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ABSTRACT
Both the three-dimensional density of red clump giants and the gas kinematics in the inner
Galaxy indicate that the pattern speed of the Galactic bar could be much lower than previously
estimated. Here, we show that such slow bar models are unable to reproduce the bimodality
observed in local stellar velocity space. We do so by computing the response of stars in the solar
neighbourhood to the gravitational potential of slow and fast bars, in terms of their perturbed
distribution function in action-angle space up to second order, as well as by identifying
resonantly trapped orbits. We also check that the bimodality is unlikely to be produced
through perturbations from spiral arms, and conclude that, contrary to gas kinematics, local
stellar kinematics still favour a fast bar in the Milky Way, with a pattern speed of the order
of almost twice (and no less than 1.8 times) the circular frequency at the Sun’s position. This
leaves open the question of the nature of the long flat extension of the bar in the Milky Way.

Key words: Galaxy: disc – Galaxy: evolution – Galaxy: kinematics and dynamics – solar
neighbourhood – Galaxy: structure.

1 IN T RO D U C T I O N

The Milky Way is a barred galaxy. This conclusion can be readily
established from the gas kinematics in the inner Galaxy (e.g. de
Vaucouleurs 1964; Binney et al. 1991), as well as from near-infrared
photometry (Binney, Gerhard & Spergel 1997). Nevertheless, and
rather surprisingly, the structural parameters of the Milky Way bar,
in particular its strength, orientation, and pattern speed, are still very
poorly constrained.

Almost two decades ago, based on photometry and gas kinematics
arguments, a consensus emerged for a fast bar with corotation (CR)
around ∼3.5 kpc (e.g. Binney et al. 1997; Bissantz, Englmaier &
Gerhard 2003), i.e. a perturbation pattern speed �b ≈ 1.9 �0, where
�0 is the local rotational frequency at the Sun’s radius R0, and an
angle between the bar major axis and the Galactic Centre–Sun di-
rection of φb ∼ 25◦. This pattern speed would place the Sun just
outside the outer Lindblad resonance (OLR) of the bar, and the kine-
matical signature associated with this position indeed appears to be
present in the stellar phase-space distribution in the solar neigh-
bourhood (e.g. Dehnen 1999a, 2000; Famaey et al. 2005; Minchev,
Nordhaus & Quillen 2007; Bovy 2010; Quillen et al. 2011, see
also Section 2), as well as possibly in large-scale stellar velocity
fluctuations (Monari et al. 2014; Bovy et al. 2015).

�E-mail: giacomo.monari@astro.unistra.fr

However, from the photometric point of view, the situation
has recently changed quite dramatically, since Wegg & Gerhard
(2013) and Wegg, Gerhard & Portail (2015) measured the three-
dimensional density of red clump giants in the inner Galaxy by
combining various recent photometric surveys. They concluded
that the Milky Way contains a central box/peanut bulge (Combes
et al. 1990; Athanassoula 2005) which is the vertical extension of a
longer, flatter bar, oriented at an angle of φb ∼ 27◦ from the Galac-
tic Centre–Sun direction, but reaching out to a radius Rb ∼ 5 kpc.
Since the bar cannot physically extend beyond its corotation, this
limits the pattern speed of the bar. Simulated bars are usually rather
shorter than their corotation, and indeed by constructing dynami-
cal models reproducing this new bar density as well as the stellar
kinematics from the Bulge Radial Velocity Assay (BRAVA) survey,
the pattern speed was estimated to be of the order of �b ≈ �0

(Portail et al. 2015) placing the bar corotation very near to the Sun.
Two independent subsequent re-analyses of gas kinematics in the
inner Galaxy by Sormani, Binney & Magorrian (2015) and Li et al.
(2016) then favoured slightly higher pattern speeds, of the order of
�b ≈ 1.45 �0 and ≈1.2 �0, respectively, but both still much lower
than the older estimate �b ≈ 1.9 �0.

Given this state of affairs, we now study in the present contribu-
tion the effect of such low pattern speeds on stellar kinematics in
the solar neighbourhood, which was previously considered a strong
argument in favour of a fast bar. In Section 2, we briefly review
the characteristic observational signatures of non-axisymmetries in
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the solar neighbourhood, and more specifically the prominent Her-
cules moving group in velocity space. We then review in Section 3
the expected theoretical form (Monari, Famaey & Siebert 2016a,
hereafter M16) of the first-order response of the phase-space distri-
bution function (DF) in the presence of non-axisymmetric potential
perturbations. We then extend this analysis up to the second order,
and also identify the location of resonantly trapped orbits in local
velocity space. We subsequently confront the predictions to obser-
vations in the case of bars with low (Section 4) and high (Section 5)
pattern speed. Conclusions are drawn in Section 6.

2 TH E B I M O DA L LO C A L V E L O C I T Y S PAC E

The study of the fine structure of stellar velocity space in the solar
neighbourhood dates back to more than a century and the work
of Proctor (1869) and Kapteyn (1905), leading to the discovery of
the Hyades and Ursa Major moving groups. These are spatially un-
bound groups of stars sharing similar velocities, but not the same age
nor chemical composition (e.g. Famaey et al. 2005, 2007; Famaey,
Siebert & Jorissen 2008), and hence most likely associated with per-
turbations by disc non-axisymmetries. Another prominent structure
in velocity space for late-type stars was discovered by Eggen (1958)
and Blaauw (1970): it is located further away from the centre of the
UV-space1 than the Hyades and Ursa Major groups, with velocities
similar to the ξ Herculis star. This structure creates a true sec-
ondary mode in local velocity space. This bimodal velocity space is
thus separated into a main (high-V) mode, and a secondary (low-V)
mode made up of this large moving group, referred to as the Her-
cules stream, or Hercules moving group. Analysis of the chemical
abundances of this moving group revealed properties of a mixed
population of thin and thick disc stars, with a prevalence of metal-
rich thin disc stars, consistent with a dynamical perturbation from
a non-axisymmetry of the potential (e.g. Soubiran & Girard 2005;
Bensby et al. 2007; Ramya et al. 2016; Antoja et al., in prepara-
tion). With a wavelet analysis of the UV-plane based on Hipparcos
astrometric data combined with CORAVEL radial velocities for K
and M giants (Famaey et al. 2005), the structure has actually been
identified by Famaey et al. (2008) as a double-peak structure cen-
tred on (U, V) � (−35, −51) km s−1 for the first ‘H1’ peak, and
(U, V) � (−57, −51) km s−1 for the second ‘H2’ peak.

The location of the Hercules moving group in velocity space has
been shown by Dehnen (1999b, 2000) and Mühlbauer & Dehnen
(2003) to be a natural dynamical signature of the bar if the OLR ra-
dius is located just inside the solar position, since the orbits aligned
with the orientation of the bar at the Sun (the main mode) co-exist
with orbits anti-aligned with the bar (Athanassoula et al. 1983),
which are responsible for the Hercules stream, while unstable orbits
have been shown to be responsible for the observed gap between the
main mode and Hercules. This implies a pattern speed of the order of
�b ≈ 1.9 �0. With such a fast bar model, it was subsequently shown
that the Oort constants could be reproduced (Minchev et al. 2007),
and that the expected azimuthal velocity location of Hercules as
a function of Galactocentric radius complied with data from the
Radial Velocity Experiment (RAVE) survey (Antoja et al. 2014).
The double-peak structure identified by Famaey et al. (2008) within
Hercules is however not reproduced by a bar-only model, and has

1 Here we use the common notation of Galactic astronomy in which, at the
position of the Sun in the Galactic plane, U is the stellar velocity towards
the Galactic Centre, and V the velocity in the direction of Galactic rotation,
both with respect to the Sun.

been suspected to be linked to another perturbation, most probably
spiral arms. Finally, another feature which might presumably be
associated with the bar is located at (U, V) � (75, −55) km s−1

(Dehnen 1998), denoted hereafter as the ‘horn’ of the velocity
distribution.

Note that the precise location of Hercules in velocity space after
correction for the reflex solar motion is slightly dependent on the
solar motion itself. Considerable debate still exists regarding this
motion, especially in the V direction. By extrapolating the asym-
metric drift relation to zero velocity dispersion, Dehnen & Binney
(1998) estimated that the Sun moves in the direction of Galactic
rotation only slightly faster than the circular velocity, namely V�
= 5.25 km s−1, while they estimated U� = 10 km s−1 by simply
assuming no mean radial motion from the local standard of rest
itself. More recent discrepant values for the solar motion include
Schönrich (2012) estimating U� = 14 km s−1 and V� = 12 km s−1,
as well as Bovy et al. (2015) estimating U� = 10 km s−1 and V� =
24 km s−1. Hereafter, we will display the position of the two peaks
(H1 and H2) of the Hercules stream in peculiar velocity space (u,
v) for these different values of the solar motion. The local circular
speed v0 and Sun’s distance from the centre of the Galaxy R0 will
be fixed such that v0 + V� = 30.24 km s−1 kpc−1 × R0 (Reid &
Brunthaler 2004). In the Schönrich (2012) and Bovy et al. (2015)
cases we use the values for v0 (238 and 218 km s−1, respectively),
and R0 (8.27 and 8 kpc, respectively) proposed by the authors. In the
Dehnen & Binney (1998) case, we assume R0 = 8 kpc, which cor-
responds to v0 = 236.67 km s−1. Contrary to most previous studies,
we will concentrate on the form of the phase-space DF expected in
the solar neighbourhood from perturbation theory, in the spirit of
M16, rather than on individual orbits.

3 PE RT U R B E D D I S T R I BU T I O N F U N C T I O N S

3.1 General case: first-order response

Let (R, φ, z) be a cylindrical coordinate system with origin at the
centre of the Milky Way. The bulk of the mass of the Galaxy is asso-
ciated with an axisymmetric gravitational potential �0(R, z), and it
is well known that realistic galactic potentials are close to integrable
ones. In this case, the natural canonical coordinates for dynamics
are the action-angle variables (see e.g. Binney & Tremaine 2008;
Fouvry, Pichon & Prunet 2015), ( J, θ ), where J is an integral of
motion in �0. Thanks to the Jeans theorem, a stellar population
described by an axisymmetric phase-space DF f0 = f0( J) is in
equilibrium.

Here, we follow the approach of M16 (see also Kalnajs 1971;
Carlberg & Sellwood 1985) in which a non-axisymmetric perturbing
potential �1(R, φ, z, t) is expanded in a Fourier series of the angles
θ as

�1( J, θ , t) = Re

{
g(t)h(t)

∑
n

cn( J)ein·θ
}

, (1)

where g(t) controls the growth of the perturbation with time, and
h(t) is a periodic sinusoidal function, of frequency ωp, which ac-
counts for the perturbing potential rotating at a fixed pattern speed.
Typically, ωp = −m�p, where m is the multiplicity (or azimuthal
wavenumber) of the perturbing potential and �p its pattern speed,
and h(t) = exp (iωpt).

We assume that g(t) is a well-behaved function, that the pertur-
bation and its time derivatives were null far back in time (g(k)(−∞)
= 0), and that the perturbation has constant amplitude at the present
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time (g(0)(t) = 1, and g(k)(t) = 0 for k = 1, ..., ∞). Using the lin-
earized Boltzmann equation, the linear response to first order of the
stellar equilibrium distribution f0 to the perturbing potential �1 has
been shown by M16 to be f = f0 + f1 with

f1( J, θ , t) = Re

{
∂f0

∂ J
( J) ·

∑
n

ncn( J)
h(t)ein·θ

n · ω + ωp

}
. (2)

The predictions of this perturbed DF have been directly com-
pared to test-particle simulations in M16, and showed remarkable
agreement in terms of the moments of the DF. One might however
wonder what is gained by our analytical treatment of the problem
compared to the results of these test-particle simulations. The big
difference is that, contrary to such simulations, our analytical DFs
will, in the future, allow us to fit the data directly, with a few fitting
parameters in the perturbing potential as well as in the axisymmetric
DF, by performing a maximum-likelihood estimate of these param-
eters based on actual kinematical data for a large set of individual
stars.

The DFs computed from perturbation theory however diverge
for resonant orbits, for which n · ω( J) + ωp = 0. Resonances are
responsible for the ‘trapping’ of orbits, which renders the former
linear treatment inappropriate near to resonances. We will identify
the resonantly trapped orbits in Section 3.3.3, in order to display
their location in local velocity space. But, first, we will expand our
perturbative treatment to second order, to make sure that we are
not missing any peculiar behaviour of the DF with our first-order
treatment of the problem.

3.2 General case: second-order response

In the previous section we derived the linear response f1 of the DF
to the perturbing potential �1. ‘Linear’ means that if |�1/�0| ∼ ε

	 1, then f1 ∈ O(ε), and we neglect all higher order terms. We can
expand the DF to the second order as f = f0 + f1 + f2 + O(ε3),
where f2 ∈ O(ε2). Plugging this expression in the collisionless
Boltzmann equation, and grouping together the O(ε), O(ε2), and
O(ε3) terms, we obtain the linear equation for f1 that was used to
obtain equation (2), i.e.

df1

dt
+ [f0, �1] = 0, (3)

and the second-order equation

df2

dt
+ [f1, �1] = 0. (4)

Therefore,

f2( J, θ , t) = −
∫ t

−∞
dt[f1,�1]. (5)

We can rewrite f2 as f2 = f̃2 − f̂2, where

f̃2( J, θ , t) ≡
∫ t

−∞
dt

∂f1

∂ J
· ∂�1

∂θ
(6)

and

f̂2( J, θ , t) ≡
∫ t

−∞
dt

∂�1

∂ J
· ∂f1

∂θ
. (7)

3.3 Rotating bar case

3.3.1 First order

As Weinberg (1994) and Dehnen (2000), we assume that the per-
turbing potential due to the Galactic bar behaves, outside from the
bar itself, as a quadrupole. Furthermore, we are interested here only
in the response inside the z = 0 Galactic plane, i.e. we write for the
bar potential

�1(R, φ, t) = Re
{
�a(R)eim(φ−φb−�bt)

}
, (8)

where m = 2, �b is the pattern speed of the perturber in the bar
case, φb is the angle between the Sun and the long axis of the bar,
and

�a(R) = −αb
v2

0

3

(
R0

Rb

)3
{

(R/Rb)−3 R ≥ Rb,

2 − (R/Rb)3 R < Rb,
(9)

where (R, φ) are the Galactocentric radius and azimuth, Rb is the
length of the bar, and αb represents the maximum ratio between
the bar and axisymmetric background radial forces at the Sun’s
position R = R0 (see also Monari, Famaey & Siebert 2015; Monari
et al. 2016b).

Using equation (2), and making use of the epicyclic approxima-
tion, M16 derived the form of f1 for any rotating Fourier mode of the
kind equation (8), for stellar populations close to the Galactic plane
and on low-eccentricity orbits. For stars orbiting on the Galactic
plane (i.e. with z = 0 and vz = 0), f1 reads

f1 = Re

⎧⎨
⎩

1∑
j=−1

cjmFjmei[jθR+m(θφ−φb−�bt)]

⎫⎬
⎭, (10)

with

cjm(JR, Jφ) ≡
[
δj0 + δ|j |1

m

2
sgn(j )γ e

]
�a(Rg, 0)

− δ|j |1
Rg

2
e
∂�a

∂R
(Rg, 0) (11)

and

Fjm(JR, Jφ) ≡
j ∂f0

∂JR
+ m ∂f0

∂Jφ

jκ + m(ωφ − �b)
. (12)

Here above, we denote the circular and epicyclic frequencies with
the usual notation � and κ , which are evaluated at the guiding
radius Rg(Jφ), defined as the radius where R2

g�(Rg) = Jφ . We also

define γ ≡ 2�/κ , the eccentricity e(JR, Jφ) ≡
√

2JR/(κR2
g), and

the azimuthal frequency ωφ(JR, Jφ) ≡ � + (dκ/dJφ)JR.
Within the epicyclic approximation, we can relate the actions (JR,

Jφ , θR, θφ) to the usual cylindrical phase-space coordinates (R, φ,
vR, vφ) through

JR = v2
R

2κ
+ κ(R − Rg)

2
, Jφ = Rvφ,

θR = tan−1

(
− vR

κ(R − Rg)

)
, θφ = φ + �φ,

(13)

where

�φ ≡ − γ

Rg

√
2JR

κ
sin θR − JR

2

d ln κ

dJφ

sin(2θR). (14)

Using the above relations, the phase-space DF f = f0 + f1 can be
expressed as a function of the usual phase-space coordinates, i.e.
f = f(R, φ, vR, vφ).
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3.3.2 Second order

We now compute the second-order response f2 from f1 and �1 in
the case of a quadrupole potential like the one of equation (8). Once
the derivatives in equations (6) and (7) are calculated, one needs to
solve simple integrals of sinusoidal functions, in the same fashion
as in the f1 case. Then, after defining the two-dimensional vectors
n ≡ (j,m), and N ≡ (j ′, m), equations (6) and (7) become

f̃2( J, θ ) = −1

2

1∑
j,j ′=−1

∂

∂ J

(
cjmFjm

) · Ncj ′mIm
{
S−

jj ′
}

, (15)

f̂2( J, θ ) = −1

2

1∑
j,j ′=−1

ncjmFjm · ∂cj ′m

∂ J
Im

{
S+

jj ′
}

, (16)

where

S±
jj ′ ( J, θ ) ≡ −i

[
ei[(n+N)·θ−2mφb−2m�bt]

(n + N) · ω − 2m�b
± (

1 − δj,j ′
) ei(j−j ′)θR

(j − j ′) κ

]
.

(17)

With these expressions, we can now calculate the response to
the bar up to second-order f = f0 + f1 + f2, which we will plot in
velocity space at a given point in the Galactic plane.

Note that higher order terms with m > 2 would in principle also
appear in the expansion of the bar potential of equation (8) for
more complex bar shapes than a pure quadrupole. These additional
terms would have their own associated perturbed DF and are not
considered here. These DFs would in principle be of second or
higher order compared to the quadrupole amplitude. As we show in
the next section, the second-order effects computed here above for
the quadrupole case are subdominant indeed compared to the first-
order response, and this should thus be the case for these additional
terms in the perturbing potential too.

3.3.3 Resonantly trapped orbits

It can immediately be seen from equation (12) that the linear re-
sponse f1 to the rotating perturbation �1 diverges for resonant orbits
whose frequencies κ and ωφ are such that

lκ + m(ωφ − �b) = 0, (18)

with l = 0 (corotation resonance) or l = ±1 (Lindblad resonances).
These are the first-order resonances.

