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Abstract

Pharmacovigilance is a central medical discipline aiming at mon-
itoring and detecting public health events caused by medicines and
vaccines. The purpose of this work is to analyze the notifications of
adverse drug reactions (ADRs) gathered by the Regional Center of
Pharmacovigilance of Nice (France) between 2010 to 2020. As the
current expert detection of safety signals is unfortunately incomplete
due to the workload it represents, we investigate here an automatized
method of safety signal detection from ADRs data. To this end, we in-
troduce a generative co-clustering model, named dynamic latent block
model (dLBM), which extends the classical binary latent block model
to the case of dynamic count data. The continuous time is handled
by partitioning the considered time period, allowing the detection of
temporal breaks in the signals. A SEM-Gibbs algorithm is proposed
for inference and the ICL criterion is used for model selection. The
application to a large-scale ADRs dataset pointed out that dLBM
was not only able to identify clusters that are coherent with retro-
spective knowledges, in particular for major drug-related crises, but
also to detect atypical behaviors, which the health professionals were
unaware. Thus, dLBM demonstrated its potential as a routine tool in
pharmacovigilance.

Keywords: Co-clustering, pharmacovigilance, latent block model, dynamic
count matrices, SEM-Gibbs algorithm
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1 Introduction
The World Health Organization defined pharmacovigilance as the science and
activities relating to the detection, assessment, understanding and prevention
of adverse events or any other drug-related problem (WHO, 2002). The mon-
itoring activities of pharmacovigilance persist even after the drug is on the
market to ensure that it remains safe for patients and to assess if previously
undetected adverse drug reactions (ADRs) occur. An ADR can be defined
as any unwanted or unexpected reaction expirienced by an individual after
taking a medication (e.g. drug, vaccine, etc.). From the point of view of the
public health authorities, it is crucial to report ADRs in order to improve
information on medicines and allow possible public health measures, such
as withdrawal of a drug, restrictions on indications or interactions between
medical products.
As mentioned before, one of the missions of the Regional Centers of Phar-
macovigilance (RCPVs) is safety signal detection. However, the method
currently used, i.e. manual expert detection of safety signals by the RCPV,
despite being unavoidable, has the disadvantage of being incomplete due to
its workload. This is why, developing automatized method of safety signal
detection is currently a major issue in pharmacovigilance. In such a context,
clustering may play an important role in summarizing the information carried
out by pharmacovigilance data and identifying patterns of interest. It would
be indeed of interest to both cluster the drugs and the adverse reactions
to help medical experts in their tasks. The class of methods that allows to
perform a simultaneous clustering of both rows (here medical products) and
columns (here ADRs) in matrices is known in the statistical literature as
co-clustering.

Model-based clustering and co-clustering (Bouveyron et al., 2019) is widely
used in an increasing number of different fields. The problem considered in
this paper is similar to other situations in which clustering and co-clustering
are employed, such as image analysis, pattern recognition, text mining, bioin-
formatics, information research and social network analysis. In fact, in many
applications, it is nowadays frequent to have to summarize large data matrices
that evolve in time. For instance, the growing number of users in platforms
like Tripadvisor, Amazon, eBay, led the major e-commerce companies to man-
age massive amounts of data to be able to offer the most suitable products to
their customers.
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1.1 Pharmacovigilance and the RCPV data
The main mission of the Regional Center of Pharmacovigilance (RCPV),
located in the University Hospital of Nice (France), is to gather the notifi-
cations of ADRs of three French departments, covering an area of over 2.3
million inhabitants. Such ADR reporting is required by law for every health
professional, particularly if serious and/or unexpected, in the respect of the
anonymity of both patients and notifiers. Patients, their representatives or
patients’ associations can also report ADR. Individual patient data collected
by the RCPV includes sociodemographic characteristics (age, sex, notifier’s
department of residence), and the reported ADR (suspected and concomitant
drugs, notified effect, date of occurrence, seriousness). The RCPV missions
also include answering to questions of health professionals and patients about
drugs, promoting a proper use of medicinal product and detecting safety
signals about drugs. In France, pharmacovigilance of commercialized drugs is
driven by the French Pharmacovigilance network1, which consists of a ring of
31 RCPV scattered throughout the French territory under the supervision of
the national drug agency (ANSM). The French Pharmacovigilance database
(FPDB) centralizes all spontaneous reports of adverse drug reactions (ADRs)
from the French Pharmacovigilance network, in order to accrue the European
database EudraVigilance and the global database Vigibase.
As an illustration of the data we will consider in this work, Figure 1 shows the
data structure in three different periods. Each panel shows the interactions
between a few molecules (on the x-axis) and a few ADRs (on the y-axis) in
the selected period. The distribution of notifications over time is shown in the
histograms below, where the considered time period (month) is highlighted
in pink. As we can observe on this small part of the whole data set, one clear
big event hides all the other patterns that are however of interest.

1.2 Model-based co-clustering
A co-clustering problem can be seen as the simultaneous clustering of rows
(individuals) and columns (variables) of a data matrix. To avoid any doubt,
it may be useful to point out here the difference in the concepts between co-
clustering and bi-clustering. Bi-clustering methods allow to have overlapping
clusters and to leave some of the observations unclustered, while in co-
clustering each entry belongs to one and only one cluster (it is not possible

