Bayesian compressed sensing in ultrasound imaging - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Bayesian compressed sensing in ultrasound imaging

Résumé

Following our previous study on compressed sensing for ultrasound imaging, this paper proposes to exploit the image sparsity in the frequency domain within a Bayesian approach. A Bernoulli-Gaussian prior is assigned to the Fourier transform of the ultrasound image in order to enforce sparsity and to reconstruct the image via Bayesian compressed sensing. In addition, the Bayesian approach allows the image sparsity level in the spectral domain to be estimated, a significant parameter in the ℓ 1 constrained minimization problem related to compressed sensing. Results obtained with a simulated ultrasound image and an in vivo image of a human thyroid gland show a reconstruction performance similar to a classical compressed sensing algorithm from half of spatial samples while estimating the sparsity level during reconstruction.

Dates et versions

hal-03146733 , version 1 (19-02-2021)

Identifiants

Citer

Céline Quinsac, Nicolas Dobigeon, Adrian Basarab, Denis Kouamé, Jean-Yves Tourneret. Bayesian compressed sensing in ultrasound imaging. 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2011), Sensor Array and Multi-channel Technical Committee of the IEEE Signal Processing Society, Dec 2011, San Juan, PR, United States. pp.101--104, ⟨10.1109/CAMSAP.2011.6135897⟩. ⟨hal-03146733⟩
50 Consultations
0 Téléchargements

Altmetric

Partager

More