Insight on the dynamics of a star near a resonance can be obtained
using a canonical transformation of coordinates defined by the type-
2 generating function (e.g. Weinberg 1994):

S = [
lθR + m

(
θφ − �bt

)]
Js + θRJf . (19)

The new angles and actions (θ f, θ s, Jf, Js) are related to the old ones
by

θs = lθR + m
(
θφ − �bt

)
, Jφ = mJs,

θf = θR, JR = lJs + Jf .
(20)

In these new canonical coordinates, the motion is described by the
Hamiltonian (e.g. Binney & Tremaine 2008, appendix D.4.6):

H ′(θf, θs, Jf, Js) = H (θR, θφ, JR, Jφ, t) + ∂S

∂t
, (21)

Since ∂S/∂t = −m�bJs, and rewriting H as a function of the new
coordinates (θ f, θ s, Jf, Js), H′ reads

H ′ = H0 + Re

⎧⎨
⎩

1∑
j=−1

cjmei[(j−l)θf+θs]

⎫⎬
⎭ − m�bJs, (22)

where H0 = H0(JR, Jφ) is the Hamiltonian of the unperturbed ax-
isymmetric system and the cjm(JR, Jφ) coefficients are the Fourier
coefficients from equation (11). In this case, JR and Jφ have to
be understood as functions of (Jf, Js), as given by the canonical
transformation in equation (20).2

The angle θ s is usually called ‘slow angle’ because near a res-
onance, for an orbit in the axisymmetric background potential, it
evolves very slowly by definition of the resonance in equation (18),
while θ f is called the ‘fast angle’. Since θ f evolves much faster
than θ s, we can average H′ along θ f (the averaging principle;
e.g. Arnold 1978; Weinberg 1994; Binney & Tremaine 2008), to
obtain

H ′ = H0(Jf, Js) − m�bJs + Re
{
clm(Jf, Js)e

iθs
}
. (23)

Since J̇f = −∂H ′/∂θf = 0, Jf is an integral of motion, and the
motion can be described only in the (θ s, Js) plane. We can further
write the Hamilton equations as

θ̇s = ∂H ′

∂Js
= �s + Re

{
∂clm

∂Js
eiθs

}
,

J̇s = −∂H ′

∂θs
= −Re

{
iclmeiθs

}
, (24)

where �s is the angular frequency associated with θ s in the unper-
turbed axisymmetric Hamiltonian in the rotating frame H0 − �bJφ .
Dropping all the terms which are O(ε2), we get

θ̈s ≈ Re

{
i

(
�s

∂clm

∂Js
− ∂�s

∂Js
clm

)
eiθs

}
. (25)

Note that if we Taylor expand the function �s(∂clm/∂Js) −
(∂�s/∂Js)clm about Js and again drop all the terms that are O(ε2),
equation (25) becomes a one-dimensional pendulum equation which
can be rewritten as θ̈s = −dVp(θs)/dθs, where

Vp(θs) = Re

{(
∂�s

∂Js
clm − �s

∂clm

∂Js

)
eiθs

}
(26)

is the pendulum potential and

Ep = θ̇s
2
/2 + Vp(θs) (27)

its energy. The maximum of the potential Vmax is

Vmax =
∣∣∣∣∂�s

∂Js
clm − �s

∂clm

∂Js

∣∣∣∣ . (28)

The angle θ s describes the precession angle of the orbit with re-
spect to the closed resonant orbit in the frame of reference rotating
with the perturbation, while θ f is the motion of the star along its
orbit itself (Weinberg 1994; Binney & Tremaine 2008). For
Ep < Vmax the angle θ s librates back and forward between two
values, around the closed orbit, while for Ep > Vmax, θ s circulates.
Orbits that have Ep < Vmax are the orbits ‘trapped at the reso-
nance’, while the circulating orbits with Ep � Vmax can be fully

2 Notice that for any given orbit H′ takes a value that we can call EJ, which
is an integral of motion of the perturbed system. EJ is the energy in the
frame of reference rotating with the perturbation, and is usually known as
the ‘Jacobi integral’.
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Figure 1. The local stellar velocity distribution perturbed to the linear order (i.e. the phase-space DF) f = f0 + f1, with f0 the axisymmetric DF of M16 –
namely the quasi-isothermal DF first introduced by Binney & McMillan (2011) as a modification of the DF defined by Binney (2010) – and f1 given by equation
(10) in the (u, v) plane at (R, φ, z) = (R0, 0, 0) for different bar models with low pattern speed (�0 ≤ �b ≤ 1.4�0). In this and all the figures of this work, the
contours include 34, 50, 68, and 90 per cent of the stars, respectively. Here the local maximum ratio at R0 between the bar and axisymmetric background radial
forces is αb = 0.01. The coloured points represent the observed Hercules moving group peaks H1 and H2 as estimated by Famaey et al. (2008), corrected
for the Sun’s motion in the estimates of Dehnen & Binney (1998) (red points), Schönrich (2012) (blue points), and Bovy et al. (2015) (green points). The red
(blue) contours delimit the region of resonant trapping by the CR (OLR), i.e. orbits with Ep < Vmax as defined in equations (27) and (28). At �b � 1.45�0

(Sormani et al. 2015), the zone of influence of the CR (red contours) is clearly moving away from the bulk of stars in velocity space, whilst the OLR (blue
contours) only has an influence at high v, far from the actual location of the Hercules moving group in local velocity space (coloured points). For �b � 1.2�0

(Li et al. 2016), the CR of the bar does create a bimodality at the right location in v, but not in u.

described by the perturbative treatment explained in the previous
sections.

In the following we will display the zone of local velocity space
corresponding to orbits trapped by the first-order resonances. This
trapping will affect the actual density of stars in velocity space in the
trapped zone compared to our models, but will not strongly affect
the general shape of velocity space itself.

4 SL OW BA R M O D E L S

We will now explore the actual response of stars in the solar neigh-
bourhood to a bar perturbation.

Let R0 be the Sun’s Galactocentric radius and �0 = �(R0) the
local rotation frequency. As outlined in Section 1, recent models
of the distribution and kinematics of stars, the inner part of the
Milky Way (Long et al. 2013; Portail et al. 2015; Wegg et al. 2015)
as well as models of the gas kinematics (Sormani et al. 2015; Li
et al. 2016) favour pattern speeds estimates of the bar much lower
(�0 � �b � 1.45�0) than the ones that for more than a decade were
considered as settled (1.8�0 � �b � 2�0). While the old estimates
predict the OLR to be in proximity of the solar neighbourhood,
the new estimates rather predict that stars in the Sun’s vicinity
would be influenced by the bar’s corotation (CR), or at least that
the Sun is located well inside the OLR. In this section we analyse
what this would mean in terms of the shape of the DF in the solar
neighbourhood.