1https://www.rfcrpv.fr/la-pharmacovigilance/
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Figure 1: Notifications of adverse drug reactions (ADRs) reported to the
RCPV in 3 different time periods.
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to leave some entries unassigned). In the last decades, different co-clustering
techniques have been developed for a wide range of applications. Due to the
spreading of e-commerce companies (e.g. Amazon, Ebay) and the exponential
growth of social networks (e.g. Facebook, Linkedin, Twitter), application of
co-clustering techniques to recommending systems and collaborative filtering
have emerged (George and Merugu, 2005; Deodhar and Ghosh, 2010; Xu
et al., 2012). Other applications include gene expression analysis (Cheng
et al., 2008; Hanisch et al., 2002), text mining and topic modeling (Bergé
et al., 2019; Dhillon et al., 2003a; Wang et al., 2009).
Co-clustering methods can be distinguished into metric based approches such
as: non-negative matrix tri-factorization (NMTF) (Labiod and Nadif, 2011;
Ding et al., 2006), spectral co-clustering (Dhillon, 2001), information theory
(Dhillon et al., 2003b) and model-based co-clustering approaches (Bouveyron
et al., 2019).
Among those approaches, model-based co-clustering is widely appreciated for
its sound statistical foundations and its flexibility in terms of sparsity and
data types. The much popular latent block model (LBM) (Govaert and Nadif,
2003) was introduced for the co-clustering of binary data matrices, based
on the assumption that rows and columns are grouped in hidden clusters
and that observations within a block (intersection of a row cluster and a
column cluster) are independent and identically distributed. Whereas the
original formulation of the model dealt with binary data, the model has
been extended in the last two decades to counting data (Govaert and Nadif,
2010), continuous data (Lomet, 2012), categorical data (Keribin et al., 2015),
ordinal data (Jacques and Biernacki, 2018; Corneli et al., 2020), functional
data (Bouveyron et al., 2018) and textual data (Bergé et al., 2019). Several
inference procedures have been also proposed for LBM, including likelihood
based methods (Govaert and Nadif, 2008), variational inference (Keribin et al.,
2012), Bayesian inference (Keribin et al., 2012; Wyse and Friel, 2012) and
greedy search approaches (Wyse and Friel, 2012; Wyse et al., 2017). Recently,
Boutalbi et al. (2020) proposed the tensor latent block model (TLBM) for
co-clustering, whose aim is to simultaneously cluster rows and columns of
a 3D matrix, where covariates represent the third dimension. TLBM was
also implemented for different types of datasets: continuous data (Gaussian
TLBM), binary data (Bernoulli TLBM) and contingency tables (Poisson
TLBM).
Among the dynamic extensions of the co-clustering approaches, we can cite
the evolutionary spectral co-clustering (ESCC, Green et al., 2011). In that
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paper, two different ways of taking into account the historical relationship
between the instances and features are proposed, one respect to current
(RTC) and the other respect to historical (RTH). The first one gives most
importance to the present, considering only the previous time-step, while the
second one takes into account all the previous time-steps. For the continuous
time modeling, an original approach was proposed by Corneli et al. (2018)
for the dynamic stochastic block model, in a slightly different context: the
clustering of dynamic networks. The authors considered the interactions
between nodes in a dynamic network, where the goal is to cluster both nodes
and time intervals into groups. The number of interactions between two
nodes is modeled via a non-homogeneous Poisson process (NHPP) whose
instantaneous intensity functions are assumed to be constant on each time
cluster. A greedy maximization of the exact-ICL (Biernacki et al., 2000; Côme
and Latouche, 2015) was used to cluster the nodes, the time intervals and to
select the optimal number of clusters.
Concerning co-clustering applications to pharmacovigilance, a seminal article
was proposed by Robert et al. (2015). In that paper, the authors introduced
the multiple latent block model (MLBM) by extending the latent block model
(Govaert and Nadif, 2008) through the construction of one row partition
and two columns partitions that respectively rely on two binary matrices
containing the relation between the individual and the medical product and
the relation between the individual and the ADR.

1.3 Contributions of this work
We consider count data matrices evolving over a time period [0, T ], whose
number of rows and columns if fixed. The goal of the dynamic latent block
model (dLBM), that we propose here as a tool for pharmacovigilance, is to
cluster both the rows and the columns of such matrices. We assume that
the number of interactions occurring in time between rows and columns
follows a non-homogeneous Poisson process (NHPP). To handle the dynamic
framework, we led a segmentation over the continuous time such that we
obtain as many static matrices as the number of the identified time intervals.
As inference procedure, we use the SEM-Gibbs algorithm while the ICL
criterion is adopted for selecting the optimal number of clusters. Thus, dLBM
provides a meaningful summary of massive datasets, possibly with a large
number of missing data. To demonstrate the interest in pharmacovigilance,
we run a large-scale experiment on an ADRs dataset from Regional Center
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of Pharmacovigilance (RCPV), located in the University Hospital of Nice
(France). The interest of this application lies not only in summarizing the
massive amount of drug adverse reactions (ADRs) data but also in identifying
possible unexpected phenomena, such as atypical side effects of certain types
of drugs.

1.4 Organization of the paper
This paper is organized as follows. Section 2 first recalls the original latent
block model, before introducing the generative model of dLBM. In Section 3,
the inference procedure is detailed and a model selection criterion is discussed.
Section 4 presents various experiments on simulated data to assess the model
performances. In Section 5, an application on a real ADRs dataset is presented
to illustrate the potential of dLBM in pharmacovigilance. Section 6 provides
some concluding remarks.
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2 The dynamic latent block model
In this section, we introduce the dynamic latent block model (dLBM). The
main goal of this model is the simultaneous clustering of rows and columns
of high-dimensional sparse matrices in a dynamic time framework. The data
we consider are organized such that the rows (drugs in pharmacovigilance
application) are indexed by i = 1, . . . N and the columns (adversarial effects)
by j = 1, . . . , P . Moreover, we consider a fixed time period [0, T ] during
which the total number of rows, N , and columns, P , is fixed. We indicate
as X (t) the N × P matrix that contains the number of interactions occurring
between the individual i and the item j at time t ∈ [0, T ]. The first part of
this section reviews the latent block model, while, in the second part, the
proposed dynamic extension is introduced.

2.1 The latent block model
Let us first neglect the time dimension and recall the original latent block
model (Govaert and Nadif, 2010), assuming that the time period is restricted
to a single time point. The data structure is therefore a N × P random
matrix X = {Xij}i∈1,...,N,j∈1,...,P . Rows and columns of X are assumed to be
clustered respectively into K and L groups, such that the data belonging to
the same block are independent and identically distributed. More formally,
the latent structure of rows and columns of X is identified by the following
latent variables:

• Z := {zik}i∈1,...,N,k∈1,...,K represents the clustering of rows into K groups:
A1, ...,AK . The row i belongs to cluster Ak iff zik = 1;

• W := {wj`}j∈1,...,P,`∈1,...,L represents the clustering of columns into L
groups: B1, ...,BL. The column j belongs to cluster B` iff wj` = 1.

Moreover, Z and W are assumed to be independent and distributed according
to multinomial distributions:

p(Z|γ) =
K∏
k=1

γ
|Ak|
k , p(W |ρ) =

L∏
`=1

ρ
|B`|
` ,

where γk = P{zik = 1}, ρ` = P{wj` = 1},
K∑
k=1

γk = 1,
L∑
`=1

ρ` = 1, and |Ak| and

|B`| respectively represent the number of rows in cluster Ak and the number
of columns in cluster B`.
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The LBM model further assumes the entries Xij are independent, con-
ditionally to Z and W , and their distribution ϕ(., α) belongs to the same
parametric family, where the parameter α only depends on the given block:

Xij | zikwj` = 1 ∼ ϕ(Xij, αk`). (1)
With these assumptions the complete data likelihood can be written as:

p(X,Z,W ; θ) = p(Z; θ)p(W ; θ)p(X|Z,W ; θ) =
K∏
k=1

γ
|Ak|
k

L∏
`=1

ρ
|B`|
`

∏
i,k

∏
j,`

ϕ(Xij;αk`)zikwj` .

(2)
As mentioned in Section 1.2 various versions of LBM have been proposed along
the decades. The first one was proposed for the binary case, where ϕ(Xij, αk`)
is a Bernoulli distribution with p(Xij = 1|Z,W ; θ) = αkl. Since this article
focuses on count data, the most suitable extension of LBM for our purpose
is the Poisson LBM. In fact, this model is based on the assumption that,
conditionally on Z andW , the entries Xij follow a Poisson distribution P(λk`),
i.e:

ϕ(Xij;λk`) =
λXij

k`

Xij!
exp(−λk`)

 . (3)

2.2 Modeling the dynamic framework
Let us now introduce the time dimension such that Xij is time dependent.
Thus, Xij(t), t ∈ [0, T ], represents the cumulative number of interactions at
time t between i and j.
A possible approach for the dynamic modeling relies on non-homogeneous
Poisson processes (NHPPs), thus assuming that {Xij(.)}i,j are independent
point processes, with instantaneous intensity functions λij(t):

Xij(t) ∼ P
(∫ t

0
λij(u)du

)
, (4)

where P(λ) denotes the Poisson probability mass function of parameter λ.
With the notation adopted so far, we thus assume the existence of N × P
independent Poisson processes.
In order to cluster both the rows and the columns, we further assume that
the intensity function λij(t) only depends on the respective clusters of row i
and column j:

Xij(t) | zik, wj` = 1 ∼ P
(∫ t

0
λk`(u)du

)
.
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Figure 2: Time clusters.

For further use, let us introduce the parameter λ := (λk`(t))k6K;`6L. Given the
above assumptions, the conditional distribution of the number of interactions
between i and j, over the time interval [s, t], where 0 6 s 6 t 6 T , is:

p(Xij(t)−Xij(s) | zikwj` = 1, λ) = (
∫ t
s λk`(v)dv)Xij(t)−Xij(s)

(Xij(t)−Xij(s))!
exp

(
−
∫ t

s
λk`(v)dv

)
.

(5)

2.2.1 A discrete time version

In order to ease the understanding of the dynamic model and to make the
inference tractable, we also operate a clustering over the time dimension. Let
us first introduce a discretization of the considered time interval [0, T ]. Thus,
without loss of generality the following partition of [0, T ] is introduced:

0 = t0 < t1 < · · · < tU = T, (6)

where the U intervals, Iu = [tu−1, tu[, will also be clustered. The number
of interactions between i and j on the time interval Iu can be therefore
summarized by Xiju:

Xiju := Xij(tu)−Xij(tu−1), ∀(i, j, u),

where Xij(tu) represents the cumulative number of interactions at time tu
between i and j. Hence, we introduce the tensor X := {Xiju}iju with
dimension N × P × U that contains the number of interactions between any
observation and feature pair at any given time interval. We can also see X as
a time series (along the third dimension) of incidence matrices.

Since our goal is to perform clustering over the time dimension as well,
each time interval I1, . . . , IU is also assumed to be assigned to a hidden time
cluster D1, . . . ,Dc. To model the membership to time clusters, a new latent
variable S has to be introduced, such that su = c if the time interval Iu
belongs to the time cluster Dc. As it is shown in Figure 2, it is worth noticing

10



X

WZ S

λ

γ ρ δ

N × P × U

N P U

Figure 3: Graphical representation of dLBM.

that a specific time cluster can occur more than once in the temporal line
when a similar interactivity pattern is repeated in time. Furthermore, as
for Z and W , we assume that S follows a multinomial distribution:

p(S | δ) =
C∏
c=1

δ|Dc|
c , (7)

where δc = P{suc = 1};
C∑
c=1

δc = 1 and | Dc | represents the number of time

intervals in the cluster Dc.
Once these additional assumptions have been made, we can rewrite Eq. (4)

considering that the intensity functions are stepwise constant on each time
cluster Dc. Thus:

Xiju|zikwj`suc = 1 ∼ P(λk`c∆u), (8)
where ∆u indicates the length of the interval Iu. Henceforth, in order to
simplify the exposition, we assume that ∆u is constant, ∆u = ∆. We can
finally set ∆ = 1 without loss of generality. A graphical representation of
dLBM can be seen in Figure 3.

From Eqs. (3)-(8), it holds that:

p(Xiju | zikwj`suc = 1, λk`c) =
(

(λk`c)Xiju

Xiju!
exp (−λk`c)

)
. (9)
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Therefore, we can introduce the K × L × C tensor λ, whose elements are
denoted by λk`c.

It is now possible to write the complete data likelihood of the model:

p(X,Z,W, S|γ, ρ, δ, λ) = p(Z|γ)p(W |ρ)p(S|δ)p(X|Z,W, S, λ), (10)

where p(Z|γ), p(W |ρ) and p(S|δ) were defined in the previous section. The
conditional distribution of X, given Z, W , and S, can be easily obtained
from Eq. (9) by independence:

p(X|Z,W, S, λ) =
∏
k,`,c

(
(λk`c)Rk`c

Pk`c
exp (− | Ak || B` || Dc | λk`c)

)
, (11)

where Rk`c =
N∑
i=1

P∑
j=1

U∑
u=1

zikwj`sucXiju and Pk`c =
N∏
i=1

P∏
j=1

U∏
u=1

(zikwj`sucXiju)!.

Denoting by θ the set of all model parameters, θ = (γ, ρ, δ, λ), the log-
likelihood can be finally written as:

`(θ;X) =
∑
Z

∑
W

∑
S

log p(X,Z,W, S | θ). (12)

2.3 Link with related models
At this point, dLBM can be related with the following models:

• If we do not take into account the time dependency, assuming that the
time period is restricted to a single time point t0, dLBM coincides with
the Poisson LBM.

• dLBM reduces to dSBM (Corneli et al., 2016) if the row individuals are
the same as the column. In that case, in fact, Z would be equal to W
and, then consequently, K = L. Therefore, in this way, we pass from
an incidence matrix to an adjacency matrix.

• If C = U , dLBM corresponds to TensorLBM (Boutalbi et al., 2020),
where the third dimension is considered but the slices are not clustered.
In fact, when the contingency table case is analyzed, the authors consider
a Poisson TensorLBM, where for each slice a, the entries are distributed
according to a Poisson(λaij).
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3 Inference algorithm and model selection

3.1 Model inference
For the co-clustering model based approach outlined in the previous section,
as well as for standard mixture models, a direct maximization of the log-
likelihood with respect to the model parameters is not feasible. A widely used
approach to overcome this problem is the expectation-maximization (EM)
algorithm (Dempster et al., 1977). It consists in alternating two steps, E step
and M step, in order to maximize a lower bound of the log-likelihood. The
EM-algorithm exploits the following decomposition of the log-likelihood:

`(θ;X) = log p(X | θ) = L(q(Z,W, S); θ)+KL(q(Z,W, S) || p(Z,W, S | X, θ)),
(13)

with:
L(q(Z,W, S); θ) =

∑
Z,W,S

q(Z,W, S) log p(X,Z,W, S | θ)
q(Z,W, S) , (14)

where L(·; θ) represents a lower bound of the log-likelihood while KL(q||p)
is the Kullback-Leibler divergence between q and p. During the E-Step,
the algorithm maximizes the lower bound L(q(Z,W, S); θ) with respect
to q(.) for a given value of θ. From Eq.(13), we can asses that maxi-
mizing L(q; θ) is equivalent to minimizing KL(q||p(.|X, θ)) and since the
Kullback-Leibler divergence cannot be negative, we conclude that the lower
bound is maximized when KL(q||p(.|X, θ)) = 0. This leads us to the conclu-
sion that L(q(Z,W, S); θ) is optimized when q∗(Z,W, S) = p(Z,W, S | X, θ).
The M-Step usually consists in maximizing L(q(Z,W, S); θ) over θ, keep-
ing q = q∗ fixed, in order to obtain an updated version of the parameter,
θ.

