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Abstract. The simultaneous clustering of observations and features of
datasets (known as co-clustering) has recently emerged as a central topic in
machine learning applications. However, most models focus on continuous
data in stationary scenarios, where cluster assignments do not evolve over
time. We propose in this paper the dynamic latent block model (dLBM),
which extends the classical binary latent block model, making amenable such
analysis to dynamic cases where data are counts. Our approach operates on
temporal count matrices allowing to detect abrupt changes in the way existing
clusters interact with each other. The time breaks detection is performed
through clustering of time instants, that allows for better model parsimony.
The time dependent counting data are modeled via non-homogeneous Poisson
processes (HHPPs), conditionally to the latent variables. In order to handle
the model inference, we rely on a SEM-Gibbs algorithm and the ICL criterion
is used for model selection. Numerical experiments on simulated data highlight
the main features of the proposed approach and show the interest of dLBM
with respect to related works. An application to adverse drug reaction
in pharmacovigilance is also proposed, where dLBM was able to recognize
clusters in a meaningful way that identified safety events that were consistent
with retrospective knowledge. Hence, our aim is to propose this dynamic
co-clustering method as a tool for automatic safety signal detection, to support
medical authorities.

Keywords. Co-clustering, pharmacovigilance, latent block model, dy-
namic count matrices, SEM-Gibbs algorithm.
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1 Introduction
Nowadays, there is an increasing need to group observations and features
of high-dimensional matrices simultaneously. Machine learning models that
allow to perform this kind of operations are called co-clustering methods and
are used in a wide range of applications (e.g. natural language processing,
recommending systems, biomedical data, etc.). However, although the study
in this field has been greatly expanded by many notable methods introduced
in the last few decades, the development of dynamic co-clustering methods
still remains almost an unexplored territory. Also, count data modeling is
another application area that is still underdeveloped but whose importance is
gradually increasing in a number of domain. Therefore, this paper attempts
to fill this gap by allowing temporal counting matrices to be managed, where
count data are modeled by non-homogeneous Poisson processes. Our goal is
to develop a method capable of identifying deep changes that may occur in the
evolution of the data structure or in the way in which existing groups interact.
For example, e-commerce systems record in continuous time all purchases
made by customers but, to avoid information overload and to manage these
unstructured data, it is important to identify methods capable of summarizing
large amounts of data in a dynamic context. In fact, it is of interest for those
companies to cluster both customers and products to better understand users
preferences.
Another particularly topical application area is pharmacovigilance, whose
main activity concerns the detection of safety signals about drugs. However,
the method currently used, i.e. manual expert detection of safety signals,
despite being unavoidable, has the disadvantage of being incomplete due to
its workload and to require a significant amount of data before being able to
detect a critical event. This is why, developing automatic method of safety
signal detection is currently a major issue in pharmacovigilance to allow health
professionals to enlarge the application of pharmacovigilance to all numerical
documents and reports that are generated by health facilities. Figure 1 shows
the data structure of a large-scale dataset made of the notifications of adverse
drug reactions (ADRs) gathered between 2010 to 2020 by the Regional Center
of Pharmacovigilance (RCPV) of Nice (France). Each upper panel shows the
interactions between a few molecules, on the x-axis, and a few adverse drug
reactions (ADRs), on the y-axis, for three selected periods (highlighted in
dark blue in the lower panel). The histograms below shows the distribution
of ADR notifications arrived to the RCPV during the whole time period. In
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Figure 1: Notifications of adverse drug reactions (ADRs) reported Regional
Center of Pharmacovigilance (RCPV) of Nice (France) in 3 different time
periods, highlighted in dark blue.

such a context, co-clustering may play an important role in summarizing the
information carried out by pharmacovigilance data and identifying patterns
of interest. It would be indeed of interest to cluster both the drugs and the
adverse reactions along the temporal dimension to assist medical experts in
the retrospective detection of safety signals. For this reason, we investigate
in this work the use of model-based co-clustering as a retrospective tool
for automatic safety signal detection. Since the ADR notifications can be
viewed as count data observed along the time, we introduce a generative co-
clustering model, named the dynamic latent block model (dLBM), to extend
the classical binary latent block model to the case of dynamic count data,
allowing in turn the detection of temporal breaks in the signals. This work
aims to demonstrate the potential of dLBM as a routine tool in retrospective
pharmacovigilance.
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1.1 Related works
A co-clustering problem can be seen as the simultaneous clustering of rows
(individuals) and columns (variables) of a data matrix. To avoid any doubt,
it may be useful to point out here the difference in the concepts between co-
clustering and bi-clustering. Bi-clustering methods allow to have overlapping
clusters and to leave some of the observations unclustered, while in co-
clustering each entry belongs to one and only one cluster (it is not possible
to leave some entries unassigned). In the last decades, different co-clustering
techniques have been developed for a wide range of applications. Due to the
spreading of e-commerce companies (e.g. Amazon, Ebay) and the exponential
growth of social networks (e.g. Facebook, Linkedin, Twitter), application of
co-clustering techniques to recommending systems and collaborative filtering
have emerged (George and Merugu, 2005; Deodhar and Ghosh, 2010; Xu
et al., 2012). Other applications include gene expression analysis (Cheng
et al., 2008; Hanisch et al., 2002), text mining and topic modeling (Bergé
et al., 2019; Dhillon et al., 2003a; Wang et al., 2009).
Co-clustering methods can be distinguished into metric based approches such
as: non-negative matrix tri-factorization (NMTF) (Labiod and Nadif, 2011;
Ding et al., 2006), spectral co-clustering (Dhillon, 2001), information theory
(Dhillon et al., 2003b) and model-based co-clustering approaches (Bouveyron
et al., 2019).
Among those approaches, model-based co-clustering is widely appreciated for
its sound statistical foundations and its flexibility in terms of sparsity and
data types. The much popular latent block model (LBM) (Govaert and Nadif,
2003) was introduced for the co-clustering of binary data matrices, based
on the assumption that rows and columns are grouped in hidden clusters
and that observations within a block (intersection of a row cluster and a
column cluster) are independent and identically distributed. Whereas the
original formulation of the model dealt with binary data, the model has
been extended in the last two decades to counting data (Govaert and Nadif,
2010), continuous data (Lomet, 2012), categorical data (Keribin et al., 2015),
ordinal data (Jacques and Biernacki, 2018; Corneli et al., 2020), functional
data (Bouveyron et al., 2018) and textual data (Bergé et al., 2019). Several
inference procedures have been also proposed for LBM, including likelihood
based methods (Govaert and Nadif, 2008), variational inference (Keribin et al.,
2012), Bayesian inference (Keribin et al., 2012; Wyse and Friel, 2012) and
greedy search approaches (Wyse and Friel, 2012; Wyse et al., 2017). Recently,
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Boutalbi et al. (2020) proposed the tensor latent block model (TLBM) for
co-clustering, whose aim is to simultaneously cluster rows and columns of
a 3D matrix, where covariates represent the third dimension. TLBM was
also implemented for different types of datasets: continuous data (Gaussian
TLBM), binary data (Bernoulli TLBM) and contingency tables (Poisson
TLBM).
Among the dynamic extensions of the co-clustering approaches, we can cite
the evolutionary spectral co-clustering (ESCC, Green et al., 2011). In that
paper, two different ways of taking into account the historical relationship
between the instances and features are proposed, one respect to current
(RTC) and the other respect to historical (RTH). The first one gives most
importance to the present, considering only the previous time-step, while the
second one takes into account all the previous time-steps. For the continuous
time modeling, an original approach was proposed by Corneli et al. (2018)
for the dynamic stochastic block model, in a slightly different context: the
clustering of dynamic networks. The authors considered the interactions
between nodes in a dynamic network, where the goal is to cluster both nodes
and time intervals into groups. The number of interactions between two
nodes is modeled via a non-homogeneous Poisson process (NHPP) whose
instantaneous intensity functions are assumed to be constant on each time
cluster. A greedy maximization of the exact-ICL (Biernacki et al., 2000; Côme
and Latouche, 2015) was used to cluster the nodes, the time intervals and to
select the optimal number of clusters. Concerning the temporal stochastic
block model, another closely related paper is the one of Matias et al. (2018)
where the interactions are modeled through a non-homogeneous Poisson
process. Here, the nodes are assumed to belong to clusters whose composition
do not change over time.
Concerning co-clustering applications to pharmacovigilance, a seminal article
was proposed by Robert et al. (2015). In that paper, the authors introduced
the multiple latent block model (MLBM) by extending the latent block model
(Govaert and Nadif, 2008) through the construction of one row partition
and two columns partitions that respectively rely on two binary matrices
containing the relation between the individual and the medical product and
the relation between the individual and the ADR.
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1.2 Contributions of this work
This work introduces a generative co-clustering model, named the dynamic
latent block model (dLBM), allowing in turn the detection of temporal breaks
in the signals, as a retrospective tool for Pharmacovigilance. We consider ADR
count data matrices evolving over a time period [0, T ], whose number of rows
and columns are fixed. We assume that the number of interactions occurring
in time between rows and columns follows a non-homogeneous Poisson process
(NHPP). To handle the dynamic framework, we led a segmentation over the
continuous time such that we obtain as many static matrices as the number of
the identified time intervals. As inference procedure, we use the SEM-Gibbs
algorithm while the ICL criterion is adopted for selecting the optimal number
of clusters. Thus, dLBM provides a meaningful summary of massive datasets,
possibly with a large number of missing data. To demonstrate the interest in
pharmacovigilance, we run a large-scale retrospective experiment on an 10-year
ADRs dataset from Regional Center of Pharmacovigilance (RCPV), located
in the University Hospital of Nice (France). The interest of this application
lies not only in summarizing the massive amount of drug adverse reactions
(ADRs) data but also in identifying possible unexpected phenomena, such as
atypical side effects of certain types of drugs. Indeed, dLBM was not only able
to identify clusters that are coherent with retrospective knowledge, such as
the Lévothyrox® and Mirena® crises, but also to detect an under-notification
of bleeding ADRs during the Lévothyrox® crisis, the health professionals were
unaware of.

