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Abstract — This paper deals with multimodal magnetic 

resonance (MR) – ultrasound (US) image registration. One of the 

major difficulties in such a registration is the lack of 

correspondence between the gray levels of the pixels in the two 

modalities. To tackle it, several authors proposed the use of the 

mutual information as similarity measure in the registration 

process. Moreover, a few papers proposed recently the use of 

spatial phase images instead of native intensity images. Phase 

images have the advantage to contain structural information on 

the images, free of the energetic information. Although very 

interesting, to our knowledge only subjective results have been 

reported concerning the gain of accuracy using phase images. 

The goal of this paper is to propose a quantitative approach for 

evaluating the contribution of spatial phase images obtained with 

monogenic and 2D isotropic analytic signal in MR-US 

registration.   

Index Terms — Affine model, Free-Form Deformation, 2D 

Isotropic Analytic Signal, Monogenic signal, MR Imaging, Phase-

based multimodal registration, Ultrasound Imaging 

I. INTRODUCTION

Image registration in medical imaging is a widely explored 

research field and has various applications in all standard 

imagery techniques such as magnetic resonance (MR), 

ultrasound (US) or computed tomography (CT) [1]-[3]. All 

these techniques make available to physicians different types 

of information, which could be complementary and thus could 

help to improve diagnosis, surgery or therapy. For this reason, 

the comparison and especially the fusion of information from 

multiple image modalities is of increasing interest in medical 

applications. However, in almost all the cases, this comparison 

and fusion can be possible only after registering the images, 

i.e. after processing multimodal medical image registration. In

this paper, the MR-US image registration problem is

addressed.

Generally, medical image registration methods can be 

divided into two categories: geometric feature-based methods 

and pixel intensity based methods [4]. The first category 

presents the inconvenient of being application dependent, in 

the sense that anatomical landmarks have to be detected in 

both images before processing the registration. The second 

category is based on the assumption that a correspondence 

exists between the pixel intensities of the two images to be 

registered. For multimodal registration, this correspondence is 

often measured using the mutual information, which was 

shown to be more robust than classical similarity measures 

such as correlation-based techniques [5]. More recently, a few 

studies showed interesting experimental results when 

processing multimodal registration using phase images instead 

of native intensity of the pixels [1], [3], [6]. However, as in 

experimental cases the ground truth is not available, these 

papers only presented qualitative results.  

In this context, the main purpose of this paper is to propose 

a quantitative comparison between MR-US registration using 

both the native intensity of the pixels and the spatial phase 

images. 

The spatial phase images evaluated herein are obtained 

using two recent 2D generalizations of the classical analytic 

signal. These spatial phase images have the advantage of 

providing structural information, free from the energetic 

information. Unlike the 1D analytic signal which has a 

complex representation, its generalizations to the two 

dimensional case are hypercomplex signals, having two (for 

the monogenic signal [7]) or five (for the 2D isotropic analytic 

signal [8]) imaginary components. A brief reminder 

concerning the monogenic and 2D isotropic analytic signal is 

given in section II. 

To perform a quantitative comparison, we propose in 

section III a realistic simulation method allowing the control 

of the deformation field. For this, an ultrasound image 

simulation is proposed, starting from a real MR image. 

In order to evaluate the contribution of spatial phase images 

to MR-US imaging, a state-of-the-art registration algorithm 

has been used. Based on the mutual information and on a 

multi-scale approach, it searches for a local affine 

transformation. The scope of the paper is not to evaluate the 

performance of this registration method, but to evaluate the 

results obtained by applying it to the native images or to the 

corresponding spatial phase images. 

II. HYPERCOMPLEX SIGNALS

In 1D signal processing, the complex representation of a 

real 1D signal, called analytic signal, has been introduced by 

Gabor in 1964 [9]. Starting from a real value signal )(ts , the 

analytic signal has complex values )()()( tiststs HA += , 

where the imaginary part )(tsH  corresponds to the Hilbert 

transform of )(ts . The major contribution of the analytic 

signal is the possibility to define the concepts of instantaneous 

(or local) amplitude and phase.  

MR-ultrasound imaging registration using 2D 

spatial phase images 

10.1109/ULTSYM.2012.0427



The extension of the analytic signal to

not straightforward as it requires the g

Hilbert transform to the 2D case. 