However, in the context of the present work the joint posterior distribu-
tion p(Z,W, S | X, θ) is not computationally tractable as well. To go through
this limitation, we propose to approximate it through a Gibbs sampler within
the E-step. Such an approach was proposed by Keribin et al. (2010) and
exploited, for instance, by Bouveyron et al. (2018) for the functional latent
block model (funLBM). The resulting stochastic alternative of the EM al-
gorithm, called SEM-Gibbs algorithm, starts with some initial values of the
parameter θ(0), the column clusters W (0) and the time clusters S(0). In this
way, at the hth iteration the algorithm alternates the following SE step and
M step:
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SE step: a partition for Z, W and S is drawn according to q∗(Z,W, S) =
p(Z,W, S | X, θ), which is approximated by making use of a Gibbs sampler,
using the current values of the parameter set θ. In this way, the unknown
labels are simulated from their posterior distribution, given the observed data
and the parameter set. It consists in executing a small number of iterations
of the following three steps:

1) Generate the row partition z(h+1)
i = (z(h+1)

i1 , . . . , z
(h+1)
iK )|X,W (h), S(h) ac-

cording to z(h+1)
i ∼M (1,z̃i1, . . . , z̃iK), for all 1 ≤ i ≤ N and 1 ≤ k ≤ K,

where:

z̃ik = p(zik = 1 | X,W (h), S(h); θ(h)) = γ
(h)
k fk(Xi | W (h), S(h); θ(h))∑

k′
γ

(h)
k′ fk′(Xi|W (h), S(h); θ(h))

,

where Xi = (Xiju)ju and fk(Xi | W (h), S(h); θ(h)) = ∏
j`

∏
uc p(Xiju; θ(h)

k`c)
w

(h)
j`
s

(h)
uc .

2) Generate the column partition w(h+1)
j = (w(h+1)

j1 , . . . , w
(h+1)
jL )|X,Z(h+1), S(h)

according to w
(h+1)
j ∼ M (1,w̃j1, . . . , w̃jL), for all 1 ≤ j ≤ P and

1 ≤ ` ≤ L, where:

w̃j` = p(wj` = 1| X,Z(h+1), S(h); θ(h)) = ρ
(h)
` f`(Xj|Z(h+1), S(h); θ(h))∑̀

′
ρ`′f`′(Xj|Z(h+1), S(h); θ(h)) ,

where Xj = (Xiju)iu and f`(Xj|Z(h+1), S(h); θ(h)) = ∏
ik

∏
uc p(X; θ(h)

klc )z
(h+1)
ik

s
(h)
uc .

3) Generate the time cluster partition s(h+1)
u = (s(h+1)

u1 , . . . , s
(h+1)
uC )|X,Z(h+1),W (h+1)

according to s(h+1)
u ∼ M (1,s̃u1, . . . , s̃uC) , for all 1 ≤ u ≤ U and

1 ≤ c ≤ C, where:

s̃uc = p(suc = 1|X,Z(h+1),W (h+1); θ(h)) = δ(h)
c fc(Xu|Z(h+1),W (h+1); θ(h))∑

c′
δc′fc′(Xu|Z(h+1),W (h+1); θ(h)) ,

where Xu = (Xiju)ij and fc(Xu|Z(h+1),W (h+1); θ(h)) = ∏
ik

∏
j` p(Xiju; θ(h)

klc )
z

(h+1)
ik

w
(h+1)
j` .
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M step: in this step, L(q∗(Z,W, S); θ(h)) is maximized with respect to θ,
where:

L(q∗(Z,W, S); θ(h)) '
∑
Z,W,S

p(Z,W, S | X, θ(h)) log p(X,Z,W, S | θ)
p(Z,W, S | θ(h))

' E[log(p(X,Z(h+1),W (h+1), S(h+1) | θ) | θ(h)] + ξ,

where ξ is a constant term related to θ. This conditional expectation of the
complete data log-likelihood can be written in a developed form as follows:

E[log(p(X,Z(h+1),W (h+1), S(h+1) | θ) | θ(h))] =
∑
i,k

z
(h+1)
ik log γk +

∑
j,`

w
(h+1)
j` log ρ`+

+
∑
u,c

s(h+1)
u,c log δc +

∑
i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc log(p(Xiju | θklc)).

(15)
The last term of the previous equation can be further developed as:∑

i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc log(p(Xiju | θklc)) =

∑
i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc log
(λ(h)

klc)Xiju

Xiju!
exp(−λ(h)

klc)
 =

∑
i,k

∑
j,`

∑
u,c

z
(h+1)
ik w

(h+1)
j` s(h+1)

uc

[
Xiju log(λ(h)

klc)− log(Xiju!)− λ(h)
klc

]
.

(16)

Thanks to the previous equation, the parameter set θ(h+1) can be estimated.
The mixture proportions are updated as follows (proof in Appendix B):

γ
(h+1)
k = 1

N

∑
i

z
(h+1)
ik , ρ

(h+1)
` = 1

P

∑
j

w
(h+1)
j` , δ(h+1)

c = 1
U

∑
u

s(h+1)
uc .

Moreover, the ML estimator of λk`c is defined as follows (proof in Appendix
C):

λ
(h+1)
k`c = R

(h+1)
k`c

|Ak||B`||Dc|
, ∀(k, `, c).

The algorithm runs for a certain number of iterations of the two steps and,
after the burn-in period, we can obtain the final estimation of the parameter
set θ̂ by computing the mean from the sampled distribution. Finally, the
optimal values for Z, W and S are estimated by the mode of their sampled
distributions.
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3.2 Model selection
Up to now, we have assumed that the number of row clusters (K), column
clusters (L) and time clusters (C) was known. However, for real data sets,
this assumption is of course unrealistic. For this reason, our purpose in this
section is to define a model selection criterion that can automatically identify
the optimal number of clusters that are appropriate for the data at hand.
The model selection approach is considered. We propose to rely on ICL
(Integrated Completed Likelihood, Biernacki et al. (2000)) to approximate
the complete-data integrated log-likelihood. We derived the formulation of
the ICL criterion for the model proposed above:

ICL(K,L,C) = log p(X, Ẑ, Ŵ , Ŝ; θ̂)− K − 1
2 logN+

−L− 1
2 logP − C − 1

2 logU − KLC

2 log(NPU)
(17)

The triplet (K̂, L̂, Ĉ) that leads to the highest value for the ICL is consid-
ered as the most meaningful for those data.
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4 Numerical experiments
The main purpose of this section is to highlight the most important features
of dLBM over simulated datasets. We aim at demonstrating the validity
of the inference algorithm and model selection criterion, presented in the
previous sections. The first experiment consists in applying dLBM to an
easy scenario to explain its main outputs. Then, the second example shows a
model selection application on 25 simulated datesets. In the third experiment,
we compare the performances of dLBM with some state-of-the-art methods
in three simulated scenarios.