Using a common notation in Galactic astronomy, for each point
of the Galactic plane (R, φ), we define the peculiar velocity

coordinates3 of stars, u ≡ −vR and v ≡ vφ − vc(R), where the
circular velocity vc(R) ≡ R�(R). As in M16, we choose a quasi-
isothermal DF for f0( J), first introduced by Binney & McMillan
(2011) as a modification of the DF defined by Binney (2010), and
reducing to a Schwarzschild DF in the epicyclic approximation (see
M16 for the details of the DF parameters).

Hereafter, when our perturbed f1 (and f2) diverges due to our
treatment to only first order (or second order), we simply choose
to set f1 = sgn(f1)|f0| (f2 = sgn(f2)|f0|) whenever f0 < |f1| (f0 <

|f2|) due to |f1| (or |f2|) being larger than f0 near first-order or
second-order resonances. A detailed treatment of the behaviour
of the perturbed DF in the trapped regions will be the topic of
further work, but we already clearly identify the regions affected by
first-order resonant trapping, thanks to the formalism developed in
Section 3.3.3. The regions of trapping at the resonances, where
Ep < Vmax (see Section 3.3.3), will be surrounded on the figures by
red contours in the CR case, and by blue contours in the OLR case.

4.1 First-order response in bar-only models

In Fig. 1 we plot the value of the DF f = f0 + f1 as a function of
the velocities (u, v) expressed as a function of the local circular

3 Note that in general, when we consider volumes of finite non-zero size,
u �= −vR and v �= vφ − vc(R). In fact, (u, v) in Galactic astronomy refer to the
Cartesian velocities in the local standard of rest (Binney & Tremaine 2008).
However, in the case of velocity space at a given point in configuration
space, like we consider in this work, u = −vR and v = vφ − vc(R) is a good
approximation.
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1448 G. Monari et al.

Figure 2. As in Fig. 1, but this time fixing the pattern speed to �b = 1.16�0, and varying the angle φb. This does not help, as to get the bimodality at the
right location to reproduce Hercules (coloured points), one would need a negative φb clearly excluded from the photometric structure of the Milky Way bar.
The inner red contours represent different values of η = Ep/Vmax, for orbits trapped at the bar’s CR. In particular, they correspond to ηi = ηmin + i�η, for
i = 1, ..., 6, ηmin the minimum of η, and �η = (1 − η)/10. The trapping on to closed orbits (smallest η) is far from the bulk of stars in velocity space.

speed v0, for stars at (R, φ) = (R0, 0) and vz = 0, i.e. orbiting on
the Galactic plane and passing in the solar neighbourhood at the
present time. We consider a range of pattern speeds coherent with
the recent estimates by Portail et al. (2015), Sormani et al. (2015),
and Li et al. (2016), namely �b = [�0, 1.45�0].

To obtain this figure, we used the parameters φb = 25◦ (which
controls the angle between the bar’s long axis and the line connect-
ing the Sun and the Galactic Centre), and αb = 0.01. We set not
only Rb = 0.625R0, but also tried a case where the bulk of the mass
is in the inner parts of the bar, Rb = 0.44R0, and found qualitatively
exactly the same patterns in velocity space.

As can be seen from the trapped regions in Fig. 1, for �b <

1.27�0, the DF is not influenced by the OLR. The CR has instead
an influence for v < 0: the velocity distribution is clearly split into
two parts that we call the ‘low-v’ and ‘high-v’ modes. Stars in the
high-v mode have u � 0 (i.e. they have the slight tendency to move
outwards in the Galaxy), while stars in the low-v mode have u � 0.
The observed H1 and H2 velocity peaks of the Hercules moving
group, corrected for the Sun’s motion according to different es-
timates (see Section 2), are represented by the red points for the
estimate of Dehnen & Binney (1998), by the blue points for
the estimate of Schönrich (2012), and by the green points for the
Bovy et al. (2015) estimate. As is evident from this figure, even if
the low-v mode is formed because of the CR, for none of the Sun’s
motion estimates is its position compatible with the actual posi-
tion of Hercules. Actually, the stars of the Hercules moving group
have on average u < 0, while the low-v mode generated by the CR
has u � 0. On the other hand, when the pattern speed increases to
�b ≥ 1.27�0, the OLR has a slight influence only to a few stars
with very high v, not at all in the relevant region of velocity space
for the range of pattern speed considered in this section.

Observations clearly show that φb ≥ 0 (Binney et al. 1997).
However, a definitive estimate of the bar’s angle is still missing.
In Fig. 2 we thus explore the effect of varying the bar angle in the
range φb = [0◦, 45◦]. While, because of the symmetry of the model,
for φb = 0 the DF is exactly symmetric with respect to u = 0,
increasing φb moves the low-v mode to larger u, thus increasing
its distance from the actual position of the Hercules moving group,
and making the situation worse.

An alternative possibility would nevertheless be that the re-
gion of strongest trapping, by construction not well taken into
account by our linear model, would correspond to the location
of Hercules. We thus also plot in Fig. 2 the isocontours of the

Figure 3. Illustration of the effect of the second-order response to the bar
potential in an extreme unrealistic case with αb = 0.1. The figure displays
the velocity distribution in the (u, v) plane at (R, φ, z) = (R0, 0, 0) including
only the second-order DF response (i.e. f = f0 + f2) for �b = 1.36�0.
The blue line displays the location of the OLR, and the green line the outer
ultraharmonic resonance (OUHR). Here one can see that not only is the
effect negligible for a realistic bar strength (i.e. in reality, one would have
αb 	 1), the location of the effect in velocity space also does not correspond
to the Hercules moving group.

energy of the pendulum Ep (see Section 3.3.3): we can see that
the region of strongest trapping close to the resonant closed or-
bit is outside of the bulk of stars in velocity space, and would
correspond to stars orbiting in the plane but with extremely high
eccentricity.

No feature in our modelled local velocity space can thus account
for the Hercules stream to first order in bar-only models.