Chronologically, the first attempts to

analytic signal to images were based on co

on the so called total or partial 2D Hilbe

are direct extensions of the 1D case  

different ways the real image with 

transforms, several 2D analytic represen

have been proposed, such as the total, par

analytic signal [11]-[12]. Despite intere

several applications, these 2D analytic sig

generalization of the 1D analytic signal, e

the lack of isotropy. The isotropy is a cruc

to obtain a proper representation of the lo

the invariance-equivariance. In other word

complex numbers are able to represe

freedom. In the case of 1D signals, they ar

local amplitude and phase. However, 

degree of freedom appears, namely the l

this reason, it has been recently shown th
complex numbers is necessary in orde

generalization of the 1D analytic signal [7

complex representations of real images a

signal [7] and 2D isotropic analytic si

practical aspects of both of them are given
1) The Monogenic Signal 

The monogenic signal (MS) was intr

and Sommer in 2001 [7]. The main idea 

combine the local phase with the local orie

or in other words to combine the 1D ana

local orientation. For this reason, the MS 

intrinsically one dimensional ima

)nxnx()x,x( 221121 += rp , for any 1D 

the orientation of the vector n=[n1 n2] 

orientation of the image structures, de

following. A typical example of an i1D 

Figure 1(b), representing an orientated 2D

The monogenic signal of an image de

obtained from the responses to three 2D 

filters (SQF): one even part consisting in

band-pass filter (B(u)) and two odd parts c

Riesz transform [7]. In the literature, 

Poisson (or Difference of Poisson, DoP

[14] as band-pass filter.
()()()( xxxx yxbM jqiqpI ++=

Where x is the vector corresponding to

of the pixel and )()()( uuu BPPb ⋅= is the sp

pass filtered image. Capital letters repre

Transform of corresponding images and u

frequency variable. As explained above,

parts are obtained by two quadrature filter

which turn in the Fourier domain in: 
)()()()( uuuu PBHQ xx =

)()()()( uuuu PBHQ yy =

o image processing is

generalization of the 

o generalize the 1D

omplex numbers and 

ert transforms, which 

[10]. Combining in 

these 2D Hilbert 

ntations of an image 

rtial or single orthant 

sting properties and 

gnals are not a strict 

especially because of 

cial property in order 

cal phase that fulfills 

ds, we can notice that 

ent two degrees of 

re represented by the 

for images, a third 

ocal orientation. For 

hat the use of hyper-
er to obtain a strict 

7], [8]. These hyper-

are called monogenic 

ignal [8]. The main 

n below. 

roduced by Felsberg 

behind the MS is to 

entation information, 

alytic signal with the 

is adapted to locally 

ages (i1D), i.e. 

function r(x), where 

represents the local 

enoted by � in the 

image is shown on 

D cosinusoid.

enoted by p(x1,x2) is 

spherical quadrature 

n a rotation invariant 

constructed using the 

authors mainly use 

P) [13], or logGabor 

)x (1) 

o the position [x1, x2]

pectrum of the band-

esent the 2D Fourier 

u = [u, v]
T
 is the 2D 

, the two imaginary 

rs )(xxh and )(xyh , 

(2) 

(a) 
Figure 1.  Examples of (a) i0

With 

u
u

u
iH x −=)( , 

From the monogenic sign

amplitude, phase and orientat

wise formulas given in [7

corresponding to the phase. 

��
�

�

�
= −

x(
tan)x(

2

1

pb

MSϕ

2) The 2D Isotropic Analytic

In order to overcome the li

images, the 2D isotropic an

recently introduced by Wietz

the MS by using the first an

The second order Riesz tr

frequency domain by: 

2

2

)(
u

u
u

H xx −= )(uH xy −=

Consequently, in addition to 

we obtain three new second

)(xxxq , )(xxyq and )(xyyq .

Before extracting features su

necessary to compute three in

( )(
2

1
)( xx xxs qqq +=

)(x qq =+

( (
2

1
)(x xxqq =−+

Moreover, a so called ap

opening angle, can be calcula

(9) and quantifies the intrinsic

0 means that the image is loca

��
�

�

� −
=

+

−
)(

tan)(
2

2
1

x
x

q

q s
α

The homogeneous signal

computed from the apex angl

1
)(x

+
=hq

Normalizing the first order

to extract local main orientat

interpretation is equivalent t

the monogenic signal. Conc

replaced, for the 2D IAS, by: 

(�
�
�

�

�

+

=
−

−

2

1
2

)x(

tan)x(

hb

DIAS

qp

ϕ

(b) (c) 
0D, (b) i1D and (c) i2D signals [8]. 

 
u

u
v

iH y −=)( (3) 

nal, local features such as local 

tion are extracted using the pixel-

7]. Herein, we remind the one 

��
�

�

�

++ )x()x()x

)x(

2
2

2
1 qq

pb (4) 

c Signal

imitation of the MS related to i2D 

alytic signal (2D IAS) has been 

zke et al. [8]. The 2D IAS extends 

d second order Riesz transforms. 

ransforms are expressed in the 

2
u

uv
−

2

2

)(
u

u
v

H yy −= (5) 

the three components of the MS, 

d order components denoted by

uch as phase or orientation, it is 

ntermediate components: 

) )(
2

1
)( xx byy pq = (6) 

)(xxyq (7) 

))()( xx yyq− (8) 

pex angle α(x), also known as 

ated from the 2D IAS as shown in 

c dimension of the image. α (x) = 

ally i1D around the position x. 

( )
��
�

�

�

+

+−

−+

−++

)()(

)()(

2

22

xx

xx

q

qq
(9) 

l component )(xhq  is further

e. 

( )
2

)(cos xα
(10) 

r signal components, it is possible 

tion, phase and amplitude, whose 

to the information obtained with 

cerning the spatial phase, (4) is 

) ( ) �
�
�

�

�

+ −− 2121 )x()x()x()x(

)x(

yhxh

b

qqq

p

(11) 



It is obvious that for α (x) = 0, )(xhq = 1 and therefore (11) 

is simplified to (4). In this case, the image is intrinsically 1D. 

III. MRI-US SIMULATION

Quantifying the performance of MRI-US registration 

techniques is a complicated task when doing it on in vivo

images. Indeed, in such experimental cases, the ground truth is 

not available and only subjective measures can be exploited, 

using for example fiducial markers manually identified and 

matched on MR and US images. 

In this work, we propose to use a realistic simulation in 

order to quantify the accuracy of MR-US image registration, 

giving access to the true deformation field. The input of our 

simulation is an experimental 2D MR image. For illustration 

purpose, we used herein a gynecological image (a sagittal slice 

extracted from a MR volume).  

1) Scatterer map generation 

The property of the tissues exploited in US imaging is their

echogenicity, i.e. their ability to reflect ultrasound waves and 

thus produce echoes. To simulate this process, US simulators 

generally use scatterer maps. A scatterer is defined by its 

spatial position and its amplitude. Moreover, the scatterers are 

positioned following a uniform random distribution. Their 

number must be sufficiently large in order to insure a density 

of at least one scatterer per resolution cell. In our simulations, 

50,000 scatterers were generated. 

An important issue is the way of generating the amplitude 

of the scatterers. For this task, we propose to link their 

amplitude to the grey levels of the MR image (denoted by I). 

By proceeding in this way, we make the assumption that the 

US echogenicity of a tissue is directly proportional to the MRI 

T2 relaxation time. For a scatterer i at the position (x1i,x2i), its 

amplitude denoted by ai  has been randomly generated using a 

zero mean Gaussian distribution: 

( )( )iii xxIa 21
2 ~,~,0Ν� (12) 

The variance of the Gaussian law is related to the grey level 

of the MR image as shown in (12). The coordinates ( )ii xx 21
~,~

stand for the closest pixel position in image I to the position 

(x1i,x2i) of the current scatterer.  

It should be noticed that the assumption of direct 

proportionality between the echogenicity of a tissue and the 

T2 relaxation time in MR may not be always valid. In this 

case, our simulation framework still remains valid, but the 

way of generating the scatterer amplitudes in (12) should be 

adapted. In Figure 2, we show an example of a generated 

scatterer map. 

Figure 2. Uniformly random distributed scatterer map. 

2) US image simulation 

The scatterer map generated as explained above was used to

simulate an US images using Field II simulator program [15]. 

Without loss of generality, US images in linear geometry 

(corresponding to a 1D linear probe) were simulated.  

In our experiments, a 256 elements linear ultrasound probe 

with 64 active elements was simulated. The width of one 

element was set at 0.22 mm, the kerf at 0.011 mm (which 

resulted in a pitch of 0.231 mm) and the height at 5 mm. The 

central frequency of the probe was fixed at 7MHz, with an 

axial sampling frequency of 100MHz. The impulse response 

of the emit aperture was a two-period sinus of the nominal 

frequency (the excitation) multiplied by a Hanning window. 

The reception aperture was also a 64-length Hanning window. 