4.1 Introductory example
As a first example, we simulate a dataset with K = 3 groups of rows, L = 2
groups of columns and C = 2 groups of time clusters, with a level of sparsity
τ = 0.97. Table 1 shows the main features of this dataset.

N P U τ K L C γ ρ δ
200 200 150 0.97 3 2 2 (0.1, 0.35, 0.55) (0.2, 0.8) (0.6, 0.4)

Table 1: Parameter values for the first simulated dataset

We fitted dLBM to simulated dataset with the actual values for K, L and
C to show the ability of the model to fully recover the model parameters.
Figure 4 shows the evolution of the complete data log-likelihood. As we can
see the convergence is reached in less than 10 iterations. Figure 5 shows the
evolution of the estimated mixture parameters γ̂, ρ̂ and δ̂ along the iterations
of the SEM-Gibbs algorithm. Comparing the values reached by each line with
the actual values of the model parameters showed in Table 1, we can observe
that dLBM fully recovers the original values in few iterations. Moreover,
Figure 6 shows a bar plot of the number of interactions between rows and
columns of the array X for each time period, where the two different time
clusters are identified by different colors. We can easily deduce that dLBM
selects the two time clusters in a meaningful way in terms of level of counted
interactions in each time cluster.
Figure 7 shows the value of the estimated intensity parameter λ̂ for each
cluster of rows and columns where different colors represent different time
clusters. For instance, the algorithm detects that, in the first cluster of rows
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and the first cluster of columns (Block(1,1)), there is an high intensity of
interactions in both of the time clusters. Figure 8 and Figure 9, display the
data structure before running dLBM and the reorganized incidence matrices
one for each time cluster. To this end, rows and columns of the incidence
matrix are permuted, thanks to the estimates Ẑ and Ŵ , in such a way that
nearby rows (columns) belong to the same cluster of rows (columns). The
blocks are also delimited by black dashed lines.
Finally, to evaluate the performance of the model in identifying the correct
rows, columns and times partitions, we use the adjusted Rand index (ARI)
Rand (1971) for all of the three variables. The adjusted Rand index, from
a mathematical point of view, is closely related to the accuracy measure,
however it is a commonly used method for evaluating clustering problems
since it can be applied for measuring the similarity between two partitions
even with different number of clusters and it is invariant to label switching.
The closer the index is to 1, the more two label vectors are similar to each
other. We compared the original matrices Z, W and S, with the estimates
Ẑ, Ŵ and Ŝ given by the output of the dLBM. The model obtained an ARI
index of 1 for rows, columns and times partitions. Thus, we can conclude
that our algorithm perfectly identifies the composition of the original clusters.

4.2 Model selection experiment
In the previous experiment, we assumed to know the value of K, L and C.
In this section we aim at validating the ICL criterion for model selection. To
do that, 25 independent datasets are generated with the setup indicated in
Table 2. dLBM is applied on those simulated datasets for values of K, L and
C ranging from 1 to 6. The results are sorted according to the ICL values.
Table 3 shows the percentage of selections by ICL criterion on 25 simulated
datasets. The highlighted cell corresponds to the actual value of K, L and
C. ICL succeeds 64% of the time to identify the correct model. It is worth
to notice that, when ICL does not select the right combination of K, L and
C, the wrongly selected models are close to the simulated one. In particular,
28% of the selections only differ from the actual model by one cluster, on one
of the three cluster dimensions.
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Figure 4: Complete data log-likelihood over the iterations of the dLBM
algorithm.
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Figure 5: Estimates of the mixture parameters of the first simulated dataset.
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Figure 9: Reorganized incidence matrices, one for each time cluster, according
to the estimates Ẑ and Ŵ . Nearby rows (columns) belong to the same cluster
of rows (columns). The blocks are also delimited by black dashed lines.
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N P U τ K L C γ ρ δ
200 200 200 0.97 4 3 3 (0.2,0.4,0.1,0.3) (0.4,0.3,0.3) (0.25,0.3,0.45)

Table 2: Parameter values for the second simulated dataset.

C = 3 C = 4
K/L 1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 64 8 0 0
5 0 0 12 0 4 0
6 0 0 0 0 0 0

K/L 1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 8 0 0 0
5 0 0 0 4 0 0
6 0 0 0 0 0 0

Table 3: Model selection. Percentage of selections by ICL criterion on 25
simulated datasets. The highlighted cell corresponds to the actual value of K,
L and C.

4.3 Benchmark study
The goal of this third experiment is to compare dLBM with some state-of-the-
art methods in terms of recovering the data structure. dLBM is compared
with TensorLBM (Boutalbi et al., 2020) where, in absence of the original code,
we set the number of time clusters of dLBM equal to the number of time
intervals, C = U , and with the Poisson LBM by making use of the bikm1
package (Robert et al., 2020). Since LBM supports only two dimensions,
we shrink the third dimension summing up alternatively on rows, columns
and slices, obtaining respectively the Row_LBM, Col_LBM and Slice_LBM
methods.
We chose to evaluate the results with the ARI index by comparing the re-
sulting cluster partitions with the simulated ones. To make this comparison
more complete, we defined three simulation scenarios ("Easy", "Medium" and
"Hard"), detailed in Table 4. Table 5 displays the results of this comparison,
in terms of average ARI values, reported with standard deviations. The dash
indicates that no value is reported because the calculation is not allowed by
the model.
In the "Easy" situation, dLBM works perfectly. Also TensorLBM provides ex-
cellent results, even though calculated only on rows and columns. Row_LBM
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and Col_LBM only give good results on one dimension, while Slice_LBM
produces extremely low results.
In "Medium" and "Hard" situations, dLBM continues to obtain excellent
results, although not perfect, due to the increasing complexity of the proposed
situations. The three other LBM models perform poorly, while TensorLBM
obtains rather high ARI values. Specifically, in the "Hard" situation the ARI
value of TensorLBM on the columns is slightly higher than that of dLBM,
even if the one calculated on the rows partitions is lower.