4.2 Second-order response in bar-only models

Fig. 3 shows f when �b is chosen so that R0 is at the radius of
the outer ultraharmonic resonance ROUH, defined as the radius R,
where κ(ROUH) + 4[�(ROUH) − �b] = 0. Near to ROUH we have
the strongest effect of the outer ultraharmonic resonance,

κ + 4(ωφ − �b) = 0. (29)

The second-order expansion of the collisionless Boltzmann equa-
tion (Section 3.3.2) takes into account the ultraharmonic resonances,
as it appears clearly in the denominators of equations (15) and (16).
For amplitudes of the bar potential similar to those that we used
in the previous sections, the effects of the second-order resonance
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The dynamical signature of slow and fast bars 1449

Figure 4. Linear response of the DF (i.e. f = f0 + f1) in the (u, v) plane at (R, φ, z) = (R0, 0, 0), for a model with both a slow bar and a spiral pattern similar
to the one of Li et al. (2016). It includes two m = 2 spiral arms modes rotating with pattern speed �sp = 0.84�0, and a bar with �b = 1.2�0 and φb = 27◦.
Different panels display the response for different amplitudes of the spiral arms. The red (blue) solid contours delimit the regions of resonant trapping to the
bar’s CR (OLR). The red-dashed line represents the CR of the spiral arms.

are small, and not enough to appreciate the effects of the outer
ultraharmonic resonance on the DF f. Therefore, in Fig. 3 we plot
an extreme case, where the amplitude of the bar radial force is as
large as 10 per cent of that of the axisymmetric background (αb =
0.1), and we plot only the effects of f2. This extreme case is fully
unrealistic for the Milky Way, but clearly shows that the effect of
the ultraharmonic resonance of the bar cannot explain the forma-
tion of the Hercules moving group: while f is split in two parts
in v, the low-v mode of the distribution has in average positive u,
again contrary to the observed behaviour of the Hercules moving
group.

4.3 Models with spiral arms

We now analyse the combined effects of the bar potential and a
spiral pattern potential. Away from resonance overlap regions, the
combined linear response f1 is then simply the sum of the response
due to the bar and that of the spiral arms (calculated in the same
way as for the bar, but for a different �a).

A question is whether spiral arms could be responsible for the
Hercules moving group. In their work, Li et al. (2016) propose a
best-fitting model of the kinematics of the Milky Way, with a per-
turbing potential composed by a slow bar (�b = 33 km s−1 kpc−1),
and two m = 2 spiral arms patterns, displaced by �φsp = 20.◦25 in
azimuth, rotating with an angular frequency �sp = 23 km s−1 kpc−1.

We reproduce a spiral potential similar to that of Li et al. (2016)
by considering two Fourier modes with m = 2, as in equation (8).
In this case �p = �sp = 0.84�0, and

�a(R) = αsp�0(R0, 0)e−im ln(R/Rsp)/ tan p, (30)

where Rs = 0.125R0. As a reference value we assume αsp = 0.005
(Siebert et al. 2012). The locus of the arms and the pitch angle p
are also like those in Li et al. (2016). The pattern speed of the bar
is set at �b = 1.2�0, and Rb = 0.625R0. We show the results of
this model to the linear order in Fig. 4, for different values of the
spiral arm amplitude. It is clear from this figure that, up to the linear
order response, this model does not describe in a satisfying way the
kinematics of the solar neighbourhood.

In Fig. 5 we consider the second-order response, to both the spi-
ral arms and bar perturbation. The calculation of f2 in the case of
the spiral arms is more cumbersome than in the bar case, since
the Fourier coefficients cjm are in this case complex numbers, qua-
drupling the number of terms of f2. The f̃2 and f̂2 components of

Figure 5. Effects of the second-order response (f = f0 + f1 + f2) on the
model shown in Fig. 4 for αsp = 0.005, without (left-hand panel) and with
(right-hand panel) the bar. The red solid (dashed) line represents the CR of
the bar (spiral arms).

equations (6) and (7) become

f̃2( J, θ ) = −
1∑

j,j ′=−1

N
2

·
[

+ ∂

∂ J
Re

{
cjmFjm

}
Re

{
cj ′m

}
Im

{
S−

jj ′
}

+ ∂

∂ J
Re

{
cjmFjm

}
Im

{
cj ′m

}
Re

{
S+

jj ′
}

+ ∂

∂ J
Im

{
cjmFjm

}
Re

{
cj ′m

}
Re

{
S−

jj ′
}

− ∂

∂ J
Im

{
cjmFjm

}
Im

{
cj ′m

}
Im

{
S+

jj ′
} ]

, (31)

f̂2( J, θ ) = −
1∑

j,j ′=−1

n
2

·
[

+ Re
{
cjmFjm

} ∂

∂ J
Re

{
cj ′m

}
Im

{
S+

jj ′
}

+ Im
{
cjmFjm

} ∂

∂ J
Re

{
cj ′m

}
Re

{
S−

jj ′
}

+ Re
{
cjmFjm

} ∂

∂ J
Im

{
cj ′m

}
Re

{
S+

jj ′
}

− Im
{
cjmFjm

} ∂

∂ J
Im

{
cj ′m

}
Im

{
S−

jj ′
} ]

. (32)

MNRAS 465, 1443–1453 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/465/2/1443/2417035 by guest on 01 M
arch 2021



1450 G. Monari et al.

Figure 6. Velocity distribution to the second order (i.e. f = f0 + f1 + f2) in the (u, v) plane at (R, φ, z) = (R0, 0, 0) for a fast bar model �b = 1.89�0 and
φb = 25◦. We consider different bar’s amplitudes αb. The blue contours represent regions of trapping to the bar’s OLR.

Figure 7. As in Fig. 6, but keeping fixed the bar’s amplitude to αb = 0.01, and varying the angle φb.

The result is qualitatively fully unchanged, the second-order re-
sponse of both the bar and spirals being very small in the region
of interest. One can see that the spiral indeed distorts the velocity
distribution somewhat in the right direction, but the effect is very
limited and does not at all render the velocity space bimodal as
observed. This slight distortion of velocity space is more likely re-
lated to the observed Hyades and Ursa Major moving groups than
to Hercules.

