
HAL Id: hal-03146570
https://hal.science/hal-03146570v1

Submitted on 19 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

About a Fast Cryptographic Hash Function Using
Cellular Automata Ruled by Far-Off Neighbours

Vincent Manuceau

To cite this version:
Vincent Manuceau. About a Fast Cryptographic Hash Function Using Cellular Automata Ruled
by Far-Off Neighbours. International Journal of Engineering Trends and Technology, 2021, 69 (2),
pp.39-41. �10.14445/22315381/IJETT-V69I2P206�. �hal-03146570�

https://hal.science/hal-03146570v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

International Journal of Engineering Trends and Technology Volume 69 Issue 2, 39-41, February 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I2P206 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

About a Fast Cryptographic Hash Function Using

Cellular Automata Ruled by Far-Off Neighbours
Vincent Manuceau

Makis Research, La Loupe, Eure-et-Loir, France

vincent@manuceau.net

Abstract — This paper describes a 256 bits output
cryptographic hashing algorithm based upon a specific

kind of 2D cellular automata, adapted from Conway’s

Game of Life, where each cell is ruled by its far-off

neighbors. The notion of Moore’s far neighborhood of a

cell on a 2D circular grid is defined, and more

specifically, a far neighborhood of 8 cells is exploited to

drive the cellular automaton. The obtained hash function

is lightweight and fast by design, with a nice avalanche

effect; it can be used as an effective and sustainable

algorithm for Proof-of-Work blockchains, IoT, and many

other applications.

Keywords — Cryptography, Hash function, Cellular

automata, Moore’s far neighborhood.

I. INTRODUCTION

Hash functions became omnipresent in many aspects of

people's digital life [1][2], like data integrity, digital

signatures, secure communications, or financial

transactions processing.
A cryptographic hash function [4] transforms a

message of variable length into a fixed-length digest in a

deterministic and irreversible fashion. Additionally, two

different messages can’t have the same digest (collision-
free), and tiny changes in the message lead to massive

changes in the digest (avalanche effect).
This paper introduces a simple cryptographic hash

function based upon specific cellular automata [5],

defined as far neighbor-driven cellular automata. Each

cell is ruled by its far-off neighbors.

II. CELLULAR AUTOMATA

A. Definitions

A cellular automaton is a dynamical system represented

as a finite lattice network of state-changing cells, whose

evolution is ruled by a transition function applied to each

cell [6]. The next state of each cell is determined by its

current state and the state of its neighborhood (Von

Neumann’s or Moore’s neighborhood [7]). Conway’s

Game of Life [5] is a 2D cellular automaton, where each

cell’s state is either dead or alive and whose transition

function is applied on Moore’s neighborhood with 3

simple rules:
 an alive cell with 2 or 3 alive neighbors lives,
 a dead cell with exactly 3 live neighbors becomes

alive,
 in any other case, the cell dies or remains dead.

In this particular automaton, each end meets as it is a
circular state grid. Thus a 3D representation of the lattice

can be figured as a toroidal shape. Conway’s game of life

is graded Class IV on Wolfram’s classification scale [9],

as it has complex behavior and produces patterns with

local structures that move through space and time.

B. Far-neighbourhood of a cell

Extending Moore’s neighborhood definition on

a N× N circular grid [7] N≥ 3 , Moore’s far-

neighborhood of a cell C is defined as the set of cells

belonging to the edges of a square of size

(N− (N+1)mod2)× (N− (N+1)mod2)

centered on C.
Thus, each of these cells is likely to belong to C's

farthest cells, with a Manhattan distance [3] D comprised

between ⌊N /2⌋− (N+ 1)mod2

and
2× (⌊N /2⌋− (N+ 1)mod2)

.

a) Moore’s 8 cells far-neighborhood: Let

N∈ ℕ ,N≥ 3 and let G a N× N circular state grid.

Let n= ⌊N/2⌋− (N+1)mod2 and M= (0..N− 1) .

Let C∈G a cell of coordinates (x,y)∈M× M and

(f,g) two functions defined as

f :M→M /∀ x∈M,f (x)= (x− n+N)modN

g:M→M/∀ x∈M,g(x)= (x+n+N)modN
Moore’s 8-cells far neighbourhood of C is defined as the

following 8 cells of coordinates: (f(x),f(y)), (x,f(y)),

(g(x),f(y)), (f(x),y), (g(x),y), (f(x),g(y)), (x,g(y)) and

(g(x),g(y)).

b) Far neighbor cellular automata definition: An 8-cells
far neighbor driven cellular automaton is defined as any

cellular automaton that uses Moore’s 8 cells far

neighborhood in its transition function. More generally, a

far neighbor-driven cellular automaton is defined as any

cellular automaton that uses Moore’s far neighborhood in
its transition function.