1.3 Organization of the paper
This paper is organized as follows. Section 2 first recalls the original latent
block model, before introducing the generative model of dLBM. In Section
3, the inference procedure is detailed and a model selection criterion is
discussed. Section 4 presents various experiments on simulated data to
test and evaluate the model performances. In Section 5, an application on
a real ADRs dataset is presented to illustrate the potential of dLBM in
pharmacovigilance. Section 6 provides some concluding remarks. Appendix
A, in supplementary materials, presents various experiments on simulated
data to assess the model performances.
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2 The dynamic latent block model
In this section, we introduce the dynamic latent block model (dLBM). The
main goal of this model is the simultaneous clustering of rows and columns
of high-dimensional sparse matrices in a dynamic time framework. The data
we consider are organized such that the rows (drugs in pharmacovigilance
application) are indexed by i = 1, . . . N and the columns (adversarial effects)
by j = 1, . . . , P . Moreover, we consider a fixed time period [0, T ] during
which the total number of rows, N , and columns, P , is fixed. We indicate
as X (t) the N × P matrix that contains the number of interactions occurring
between the individual i and the item j at time t ∈ [0, T ]. The first part of
this section reviews the latent block model, while, in the second part, the
proposed dynamic extension is introduced.

2.1 The latent block model
Let us first neglect the time dimension and recall the original latent block
model (Govaert and Nadif, 2010), assuming that the time period is restricted
to a single time point. The data structure is therefore a N × P random
matrix X = {Xij}i∈1,...,N,j∈1,...,P . Rows and columns of X are assumed to be
clustered respectively into K and L groups, such that the data belonging to
the same block are independent and identically distributed. More formally,
the latent structure of rows and columns of X is identified by the following
latent variables:

• Z := {zik}i∈1,...,N,k∈1,...,K represents the clustering of rows into K groups:
A1, ...,AK . The row i belongs to cluster Ak iff zik = 1;

• W := {wj`}j∈1,...,P,`∈1,...,L represents the clustering of columns into L
groups: B1, ...,BL. The column j belongs to cluster B` iff wj` = 1.

Moreover, Z and W are assumed to be independent and distributed according
to multinomial distributions:

p(Z|γ) =
K∏
k=1

γ
|Ak|
k , p(W |ρ) =

L∏
`=1

ρ
|B`|
` ,

where γk = P{zik = 1}, ρ` = P{wj` = 1},
K∑
k=1

γk = 1,
L∑
`=1

ρ` = 1, and |Ak| and

|B`| respectively represent the number of rows in cluster Ak and the number
of columns in cluster B`.
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The LBM model further assumes the entries Xij are independent, con-
ditionally to Z and W , and their distribution ϕ(., α) belongs to the same
parametric family, where the parameter α only depends on the given block:

Xij | zikwj` = 1 ∼ ϕ(Xij, αk`). (1)

With these assumptions the complete data likelihood can be written as:

p(X,Z,W ; θ) = p(Z; θ)p(W ; θ)p(X|Z,W ; θ) =

=
K∏
k=1

γ
|Ak|
k

L∏
`=1

ρ
|B`|
`

∏
i,k

∏
j,`

ϕ(Xij;αk`)zikwj` .
(2)

As mentioned in Section 1.1 various versions of LBM have been proposed along
the decades. The first one was proposed for the binary case, where ϕ(Xij, αk`)
is a Bernoulli distribution with p(Xij = 1|Z,W ; θ) = αkl. Since this article
focuses on count data, the most suitable extension of LBM for our purpose
is the Poisson LBM. In fact, this model is based on the assumption that,
conditionally on Z andW , the entries Xij follow a Poisson distribution P(λk`):

ϕ(Xij;λk`) =
λXij

k`

Xij!
exp(−λk`)

 . (3)

2.2 Modeling the dynamic framework
Let us now introduce the time dimension such that Xij is time dependent.
Thus, Xij(t), t ∈ [0, T ], represents the cumulative number of interactions at
time t between i and j.
A possible approach for the dynamic modeling relies on non-homogeneous
Poisson processes (NHPPs), thus assuming that {Xij(.)}i,j are independent
point processes, with instantaneous intensity functions λij(t):

Xij(t) ∼ P
(∫ t

0
λij(u)du

)
, (4)

where P(λ) denotes the Poisson probability mass function of parameter λ.
With the notation adopted so far, we thus assume the existence of N × P
independent Poisson processes.
In order to cluster both the rows and the columns, we further assume that
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the intensity function λij(t) only depends on the respective clusters of row i
and column j:

Xij(t) | zik, wj` = 1 ∼ P
(∫ t

0
λk`(u)du

)
.

For further use, let us introduce the parameter λ := (λk`(t))k6K;`6L. Given the
above assumptions, the conditional distribution of the number of interactions
between i and j, over the time interval [s, t], where 0 6 s 6 t 6 T , is:

p(Xij(t)−Xij(s) | zikwj` = 1, λ) = (
∫ t
s λk`(v)dv)Xij(t)−Xij(s)

(Xij(t)−Xij(s))!
exp

(
−
∫ t

s
λk`(v)dv

)
.