Scenario N P U K L C γ ρ δ λ

Easy
250 250 100 3 2 2 (0.1,0.35,0.55) (0.2,0.8) (0.6,0.4) ΛA

Medium ΛB

Hard 4 3 3 (0.2,0.4,0.1,0.3) (0.4,0.3,0.3) (0.25,0.3,0.45) ΛC

Table 4: Parameter values for the three simulation senarios (see Appendix C
for details about ΛA,ΛB and ΛC).
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Scenario A - Easy
ARI_Rows ARI_Cols ARI_Slices

dLBM 1± 0 1± 0 1± 0
TensorLBM 0.8± 0.3 1± 0 -
Row_LBM - 0.12± 0.21 0.96± 0.2
Col_LBM 0.1± 0.21 - 0.92± 0.2
Slice_LBM 0.09± 0.2 0.13± 0.22 -

Scenario B - Medium
ARI_Rows ARI_Cols ARI_Slices

dLBM 0.89± 0.17 1± 0 1± 0
TensorLBM 0.74± 0.18 1± 0 -
Row_LBM - 0.13± 0.21 0.12± 0.23
Col_LBM 0.09± 0.21 - 0.15± 0.23
Slice_LBM 0.1± 0.2 0.14± 0.21 -

Scenario C - Hard
ARI_Rows ARI_Cols ARI_Slices

dLBM 0.79± 0.19 0.68± 0.22 0.63± 0.18
TensorLBM 0.64± 0.21 0.71± 0.19 -
Row_LBM - 0.09± 0.14 0.09± 0.15
Col_LBM 0.12± 0.14 - 0.12± 0.15
Slice_LBM 0.2± 0.18 0.25± 0.22 -

Table 5: Co-clustering results for dLBM, TensorLBM, and LBM applied
respectively by summing up the rows (Row_LBM), the columns (Col_LBM)
and the slices (Slice_LBM) on 25 simulated data according to the three
scenarios. Average ARI values are reported with standard deviations.
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5 Analysis of the adverse drug reaction dataset
This section focuses now on the application of dLBM to a large-scale pharma-
covigilance dataset, with the aim of illustrating the potential of the tool for
such studies.

5.1 Protocol and data
This section considers a large dataset consisting of ADR data collected by
the Regional Center of Pharmacovigilance (RCPV), located in the University
Hospital of Nice (France). The center covers an area of over 2.3 million
inhabitants and receives notifications about ADRs from different channels:
a website2 form that everyone can freely fill and send, phone calls, emails,
medical visits at the hospital units, etc. A time horizon of 10 years is
considered, from January 1st, 2010 to September 30th, 2020, the unity measure
for time intervals is a month (∆u = ∆ = 1 month). The overall dataset is
made of by 44,269 declarations, for which the market name of the drug, the
notified ADR, the channel used for the declaration and its origin, as well as
an identification number and the reception date are reported. To prevent the
same medicine from being considered more than once if reported under slightly
different names, we decided to use the international nonproprietary name
(INN) of the drug (to simplify the comprehension, the INNs would be referred
as drugs for the rest of the study). Moreover, we only considered molecules
and ADRs that were notified more than 10 times over the 10 years. The
resulting dataset contains 542 drugs, 586 ADRs and 129 months with 13,363
non-zero entries.
Figure 1 shows a histogram representing the frequency of declarations arrived
at the pharmacovigilance center from 2010 to 2020, ordered by month. It can
easily be noticed that, during the year 2017, there is an extremely uncommon
behavior in the progress of notifications to the pharmacovigilance center. In
fact, in that year an unexpected rise of reports for ADRs happened concerning
two specific drugs: Mirena® and Lévothyrox®. Mirena® has been available
in Europe since 1995. This birth control product contains a hormone called
levonorgestrel. In 2017, concerns regarding ADRs associated with the use of
levonorgestrel releasing intra-uterine device (IUD) started to grown with a
media coverage peak occurred in May 2017, which resulted in a massive wave

2https://signalement.social-sante.gouv.fr
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of ADRs reports from patients to French RCPVs (Langlade et al., 2019).
Also, Lévothyrox® has been marketed in France for about 40 years as a
treatment for hypothyroidism and, in 2017, a new formula was introduced
on the market. The Lévothyrox® case had an extremely high media coverage
in France: the RCPVs received 18,241 reports of Lévothyrox® ADRs in 2017
only. Lévothyrox® spontaneous reports represent almost the 90% of all the
spontaneous notifications that the Nice center received from patients in 2017.
This phenomenon has been fully described in a recent article of Viard et al.
(2019).
From Figure 1, one can understand the difficulty to work with such data
which contain signals of very different amplitude. Indeed, behind those very
visible effects, many ADR signals need to be detected for obvious public
health reasons. In particular, those data also contain ADR reports regarding
Médiator®, which is here far less visible than Lévothyrox® and Mirena, but
also led to many avoidable serious cardiovascular diseases. This is why, we
expect dLBM to be a useful tool to reveal such hidden signals.

5.2 Summary of the results
Remembering that our aim is to find an underling latent structure in our
dataset by applying co-clustering on the three dimensions of the array X with
dimension 542× 586× 129, we have run dLBM for different values of K, L
and C. Specifically, we tested rows (here drugs), columns (here ADRs) and
times groups ranging from 1 to 12. The ICL criterion identified the optimal
values for the triplet (K̂, L̂, Ĉ) as: K̂ = 7, L̂ = 10, Ĉ = 6.
Figure 10 shows the frequency of the declarations received by the RCPV
from 2010 to 2020, sorted by month, where the colors represent the identified
time clusters. Figure 11 displays the estimated intensity function representa-
tion. In particular, this figure is very helpful for giving an overview of the
relationships between drug clusters and ADR clusters and how they evolve
over time. The colors refer to different time clusters and the brighter the color,
the stronger the relation (i.e. the expected number of notifications in the
time unit) between drug cluster and ADR cluster. Finally, Figure 12 shows
more specifically the evolution of the relationship between drug clusters and
ADR clusters over time. In fact, each panel represents a cluster of drugs and
within them each line identifies a cluster of ADRs and its intensity changes
over time.
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Time clusters Starting from the analysis of the time clusters, one can
easily notice on Figure 10 that the segmentation proposed by the algorithm
confirms our knowledge about the previous mentioned health scandals while
revealing a time structure more complex than expected. In fact, while cluster 1
and cluster 2 include various time intervals, cluster 3 clearly refers to the
health crisis due to the Mirena® scandal while cluster 4 relates to the peak
period in the Lévothyox® crisis. Time clusters 5 and 6 refer to the final stage
of the Lévothyrox® crisis, when generics were introduced to the market. It
is worth noticing that without the dLBM application it would have been
impossible to detect the presence of other health scandal just before the one
of Lévothyrox®. In fact, looking at Figure 10, one can see that the increase
of declarations during the Mirena® health crisis are completely masked by
the Lévothyrox® ones.

