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Abstract — This paper describes a 256 bits output 
cryptographic hashing algorithm based upon a specific 

kind of 2D cellular automata, adapted from Conway’s 

Game of Life, where each cell is ruled by its far-off 

neighbors. The notion of Moore’s far neighborhood of a 

cell on a 2D circular grid is defined, and more 

specifically, a far neighborhood of 8 cells is exploited to 

drive the cellular automaton. The obtained hash function 

is lightweight and fast by design, with a nice avalanche 

effect; it can be used as an effective and sustainable 

algorithm for Proof-of-Work blockchains, IoT, and many 

other applications. 
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I. INTRODUCTION 

Hash functions became omnipresent in many aspects of 

people's digital life [1][2], like data integrity, digital 

signatures, secure communications, or financial 

transactions processing.  
A cryptographic hash function [4] transforms a 

message of variable length into a fixed-length digest in a 

deterministic and irreversible fashion. Additionally, two 

different messages can’t have the same digest (collision-
free), and tiny changes in the message lead to massive 

changes in the digest (avalanche effect).  
This paper introduces a simple cryptographic hash 

function based upon specific cellular automata [5], 

defined as far neighbor-driven cellular automata. Each 

cell is ruled by its far-off neighbors. 

II. CELLULAR AUTOMATA 

A. Definitions 

A cellular automaton is a dynamical system represented 

as a finite lattice network of state-changing cells, whose 

evolution is ruled by a transition function applied to each 

cell [6]. The next state of each cell is determined by its 

current state and the state of its neighborhood (Von 

Neumann’s or Moore’s neighborhood [7]). Conway’s 

Game of Life [5] is a 2D cellular automaton, where each 

cell’s state is either dead or alive and whose transition 

function is applied on Moore’s neighborhood with 3 

simple rules: 
 an alive cell with 2 or 3 alive neighbors lives, 
 a dead cell with exactly 3 live neighbors becomes 

alive, 
 in any other case, the cell dies or remains dead. 

In this particular automaton, each end meets as it is a 
circular state grid. Thus a 3D representation of the lattice 

can be figured as a toroidal shape.  Conway’s game of life 

is graded Class IV on Wolfram’s classification scale [9], 

as it has complex behavior and produces patterns with 

local structures that move through space and time. 

B. Far-neighbourhood of a cell 

Extending Moore’s neighborhood definition on 

a N× N circular grid [7] N≥ 3 , Moore’s far-

neighborhood of a cell C is defined as the set of cells 

belonging to the edges of a square of size 

(N− (N+1)mod2)× (N− (N+1)mod2)
 

centered on C. 
Thus, each of these cells is likely to belong to C's 

farthest cells, with a Manhattan distance [3]  D comprised 

between ⌊N /2⌋− (N+ 1)mod2  

and
2× (⌊N /2⌋− (N+ 1)mod2)

. 

a) Moore’s 8 cells far-neighborhood: Let 

N∈ ℕ ,N≥ 3  and let G a N× N  circular state grid. 

Let n= ⌊N/2⌋− (N+1)mod2 and M= (0..N− 1) . 

Let C∈G a cell of coordinates (x,y)∈M× M  and 

(f,g) two functions defined as 

f :M→M /∀ x∈M,f (x)= (x− n+N)modN  

g:M→M/∀ x∈M,g(x)= (x+n+N)modN  
Moore’s 8-cells far neighbourhood of C is defined as the 

following 8 cells of coordinates: (f(x),f(y)), (x,f(y)), 

(g(x),f(y)), (f(x),y), (g(x),y), (f(x),g(y)), (x,g(y)) and 

(g(x),g(y)). 

b) Far neighbor cellular automata definition: An 8-cells 
far neighbor driven cellular automaton is defined as any 

cellular automaton that uses Moore’s 8 cells far 

neighborhood in its transition function. More generally, a 

far neighbor-driven cellular automaton is defined as any 

cellular automaton that uses Moore’s far neighborhood in 
its transition function.  

III. DESCRIPTION OF THE HASH FUNCTION 

A. Simple description 

The hashing algorithm will use an 8-cells far neighbor-

driven cellular automaton with a 16 x 16 circular state 

grid and a transition function based upon Conway’s game 

of life rules. The state grid will be represented as one 

dimension 256 bits array. 
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After compressing and padding the input message to a 

256 bits array, a 16 x 16 circular state grid is obtained, 

then the cellular automaton will be run for 7 rounds. If the 

resulting state grid is null (all cells died), the input 

message is recompressed and sent again to the hash 
function. 

The resulting state grid will be considered as the 256 

bits digest of the input message. 

B. Input message compression and padding 

In order to process the message into a cell grid 

compatible with the CA, compression and padding to a 

256 bits array are needed. A fairly simple compression 

and padding method are used, based upon xoring and 

bitwise rotations: 
Algorithm 1 Compression and padding of the message 
 function compress(message) 
    bits← 0, comp ←Array(256), state ←Array(256) 
    for i in message do 
       n ← comp[i mod 256] + message[i] 
       comp[i mod 256] ← n mod 2 
       bits ←bits + message[i] 
    end for 
    for j in comp do 
       comp[j] ← (comp[j] + j) mod 2 
       state[(j + bits) mod 256] ← comp[j] 
    end for 
    return state 
 end function 
The resulting output is 256 bits compressed and padded 

array that will now be used as a 16 x 16 circular grid, the 
initial state of the cellular automaton. 