(5)

2.2.1 A discrete time version

In order to ease the understanding of the dynamic model and to make the
inference tractable and computationally efficient, we also operate a cluster-
ing over the time dimension. Let us first introduce a discretization of the
considered time interval [0, T ]. Thus, without loss of generality the following
partition of [0, T ] is introduced:

0 = t0 < t1 < · · · < tU = T, (6)

where the U intervals, Iu = [tu−1, tu[, will also be clustered. The number
of interactions between i and j on the time interval Iu can be therefore
summarized by Xiju:

Xiju := Xij(tu)−Xij(tu−1), ∀(i, j, u),

where Xij(tu) represents the cumulative number of interactions at time tu
between i and j. Hence, we introduce the tensor X := {Xiju}iju with
dimension N × P × U that contains the number of interactions between any
observation and feature pair at any given time interval. We can also see X as
a time series (along the third dimension) of incidence matrices.

Since our goal is to perform clustering over the time dimension as well,
each time interval I1, . . . , IU is also assumed to be assigned to a hidden time
cluster D1, . . . ,Dc. To model the membership to time clusters, a new latent
variable S has to be introduced, such that su = c if the time interval Iu
belongs to the time cluster Dc. As it is shown in Figure 2, it is worth noticing
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Figure 2: Time clusters.

that a specific time cluster can occur more than once in the temporal line
when a similar interactivity pattern is repeated in time. Furthermore, as
for Z and W , we assume that S follows a multinomial distribution:

p(S | δ) =
C∏
c=1

δ|Dc|
c , (7)

where δc = P{suc = 1};
C∑
c=1

δc = 1 and | Dc | represents the number of time

intervals in the cluster Dc.
Once these additional assumptions have been made, we can rewrite Eq. (4)

considering that the intensity functions are stepwise constant on each time
cluster Dc. Thus:

Xiju|zikwj`suc = 1 ∼ P(λk`c∆u), (8)
where ∆u indicates the length of the interval Iu. Henceforth, in order to
simplify the exposition, we assume that ∆u is constant, ∆u = ∆. We can
finally set ∆ = 1 without loss of generality. A graphical representation of
dLBM can be seen in Figure 3.

From Eqs. (3)-(8), it holds that:

p(Xiju | zikwj`suc = 1, λk`c) =
(

(λk`c)Xiju

Xiju!
exp (−λk`c)

)
. (9)

Therefore, we can introduce the K × L × C tensor λ, whose elements are
denoted by λk`c.

It is now possible to write the complete data likelihood of the model:

p(X,Z,W, S|γ, ρ, δ, λ) = p(Z|γ)p(W |ρ)p(S|δ)p(X|Z,W, S, λ), (10)

where p(Z|γ), p(W |ρ) and p(S|δ) were defined in the previous section. The
conditional distribution of X, given Z, W , and S, can be easily obtained
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Figure 3: Graphical representation of dLBM.

from Eq. (9) by independence:

p(X|Z,W, S, λ) =
∏
k,`,c

(
(λk`c)Rk`c

Pk`c
exp (− | Ak || B` || Dc | λk`c)

)
, (11)

where Rk`c =
N∑
i=1

P∑
j=1

U∑
u=1

zikwj`sucXiju and Pk`c =
N∏
i=1

P∏
j=1

U∏
u=1

(zikwj`sucXiju)!.

Denoting by θ the set of all model parameters, θ = (γ, ρ, δ, λ), the log-
likelihood can be finally written as:

`(θ;X) =
∑
Z

∑
W

∑
S

log p(X,Z,W, S | θ). (12)

2.3 Link with related models
At this point, dLBM can be related with the following models:

• If we do not take into account the time dependency, assuming that the
time period is restricted to a single time point t0, dLBM coincides with
the Poisson LBM.

• dLBM reduces to dSBM (Corneli et al., 2016) if the row individuals are
the same as the column. In that case, in fact, Z would be equal to W
and, then consequently, K = L. Therefore, in this way, we pass from
an incidence matrix to an adjacency matrix.
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• If C = U , dLBM corresponds to TensorLBM (Boutalbi et al., 2020),
where the third dimension is considered but the slices are not clustered.
In fact, when the contingency table case is analyzed, the authors consider
a Poisson TensorLBM, where for each slice a, the entries are distributed
according to a Poisson(λaij).

3 Inference algorithm and model selection

3.1 Model inference
For the co-clustering model based approach outlined in the previous section,
as well as for standard mixture models, a direct maximization of the log-
likelihood with respect to the model parameters is not feasible. A widely used
approach to overcome this problem is the expectation-maximization (EM)
algorithm (Dempster et al., 1977). It consists in alternating two steps, E step
and M step, in order to maximize a lower bound of the log-likelihood. The
EM-algorithm exploits the following decomposition of the log-likelihood:

`(θ;X) = log p(X | θ) = L(q(Z,W, S); θ)+KL(q(Z,W, S) || p(Z,W, S | X, θ)),
(13)

with:
L(q(Z,W, S); θ) =

∑
Z,W,S

q(Z,W, S) log p(X,Z,W, S | θ)
q(Z,W, S) , (14)

where L(·; θ) represents a lower bound of the log-likelihood while KL(q||p)
is the Kullback-Leibler divergence between q and p. During the E-Step,
the algorithm maximizes the lower bound L(q(Z,W, S); θ) with respect
to q(.) for a given value of θ. From Eq.(13), we can asses that maxi-
mizing L(q; θ) is equivalent to minimizing KL(q||p(.|X, θ)) and since the
Kullback-Leibler divergence cannot be negative, we conclude that the lower
bound is maximized when KL(q||p(.|X, θ)) = 0. This leads us to the conclu-
sion that L(q(Z,W, S); θ) is optimized when q∗(Z,W, S) = p(Z,W, S | X, θ).
The M-Step usually consists in maximizing L(q(Z,W, S); θ) over θ, keep-
ing q = q∗ fixed, in order to obtain an updated version of the parameter,
θ.

However, in the context of the present work the joint posterior distribu-
tion p(Z,W, S | X, θ) is not computationally tractable as well. To go through
this limitation, we propose to approximate it through a Gibbs sampler within
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the E-step. Such an approach was proposed by Keribin et al. (2010) and
exploited, for instance, by Bouveyron et al. (2018) for the functional latent
block model (funLBM). The resulting stochastic alternative of the EM al-
gorithm, called SEM-Gibbs algorithm, starts with some initial values of the
parameter θ(0), the column clusters W (0) and the time clusters S(0). In this
way, at the hth iteration the algorithm alternates the following SE step and
M step:
SE step: a partition for Z, W and S is drawn according to q∗(Z,W, S) =
p(Z,W, S | X, θ), which is approximated by making use of a Gibbs sampler,
using the current values of the parameter set θ. In this way, the unknown
labels are simulated from their posterior distribution, given the observed data
and the parameter set. It consists in executing a small number of iterations
of the following three steps:
1) Generate the row partition z(h+1)

i = (z(h+1)
i1 , . . . , z

(h+1)
iK )|X,W (h), S(h) ac-

cording to z(h+1)
i ∼M (1,z̃i1, . . . , z̃iK), for all 1 ≤ i ≤ N and 1 ≤ k ≤ K,

where:

z̃ik = p(zik = 1 | X,W (h), S(h); θ(h)) = γ
(h)
k fk(Xi | W (h), S(h); θ(h))∑

k′
γ

(h)
k′ fk′(Xi|W (h), S(h); θ(h))

,

where Xi = (Xiju)ju and fk(Xi | W (h), S(h); θ(h)) = ∏
j`

∏
uc p(Xiju; θ(h)

k`c)
w

(h)
j`
s

(h)
uc .

