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The European Union (EU) 2030 climate & energy framework set three main targets to fight against global warming: 40% cuts in greenhouse gas emissions (from 1990 levels), 31% share for renewable energy, and 32.5% improvement in energy efficiency. In addition, residential and non-residential buildings account for about 40% of total energy consumption in the EU [START_REF] Gynther | Energy efficiency trends and policies in the household and tertiary sectors. An analysis based on the ODYSSEE and MURE databases[END_REF]. The building sector has therefore a major role to play to reach these goals and minimize our environmental footprint.

Many research projects focus on the minimization of building energy consumption. It was shown that one of the most effective solutions, both for construction and renovation, are to increase the thermal insulation of the envelope. In this context, it is important to assess the thermal performance of buildings. The estimation of these performances is usually based on theoretical calculations and sometimes on numerical simulations. When in situ measurements are undertaken, the results often show some discrepancies with predictions. This is the so-called "performance gap" (see [START_REF] Stafford | Building Confidence -A working paper[END_REF], [START_REF] Johnston | Quantifying the domestic building fabric 'performance gap[END_REF] and references therein). The mismatch between theory and practice may have various origins such as material properties difference, aging, thermal bridging, moisture and quality of construction. In order to correctly address issues related to the "performance gap", knowledge of the overall building energy losses is not enough. Rather, the local thermal performance of each building element (wall, roof, windows, ...) is required.

An accurate energy audit of a building therefore needs an estimation of the walls thermal transmittance U or thermal resistance R. Existing standardized methods are based on steady-state assumptions. They usually require very long measurements and are highly sensitive to outdoor conditions. Several dynamic and active methods were also developed in academia. They are usually robust to outdoor conditions. However, these methods also present some limitations which should be addressed for a wider uptake of in situ measurements by the construction industry. The duration required to perform in situ measurement is often recognized as the main challenge.

In this context, this study proposes an active methodology. It mainly consists in heating the indoor air and using inverse methods to estimate the wall thermal resistance from heat flux and temperature measurements. Unlike active temperature-temperature common approaches, this heat fluxtemperature alternative enables to bypass the surface heat transfer coefficient and therefore to reduce a major source of uncertainty (problem of parameter identifiability, see [START_REF] Larbi Youcef | Quantitative diagnosis of insulated building walls of restored old constructions using active infrared thermography[END_REF] for instance). In addition, only a few hours of measurements (typically 6 to 8) are required. Two types of approaches are proposed for the inverse procedure. First, non-linear "whitebox" models are used. They are derived from the heat equation and model the different layers of the wall. The models of the second type are linear "black-box" models from the ARX framework. The methods are validated on a full-scale wall built inside a climate chamber. The layout of this wall is commonly found in the French building stock: it is a load bearing wall with an internal insulation system. Section 2 of this paper presents a state of the art of in situ measurements methods for the assessment of building wall thermal resistance (or transmittance). Section 3 presents the wall studied in the present work, its steady-state characteri-zation and the equipment used. Section 4 details the inverse methods and the two types of models implemented: "white" and "black" box. Results on an example are detailed to illustrate the methods. Finally, the latter are tested on various conditions in section 5 to assess their robustness.

State of the art

Several reviews of in situ measurement methods of U -value were recently published (e.g., see Bienvenido-Huertas et al. [START_REF] Bienvenido-Huertas | Review of in situ methods for assessing the thermal transmittance of walls[END_REF], Soares et al. [START_REF] Soares | Laboratory and in-situ nondestructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: A review[END_REF] and Teni et al. [START_REF] Teni | Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance[END_REF]).

The techniques may be classified in three categories: steadystate, dynamic and active methods. In the two last categories, the dynamic behavior of the wall is analyzed, the difference is that active methods rely on an artificial thermal load.

Steady-state methods are more commonly used because they are rather simple to implement and to analyze. In the literature, many authors refer to the two following standards: ISO 8990 [START_REF]Thermal insulation -Determination of steady-state thermal transmission properties -Calibrated and guarded hot box[END_REF] and ISO 9869-1 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF]. The former details the experimental protocol to use in order to measure the thermal resistance R of a wall in steady-state thanks to the use of a hot box test facility. However, the ISO 9869-1 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF] standard deals with in situ measurements. The method consists in implementing a heat flux meter (HFM) on the internal surface of a wall and to measure the internal and external temperatures. This is the most used method in the community. The wall Uvalue is calculated from time-averages of the measured quantities. Ficco et al. [START_REF] Ficco | U-value in situ measurement for energy diagnosis of existing buildings[END_REF] studied the experimental aspects of the application of this so-called "average method" (such as the effects of measurement conditions). This technique is based on stationary boundary conditions. Yet, proper steady-states are almost never encountered in situ so the average method relies on averaged data as an approximation for measurements under stationary conditions. A variation of this approach (also detailed in ISO 9869-1 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF]) adds a storage effect correction but in essence it remains a semi-stationary analysis method. Several papers highlighted the limitations of the ISO 9869-1 standard, see for instance Rasooli et al. [START_REF] Rasooli | A response factorbased method for the rapid in-situ determination of walls thermal resistance in existing buildings[END_REF], Evangelisti et al. [START_REF] Evangelisti | Influence of heating systems on thermal transmittance evaluations: Simulations, experimental measurements and data postprocessing[END_REF], Gaspar et al. [13] [14].

Infrared thermography (IRT) is also widely used for the assessment of building wall thermal transmittance in steadystate. Several reviews were written on the topic, such as Balaras et al. [START_REF] Balaras | Infrared thermography for building diagnostics[END_REF] and Kylili et al. [START_REF] Kylili | Infrared thermography (IRT) applications for building diagnostics: A review[END_REF]. The best conditions for the use of thermography are presented and discussed in Barreira et al. [START_REF] Barreira | Evaluation of building materials using infrared thermography[END_REF] and Lehmann et al. [START_REF] Lehmann | Effects of individual climatic parameters on the infrared thermography of buildings[END_REF]. Passive IRT is a commonly used tool for qualitative assessments of building envelopes (see ISO 13187 [START_REF]Thermal Performance of Buildings -Qualitative Detection of Thermal Irregularities in Building Envelopes -Infrared method (ISO 6781:1983 Modified)[END_REF]). It enables to detect irregularities and defaults on a building envelope (see for instance Ocaña et al. [START_REF] Ocaña | Thermographic survey of two rural buildings in Spain[END_REF], Garcez et al. [START_REF] Garcez | System of inspection, diagnosis and repair of external claddings of pitched roofs[END_REF], Menezes et al [START_REF] Menezes | In-situ assessment of physical performance and degradation analysis of rendering walls[END_REF] and Taylor et al. [START_REF] Taylor | Combining thermography and computer simulation to identify and assess insulation defects in the construction of building façades[END_REF]). Standard ISO 9869-2 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 2: Infrared method for frame structure dwelling. International Standards Organisation[END_REF] describes a methodology to estimate wall thermal transmittance from passive IRT and other sensors. The method is derived from Kato et al. [START_REF] Kato | Method of insitu measurement of thermal insulation performance of building elements using infrared camera[END_REF]. It uses specific sensors to measure the operative temperature on each side of the wall as well as the indoor total heat transfer coefficient. Many studies use a method based on the decomposition of the surface heat flux into its radiative and convective components in steady-state. Some focused on indoor measurements. Madding [START_REF] Madding | Finding R-values of stud frame constructed houses with IR thermography[END_REF] and Tejedor et al. [START_REF] Tejedor | Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades[END_REF] [28] estimated the convective heat transfer coefficient from empirical correlations while Fokaides et al. [START_REF] Fokaides | