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Compressed sensing or compressive sampling is a recent theory that originated in the applied mathematics field. It suggests a robust
way to sample signals or images below the classic Shannon-Nyquist theorem limit. This technique has led to many applications,
and has especially been successfully used in diverse medical imaging modalities such as magnetic resonance imaging, computed
tomography, or photoacoustics. This paper first revisits the compressive sampling theory and then proposes several strategies to
perform compressive sampling in the context of ultrasound imaging. Finally, we show encouraging results in 2D and 3D, on high-

and low-frequency ultrasound images.

1. Introduction

Ultrasound (US) imaging acquisition, like all other imaging
modalities, relies on Shannon’s theorem. This theorem states
that, in order to reconstruct perfectly a signal, its sampling
frequency must be at least twice the highest-frequency
component present in the signal. Often, US devices use a
sampling rate that is at least four times the central frequency
(wideband), to guarantee Shannon’s theorem. However, the
volume of data obtained is large, especially in 3D imaging,
and can impair imaging in real-time or data transfer [1-4].

Compressed sensing (CS) or compressive sampling is
a novel theory aiming to reduce the volume of data
acquired, below the one dictated by Shannon’s theorem. First
introduced by Candes et al. and Donoho in 2006 [5, 6],
CS guarantees the reconstruction of a signal from far fewer
samples than usually necessary. CS has led to many applica-
tions, including medical imaging (particularly in magnetic
resonance imaging (MRI) and tomography), sampling the
spatial or frequency domains [7-9]. In ultrasound imaging,
a few groups proposed very recently preliminary works for
adapting the compressive sampling framework to ultrasound
imaging [10-15], to ultrasound Doppler [16, 17], or to
photoacoustic tomography [18].

The success of this reconstruction lies on two principles
inherent to CS: sparsity and incoherence.

Sparsity reflects the ability of a signal to be compressed.
A signal that has a sparse representation in a given basis will
have most of its coefficients (or entries) null or very close
to zero in this representation. Hence, by suppressing those
negligible coefficients, the signal can be compressed, that is,
reconstructed from relatively few samples [19]. Of course,
during data acquisition, there is no knowledge about which
coefficients are significant and which are not. CS overcomes
this issue using a sampling basis incoherent with the sparsity
basis.

Incoherence in CS expresses the idea that signals that are
sparse in a given basis cannot be sampled in this basis but in
another where the signal is dense. This property guarantees
that the samples acquired contain the same amount of
information. If the sparse basis was sampled, there would be
a risk of acquiring negligible coefficients, not participating to
the signal reconstruction.

The challenge of CS is to design a sampling protocol that
will capture the information contained on the relatively few
coefficients of the sparse basis. This sampling protocol will
also suit any type of images within a specific application, here
US imaging, without prior knowledge on the signal or image
to sample.

By means of optimization methods, the original signal
can then be recovered from those few measurements and



the reconstruction quality will be similar to the one obtained
respecting Shannon’s theorem.

In summary, CS is a simple acquisition method where
only a few samples of a signal are blindly measured. The full
signal is later retrieved using reconstruction methods.

The purpose of this paper is twofold: first, make CS
familiar to US imaging, and second, show the mechanisms
involved in a successful CS reconstruction. The structure of
the paper includes a reminder of the theory of sampling.
Then, an overview of the CS theory and its components
(essentially sparsity, incoherence, and optimization) will be
given in detail and illustrated in a US context. Then, an
application to US imaging will be proposed and results of
US image reconstruction from usually 25%, 33%, and 50%
of samples acquired will be shown. Finally, perspectives for
CS in US will be drawn and future work will be described.

2. Sampling a Signal

The general framework of sampling can be summarized by
measuring linear combinations of an analog signal f(t),
possibly considered as projections on a given basis:

ye= (o f), fork=1,...,m, (1)
where (-,-) denotes an inner product, yx are the mea-
surements, @ are sampling vectors, and m is the number
of measurements. The most common sampling protocol
consists of vectors @ of Diracs at equal time laps (ideal
sampling). The measurements obtained represent then a
simple discretization of f(¢).

However, if the sampling vectors @i are complex expo-
nentials, then the measurements yj are Fourier coefficients.
This sampling protocol is used in MRI, for example.