2) Generate the column partition w(h+1)
j = (w(h+1)

j1 , . . . , w
(h+1)
jL )|X,Z(h+1), S(h)

according to w
(h+1)
j ∼ M (1,w̃j1, . . . , w̃jL), for all 1 ≤ j ≤ P and

1 ≤ ` ≤ L, where:

w̃j` = p(wj` = 1| X,Z(h+1), S(h); θ(h)) = ρ
(h)
` f`(Xj|Z(h+1), S(h); θ(h))∑̀

′
ρ`′f`′(Xj|Z(h+1), S(h); θ(h)) ,

where Xj = (Xiju)iu and f`(Xj|Z(h+1), S(h); θ(h)) = ∏
ik

∏
uc p(X; θ(h)

klc )z
(h+1)
ik

s
(h)
uc .

3) Generate the time cluster partition s(h+1)
u = (s(h+1)

u1 , . . . , s
(h+1)
uC )|X,Z(h+1),W (h+1)

according to s(h+1)
u ∼ M (1,s̃u1, . . . , s̃uC) , for all 1 ≤ u ≤ U and

1 ≤ c ≤ C, where:

s̃uc = p(suc = 1|X,Z(h+1),W (h+1); θ(h)) = δ(h)
c fc(Xu|Z(h+1),W (h+1); θ(h))∑

c′
δc′fc′(Xu|Z(h+1),W (h+1); θ(h)) ,
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where Xu = (Xiju)ij and fc(Xu|Z(h+1),W (h+1); θ(h)) = ∏
ik

∏
j` p(Xiju; θ(h)

klc )
z

(h+1)
ik

w
(h+1)
j` .

M step: in this step, L(q∗(Z,W, S); θ(h)) is maximized with respect to θ,
where:

L(q∗(Z,W, S); θ(h)) '
∑
Z,W,S

p(Z,W, S | X, θ(h)) log p(X,Z,W, S | θ)
p(Z,W, S | θ(h))

' E[log(p(X,Z(h+1),W (h+1), S(h+1) | θ) | θ(h)] + ξ,

where ξ is a constant term related to θ. This conditional expectation of the
complete data log-likelihood can be written in a developed form as follows:

E[log(p(X,Z(h+1),W (h+1), S(h+1) | θ) | θ(h))] =
∑
i,k

z
(h+1)
ik log γk +

∑
j,`

w
(h+1)
j` log ρ`+

+
∑
u,c

s(h+1)
u,c log δc +

∑
i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc log(p(Xiju | θklc)).

(15)

The last term of the previous equation can be further developed as:∑
i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc log(p(Xiju | θklc)) =

∑
i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc log
(λ(h)

klc)Xiju

Xiju!
exp(−λ(h)

klc)
 =

∑
i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc

[
Xiju log(λ(h)

klc)− log(Xiju!)− λ(h)
klc

]
.

(16)

Thanks to the previous equation, the parameter set θ(h+1) can be estimated.
The mixture proportions are updated as follows (proof in Appendix B):

γ
(h+1)
k = 1

N

∑
i

z
(h+1)
ik , ρ

(h+1)
` = 1

P

∑
j

w
(h+1)
j` , δ(h+1)

c = 1
U

∑
u

s(h+1)
uc .

Moreover, the ML estimator of λk`c is defined as follows (proof in Appendix
C):

λ
(h+1)
k`c = R

(h+1)
k`c

|Ak||B`||Dc|
, ∀(k, `, c).

14



Since assessing the convergence in stochastic inference algorithms is a
challenging task, the algorithm runs for a certain number of iterations of the
two steps and, to assess that it has been reached, we check both that the
log-likelihood reached a plateau and that the values assumed by the model
parameter values are stabilized during the iterations of the algorithm. We
can obtain the final estimation of the parameter set θ̂ by computing the
mean from the sampled distribution, after the burn-in period.Finally, the
optimal values for Z, W and S are estimated by the mode of their sampled
distributions.

3.2 Model selection
Up to now, we have assumed that the number of row clusters (K), column
clusters (L) and time clusters (C) was known. However, for real data sets,
this assumption is of course unrealistic. For this reason, our purpose in this
section is to define a model selection criterion that can automatically identify
the optimal number of clusters that are appropriate for the data at hand.
The model selection approach is considered. We propose to rely on ICL
(Integrated Completed Likelihood, Biernacki et al. (2000)) to approximate the
complete-data integrated log-likelihood. Hence, we derived the formulation of
the ICL criterion for the model proposed above:

ICL(K,L,C) = log p(X, Ẑ, Ŵ , Ŝ; θ̂)− K − 1
2 logN+

−L− 1
2 logP − C − 1

2 logU − KLC

2 log(NPU)
(17)

The triplet (K̂, L̂, Ĉ) that leads to the highest value for the ICL is consid-
ered as the most meaningful for those data. Alternative approaches may rely
on greedy searches (Côme and Latouche, 2015; Keribin et al., 2017) which
can be seen as less computationally expensive, but which operate sequentially
and, therefore, cannot be parallelized.

4 Numerical experiments
The main purpose of this section is to highlight the most important features of
dLBM over simulated datasets. We aim at demonstrating the validity of the
inference algorithm and model selection criterion, presented in the previous
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sections. Regarding the initialization of the algorithm, in all the reported
experiments the partitions of rows, columns and slices were initialized with
a k-means applied to the rows, columns or slices of the proper unfolding
of tensor X. The first experiment consists in applying dLBM to an easy
scenario to explain its main outputs. Then, the second example shows a
model selection application on 25 simulated datesets. In the third experiment,
we compare the performances of dLBM with some state-of-the-art methods
in three simulated scenarios. In the fourth experiment, we compare the
performances of dLBM with the same state-of-the-art methods of the previous
experiment, on a simulation setup that differs from our model assumptions.

4.1 Introductory example
As a first example, we simulate a dataset with K = 3 groups of rows, L = 2
groups of columns and C = 2 groups of time clusters, with a level of sparsity
τ = 0.97. Table 1 shows the main features of this dataset.

N P U τ K L C γ ρ δ
200 200 150 0.97 3 2 2 (0.15, 0.35, 0.55) (0.2, 0.8) (0.6, 0.4)

Table 1: Parameter values for the first simulated dataset.