5 FA S T BA R M O D E L S

In the models of this section we show how our models reproduce
the traditional results expected in the solar neighbourhood for a fast
bar. We use �b = 1.89�0, following the estimates of Antoja et al.
(2014). This pattern speed corresponds to ROLR = 0.9R0, where
ROLR is defined as R satisfying

2 [� (ROLR) − �b] + κ (ROLR) = 0. (33)

In Fig. 6 we show the results for φb = 25◦ and different values of
the amplitude of the perturbation in the range α = [0.005, 0.02].
The results keep in the account both the linear and quadratic re-
sponses of the disc DF, f1 and f2, respectively. In this case, f is split
in two parts as observed in Section 2. Stars in the low-v (high-v)
mode have ωφ < �b − κ/2 (ωφ > �b − κ/2), and tend to move
outwards (inwards) in the Galaxy, i.e. they have u < 0 (u > 0). This
is a direct consequence of the linear effects of the bar on the stars’
orbits. In particular, the orbits of stars with guiding centre inside
(outside) the OLR become elongated perpendicularly (along) the
bar (Binney & Tremaine 2008). Fig. 6 is in agreement with
the results of several of the numerical simulations of the effects
of the bar in the solar neighbourhood, starting from the pioneering
work of Dehnen (2000). The stars forming the low-v velocity mode
are usually associated with the Hercules moving group, and the gap

between this moving group and the main velocity mode in the solar
neighbourhood was used by Antoja et al. (2014) to estimate the
pattern speed of the bar, assuming that the gap is due to the bar’s
OLR.

Increasing the bar’s strength moves the stars closer to the
resonance curve. Moreover, stars in the low-v (high-v) mode travel
faster outwards (inwards) in the Galaxy. Interestingly, we see that
while all the estimates are compatible with the identification of
the low-v mode with the Hercules moving group, the estimates
with higher Sun’s tangential velocity V� (Bovy et al. 2015) are
globally favoured by the fast bar models considered here, and also
favour models with a stronger bar. In Fig. 7 we show the variation
of the DF as a function of φb, keeping constant R. Also in this case
the second-order effects are taken into account. We present only
positive values of φb as observations show that this is the case in the
Milky Way (Binney et al. 1997). Moreover, because of the symme-
try of the DF in equation (10), the case of negative angles is readily
obtained simply flipping the signs of the u velocities in Fig. 7. At φ

= 0 the DF is completely symmetric with the respect of u = 0, while
increasing the angle φb increases the number of stars with negative
(positive) u for the low (high) v velocity mode. Then, using the form
of the spiral arms potential in equation (30), we study the combined
effects of the fast bar and spiral arms up to the second order.

In Fig. 8 we show f at (R, φ) = (R0, 0) in the plane for the
combination of the fast bar and two spiral arms models. The figures
keep into account the first- and second-order effects, for both the
bar and the spiral arms. As bar parameters we use �b = 1.89�0,
φb = 25◦, and αb = 0.01. The first spiral arm model is formed by the
two m = 2 modes with the same locus of the spiral arms as Li et al.
(2016). The second model is only one m = 2 mode, representing
the old stellar arms, with the parameters taken from Siebert et al.
(2012). The pattern speed is in the former case �sp = 0.84�0 (Li
et al. 2016), and in the latter �sp = 0.69�0 (Siebert et al. 2012).
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The dynamical signature of slow and fast bars 1451

Figure 8. Second-order response of the DF (i.e. f = f0 + f1 + f2) for the
spiral arms models of Li et al. (2016) (left-hand panel) and Siebert et al.
(2012) (right-hand panel), and a fast bar with �b = 1.89�0 and φb = 25◦
in the (u, v) plane at (R, φ, z) = (R0, 0, 0).

Figure 9. As in the central panel of Fig. 7, but this time including the
normalized energy of the pendulum η = Ep/Vmax, for orbits trapped at the
bar’s OLR. In particular, the blue contours correspond to ηi = ηmin + i�η,
for i = 1, ..., 6, ηmin the minimum of η, and �η = (1 − η)/10.

The comparison with Fig. 8 shows that the Siebert et al. (2012)
spiral arms increase the probability to find stars in the low-v mode,
and deforms the shape of both the low- and high-v mode, and in
particular the latter. The deformation in the high-v mode slightly
resembles the Hyades moving group overdensity in the solar neigh-
bourhood. In the same region of the velocity space we can notice
the effect of the inner ultraharmonic resonance that creates a small
gap in the high-v mode. Several authors suggested (e.g. Quillen &
Minchev 2005; Pompéia et al. 2011) that the inner ultraharmonic
resonance of the spiral arms could be the cause of the Hyades mov-
ing group. Our treatment seems to suggest that this resonance would
be too weak to influence alone the velocity distribution in such a
significant way. However, given its vicinity with the bar OLR, it
could be that the resonance overlap would render our treatment
not appropriate, and the coupling effects important (e.g. Monari
et al. 2016b). A fully proper treatment near resonances, including
resonance overlaps, will be the topic of further work. We however
note that the simulations of Monari et al. (2016b) did not show sig-
nificant differences for the in-plane motions between the coupled
simulation and the linear combination of simulations with a single
perturber. The difference was much more pronounced in terms of
vertical motions, which we do not consider here. Then, in Fig. 9 we
reproduce the central plot (φb = 25◦) of Fig. 7, and we superpose on
top of it the contours of pendulum energy Ep for the OLR (blue con-
tours). We see that the contours representing the strongest trapping
coincide with the ‘horn’ region that we mentioned in Section 2. In-
deed, it seems that the overdensity that several authors found in their
simulations with the same fast bar models (e.g. Dehnen 2000) could
be explained by the orbits trapped to the OLR resonance. Monari
(2014) came to the same conclusion, using however a different
method, the numerical Fourier analysis of orbits in the simulations.

Figure 10. Velocity distribution to the first order (i.e. f = f0 + f1) in the
(u, v) plane at (R, φ, z) = (R0, 0, 0) for a fast (�b = 1.89�0) and slow bar
model (�b = 1.16�0), φb = 25◦, and αb = 0.01, where f0 and f1 are given
in equations (34)–(37).