III. DESCRIPTION OF THE HASH FUNCTION

A. Simple description

The hashing algorithm will use an 8-cells far neighbor-

driven cellular automaton with a 16 x 16 circular state

grid and a transition function based upon Conway’s game

of life rules. The state grid will be represented as one

dimension 256 bits array.

https://ijettjournal.org/archive/ijett-v69i2p206
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vincent Manuceau / IJETT, 69(2), 39-41, 2021

40

After compressing and padding the input message to a

256 bits array, a 16 x 16 circular state grid is obtained,

then the cellular automaton will be run for 7 rounds. If the

resulting state grid is null (all cells died), the input

message is recompressed and sent again to the hash
function.

The resulting state grid will be considered as the 256

bits digest of the input message.

B. Input message compression and padding

In order to process the message into a cell grid

compatible with the CA, compression and padding to a

256 bits array are needed. A fairly simple compression

and padding method are used, based upon xoring and

bitwise rotations:
Algorithm 1 Compression and padding of the message
 function compress(message)
 bits← 0, comp ←Array(256), state ←Array(256)
 for i in message do
 n ← comp[i mod 256] + message[i]
 comp[i mod 256] ← n mod 2
 bits ←bits + message[i]
 end for
 for j in comp do
 comp[j] ← (comp[j] + j) mod 2
 state[(j + bits) mod 256] ← comp[j]
 end for
 return state
 end function
The resulting output is 256 bits compressed and padded

array that will now be used as a 16 x 16 circular grid, the
initial state of the cellular automaton.

C. Processing far-neighbors of each cell

For each cell of the CA, it is now necessary to

determine the states of Moore’s far neighborhood. To that

end, the function below takes for argument the current

state of the CA and processes the number of alive far-

neighbors of each cell as follows:
Algorithm 2 Determination of far-neighbors states
 function neighbours(state)

 bits ← 0, ngb ← Array(256), Δ ←[-7; 0; 7]
 for i in state do
 x ← i / 16, y ← i mod 16

 for (α,β)∈ Δ× Δ do

 if Δ[α]≠ 0 or Δ[β]≠ 0 then

 γ ← (x + Δ[α] + 16) mod 16

 δ ← (y + Δ[β] + 16) mod 16

 id ← 16× γ+δ

 ngb[id] ← ngb[id] + state[i]
 end if
 end for
 bits ← bits + state[i]
 end for
 return (ngb, bits)
 end function
This algorithm returns the sum of alive neighbors for

each cell and the bit sum of the current state.

D. Transition function and bitwise rotation

The core part for each round is to apply the transition

function to the current state. Conway’s game of life rules

will be applied and can be compacted as follows:
 any cell with 3 alive neighbors or any alive cell with

2 alive neighbors, lives on next state,
 in any other case, the cell dies or remains dead in the

next state.
During this process, a bitwise rotation of the current

state to the next state is applied in parallel. This transition

function takes for argument the current state, the sum of
alive neighbors for each cell (ngb), and the bit sum of the

current state (bits).

Algorithm 3 Transition function of the CA
 function transition(state, ngb, bits)
 next ← Array(256)
 for i in state do
 if ngb[i]=3 or (state[i]=1 and ngb[i]=2) then
 next[(i + bits) mod 256] ← 1
 else
 next[(i + bits) mod 256] ← 0
 end if
 end for
 return next
 end function

This transition function returns the next state of the

cellular automaton by applying Conway’s Game of Life

rules on each cell.

E. Implementation of the hash function

A last function is needed before the implementation of

the proposed hash function. Let bitsum(state) a function

that returns the bit sum of a given state:

Algorithm 4 Bit sum processing of a state
 function bitsum(state)
 bits ← 0
 for i in state do
 bits ← bits + state[i]
 end for
 return bits
 end function
All the required functions are now defined to process

the input message and to run the cellular automaton. The

proposed hash function is implemented as follows:

Algorithm 5 Implementation of the hash function
 function hash(message)
 state ← compress(message)
 for round = 1 to 7 do
 (neighb, bits) ← neighbours(state)
 state ← transition(state, neighb, bits)
 end for
 if bitsum(state) = 0 then
 return hash(compress(message))
 end if
 return state
 end function