We fit dLBM to simulated dataset with the actual values forK, L and C to
show the ability of the model to fully recover the model parameters. Figure 4
shows the evolution of the complete data log-likelihood. As we can see the
convergence is reached in less than 10 iterations. Figure 5 shows the evolution
of the estimated mixture parameters γ̂, ρ̂ and δ̂ along the iterations of the
SEM-Gibbs algorithm. Comparing the values reached by each line with the
actual values of the model parameters showed in Table 1, we can observe that
dLBM fully recovers the original values in few iterations. Moreover, Figure 6
shows a bar plot of the number of interactions between rows and columns of
the array X for each time period, where the two different time clusters are
identified by different colors. We can easily deduce that dLBM selects the
two time clusters in a meaningful way in terms of level of counted interactions
in each time cluster.
Figure 7 shows the value of the estimated intensity parameter λ̂ for each
cluster of rows and columns where different colors represent different time
clusters. For instance, the algorithm detects that, in the first cluster of rows
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and the first cluster of columns (Block(1,1)), there is an high intensity of
interactions in both of the time clusters. Figure 8 and Figure 9, display the
data structure before running dLBM and the reorganized incidence matrices
one for each time cluster. To this end, rows and columns of the incidence
matrix are permuted, thanks to the estimates Ẑ and Ŵ , in such a way that
nearby rows (columns) belong to the same cluster of rows (columns). The
blocks are also delimited by black dashed lines.
Finally, to evaluate the performance of the model in identifying the cor-
rect rows, columns and times partitions, we use the adjusted Rand index
(ARI) Rand (1971) for all of the three variables. The adjusted Rand index,
from a mathematical point of view, is closely related to the accuracy measure,
however it is a commonly used method for evaluating clustering problems since
it can be applied for measuring the similarity between two partitions even
with different number of clusters and it is invariant to label switching. The
closer the index is to 1, the more two label vectors are similar to each other.
We compared the original matrices Z, W and S, with the estimates Ẑ, Ŵ
and Ŝ given by the output of the dLBM. The model obtained an ARI index
of 1 for rows, columns and times partitions. Thus, we can conclude that our
algorithm perfectly identifies the composition of the original clusters.

4.2 Model selection experiment
In the previous experiment, we assumed to know the value of K, L and C.
In this section we aim at validating the ICL criterion for model selection. To
do that, 25 independent datasets are generated with the setup indicated in
Table 2. dLBM is applied on those simulated datasets for values of K, L
and C ranging from 1 to 6. The results are sorted according to the ICL values.
Table 3 shows the percentage of selections by ICL criterion on 25 simulated
datasets. The highlighted cell corresponds to the actual value of K, L and C.
ICL succeeds 64% of the time to identify the correct model. It is worth to
notice that, when ICL does not select the right combination of K, L and C,
the wrongly selected models are close to the simulated one. In particular, 28%
of the selections only differ from the actual model by one cluster, on one of
the three cluster dimensions.
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Figure 4: Complete data log-likelihood over the iterations of the dLBM
algorithm.
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Figure 5: Estimates of the mixture parameters of the first simulated dataset.
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Figure 9: Reorganized incidence matrices, one for each time cluster, according
to the estimates Ẑ and Ŵ . Nearby rows (columns) belong to the same cluster
of rows (columns). The blocks are also delimited by black dashed lines.

N P U τ K L C γ ρ δ
200 200 200 0.97 4 3 3 (0.2,0.4,0.1,0.3) (0.4,0.3,0.3) (0.25,0.3,0.45)

Table 2: Parameter values for the second simulated dataset.
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C = 3 C = 4
K/L 1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 64 8 0 0
5 0 0 12 0 4 0
6 0 0 0 0 0 0

K/L 1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 8 0 0 0
5 0 0 0 4 0 0
6 0 0 0 0 0 0

Table 3: Model selection. Percentage of selections by ICL criterion on 25
simulated datasets. The highlighted cell corresponds to the actual value of K,
L and C.

4.3 Benchmark study
The goal of this third experiment is to compare dLBM with some state-of-the-
art methods in terms of recovering the data structure. dLBM is compared
with TensorLBM (Boutalbi et al., 2020) where, in absence of the original code,
we set the number of time clusters of dLBM equal to the number of time
intervals, C = U , and with the Poisson LBM by making use of the bikm1
package (Robert et al., 2020). Since LBM supports only two dimensions,
we shrink the third dimension summing up alternatively on rows, columns
and slices, obtaining respectively the Row_LBM, Col_LBM and Slice_LBM
methods.
We chose to evaluate the results with the ARI index by comparing the resulting
cluster partitions with the simulated ones. To make this comparison more
complete, we defined four simulation scenarios ("Easy", "Medium", "Hard" and
"Row_LBM" ), detailed in Table 4. In particular, in the "Easy", "Medium"
and "Hard" scenarios, the data are simulated according to the dLBM model
using different parameters to gradually increase the difficulty. In order to also
add a fair comparison with competitors, the "Row_LBM" scenario generates
data from the Poisson LBM model (Robert et al., 2020) using the R package
bikm1 of the authors. As detailed in Table 4, the simulation parameters for
this additional simulation scenario are the ones used in the default example
of the R package bikm1.

Table 5 displays the results of this comparison, in terms of average ARI
values, reported with standard deviations. The dash indicates that no value
is reported because the calculation is not allowed by the model.
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Scenario N P U τ K L C γ ρ δ λ

A - Easy
250 250 100 0.97 3 2 2 0.15,0.35,0.55 0.2,0.8 0.6, 0.4 ΛA

B - Medium ΛB

C - Hard 4 3 3 0.2,0.4,0.1,0.3 0.4, 0.3, 0.3 0.25, 0.3, 0.45 ΛC

D - Row_LBM 100 150 50 1 1 3 2 1 0.33, 0.33, 0.33 0.5, 0.5 ΛD

Table 4: Parameter values for the four simulation senarios (see Appendix C
for details about ΛA,ΛB, ΛC and ΛD).

Scenario A - Easy
ARI_Rows ARI_Cols ARI_Slices

dLBM 1± 0 1± 0 1± 0
TensorLBM 0.8± 0.3 1± 0 -
Row_LBM - 0.12± 0.21 0.96± 0.2
Col_LBM 0.1± 0.21 - 0.92± 0.2
Slice_LBM 0.09± 0.2 0.13± 0.22 -

Scenario C - Hard
ARI_Rows ARI_Cols ARI_Slices

dLBM 0.79± 0.19 0.68± 0.22 0.63± 0.18
TensorLBM 0.64± 0.21 0.71± 0.19 -
Row_LBM - 0.09± 0.14 0.09± 0.15
Col_LBM 0.12± 0.14 - 0.12± 0.15
Slice_LBM 0.2± 0.18 0.25± 0.22 -

Scenario B - Medium
ARI_Rows ARI_Cols ARI_Slices

dLBM 0.89± 0.17 1± 0 1± 0
TensorLBM 0.74± 0.18 1± 0 -
Row_LBM - 0.13± 0.21 0.12± 0.23
Col_LBM 0.09± 0.21 - 0.15± 0.23
Slice_LBM 0.1± 0.2 0.14± 0.21 -

Scenario D - Row_LBM
ARI_Rows ARI_Cols ARI_Slices

dLBM - 0.96± 0.13 1± 0
TensLBM - 0.94± 0.14 0.85± 0.19

Row_LBM - 1± 0 1± 0
Col_LBM - - 0.94± 0.11
Slice_LBM - 1± 0 -

Table 5: Co-clustering results for dLBM, TensorLBM, and LBM applied
respectively by summing up the rows (Row_LBM), the columns (Col_LBM)
and the slices (Slice_LBM) on 25 simulated data according to the four
scenarios. Average ARI values are reported with standard deviations.

In the "Easy" situation, dLBM works perfectly. Also TensorLBM provides ex-
cellent results, even though calculated only on rows and columns. Row_LBM
and Col_LBM only give good results on one dimension, while Slice_LBM
produces extremely low results.
In "Medium" and "Hard" situations, dLBM continues to obtain excellent
results, although not perfect, due to the increasing complexity of the proposed
situations. The three other LBM models perform poorly, while TensorLBM
obtains rather high ARI values. Specifically, in the "Hard" situation the ARI
value of TensorLBM on the columns is slightly higher than that of dLBM,
even if the one calculated on the rows partitions is lower.
Finally, regarding the "Row_LBM" scenario, we can first observe that the
results of Row_LBM are perfect, as expected, but dLBM demonstrates also
to have very good performances in this less favorable simulation, conversely
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to the other competitors.

4.4 Robustness to model assumptions
The goal of this fourth experiment on simulated data is to test the performance
of dLBM and compare it to its competitors when data are not simulated
according to the model assumptions. Specifically, we decided to simulate the
data from a negative binomial distribution. The negative binomial distribution
is a discrete probability distribution that models the number of successes
in a series of iid Bernoulli trials before a given number of failures, r. The
probability mass function of the negative binomial is given by:

f(k, r, p) =
(
k + r − 1

k

)
· (1− p)r · pk = Γ(k + r)

k!Γ(r) (1− p)rpk, (18)

where k is the number of successes and p is the probability of success. When
modeling counts data the negative binomial distribution is often a valid
alternative to the Poisson one, because it allows the mean and the variance
to be different: Mean: λ = pr

1− p ; Variance: = pr

(1− p)2 = λ+ 1
r
λ2.

A particular property of the negative binomial distribution is that it converges
to the Poisson distribution, with expected value µ, when r →∞.
To accurately evaluate the performance of dLBM in comparison with its
competitors we simulate with the negative binomial distribution 25 datasets
for each value of r equal to 0.05, 0.1, 0.5, 0.8, 1, 5 and 10, while keeping the
values of λ unchanged to the ones of Scenario A in Section 4.3.
Figures 10, 11 and 12 report the results of the experiment, depicting line
plots of the values taken by the ARI index in the partitions of rows, columns,
and slices, respectively. The x-axis depicts the values of r based on which the
data were simulated, and each color represents a different model. The models
considered are the same as those described in Section 4.3: Row LBM, ColLBM,
SliceLBM, and TensorLBM. The ARI values shown in these graphs refer to
the average values reached by the index during the 25 simulations performed
for each r value. Looking at these results we can observe that for values of r
very close to zero, all models have difficulties in finding the correct cluster
partition. This is due to the fact that when r is small (e.g. r = 0.05, 0.1),
a negative binomial distribution is more spread than a Poisson distribution
with the same mean and therefore the different clusters are extremely difficult
to distinguish. For slightly higher values of r (e.g. r = 0.5, 0.8) dLBM
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Figure 10: Evolution of the row ARI according to r for the different methods.
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outperforms its competitors, achieving excellent ARI values. Whereas,for
sufficiently large values of r (e.g. r = 5, 10), the block distributions start to
be enough different and dLBM managed to find the correct cluster partitions,
with an ARI very close to 1 in all the dimensions. In this case, in fact, the
results tend to be very similar to those of Scenario A in Section 4.3. It may
be of interest to notice that also TensorLBM managed to have high values
of ARI, for row and column partitions, although it needs a higher value of r
to perform well. However, looking at the partition of slices we can see that
the performance is poor, due to the fact that the assumption TensorLBM
relies on is that the number of slice clusters is equal to the number of slices
themselves, i.e. C = U .

5 Analysis of the adverse drug reaction dataset
This section focuses now on the application of dLBM to a large-scale pharma-
covigilance dataset, with the aim of illustrating the potential of the tool for
such studies.

5.1 Protocol and data
This section considers a large dataset consisting of ADR data collected by
the Regional Center of Pharmacovigilance (RCPV), located in the University
Hospital of Nice (France). The center covers an area of over 2.3 million
inhabitants and receives notifications about ADRs from different channels:
a website1 form that everyone can freely fill and send, phone calls, emails,
medical visits at the hospital units, etc. A time horizon of 10 years is
considered, from January 1st, 2010 to September 30th, 2020, the unity measure
for time intervals is a month (∆u = ∆ = 1 month). The overall dataset is
made of by 44,269 declarations, for which the market name of the drug, the
notified ADR, the channel used for the declaration and its origin, as well as
an identification number and the reception date are reported. To prevent the
same medicine from being considered more than once if reported under slightly
different names, we decided to use the international nonproprietary name
(INN) of the drug (to simplify the comprehension, the INNs would be referred
as drugs for the rest of the study). Moreover, we only considered molecules
and ADRs that were notified more than 10 times over the 10 years. The

1https://signalement.social-sante.gouv.fr
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resulting dataset contains 542 drugs, 586 ADRs and 129 months with 13,363
non-zero entries.
Looking at Figure 1, it can easily be noticed that, during the year 2017, there
is an extremely uncommon behavior in the progress of notifications to the
pharmacovigilance center. In fact, in that year an unexpected rise of reports
for ADRs happened concerning two specific drugs: Mirena® and Lévothyrox®.
Mirena® has been available in Europe since 1995. This birth control product
contains a hormone called levonorgestrel. In 2017, concerns regarding ADRs
associated with the use of levonorgestrel releasing intra-uterine device (IUD)
started to grown with a media coverage peak occurred in May 2017, which
resulted in a massive wave of ADRs reports from patients to French RCPVs
(Langlade et al., 2019).
Also, Lévothyrox® has been marketed in France for about 40 years as a
treatment for hypothyroidism and, in 2017, a new formula was introduced
on the market. The Lévothyrox® case had an extremely high media coverage
in France: the RCPVs received 18,241 reports of Lévothyrox® ADRs in 2017
only. Lévothyrox® spontaneous reports represent almost the 90% of all the
spontaneous notifications that the Nice center received from patients in 2017.
This phenomenon has been fully described in a recent article of Viard et al.
(2019).
From Figure 1, one can understand the difficulty to work with such data
which contain signals of very different amplitude. Indeed, behind those very
visible effects, many ADR signals need to be detected for obvious public
health reasons. In particular, those data also contain ADR reports regarding
Médiator®, which is here far less visible than Lévothyrox® and Mirena, but
also led to many avoidable serious cardiovascular diseases. This is why, we
expect dLBM to be a useful tool to reveal such hidden signals.

5.2 Summary of the results
Remembering that our aim is to find an underling latent structure in our
dataset by applying co-clustering on the three dimensions of the array X with
dimension 542× 586× 129, we have run dLBM for different values of K, L
and C. Specifically, we tested rows (here drugs), columns (here ADRs) and
times groups ranging from 1 to 12. The ICL criterion identified the optimal
values for the triplet (K̂, L̂, Ĉ) as: K̂ = 7, L̂ = 10, Ĉ = 6, with a running
time of about 6 hours. The process has been parallelized on 8 cores on a
MacBook Pro, 2020, with a processor of 2,3 GHz Quad-Core Intel Core i7
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and 16 GB of RAM.
Figure 13 shows the frequency of the declarations received by the RCPV
from 2010 to 2020, sorted by month, where the colors represent the identified
time clusters. Figure 14 displays the estimated intensity function representa-
tion. In particular, this figure is very helpful for giving an overview of the
relationships between drug clusters and ADR clusters and how they evolve
over time. The colors refer to different time clusters and the brighter the color,
the stronger the relation (i.e. the expected number of notifications in the
time unit) between drug cluster and ADR cluster. Finally, Figure 15 shows
more specifically the evolution of the relationship between drug clusters and
ADR clusters over time. In fact, each panel represents a cluster of drugs and
within them each line identifies a cluster of ADRs and its intensity changes
over time.

Time clusters Starting from the analysis of the time clusters, one can
easily notice on Figure 13 that the segmentation proposed by the algorithm
confirms our knowledge about the previous mentioned health scandals while
revealing a time structure more complex than expected. In fact, while cluster 1
and cluster 2 include various time intervals, cluster 3 clearly refers to the
health crisis due to the Mirena® scandal while cluster 4 relates to the peak
period in the Lévothyox® crisis. Time clusters 5 and 6 refer to the final stage
of the Lévothyrox® crisis, when generics were introduced to the market. It
is worth noticing that without the dLBM application it would have been
impossible to detect the presence of other health scandal just before the one
of Lévothyrox®. In fact, looking at Figure 13, one can see that the increase
of declarations during the Mirena® health crisis are completely masked by
the Lévothyrox® ones.