Finally, we note that we assumed throughout this paper a rather
simple form for the background axisymmetric DF f0. We thus also
show the results (Fig. 10) for two different values of the pattern
speed for a more involved axisymmetric DF, i.e.

f0 =
∑

i

wif0,i . (34)

Here, f0, i are quasi-isothermal DFs of the same kind of those used
in M16 and in the rest of this work, but each of them has a different
velocity dispersion σ̃R,i(R0) (see equation 42 of M16). Each f0, i

represents a stellar population with a different age τ i, which is
related to the velocity dispersion via

σ̃R(R0) = σ0

(
τi + τ1

τm + τ1

)β

, (35)

where σ 0 = 40.1 km s−1, τ 1 = 0.01 Gyr, τm = 10 Gyr, and β = 0.33
(Binney 2012). This means that a stellar population born now has a
dispersion σ̃R(R0) ≈ 4 km s−1, whilst a 1-Gyr-old population has a
dispersion σ̃R(R0) ≈ 19 km s−1, and a 10-Gyr-old population has
a dispersion σ̃R(R0) = 40.1 km s−1. The weights wi are also inspired
by equation (12) of Binney (2012), and are related to τ i by

wi = �τieγ τi∑
i �τieγ τi

, (36)

where �τ i are age intervals in the range [0, τm] for thin disc stars
taken from table 3 of Robin et al. (2003); τ i is the central age value
of each bin, and γ = 0.117 (see Aumer & Binney 2009).

The total linear response f1 to the bar perturbation is simply the
weighted sum of the linear responses of each subpopulation f1, i,
i.e.

f1 =
∑

i

wif1,i . (37)

Fig. 10 shows clearly that the results of our analysis in the rest
of this work, which uses a single population of velocity dispersion
σ̃R(R0) = 35 km s−1 to study the effects of the bar’s pattern speed,
still hold in the case of a more complex DF, representing a rea-
sonable superposition of stellar populations of different ages and
velocity dispersions.

6 C O N C L U S I O N S

We presented the first application of the formalism developed in
M16 to calculate, through perturbation theory, the effects of a
non-axisymmetric gravitational disturbance on an initially axisym-
metric DF, f0( J), describing the phase-space density of stars in a
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collisionless stellar system (i.e. governed by the collisionless Boltz-
mann equation).

We extended the M16 formalism to second order (Section 3),
and concentrated on the effects of the Galactic bar on the DF in the
solar neighbourhood. We checked whether a slow bar with pattern
speed �0 � �b � 1.45�0 could reproduce the observed bimodal-
ity of local velocity space. We concluded that no feature in our
modelled local velocity space could account for the observed bi-
modality (Section 4). We checked whether second-order effects, or
the additional effects of spiral arms, could help, and did not find
any configuration reproducing the bimodality. A fast bar with
�b ≈ 1.9 �0, on the other hand, explains it nicely (Section 5).
Bland-Hawthorn & Gerhard (2016) fixed their final value of the
bar’s pattern speed at �b = (1.48 ± 0.31)�0. Here we estimated
that, if Hercules is created by the bar’s OLR, the pattern speed of
the bar cannot be less than �b ≈ 1.8�0 to be compatible with the
measured density peaks of the Hercules moving group.

In Section 3.3.3 and in all our figures, we also identified the
regions of resonant trapping in phase space. This trapping should
affect the actual density of stars in the trapped zone compared to the
analytical models presented here, but does not strongly affect the
general distortion of phase space itself, as numerical particle test
simulations with adiabatic growth of the bar (e.g. Monari et al. 2014)
give the same result as our fast bar models for the shape of the
bimodality in local velocity space. We note that, while such forward
test-particle simulations can serve as benchmarks to test analytical
models like those presented here (see M16), they do not allow to
directly fit the data. Actually, the main motivation of models based
on analytical DFs is that they will indeed allow to fit the data directly,
with a few fitting parameters in the perturbing potential as well
as in the axisymmetric DF, by performing a maximum likelihood
estimate of these parameters based on actual kinematical data for
a large set of individual stars. However, in order to perform such a
fully quantitative fit, our method will have to be extended to better
treat the DF for resonantly trapped orbits. This will be the topic of
a forthcoming paper.

Concerning the bimodality, let us also note that we did not try
every possible spiral arm configuration here, and cannot yet strictly
exclude that a similar structure as the locally observed bimodality
could be the result of spirals. Our results are generally in line with
the N-body simulations of Quillen et al. (2011), in which velocity
distributions created from regions just outside the bar’s OLR more
closely resembled that seen in the solar neighbourhood. Neverthe-
less, close inspection of the velocity distributions at other radii in
these simulations reveals spiral-related features which also slightly
resemble the Hercules stream, albeit at angles to the bar which do
not correspond to the present orientation of the bar in the Milky
Way. Also, Grand, Kawata & Cropper (2014) showed that the out-
ward radial migrators behind their corotating spiral arms display
lower v and negative u velocity (see their fig. 4), hence providing a
possible explanation which will have to be inspected closely in the
future. In any case, the future DR2 and DR3 data releases from Gaia
(Gaia Collaboration 2016) should allow a detailed investigation of
phase-space structure outside of the solar neighbourhood, at differ-
ent Galactic radii and azimuths, and test our present conclusions
about the pattern speed of the bar, since any possible spiral-related
features in velocity space would not follow the same evolution at
different radii and azimuths. Such a test might actually already be
possible by combining the Gaia DR1 with existing spectroscopic
surveys. We also note that the metallicity patterns in local stellar
velocity space seem to also support our fast bar models (Antoja
et al., in preparation).

The three-dimensional density of red clump giants in the inner
Galaxy nevertheless clearly indicates the existence of a long, flat
structure, oriented at an angle of φb ∼ 27◦ from the Galactic Centre–
Sun direction and reaching out to a radius of ∼5 kpc. The most
natural explanation would be that this structure is not a long bar but
rather a loosely wound spiral coupled to the end of the bar. If it has
a pattern speed only somewhat smaller than the central bar, it could
be a good candidate to explain the observed double-peak aspect of
the Hercules stream, which is not reproduced even in our fast bar
models. On the other hand, it is known that small nuclear bars with
faster pattern speed than the main bar can be long-lived in numerical
simulations including a gaseous component, even without resonance
overlaps or mode coupling, if star formation remains moderately
active in the region of the nuclear bar (e.g. Wozniak 2015). However,
we are not aware of any simulation reproducing a stable long bar
with lower pattern speed than its central counterpart and similar in
size to the structure observed in the inner 5 kpc of the Milky Way
(hence about twice the disc scale-length). We would thus a priori
favour a loosely wound spiral structure to explain the photometric
observations.
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