Drug clusters The clusters of drugs identified by the algorithm are also
coherent with retrospective knowledge and adequately represent the variety
of drugs present in the dataset. In particular, cluster 1, cluster 6 and
cluster 7 are very specific, with one element only: they correspond respectively
to lévothyroxine (Lévothyrox® and generics), benfluorex (Médiator®) and
lévonorgestrel (Mirena®). It is worth noticing that Médiator® 3 was involved
(like Lévothyrox® and Mirena®) in an important health scandal in 2009-
2010. Moreover, cluster 2 contains the five most frequently reported drugs
and cluster 5 contains other common drugs, while cluster 4 is very large
and heterogeneous, with drugs that are rarely reported and finally cluster 3
contains drugs that cause bleeding.

ADR clusters Concerning the clusters of ADRs, cluster 3 (e.g. coma,
confusion, hepatic cytolysis, etc) and cluster 8 (e.g. agitation, agranulocytosis,
arthralgia, etc.) contain the most frequently notified ADRs. Cluster 1
contains recurring ADRs (e.g. sweats, transient ischemic accident, lactic
acidosis, etc.) but less than the other two previously mentioned. Cluster 2
(e.g. anemia, hemorrhagic stroke) and cluster 4 (e.g. hemorrhagic schock,
deglobulisation, etc.) respectively include the most and the less frequent
bleeding related ADRs. Cluster 7 is composed of ADRs clearly related to
Lévothyrox® and Mirena® (e.g hair loss, cramps, insomnia, etc.). In cluster 10

3https://www.ansm.sante.fr/Dossiers/Mediator-R/Mediator-R-et-accompagnement-des-personnes/
(offset)/0
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there are general ADRs, although it contains some ADRs specifically related
to Lévothyrox® and Médiator® (e.g. respectively abnomral TSH, valvular
disease, etc.). Finally, cluster 5, 6 and 9 contain more general and nonspecific
ADRs.

5.3 Detailed results
Time clusters Figure 11 is a graphical representation of the estimated
intensity functions. It gives a clear idea about the relationships between
clusters of molecules and clusters of ADRs, with respect to time clusters. In
particular:

• Time cluster 1: here one can notice the presence of all the drug clusters,
with different levels of intensity. The peculiarity of this cluster lies in
the strong presence of cluster 6 of drugs which gradually disappears in
subsequent temporal clusters. In fact, it contains the drug benfluorex
(Médiator®) which in 2010 was involved in a major health scandal and
it has strong interactions with clusters 5, 6 and 10 of ADRs. It is worth
noticing that dLBM managed to highlight this peculiarity that cannot
be detected by simply looking at Figure 1. In the first time cluster it
can also be noticed a strong relation between the cluster 3 of drugs
(drugs that causes bleeding) and clusters 2 and 4 of ADRs which is
coherent.

• Time cluster 2: the presence of Médiator® decreases while the interac-
tions between the drugs that cause bleeding (cluster 3) and clusters 2
and 4 of ADRs is still strong. That cluster represent the actual profile
of notifications received by RCPV. Similarly, the second cluster of drugs
(the most frequently used) appears to have ADRs in almost all clus-
ters, especially the third. We also notice the presence of Lévothyrox®

(cluster 1) with ADRs especially in clusters 6 and 7.

• Time cluster 3: this cluster includes two months only: 05-06/2017.
This period refers to the Mirena® scandal (cluster 7) with ADRs in
clusters 5, 6, 7 and 9. They are not very specific but it may suggest
a hormonal cause. In this matrix all the drug clusters are present
(even though with a lower intensity with respect to Mirena®), with the
exception of Médiator® which is not reappearing subsequently.
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Figure 10: Number of declarations received by the pharmacovigilance center
from 2010 to 2020, sorted by month, where the colors represent the time
clusters.
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Figure 12: Evolution of the relation between each drug cluster and the all
ADR clusters over time. Each color corresponds to a different cluster of
adverse drug reaction.
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• Time cluster 4: it refers to the Lévothyrox® peak going from August to
October 2017. Unlike previous clusters where most drugs clusters were
present, this cluster only recognizes 2 drugs: Lévothyrox® (mainly) and
Mirena® (weakly). Consequently, the interactions that stand out are
those of Lévothyrox® with ADRs in clusters 6, 7 and 9. They are not
very specific but coherent with the statements received by RCPV.

• Time cluster 5: it refers to 11-12/2017 and it is characterized by a reduc-
tion of Lévothyrox® declarations. Compared to the previous cluster, we
note a reappearance of other drug clusters even if the intensities remain
low compared to time cluster 1 and 2. The drugs/ADRs combinations
remain those of the previous time cluster.

• Time cluster 6: it refers to the 1st semester 2018, which corresponds to
end of Lévothyrox® crisis. Globally it is similar to the two previous time
clusters with some small variations on the intensities of the drug/ADRs
pairs.

Drug clusters For a more in-depth analysis regarding the evolution of
drug clusters over time and their interactions with the clusters of ADRs, we
can refer to Figure 12. The following remarks derive:

• Drug cluster 1: this cluster refers to Lévothyrox® and its generics. There
are almost no declared effects during the first three time clusters, from
the fourth time cluster we observe a peak of declarations which corre-
sponds to the start of the Lévothyrox® crisis, especially for ADRs in
cluster 6, 7 and 9 and to a lesser extent on 5. These four clusters recog-
nized by dLBM, include all of the ADRs described during Lévothyrox®

crisis, namely hormonal ADRs (weight gain), general ADRs (fatigue,
cramps) and neuro-psychic ADRs (anxiety, irritability, sleep distur-
bances). Time cluster 5 marks a decrease in Lévothyrox® reports in
terms of numbers but the ADRs profile remains similar to the previous
time cluster. It should be noticed that generics of Lévothyrox® began to
be available from mid-October 2017, which could explain this decrease in
the number of reports: patients started to have therapeutic alternatives.
Finally, time cluster 6 represents the end of the Lévothyrox® crisis with
a clear decrease in the number of reports.
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• Drug cluster 2: this cluster includes drugs that are very frequently
prescribed, the ADRs profile is globally constant over time with a
predominance of clusters 3, 6 and 8, with variations in terms of propor-
tions according to the time clusters. Cluster 3 of ADRs corresponds
to frequent and generally serious ADRs. Cluster 8 also includes ADRs
that are generally serious but a little less often reported than cluster 3.
Cluster 6 corresponds to general ADRs that can be found with many
other drugs (especially Lévothyrox®).

• Drug cluster 3: this cluster includes coagulation drugs whose main
ADRs are bleeding, hence the predominance of cluster 2 and 4. The
application of dLBM led us to identify, from the temporal point of
view, 3 interesting events: the increase in ADRs between time clusters
1 and 2, a significant decrease in the number of declared ADRs in time
cluster 4 (Lévothyrox® crisis) and a marked regression of cluster 2 in
time cluster 6 (late Lévothyrox®) but without cluster 4 being affected.