Drug clusters The clusters of drugs identified by the algorithm are also
coherent with retrospective knowledge and adequately represent the variety
of drugs present in the dataset. In particular, cluster 1, cluster 6 and
cluster 7 are very specific, with one element only: they correspond respectively
to lévothyroxine (Lévothyrox® and generics), benfluorex (Médiator®) and
lévonorgestrel (Mirena®). It is worth noticing that Médiator® 2 was involved
(like Lévothyrox® and Mirena®) in an important health scandal in 2009-

2https://www.ansm.sante.fr/Dossiers/Mediator-R/Mediator-R-et-accompagnement-des-personnes/
(offset)/0
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2010. Moreover, cluster 2 contains the five most frequently reported drugs
and cluster 5 contains other common drugs, while cluster 4 is very large
and heterogeneous, with drugs that are rarely reported and finally cluster 3
contains drugs that cause bleeding.

ADR clusters Concerning the clusters of ADRs, cluster 3 (e.g. coma,
confusion, hepatic cytolysis, etc) and cluster 8 (e.g. agitation, agranulocytosis,
arthralgia, etc.) contain the most frequently notified ADRs. Cluster 1
contains recurring ADRs (e.g. sweats, transient ischemic accident, lactic
acidosis, etc.) but less than the other two previously mentioned. Cluster 2
(e.g. anemia, hemorrhagic stroke) and cluster 4 (e.g. hemorrhagic schock,
deglobulisation, etc.) respectively include the most and the less frequent
bleeding related ADRs. Cluster 7 is composed of ADRs clearly related to
Lévothyrox® and Mirena® (e.g hair loss, cramps, insomnia, etc.). In cluster 10
there are general ADRs, although it contains some ADRs specifically related
to Lévothyrox® and Médiator® (e.g. respectively abnomral TSH, valvular
disease, etc.). Finally, cluster 5, 6 and 9 contain more general and nonspecific
ADRs.

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 103 107 111 115 119 123 127

Time periods

C
o

u
n

ts

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Time cluster 1

Time cluster 2

Time cluster 3

Time cluster 4

Time cluster 5

Time cluster 6

Figure 13: Number of declarations received by the pharmacovigilance center
from 2010 to 2020, sorted by month, where the colors represent the time
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Figure 15: Evolution of the relation between each drug cluster and the all
ADR clusters over time. Each color corresponds to a different cluster of
adverse drug reaction.
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5.3 Detailed results
Time clusters Figure 14 is a graphical representation of the estimated
intensity functions. It gives a clear idea about the relationships between
clusters of molecules and clusters of ADRs, with respect to time clusters. In
particular:

• Time cluster 1: here one can notice the presence of all the drug clusters,
with different levels of intensity. The peculiarity of this cluster lies in
the strong presence of cluster 6 of drugs which gradually disappears in
subsequent temporal clusters. In fact, it contains the drug benfluorex
(Médiator®) which in 2010 was involved in a major health scandal and
it has strong interactions with clusters 5, 6 and 10 of ADRs. It is worth
noticing that dLBM managed to highlight this peculiarity that cannot
be detected by simply looking at Figure 1. In the first time cluster it
can also be noticed a strong relation between the cluster 3 of drugs
(drugs that causes bleeding) and clusters 2 and 4 of ADRs which is
coherent.

• Time cluster 2: the presence of Médiator® decreases while the interac-
tions between the drugs that cause bleeding (cluster 3) and clusters 2
and 4 of ADRs is still strong. That cluster represent the actual profile
of notifications received by RCPV. Similarly, the second cluster of drugs
(the most frequently used) appears to have ADRs in almost all clus-
ters, especially the third. We also notice the presence of Lévothyrox®

(cluster 1) with ADRs especially in clusters 6 and 7.

• Time cluster 3: this cluster includes two months only: 05-06/2017.
This period refers to the Mirena® scandal (cluster 7) with ADRs in
clusters 5, 6, 7 and 9. They are not very specific but it may suggest
a hormonal cause. In this matrix all the drug clusters are present
(even though with a lower intensity with respect to Mirena®), with the
exception of Médiator® which is not reappearing subsequently.

• Time cluster 4: it refers to the Lévothyrox® peak going from August to
October 2017. Unlike previous clusters where most drugs clusters were
present, this cluster only recognizes 2 drugs: Lévothyrox® (mainly) and
Mirena® (weakly). Consequently, the interactions that stand out are
those of Lévothyrox® with ADRs in clusters 6, 7 and 9. They are not
very specific but coherent with the statements received by RCPV.
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• Time cluster 5: it refers to 11-12/2017 and it is characterized by a reduc-
tion of Lévothyrox® declarations. Compared to the previous cluster, we
note a reappearance of other drug clusters even if the intensities remain
low compared to time cluster 1 and 2. The drugs/ADRs combinations
remain those of the previous time cluster.

• Time cluster 6: it refers to the 1st semester 2018, which corresponds to
end of Lévothyrox® crisis. Globally it is similar to the two previous time
clusters with some small variations on the intensities of the drug/ADRs
pairs.

Drug clusters For a more in-depth analysis regarding the evolution of
drug clusters over time and their interactions with the clusters of ADRs, we
can refer to Figure 15. The following remarks derive:

• Drug cluster 1: this cluster refers to Lévothyrox® and its generics. There
are almost no declared effects during the first three time clusters, from
the fourth time cluster we observe a peak of declarations which corre-
sponds to the start of the Lévothyrox® crisis, especially for ADRs in
cluster 6, 7 and 9 and to a lesser extent on 5. These four clusters recog-
nized by dLBM, include all of the ADRs described during Lévothyrox®

crisis, namely hormonal ADRs (weight gain), general ADRs (fatigue,
cramps) and neuro-psychic ADRs (anxiety, irritability, sleep distur-
bances). Time cluster 5 marks a decrease in Lévothyrox® reports in
terms of numbers but the ADRs profile remains similar to the previous
time cluster. It should be noticed that generics of Lévothyrox® began to
be available from mid-October 2017, which could explain this decrease in
the number of reports: patients started to have therapeutic alternatives.
Finally, time cluster 6 represents the end of the Lévothyrox® crisis with
a clear decrease in the number of reports.

• Drug cluster 2: this cluster includes drugs that are very frequently
prescribed, the ADRs profile is globally constant over time with a
predominance of clusters 3, 6 and 8, with variations in terms of propor-
tions according to the time clusters. Cluster 3 of ADRs corresponds
to frequent and generally serious ADRs. Cluster 8 also includes ADRs
that are generally serious but a little less often reported than cluster 3.
Cluster 6 corresponds to general ADRs that can be found with many
other drugs (especially Lévothyrox®).
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• Drug cluster 3: this cluster includes coagulation drugs whose main
ADRs are bleeding, hence the predominance of cluster 2 and 4. The
application of dLBM led us to identify, from the temporal point of
view, 3 interesting events: the increase in ADRs between time clusters
1 and 2, a significant decrease in the number of declared ADRs in time
cluster 4 (Lévothyrox® crisis) and a marked regression of cluster 2 in
time cluster 6 (late Lévothyrox®) but without cluster 4 being affected.