In CS, the number of measurements m is far below
the criteria established by Shannon’s theorem for a given
signal duration. If f is a digital signal of size n (respecting
Shannon’s theorem), then m < n. This situation can rise
with slow imaging devices, for example, or when the number
of sensors is limited. When it is possible to sample signals
respecting Shannon’s theorem, like in US imaging, it might
be more advantageous to reduce the volume of data or the
acquisition time.

However, when the number of measurements is smaller
than the signal size, then we are facing an ill-posed inverse
problem. If @ is a matrix of size m X n, concatenating the
sampling vectors @, then y = @ f. When we want to recover

the signal f corresponding to the measurements y, then there
is an infinity of solutions possible.

CS shows that it is possible to recover f , provided that
it has a sparse representation in a given basis and that
the measurements are incoherent with that basis [20]. The
following two sections explain those two concepts.

3. The Concept of Sparsity

Sparsity is the idea that signals may have a concise repre-
sentation in a given basis. For example, a signal composed
of three sinusoids will be sparse in the Fourier domain as
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its representation in this domain is very concise: namely 12
coefficients (6 symmetrical magnitudes and phases). Hence a
dense signal in the time domain can be coded with only a few
samples.

Other examples include photographic images. On the
image, almost all the pixels have a nonzero value. However,
in the wavelet domain, these images are sparse; that is, they
contain a majority of null or very small coefficients. By dis-
carding those negligible samples, an approximation of the
original image can be obtained, with minimal loss of infor-
mation. Usually, this loss of information is not noticeable:
that is, the concept of JPEG2000 compression [19].

Mathematically, it translates as follows:

@) = > xi(t), (2)

i=1

where f(t) is the original signal, x; are the coefficients of the
signal in the sparse basis, and y;(¢) is an orthonormal basis
(Fourier or wavelets e.g.). The S largest coefficients x; are
noted xs, and the corresponding signal fs(t). If f(¢) is sparse
in the basis ¥ composed of the vectors y;, then f = Wx and
the error || f — fsll, is small.

Figure 1 illustrates the sparsity of radio-frequency (RF)
US signals. Because the sparse representation of the RF
US signal (here, its Fourier transform) concentrates the
information on a few coefficients, it is possible to reconstruct
almost perfectly the signal from only 30% of its largest
Fourier coefficients (keeping only 30% of the largest x; in
(2).

This concept of concentrated information is also visible
when plotting the Fourier coefficients in order of magnitude
(Figure 2). If they decay rapidly, then the compressed signal
fs(t) including the S largest coefficients will be close to the
original signal f(¢).

Sparsity therefore leads to the compressive nature of
a signal: if a signal has a sparse representation, then the
information coding that signal can be compressed on a few
coefficients. A reconstruction from those few coefficients can
be obtained with minimal loss compared to the original
signal. Note however that CS and compression are different
in that when sampling a signal, it is impossible to directly
acquire the significant coefficients as their positions are not
known a priori. CS overcomes this issue via an incoherent
sampling.

4. Incoherent Sampling

The term incoherent sampling conveys the idea that the
sampling protocol ¢ in (1) has to be as little correlated
as possible with the sparse representation y; in (2). This
requirement prevents from the risk of sampling insignificant
bits of information (the close-to-zero coefficients described
in Section 3). Instead, the idea of an incoherent sampling is
to introduce noise-like interferences to the signal to recover.
The mathematical definition of incoherence is [21, 22]:

u®,¥) = ﬁlﬁf}’én’ ($vi) |, (3)
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FIGURE I: (a) A full US RF signal and (b) its sparse representation via Fourier transform. Most of the coefficients are equal or close to zero. (c)
Compressed US RF signal (gray), corresponding to 30% of the largest Fourier coefficients, the rest of them being set to zero. The difference

between the full and compressed US RF signal (black) is minimal.
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FIGURE 2: Ordered relative values of a thyroid in vivo US image
Fourier magnitude coefficients (see Figure 13). They decay very
rapidly, indicating a sparse representation of the image by Fourier
transform.

where @ is the sampling basis and ¥ is the sparsifying basis.
According to (3), if the two bases are strongly correlated, then
p will be close to /n, and if they are not correlated at all, then
it will be close to 1. CS requires a low coherence between the
bases. In other words, incoherence is guaranteed provided
that the two bases are not correlated.

Pairs of bases with minimum coherence include, for
example, a basis of Diracs associated with a Fourier basis
(a spatial Dirac contains information about all the frequen-
cies). In addition, if the sampling basis is completely random,
then it will be maximally incoherent with any sparsifying
fixed basis (wavelets, curvelets, etc.) [21].

Figure 3 shows an example of coherent and incoherent
samplings of a US RF signal. When the sampling is inco-
herent with the sparsifying basis (Figures 3(c) and 3(d)),
then the measurements (namely, in practical situations) in
that basis are dense (by opposition to sparse). The original
sparse signal is polluted by noise-like interferences and can be
reconstructed by optimization. However, when the sampling
basis and the sparsifying basis are coherent (Figures 3(e)
and 3(f)), the measurements in the sparsifying basis are
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FIGURE 3: (a) A full US RF signal and (b) its sparse representation via Fourier transform. (c) Sampling 30% of the US RF signal using a
basis of random Diracs (crosses), maximally incoherent with the Fourier basis, leads to (d) a dense signal in the sparsifying basis (Fourier
transform). However, (e) sampling 30% of the US RF signal using a basis of random sinusoids (circles), coherent with the sparsifying basis, is
equivalent to sample random Fourier coefficients of the signal. (e) The resulting measurements in the sparsifying basis (Fourier transform)
are sparse as well.
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themselves sparse. There is significant information (large
Fourier coefficients) missing and CS will not be able to
recover the original signal.

From those incoherent measurements and knowing the
sparsifying basis, CS theory states that it is possible to recover
the original signal using an optimization routine.

5. Signal Reconstruction
through Optimization

Knowing that the signal to recover f has a sparse representa-
tion x in a given basis ¥, it is possible to reconstruct it from
the incomplete incoherent measurements y obtained using
the sampling basis ®. This reconstruction is performed via a
convex optimization program:

min||x||, subjectto y = ®f = OYX, (4)
where x is the reconstructed sparse signal and |- - - |
denotes the £; norm.

This optimization searches amongst all the signals that
verify the measurements y, the one with the smallest ¢,
norm, that is, the sparsest. The choice of the ¢; norm
(sum of magnitudes) over the £, norm (size of support) is
mainly practical: while solving of the £, norm minimization
is computationally infeasible, the ¢; norm minimization
can easily be recast as a linear program. The ¢, norm
(sum of magnitudes squared) is unsuited to CS because the
minimization would not recover the sparsest signal [23].

In other words, the optimization routine (4) removes
the interferences caused by the incoherent undersampling
from the sparse representation of the measurements (as
in Figure 3(d)). Figure 4 illustrates the process of ¢; norm
minimization applied to the Fourier transform of an RF
signal: the significant coefficients tend to be amplified
while the others, corresponding to the interferences, are
attenuated.

In this example, at the last iteration, the recovered signal
is exactly equal to the original signal. Generally speaking,
recovering the signal is true with overwhelming probability
if the number of measurements m follows:

m = C - y*(®,¥) - S - logn, (5)

where C is a positive constant, y is the coherence as defined
in (3), Sis the degree of sparsity, and # is the signal size. From
(5) it follows that the number of measurements depends on
the sparsity S of the signal (the sparsest, the best) in a given
basis and the coherence y of the sampling protocol with that
basis.

In practice, many researchers observed that accurate
reconstructions can be achieved if the number of mea-
surements m is roughly 2 to 5 times the sparsity S of the
signal [24-26]. The work herein matches this statement. For
an offline reconstruction, plots in Figure 2 could be used
to determine the degree of sparsity and consequently the
minimum number of measurements required. For online
reconstruction, priors on the US imaging device bandwidth
could be exploited. Classic US scanners bandwidth ranges

from 50% to 100% or more (depending on the scanner) and
is practically estimated at 3 or 6 dB attenuations. An example
of an experimental PSF together with its Fourier trans-
form showing the bandwidth at 6dB is given in Figure 5.
Thus, we can observe that, taking into account the device
bandwidth, the k-space may be considered even sparser than
the impression given by Figure 2. The sparsity could then be
set as the number of significant coefficients in the practical
bandwidth, or two times this number.

The optimization routine utilizes no prior knowledge
about the positions or amplitudes of the sparse coefficients
or about the signal to recover.