Vincent Manuceau / IJETT, 69(2), 39-41, 2021

41

IV. RESULTS AND FURTHER DISCUSSION

This hash function has been implemented in OCaml,

and preliminary tests were run in terms of randomness,

avalanche effect, and throughput:
The average Hamming distance between a random 256

bits input and its corresponding hash is above 128. On a

sample of two randomly sized inputs, differing by only

one bit, the average Hamming distance between their

corresponding hashes is above 90, which is a nice

avalanche effect, but it does not meet the Strict Avalanche

Criterion of Webster and Tavares [8], i.e., an average
Hamming distance of 128, further work will be done to

get closer and match this criterion.
Although the Ocaml implementation was made for a

single thread, the proposed hash function performs with

an average hash rate of 5.3 kHash/sec/GHz (18 kHash/sec

in average measured on an Intel core i3-1005G1 CPU,

single-core, single thread). Further work will also be done

to implement a multi-threaded CPU version, a massively

parallel CUDA version, and a distributed version using

the IPFS Publish-Subscribe system.
For each cell, only 8 neighbors were taken into account

to match Conway's game of life rules and to keep it fast

and simple; in fact, it is possible to exploit Moore's far

neighborhood principle up to

4× (N− 1− (N+ 1)mod2)
cells on a N x N circular

grid, which makes up to 56 far neighbors of a cell in a 16
x 16 circular grid.

The number of rounds of our CA was arbitrarily set to

7 for speed considerations, and further analysis will also

be done to determine the best-suited number of rounds on

single-threaded, upcoming parallel, and distributed

versions. Concerning this hash function, the impact of

various compression methods to process the input

message will also be analyzed.

V. CONCLUSION

In this paper, a simple and fast cryptographic hash

function using a specific cellular automaton exploiting the

notion of Moore's far neighborhood was proposed and

described. A definition was made for Moore's far

neighborhood of a cell in a circular 2D grid as the set of
cells belonging to the edges of the greatest fitting square

centered on this cell. The obtained algorithm is elegant

and lightweight with a nice avalanche effect, although not

sufficient yet to meet the Strict Avalanche Criterion [8].
The fact of using far neighbours instead of close ones

for the cellular automaton provides very interesting

behavior and patterns of global structures moving through

space and time that will be thoroughly described in further

works.
A multi-threaded, massively parallel CUDA and an

IPFS distributed version of this algorithm will also be

further implemented.
The impact of adding more neighbors, rules, transition

rounds, and different compression methods to this

algorithm will also be investigated in terms of security

analysis and performance.

ACKNOWLEDGMENT

This paper is dedicated to Jerome Manuceau, Eric

Bernard, Spiros Manuceau, and Giovanni Bouder. I would

like to thank my close family, Nadine, Julien, Helene,

Ianis, and Olivier, for all their help and encouragement

during this research, whom without this would not have

been possible. I also appreciated all the support I received
from the rest of my family and friends, with special

thanks to my friends Elkana Lesmond and Michel

Pedurand. Lastly, I would like to thank the French

Government for their social grants that allowed me to

conduct this self-funded and independent research.

REFERENCES

[1] J. Andress, The Basics of Information Security: Understanding

the Fundamentals of InfoSec in Theory and Practice, 2nd ed.,

Syngress Publishing, (2014) ISBN 9780128008126.

[2] H. F. Atlamab and G. B. Willsa, Role of Blockchain Technology

in IoT Applications. Advances in Computers, 115(2019) 1-39

Elsevier, doi : https://doi.org/10.1016/bs.adcom.2018.10.006.

[3] P.-E. Black, Manhattan distance in Dictionary of Algorithms and

Data Structures, NIST, (2019), [Online], Available:

https://www.nist.gov/dads/HTML/manhattanDistance.html.

[4] D. E. Knuth, The Art of Computer Programming: 3: Sorting and

Searching, 115, Pearson Education, 527(1998) ISBN

9780321635785.

[5] J.-P. Rennard, Vie artificielle: Ou la biologie rencontre

l'informatique, 1st ed., Paris, France: Vuibert Informatique,

(2002) 63-82, ISBN 9782711786947.

[6] J. L. Schiff, Cellular Automata: A Discrete View of the World,

Wiley, (2011) 70-80, ISBN 9781118030639.

[7] T. Toffoli and N. Margolus, Cellular Automata Machines: A New

Environment for Modeling, Cambridge, MA, USA: MIT Press,

(1987), ch. 7, ISBN 0262200600.

[8] A. F. Webster and S. E. Tavares, On the Design of S-Boxes,

Lecture Notes in Computer Sciences; 218 on Advances in

Cryptology, Santa Barbara, California, USA: Springer-Verlag,

(1986) 523–534, ISBN 0387164634.

[9] S. Wolfram, A New Kind of Science, Wolfram Media, (2002)

231-249, ISBN 9781579550080.

[10] N Bhushana Babu D, E V Krishna Rao, K.S.N.Murthy Inter-

Gateway Handoff Management Using Ant Colony Optimization

(ACO) for Wireless Mesh Networks, International Journal of

Engineering Trends and Technology 68(11) (2020) 63-71.