A multiple point focalization was simulated for the reception. 

An example of a simulated US image, as well as the native 

in vivo MR image, is given on Figure 3 (b and c).  

(a) (b) (c) 

Figure 3 (a) Original MRI slice, (b) deformed MR image with a 
known deformation field (affine in this example) and (c) simulated 

ultrasound  image after generating a scatterer map starting from the 

image in (b). 

3) Deformation field 

A known deformation field was imposed to the MR image

before scatterer map generation and US simulation, as shown 

in Figure 3. In this paper, two different types of deformation 

fields are considered: an affine transformation and a cubic B-

spline free form deformation. The choice was made so that the 

deformation model fits to the ones considered with the two 

state-of-the-art registration techniques used herein and 

introduced in [16], [17]. In this way, the evaluation of the 

registration results was limited to the images on which the 

registration was performed, and was not influenced by a 

deviation between the model and the imposed deformation 

map. 

IV. RESULTS

1) Affine estimation 

Imposed deformation field 

The displacement imposed corresponds to a rotation 

�= /80, to scale factors scx = 5% and scy = -2%, to shear

factors shx = 1% and shy = 2% and to translations tx = 0.5

pixels (or 0.094 mm) and ty = 0.8 pixels (or 0.079 mm).

Figures of merit 

The evaluation is done through the following criteria: 

absolute error between the imposed and estimated affine 

parameters, minimum (14) and maximum (15), mean (16) and 

standard deviation (17) of the absolute error between the 

imposed and estimated deformation fields. Denoting by U(x, 

y) and ),(ˆ yxU , respectively V(x, y) and ),(ˆ yxV , the lateral



(true and estimated) and axial (true and estimated) 

deformation fields, the absolute errors and the associated 

figures of merit are defined as follows:
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Where " stands for U or V and L and C are the image 

dimensions. 
Table I 

Absolute errors of affine parameters simulation 

11a 12a 21a 22a 31a 32a

Intensity 0.76 8.1 1.55 0.16 168.33 83.59 

MSϕ 0.02 13.79 2.99 0.42 1.5 9.1 

DIAS2ϕ 0.03 13.55 2.99 0.38 4.75 0.09 

Relative error of the affine parameter estimation in % obtained using 

intensity and spatial phase (MS and 2D IAS) images. 
Table II 

Minimum and maximum absolute errors

mU MU mV MV

Intensity 5.9×1

0-6 1.61 0.67 1.9 

MSϕ 7.78×10-

6 0.81 
1.98×10-

5 2.66 

DIAS2ϕ 8.1×10-5 0.75 6.9×10-3 2.58 

Minimum and maximum absolute errors in pixels of the affine 

estimation for the entire motion field estimated. 
Table III 

Mean absolute errors and its standard deviation

µU σU µV σV

Intensity 0.59 0.4 1.29 0.25 

MSϕ 0.4 0.22 1.2 0.58 

DIAS2ϕ 0.33 0.22 1.29 0.54 

Mean and standard deviation of the absolute errors in pixels 

along the entire estimated affine motion field. 

Results 

Table I presents the absolute errors of the parameters’ 

estimation for the affine registration with the native images, 

with the monogenic spatial phase MSϕ  and with 2D IAS 

spatial phase DIAS2ϕ . We observe that for a12, a21 and a22 the 

intensity-based approach provides slightly less error than the 

phase-based estimations. However, a11, a31 and a32 are much 

more accurate when using phase images. 

The consequence of this difference is illustrated in Table II 

and Table III. Whereas the lateral maximum absolute error is 

reduces by roughly 50%, the axial error is increased about 

50%. This is due to the higher resolution in the axial direction 

for intensity images and to the band-pass filter degrading the 

axial resolution of the phase images. However, the mean 

absolute errors stay lower or equal than the intensity-based 

approach, which highlights the interest of the use of phase 

images. We can also observe that in this experiment, 2D IAS 

seems to be slightly more accurate than MS. 

V. CONCLUSION

In this paper, we considered the use of local spatial phase 

for MR-US image registration. We tested spatial phases 

extracted from two different hyper-complex signals: the 

monogenic signal and its extension, the 2D isotropic analytic 

signal. A realistic US simulation based on a real MR image 

allowed us to control the imposed affine deformation field and 

thus to have access to the ground truth. The obtained 

quantitative results showed the contribution of the spatial 

phase images compared to the use of the native gray level of 

the pixels.  
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