In practical situations, the measurements y are often
corrupted by noise #, originating from the instrumentation.
Therefore, the term guaranteeing data consistency in (4) has
to be relaxed, so that y = Ax+#. In addition, the signal might
not have an exact sparse representation but an approximate
sparse representation where very small but not exactly nil
coefficients will be neglected. Again, this approximation will
introduce some noise.

In those cases, the CS method will still allow a reconstruc-
tion of the signal, provided that the CS matrix A (A = OV)
respects the Restricted Isometry Property (RIP) [21, 27]:

(1= 89)lIxll3 < 1AxI13 < (1 +8s)l1xl3, (6)

where S are integers and Js is the isometry constant. A obeys
(6) when the smallest s that verifies (6) for all S-sparse
signals x is not too close to 1. In other words, if A obeys the
RIP, then the Euclidean lengths, or norms, will be preserved
in A: this is the isometry. This property basically ensures that
a sparse signal x will not fall in a null space in A, where it
would be impossible to recover.

If (6) is true, then the minimization will allow an accu-
rate reconstruction of the signal. More precisely, the recon-
struction of an approximately sparse signal will approach the
corresponding compressed signal.

Interestingly, random matrices obey the RIP with over-
whelming probability if m > C - S - log(n/S) with C being a
constant.

The minimization in the case of noisy data is as follows:

min||X||, subjectto HAJ?J,HZ <e (7)

where the fidelity of the measurement constraint is relaxed to
take into account the level of noise e. This is again a convex
minimization, computationally feasible.

6. Sampling Protocols in Ultrasound Imaging

The sampling protocols in US imaging are designed to fulfill
both the requirements of CS and of the US instrumentation.
The CS theory has been described in the previous section
and, from this perspective, the sampling basis mainly has
to be incoherent with the sparsifying basis. The US imaging
devices have physical constraints that limit the sampling
strategies one can adopt for CS.

The data acquisition in US imaging is performed in
the image space (spatial domain), unlike MRI, for example
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reflecting the sparsity of the ultrasound k-space.

[7,24]. There are several possible sampling protocols adapted
to US imaging and incoherent with the sparsifying basis.
They all consist in taking samples of that image at more or
less random locations. This is equivalent to taking samples at
specific times on the RF signals or taking RF lines at specific
locations.

In this paper, eight different sampling protocols are
proposed: three 2D masks and five 3D masks. In two
dimensions, the CS uniformly random mask, denoted @,

and shown in Figure 6(a), will be studied on different types
of RF US images. This sampling protocol is maximally
incoherent with the Fourier transform (considered as the
sparse decomposition basis in this paper) and therefore
should give the best results.

However, switching rapidly from one position to the
next in this kind of sampling pattern might be difficult
from the instrumentation point of view. Consequently, two
other sampling masks denoted by ®, and ®; where studied



Advances in Acoustics and Vibration

:' ",'g-'.’-

Axial distance
Axial distance

Lateral distance

(a)

Lateral distance

Lateral distance

(c)

FIGURE 6: Sampling masks @; (a), @, (b), and @5 (c) adapted to a spatial sampling of the US images. The white pixels correspond to the
samples used for CS. The proportion of samples here is 50% of the original image.

were whole lines or columns of the images are not sampled
at all (Figures 6(b) and 6(c), resp.). The sampled lines or
columns are chosen in a uniformly random fashion. On the
remaining lines or columns, random points are sampled.
The total number of points sampled and chosen was the
same as for the sampling mask ®; to be able to compare
the quality of the CS reconstructions. The sampling masks
@, and @3 are slightly less incoherent than @, (due to a
certain coherence in the direction that is not sampled at all),
so the results are expected to be worse than for ®;. However,
these two strategies could translate as a gain of time from the
instrumentation point of view as some lines (resp., columns)
of the image will not be acquired at all.

For 3D US datasets, five sampling strategies are proposed.
The first, similar to @;, and maximizing incoherence is a
uniformly random mask in three directions, denoted ©,
(Figure 7(a)).

The other four, ®, to ©@s, are inspired by ®, and @3,
that is, sampling only certain RF lines. Whereas ©, and ®;
consist in sampling different RF lines or columns on each
slice of the azimuthal direction (see Figures 7(b) and 7(c)),
with ®4 and Os, the set of unsampled RF lines or lateral
profiles is always the same in each slice (see Figures 7(d) and
7(e)). Consequently, with ®4 (resp., ®5), some whole axial-
azimuthal (resp., lateral-azimuthal) plans of the volume are
not sampled.

7. Reconstructions of Ultrasound Images
and Volumes

In US imaging, the acquisition consists in taking samples of
the image (or of the RF signals). This sampling protocol is
similar to a basis of Diracs (sampling mask). To guarantee
the success of the CS reconstruction, a basis incoherent
with Diracs and where the US images are sparse is needed.
The basis chosen in this paper is the Fourier basis as it is
maximally incoherent with Diracs and because the US image
k-space is sufficiently sparse. The function to minimize is

argmin|[AM — y||, + AIM|;, (8)
M

where M is the k-space of the US RF image m (M = ¥ m),
and A is the sampling scheme (A = ®F ! here, where ®
corresponds to @y (k = 1,...,3), the RF random sample
locations in 2D, or to @, (k = 1,...,5) in 3D). £ ~! stands
for the inverse Fourier transform, y are the RF US image
measurements and A is a coefficient weighting for sparsity.

Other bases of sparsity such as the wavelet transform
of the US image k-space have been investigated in previous
work and give similar results to those presented here [12].

The first term of (8) represents the fidelity of the mea-
surements and the second term guarantees the signal sparsity
in the Fourier basis. The balance between those two terms is
given by A. The choice of A is crucial to a good reconstruction
as it corresponds to a threshold for the recovery of significant
coefficients in the sparse basis.

In this paper, the optimal A chosen was the one giving
the minimum errors of reconstruction. However, finding the
optimal A by trials and errors is obviously not possible during
acquisition where no comparison with the real signal can be
performed.

One solution to minimize the fluctuations in the CS
reconstructions due to a poor choice of lambda is to add
an elastic-net regularization, that is, £, minimization term
on the sparse coefficients [28]. The resulting reconstruction
errors around the optimal A were however quite large
compared to the minimum errors found with only the ¢
minimization.

Another method, based on an adapting A and called
reweighted ¢, minimization, has been developed [29] to
address that issue. It consists in performing (8) with an initial
A (equal to one e.g.). Then, (8) is reiterated using a new A,
which value is calculated from the results of the first iteration
of (8). Thus, the optimization performed is given as follows:

argmin||AM — y||, + Z(W;Z)|M,‘|1>. 9)
M i

Namely, the weighted A at each iteration is wf“l)

1/(|Mf€)| + &) where ¢ is the iteration number, Mi(e) are
the sparse coefficients estimated after ¢ iterations, and ¢
is a coefficient ensuring stability (that should be slightly
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FIGURE 7: Sampling masks ©; (a), ®, (b), @3 (c), O4 (d), and ®s (e) adapted to a spatial sampling of the 3D US volumes. The white pixels
correspond to the samples used for CS. The proportion of samples here is 50% of the original volume.

smaller than the smallest nonnil sparse coefficient). At the

first iterations, all w; coefficients are set to 1 (WEO) 1,
for all 7). In this setting, the choice of lambda is replaced
by the choice of ¢. However, we observed that the results
of the CS reconstructions were a lot less dependant on ¢
than A. A major drawback of the reweighted ¢, minimization
method is its iterative process. Thus, at least two classic
optimizations are performed (corresponding to a minimum
of two iterations) in order to get an accurate result.

In Section 8, the two techniques of CS reconstruction:
using a fixed optimal A and the reweighted ¢; minimization
were compared for the sampling patterns described in
Section 6. In both cases, a nonlinear conjugate gradient algo-
rithm was used for numerical optimization. This algorithm is

particularly suited to large-scale data and is used for similar
convex optimization problems (see, e.g., [30]).
In addition, different undersampling ratios were tested.

8. Results on a 2D Simulation Image

The CS strategy described in (8) was used to reconstruct the
k-space of an RF image simulated using the Field II US sim-
ulation program [31]. The parameters and the example scat-
terer map of a kidney used were as follows Transducer centre
frequency = 5 MHz, sampling frequency = 20 MHz, number
of scatterers = 50,000, number of RF lines generated =
256, size of the object = 88 x 147 mm. The image was then
cropped to a 1792 by 128 size matrix.
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Figures 9, 10, and 11.