• Drug cluster 4: this cluster includes a fairly large set of drugs declared
relatively frequently and commonly prescribed, but disparate in terms
of their therapeutic uses or their ADRs profile. However, we observe
a predominance of ADRs of cluster 3 and 6 (general ADRs). At the
temporal level, we observe an overall decrease in ADRs in time cluster 4
(Lévothyrox® crisis).

• Drug cluster 5: as for drug cluster 4, this cluster includes many hetero-
geneous drugs. The ADRs profile is similar to that of drug cluster 4,
which is coherent with the fact that these two clusters are similar.

• Drug cluster 6: this is the Médiator® cluster, the ADRs are concentrated
in time clusters 1 and 2 with a decrease in the number of ADRs in the
second one. This is coherent with the history of the drug (Médiator®

scandal happened in 2009 with withdrawal of the market). Regarding
the profile of ADRs, we can notice a predominance of clusters 6, 5, and
10.

• Drug cluster 7: this is the Mirena® cluster, ADRs declarations predom-
inate in time cluster 3 (Mirena® crisis) then drop drastically. At the
level of ADRs profile, cluster 6 predominates (general ADRs), then
come cluster 5, 7 and 9.

5.4 Discussion
In this application to pharmacovigilance, dLBM proved to be a very useful tool
for identifying phenomena that would have been difficult to detect otherwise,
even by an expert eye. In fact, dLBM revealed that in addition to Lévothyrox®

health crisis, which was the one with the widest media coverage, two other
major events have occurred. The first one concerning Médiator®, which took
place in 2009-2010, and the second one concerning Mirena®, which took place
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in the first half of 2017. In addition, dLBM was also able to put in light
some unexpected variations of notifications such as an under-notification of
bleeding related ADRs during Lévothyrox® crisis. Bleeding related ADRs
were expected to be constant over time because of the follow-up made the
RCPV to monitor ADRs of direct oral anticoagulants (DOAs), a recent class
of anticoagulant. However, the Lévothyrox® crisis has caused such an overload
of work that the DOAs follow-up have been temporarily interrupted. Another
thing that dLBM has highlighted is the existence of 3 different phases during
the Lévothyrox® crisis corresponding to the reporting peak, the marketing
period of generics and the end of the crisis, respectively. Those phases were
not noticed by the RCPV staff during the Lévothyrox® crisis. In general,
we can conclude that dLBM could be extremly useful as a routine tool for
signal detection, since it might help health professionals to identify structural
changes or patterns of interest and, perhaps, prevent some of the consequences
a health crisis can lead to.

6 Conclusion
This work is born out of the need to analyze and summarize observations
and features of a dynamic count matrix in a simultaneous way. We have
proposed a dynamic co-clustering technique, with the purpose of simultane-
ously performing clustering of rows, columns and slices (time dimension). We
have proposed to consider a dynamic framework because it is of great interest
to look for structural changes in the way clusters interact with each other
along the time. To this end, we have introduced a generative model, named
dynamic latent block model (dLBM). The dynamic time modeling relies on
non-homogeneous Poisson processes, with a latent partition of time intervals.
Inference is done using a SEM-Gibbs algorithm and the ICL criterion is
used for model selection. The performance of dLBM was evaluated through
applications to several simulated data scenarios and compared with that of
competing methods. Then, dLBM was fit to a large-scale data set supplied by
the Regional Center of Pharmacovigilance of Nice (France). In this context,
dLBM provided meaningful segmentations of drugs, adverse drug reactions
and time. Its potential use by medical authorities for identifying meaningful
pharmacovigilance patterns looks very promising. As a further work, it would
be of interest to develop a online inference algorithm for dLBM, in order to
be used as a real-time tool working on the flow of ADR declarations. This
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however will require to be able to also do the model selection in an online
mode, which will be probably the most difficult question.
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A Estimation of the mixture proportions
The proof about how to obtain the updated mixture proportions is only shown
for the estimation of parameter γ(h+1)

k because for the estimation of the other
parameters, ρ and δ, the procedure is similar:

p(Z|γ) = L(γ;Z) = N !
N∏
i=1

K∏
k=1

γk
zik!

;

`(γk; z(h+1)
ik ) = logL(γk, z(h+1)

ik ) = log
(
N !

N∏
i=1

K∏
k=1

γk

z
(h+1)
ik !

)
=

= logN ! +
N∑
i=1

K∑
k=1

z
(h+1)
ik log γk −

N∑
i=1

K∑
k=1

log z(h+1)
ik !

For a constrained maximization of this quantity we employ the Lagrange
Multipliers, taking into account the constraint ∑K

k=1 γk = 1.

L(γk;λ) = `(γk; z(h+1)
ik ) + λ(1−

K∑
k=1

γk)

∂L(γk;λ)
∂γk

= ∂`(γk; z(h+1)
ik )

∂γk
+ ∂λ(1−∑k γk)

∂γk
= 0

∂
∑N
i=1

∑K
k=1 z

(h+1)
ik log γk

∂γk
− λ∂

∑K
k=1 γk
∂γk

= 0

∑N
i=1 z

(h+1)
ik

γk
− λ = 0

N∑
i=1

z
(h+1)
ik = λγk ⇒

∑N
i=1 z

(h+1)
ik

λ
= γk

Since λ is equal to N :∑K
k=1

∑N
i=1

z
(h+1)
ik

λ
= ∑K

k=1 γk ⇒ 1
λ

∑K
k=1

∑N
i=1 z

(h+1)
ik = 1;

we can conclude that the estimation of γ(h+1)
k is the following:

γ
(h+1)
k = 1

N

N∑
i=1

z
(h+1)
ik
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B Maximum likelihood estimator of λk`c
The maximum likelihood estimator of λk`c is obtained through the following
process:

logL(λ|X,Z,W, S) =
K∑
k=1

L∑
`=1

C∑
c=1

(Rk`c log λk`c − |Ak||B`||Dc|λk`c + c)

where c is a constant that includes all the terms that does not depend
on λ.

∂ logL(λ|X,Z,W, S)
∂λ

= Rk`c

λk`c
− |Ak||B`||Dc| = 0⇒ λ̂k`c = Rk`c

|Ak||B`||Dc|

C Intensity functions in the three scenarios
From Table 4, the scenarios "Easy" and "Medium" may look the same. However,
the main difference between the two scenarios is the value assumed by the
intensity function λ. The values of this parameter in the three different
scenarios are:

• Scenario A - Easy: λ = ΛA

ΛA[, , 1] =

50 18
1 1
1 50

; ΛA[, , 2] =

50 50
18 1
1 18


• Scenario B - Medium: λ = ΛB

ΛB[, , 1] =

1 1
1 7
7 20

; ΛB[, , 2] =

20 20
7 1
1 7


• Scenario C - Hard: λ = ΛC

ΛC [, , 1] =


70 12 1
35 1 35
1 70 12
12 35 70

; ΛC [, , 2] =


35 70 12
70 70 70
12 1 35
1 70 1

; ΛC [, , 3] =


12 70 35
35 12 70
70 35 12
12 1 35


• Scenario D - Row_LBM: λ = ΛD

ΛD[, , 1] =
[
1 6 4

]
; ΛD[, , 2] =

[
1 7 1

]
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D Data structure representation
Fig. 16 shows a representation of the interactivity patterns between all the
drugs and adversarial effects at any given time interval. Each panel represents
a time interval and the size and the color of the points depend on the number
of declarations received.
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Figure 16: Representation of the interactivity patterns between drugs and
adversarial effects at any given time interval. A small sample of the whole
data set is considered.
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