of the LMC on our measurement of the
space velocity of the M31 system.

The projection on to the sky of the velocity of the M31 system
that we have measured is aligned with the vector connecting M33 to
M31. This orientation may not be fortuitous given that M33 is the
third most massive galaxy in the LG, and that its accretion during
the formation of the M31 system may have changed the internal
dynamics of the system. The proper motion of M33 has been mea-
sured by Brunthaler et al. (2005). Using that proper motion study,
Loeb et al. (2005) placed constraints on the proper motion of M31.
They found an amplitude of 100 ± 20 km s−1, consistent with our re-
sults. In the Heliocentric frame, we find vM31x = 33.1 ± 70.2 km s−1,
vM31y = 19.6 ± 60.0 km s−1, which is not in the north-west direction
excluded by Loeb et al. (2005). It will be interesting to re-explore
this issue with orbital models of M33 within the M31 system using
the kinematics that we have determined. The impact of this satellite
galaxy on the Andromeda system can thereby be quantified.
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Finally, it will be very interesting to examine whether the trans-
verse motion that we have detected calls into question whether
the LG is gravitationally bound. Indeed, is it instead just a ‘Local
Flyby’? If we consider that the Andromeda system really does have
the velocity that we have measured, simple orbital calculations (in-
tegrating the equations in Partridge, Lahav & Hoffman 2013), show
that the distance of closest approach between the two galaxies is
≈550 kpc. Setting up a hydrodynamical simulation with a similar
approach to (Cox & Loeb 2008) would allow the exploration of
the interaction, including the investigation of the intensity of tidal
forces on the two galaxies.
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