• Drug cluster 4: this cluster includes a fairly large set of drugs declared
relatively frequently and commonly prescribed, but disparate in terms
of their therapeutic uses or their ADRs profile. However, we observe
a predominance of ADRs of cluster 3 and 6 (general ADRs). At the
temporal level, we observe an overall decrease in ADRs in time cluster 4
(Lévothyrox® crisis).

• Drug cluster 5: as for drug cluster 4, this cluster includes many hetero-
geneous drugs. The ADRs profile is similar to that of drug cluster 4,
which is coherent with the fact that these two clusters are similar.

• Drug cluster 6: this is the Médiator® cluster, the ADRs are concentrated
in time clusters 1 and 2 with a decrease in the number of ADRs in the
second one. This is coherent with the history of the drug (Médiator®

scandal happened in 2009 with withdrawal of the market). Regarding
the profile of ADRs, we can notice a predominance of clusters 6, 5, and
10.

• Drug cluster 7: this is the Mirena® cluster, ADRs declarations predom-
inate in time cluster 3 (Mirena® crisis) then drop drastically. At the
level of ADRs profile, cluster 6 predominates (general ADRs), then
come cluster 5, 7 and 9.
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5.4 Discussion
In this application to pharmacovigilance, dLBM proved to be a very useful tool
for identifying phenomena that would have been difficult to detect otherwise,
even by an expert eye. In fact, dLBM revealed that in addition to Lévothyrox®

health crisis, which was the one with the widest media coverage, two other
major events have occurred. The first one concerning Médiator®, which took
place in 2009-2010, and the second one concerning Mirena®, which took place
in the first half of 2017. In addition, dLBM was also able to put in light
some unexpected variations of notifications such as an under-notification of
bleeding related ADRs during Lévothyrox® crisis. Bleeding related ADRs
were expected to be constant over time because of the follow-up made the
RCPV to monitor ADRs of direct oral anticoagulants (DOAs), a recent class
of anticoagulant. However, the Lévothyrox® crisis has caused such an overload
of work that the DOAs follow-up have been temporarily interrupted. Another
thing that dLBM has highlighted is the existence of 3 different phases during
the Lévothyrox® crisis corresponding to the reporting peak, the marketing
period of generics and the end of the crisis, respectively. Those phases were
not noticed by the RCPV staff during the Lévothyrox® crisis. In general,
we can conclude that dLBM could be extremly useful as a routine tool for
signal detection, since it might help health professionals to identify structural
changes or patterns of interest and, perhaps, prevent some of the consequences
a health crisis can lead to.
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6 Conclusion
This work is born out of the need to analyze and summarize the adverse
drug reaction data collected by the Regional Center of Pharmacovigilance
(RCPV), located in the University Hospital of Nice (France), from 2010 to
2020. We have proposed a dynamic co-clustering technique, with the purpose
of simultaneously performing clustering of rows (drugs), columns (adversarial
effects) and slices (time dimension). We have proposed to consider a dynamic
framework because it is of great interest to look for structural changes in the
way existing drug/ADR clusters (uncovered, too) interact with each other.
To this end, we have introduced a generative model, named dynamic latent
block model (dLBM). The dynamic time modeling relies on non-homogeneous
Poisson processes, with a latent partition of time intervals. Inference is done
using a SEM-Gibbs algorithm and the ICL criterion is used for model selection.
dLBM was fitted to a large-scale data set supplied by the RCPV of Nice. In
this context, dLBM provided meaningful segmentations of drugs, adverse drug
reactions and time. Its potential use by medical authorities for identifying
meaningful pharmacovigilance patterns looks very promising.
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A Estimation of the mixture proportions
The proof about how to obtain the updated mixture proportions is only shown
for the estimation of parameter γ(h+1)

k because for the estimation of the other
parameters, ρ and δ, the procedure is similar:

p(Z|γ) = L(γ;Z) = N !
N∏
i=1

K∏
k=1

γk
zik!

;

`(γk; z(h+1)
ik ) = logL(γk, z(h+1)

ik ) = log
(
N !

N∏
i=1

K∏
k=1

γk

z
(h+1)
ik !

)
=

= logN ! +
N∑
i=1

K∑
k=1

z
(h+1)
ik log γk −

N∑
i=1

K∑
k=1

log z(h+1)
ik !

For a constrained maximization of this quantity we employ the Lagrange
Multipliers, taking into account the constraint ∑K

k=1 γk = 1.

L(γk;λ) = `(γk; z(h+1)
ik ) + λ(1−

K∑
k=1

γk)

∂L(γk;λ)
∂γk

= ∂`(γk; z(h+1)
ik )

∂γk
+ ∂λ(1−∑k γk)

∂γk
= 0

∂
∑N
i=1

∑K
k=1 z

(h+1)
ik log γk

∂γk
− λ∂

∑K
k=1 γk
∂γk

= 0

∑N
i=1 z

(h+1)
ik

γk
− λ = 0

N∑
i=1

z
(h+1)
ik = λγk ⇒

∑N
i=1 z

(h+1)
ik

λ
= γk

Since λ is equal to N :∑K
k=1

∑N
i=1

z
(h+1)
ik

λ
= ∑K

k=1 γk ⇒ 1
λ

∑K
k=1

∑N
i=1 z

(h+1)
ik = 1;

we can conclude that the estimation of γ(h+1)
k is the following:

γ
(h+1)
k = 1

N

∑N
i=1 z

(h+1)
ik
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B Maximum likelihood estimator of λk`c
The maximum likelihood estimator of λk`c is obtained through the following
process:

logL(λ|X,Z,W, S) =
K∑
k=1

L∑
`=1

C∑
c=1

(Rk`c log λk`c − |Ak||B`||Dc|λk`c + c)

where c is a constant that includes all the terms that does not depend
on λ.

∂ logL(λ|X,Z,W, S)
∂λ

= Rk`c

λk`c
− |Ak||B`||Dc| = 0⇒ λ̂k`c = Rk`c

|Ak||B`||Dc|

C Intensity functions in the three scenarios
From Table 4, the scenarios "Easy" and "Medium" may look the same. However,
the main difference between the two scenarios is the value assumed by the
intensity function λ. The values of this parameter in the three different
scenarios are:

• Scenario A - Easy: λ = ΛA

ΛA[, , 1] =

50 18
1 1
1 50

; ΛA[, , 2] =

50 50
18 1
1 18


• Scenario B - Medium: λ = ΛB

ΛB[, , 1] =

1 1
1 7
7 20

; ΛB[, , 2] =

20 20
7 1
1 7


• Scenario C - Hard: λ = ΛC

ΛC [, , 1] =


70 12 1
35 1 35
1 70 12
12 35 70

; ΛC [, , 2] =


35 70 12
70 70 70
12 1 35
1 70 1

; ΛC [, , 3] =


12 70 35
35 12 70
70 35 12
12 1 35


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