The three different schemes of sampling, ®;, ®,, and @3
(Figure 6), were studied to compare the CS reconstructions,
using a fixed optimal A set to 0.005 and the reweighted ¢,
minimization. The results are shown in Figure 8 for the three
sampling patterns (using 33% of the samples).

For the classic 2D random sampling pattern ®;, one
RF line of the reconstructed signal was plotted against the
corresponding RF lines of the original signal and of the
random measurements (Figure 9).

For the sampling pattern @,, one RF line of the recon-
structed signal was displayed in Figure 10, corresponding to a
line that was not sampled at all (shown with the dash-dotted
line on Figure 8(f)). RF lines that were partially sampled are
very similar to the ones shown in Figure 9.

Figure 11 shows one lateral profile that was not sampled
at all with the sampling mask @3 (denoted by a dash-dotted

line on Figure 8(g)). Again, the reconstruction quality of
lateral profiles that were partially sampled was similar to
Figure 9.

Table 1 shows the errors of CS reconstructions for the
three sampling masks @;, @5, and ®; at three undersampling
ratios: 25%, 33%, and 50%.

For the reconstruction from @; (Figure 8(e)), the parts
of the image that contained less signal, shown in black on the
B-mode images, were less successfully reconstructed, but the
diagnostic information was maintained. On the RF signals
(Figures 9, 10, and 11), the amplitudes of the reconstructed
signals were sometimes reduced. However, the differences in
amplitude were constant and the timing information of the
signal was maintained. Consequently, the CS-reconstructed
images would give very close visualizations in B-mode and
could also be used for tissue motion estimation or tissue
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Figure 8(f). This line was not sampled at all.

characterization. The errors of reconstruction increased with
a smaller undersampling ratio as one would expect. In
addition, the errors were always reduced when ®; was used,
due to a greater incoherence.

With @,, the reconstruction of partially sampled RF lines
was again very close to the original signal. For the RF lines
that were not sampled at all (Figure 10), a good reconstruc-
tion was performed as well, showing the potential of CS
for US imaging with reduced pulse emissions. The visual-
izations in B-mode were again very satisfactory in terms of
diagnostic power.

When the sampling mask @3 was used, partially sam-
pled and unsampled lateral lines were well reconstructed
(Figure 11). The overall CS reconstruction displayed in B-
mode did not exhibit any line artifact.

Results obtained from the reweighted minimization (i.e.,
with an adaptive 1) were similar to those with the optimal A,
found experimentally.

9. Results on In Vivo 2D Images

In this section, US CS is performed using high- and low-
frequency ultrasound images. These images were sampled a
posteriori using CS.

First, results of a CS reconstruction using method (8) on
in vivo images of the skin are shown. The central frequency
was 20 MHz and the sampling frequency 100 MHz (ATYS
Medical). Results from three different sampling patterns @,
®,, and @5 (Figure 6) are shown in Figure 12.

The same CS method (8) was used to reconstruct a
US image of the right lobe of a normal human thyroid.
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TaBLE 1: NRMSE between the CS-reconstructed RF US image and the original simulated image of a kidney for different sampling ratios and

patterns.
ol o, @5
25% 0.48 0.58 0.6
Classic £; minimization (A = 0.005) 339% 0.33 0.45 0.49
50% 0.15 0.28 0.29
25% 0.51 0.56 0.64
Reweighted ¢; minimization 33% 0.36 0.47 0.49
50% 0.17 0.24 0.3

The imaging was performed using a clinical scanner that was
modified for research with a 7.5 MHz linear probe (Sonoline
Elegra, Siemens Medical Systems, Issaquah, WA, USA). The
sampling frequency was adjusted to 40 MHz. For the image
presented here, A = 0.01 and 33% of the samples were
measured a posteriori. The three different sampling patterns
®;, @, and P; (Figure 6) were used. The reconstructed US
images of the thyroid are shown in Figure 13.

On in vivo US images, similarly to simulation images,
the CS reconstruction using both sampling patterns was very
good. The tissue structures were restored and the diagnostic
information was maintained. Note that the results do not
depend on the US frequency used. Tables 2 and 3 show the
reconstruction errors for both in vivo images and for the
different sampling schemes proposed.

10. Results on an In Vivo 3D Volume

In vivo US volumes of mouse embryos, acquired on anaes-
thetised mice, were reconstructed using the sampling masks
described in Section 6 (Figure 7).