C. Processing far-neighbors of each cell 

For each cell of the CA, it is now necessary to 

determine the states of Moore’s far neighborhood. To that 

end, the function below takes for argument the current 

state of the CA and   processes the number of alive far-

neighbors of each cell as follows: 
Algorithm 2 Determination of far-neighbors states 
 function neighbours(state) 

    bits ← 0, ngb ← Array(256), Δ ←[-7; 0; 7] 
    for i in state do 
       x ← i / 16,  y ← i mod 16 

       for (α,β)∈ Δ× Δ do 

          if Δ[α ]≠ 0 or Δ[β]≠ 0 then 

              γ ← (x + Δ[α ] + 16) mod 16 

              δ ← (y + Δ[β] + 16) mod 16 

                 id    ← 16× γ+δ  

                 ngb[id] ← ngb[id] + state[i] 
          end if 
       end for 
       bits ← bits + state[i] 
    end for 
    return (ngb, bits) 
 end function 
This algorithm returns the sum of alive neighbors for 

each cell and the bit sum of the current state. 

D. Transition function and bitwise rotation 

The core part for each round is to apply the transition 

function to the current state. Conway’s game of life rules 

will be applied and can be compacted as follows: 
 any cell with 3 alive neighbors or any alive cell with 

2 alive neighbors, lives on next state, 
 in any other case, the cell dies or remains dead in the 

next state. 
During this process, a bitwise rotation of the current 

state to the next state is applied in parallel. This transition 

function takes for argument the current state, the sum of 
alive neighbors for each cell (ngb), and the bit sum of the 

current state (bits). 
 
Algorithm 3 Transition function of the CA 
 function transition(state, ngb, bits) 
    next ← Array(256) 
    for i in state do 
       if ngb[i]=3 or (state[i]=1 and ngb[i]=2) then 
          next[(i + bits) mod 256] ← 1 
       else 
          next[(i + bits) mod 256] ← 0 
       end if 
    end for 
    return next 
 end function 
 
This transition function returns the next state of the 

cellular automaton by applying Conway’s Game of Life 

rules on each cell. 

E. Implementation of the hash function 

A last function is needed before the implementation of 

the proposed hash function. Let bitsum(state) a function 

that returns the bit sum of a given state: 
 
Algorithm 4 Bit sum processing of a state 
 function bitsum(state) 
    bits ← 0 
    for i in state do 
       bits ← bits + state[i] 
    end for 
    return bits 
 end function 
All the required functions are now defined to process 

the input message and to run the cellular automaton. The 

proposed hash function is implemented as follows: 
 

Algorithm 5 Implementation of the hash function 
 function hash(message) 
    state ← compress(message) 
    for round = 1 to 7 do 
       (neighb, bits) ← neighbours(state) 
       state ← transition(state, neighb, bits) 
    end for 
    if bitsum(state) = 0 then 
       return hash(compress(message)) 
    end if 
    return state 
 end function 
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IV. RESULTS AND FURTHER DISCUSSION 

This hash function has been implemented in OCaml, 

and preliminary tests were run in terms of randomness, 

avalanche effect, and throughput: 
The average Hamming distance between a random 256 

bits input and its corresponding hash is above 128. On a 

sample of two randomly sized inputs, differing by only 

one bit, the average Hamming distance between their 

corresponding hashes is above 90, which is a nice 

avalanche effect, but it does not meet the Strict Avalanche 

Criterion of Webster and Tavares [8], i.e., an average 
Hamming distance of 128, further work will be done to 

get closer and match this criterion. 
Although the Ocaml implementation was made for a 

single thread, the proposed hash function performs with 

an average hash rate of 5.3 kHash/sec/GHz  (18 kHash/sec 

in average measured on an Intel core i3-1005G1 CPU, 

single-core, single thread). Further work will also be done 

to implement a multi-threaded CPU version, a massively 

parallel CUDA version, and a distributed version using 

the IPFS Publish-Subscribe system. 
For each cell, only 8 neighbors were taken into account 

to match Conway's game of life rules and to keep it fast 

and simple; in fact, it is possible to exploit Moore's far 

neighborhood principle up to 

4× (N− 1− (N+ 1)mod2)
cells on a N x N circular 

grid, which makes up to 56 far neighbors of a cell in a 16 
x 16 circular grid. 

The number of rounds of our CA was arbitrarily set to 

7 for speed considerations, and further analysis will also 

be done to determine the best-suited number of rounds on 

single-threaded, upcoming parallel, and distributed 

versions. Concerning this hash function, the impact of 

various compression methods to process the input 

message will also be analyzed. 

 

V. CONCLUSION 

In this paper, a simple and fast cryptographic hash 

function using a specific cellular automaton exploiting the 

notion of Moore's far neighborhood was proposed and 

described. A definition was made for Moore's far 

neighborhood of a cell in a circular 2D grid as the set of 
cells belonging to the edges of the greatest fitting square 

centered on this cell. The obtained algorithm is elegant 

and lightweight with a nice avalanche effect, although not 

sufficient yet to meet the Strict Avalanche Criterion [8]. 
The fact of using far neighbours instead of close ones 

for the cellular automaton provides very interesting 

behavior and patterns of global structures moving through 

space and time that will be thoroughly described in further 

works. 
A multi-threaded, massively parallel CUDA and an 

IPFS distributed version of this algorithm will also be 

further implemented. 
The impact of adding more neighbors, rules, transition 

rounds, and different compression methods to this 

algorithm will also be investigated in terms of security 

analysis and performance. 
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