A single element-high-resolution scanner SHERPA,
developed and commercialized by Atys Medical (Lyon,
France) where RF data was available, was used (central fre-
quency 22 MHz, frame rate 10 images per second, scanning
width 16 mm, sampling frequency 80 M samples/second,

emission frequency 20 MHz, exploration depth 7.8 mm).
The volume was then cropped to a 128° size volume for
illustration purposes.

The CS reconstruction of the volume was performed
using (8) and A = 0.4.

Figure 14 shows the CS reconstruction obtained from the
sampling masks @1, ©,, @3, @4, and Os for a 50% undersam-
pling factor. Figure 14(a) represents the original volume and
Figures 14(g), 14(h), 14(i), 14(j), and 14(k) the CS recon-
structions obtained from each mask, whereas Figures 14(b),
14(c), 14(d), 14(e), and 14(f) are the measurements obtained
from ®; to ®s masks, respectively.

The first observation to make is that for all the sampling
masks, the CS method (8) provided good reconstructions of
the whole volume from only 50% of the samples. The plan
that was best reconstructed in each case was always the axial-
lateral plan, where the 2D masks were applied (and then
repeated along the azimuthal direction). However this setting
could easily be changed for other applications where another
plan is more crucial.

When the coherence increased, that is, from ®; to ©,
to ®; and from Os to O4 to ®;, the reconstructions were
degraded, as expected. This is particularly visible on the
axial-azimuthal plans of Figures 14(g), 14(h), and 14(i).
However, considering that absolutely no samples were kept
for the axial-azimuthal plan visible on Figure 14(i), the result
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TaBLE 2: NRMSE between the CS-reconstructed RF US image and the original in vivo image of the skin for different sampling ratios and
patterns.

o} o0, D

25% 0.64 0.71 0.64

Classic ¢; minimization (A = 0.01) 33% 0.48 0.57 0.35
50% 0.28 0.35 0.35

25% 0.65 0.67 0.73

Reweighted ¢; minimization 33% 0.51 0.65 0.61
50% 0.38 0.44 0.43

TaBLE 3: NRMSE between the CS-reconstructed RF US image and the original in vivo image of a human thyroid right lobe for different
sampling ratios and patterns.

®, @, D
25% 0.34 0.63 0.38
Classic £; minimization (A = 0.01) 33% 0.22 0.53 0.26
50% 0.12 0.38 0.13
25% 0.36 0.64 0.39
Reweighted ¢; minimization 33% 0.24 0.56 0.26
50% 0.15 0.40 0.16
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FIGURE 12: CS reconstruction on a US image of the skin (a) using a two-dimensional random sampling pattern @; (b) and two alternative
sampling masks @, (¢) and @3 (d) and 33% of samples. The B-mode images of the samples are shown on the second row from (b) to (d). The
B-mode images of the CS-reconstructed k-spaces with the optimal A are shown on the third rows (e) to (g). Those from the CS-reconstructed
k-spaces using the reweighted ¢; minimization are on the fourth row: (h) to (j).
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FIGURE 13: CS reconstruction on a US image of a human thyroid right lobe (a) using a two-dimensional random sampling pattern @, (b)
and two alternative sampling masks @, (c) and @3 (d) and 33% of samples. The B-mode images of the CS-reconstructed k-spaces with the

optimal A = 0.01 are shown on the second row from (b) to (d).

TaBLE 4: NRMSE between the reconstructed RF US volume and the original volume for different sampling ratios and patterns.

Sampling 25% 33% 50%

0, 0.61 0.49 0.27

0, 0.69 0.57 0.40

Cubic spline interpolation Lateral regular 1.09 1.02 0.83

is still quite impressive. This setting could be used in a
situation where the speed of imaging would prevail on the
quality of the reconstruction. In addition, despite being less
sharp, the image still exhibits the tissue structure and might
be sufficient in many applications.

For puropse of illustration, Table 4 shows the normalised
root mean squared errors of reconstruction between the RF
original and reconstructed US volumes for the two sampling
patterns ®; and ©, and different rates of decimation
(25%, 33%, and 50%). In addition, the NRMSE of the CS
reconstructions was compared with results from an interpo-
lation reconstruction method, based on a 2D cubic spline
interpolation. The decimation used for the interpolation
was a regular lateral undersampling corresponding to the
sampling ratios 33% (no axial decimation). As expected, CS
outperforms interpolated regular subsampling.

11. Some Hints for Practical Implementation

As shown previously, one of the key points for compressive
sampling success is the incoherence of the acquired samples.

For this, random sampling schemes are necessary, in both
axial and lateral directions.

Regarding the axial direction for the sampling masks @,
and @,, one way to incoherently sample one RF line is to
fix a constant sampling frequency f., to consider a vector
of random integers #, and to only acquire samples situated
at n,/f.. This can be achieved by programming specific
acquisition devices such as FPGA or CPLD. If the mask @3
is considered, the same 7, random vector is repeated on each
RF line.

Alternatively, for all the masks proposed in the paper, the
whole RF line can be acquired respecting Shannon’s theorem
and random samples subsequently discarded, in order to
speed up the transfer to the scanner memory.

In the lateral direction, for RF lines selection, the
acquisition scheme depends on the type of scanner. For
multiple element transducers, each element can be randomly
set to be active or not. For single-element transducers, each
RF line is acquired separately. Thus, RF lines at random
lateral positions can be omitted.
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TaBLE 5: Qualitative assessment of the speed of acquisition, the quality of reconstruction, and the ease of a practical implementation of
different sampling masks and undersampling ratios (+++ denotes high-speed), high-quality reconstruction and easy implementation.

Speed Reconstruction Implementation
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F1GURE 14: 3D CS reconstructions following (8) on an in vivo US volume of a mouse kidney (a) using 50% of the samples and the sampling
masks @y, @,, @3, O, and Os. The B-mode volumes of the RF random measurements are shown in (b), (c), (d), (e), and (f) and of CS

reconstructed US volume in (g), (h), (i), (j), and (k).

This methodology could be suitable to all the sampling
strategies presented in this paper.

Of course, one could also implement direct random
acquisitions through random triggering acquisition board.
But this possibility needs more sophisticated electronic
design.

12. Summary

Table 5 summarizes the different results presented so far
and qualitatively compares the speed of the acquisition, the
quality of the reconstruction in term of errors, and the ease
of a practical implementation of the different masks and
undersampling ratios tested in this paper.

13. Discussion and Conclusion

This paper investigates the feasibility of CS in ultrasound
imaging. From this presentation many questions are opened.

13.1. Sparsity of Ultrasound Signals. Sparsity is key point
in the success of CS. We dealt here with the fact that the
Fourier transform of US is sparse. This may of course be
questionable.

US signals exhibit bandpass characteristics and thus
are sparse in frequency domain. Consequently, a highly
oversampled version of the ultrasound signal could be
reconstructed from fewer regular samples. However, it is
well known that sampling using high sampling rate is
neither easy nor cost-effective particularly in high-frequency
US applications. The interest of CS lies in the ability of
allowing under sampling from Nyquist limits. Indeed when
sampled at Nyquist (which is cost-effective), by taking the
demodulated I/Q signal, which remains sparse, CS allows
correct reconstruction, whereas no reconstruction is possible
after under sampling from Nyquist rate, according to the
regular sampling theory.

In addition CS allows skipping RF line in lateral and
azimuthal directions.
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13.2. Real-Time Nature. In this paper, we showed the power-
ful potential of CS to reduce data volume and speed up acqui-
sitions at the price of a reconstruction using the /; norm.
However, using dedicated circuits (GPU type) for the CS
reconstruction could allow a great improvement in process-
ing times and overall increase the imaging rate, keeping the
real-time nature of US imaging.

In addition, various sampling protocols suited to US
imaging were proposed here where the RF signals can
be sampled at random times to provide measurements of
the final image k-space. Through the /; minimization, the
original k-space can be reconstructed and the RF US image
subsequently recovered with minimal loss of information.

The method presented here differs from inpainting
methods as the reconstruction is performed in another
domain than the image itself.

Future work will include the identification of optimal
conditions as well as an investigation of several optimization
routines and better sparsity basis. Additional knowledge
about the US images will be inserted in the reconstruction
process (statistics of the signal, attenuation). The aim is to
reach the fastest and most reliable reconstruction from as
little samples as possible. Various applications will also be
considered (multidimensional Doppler and tissue character-
ization).
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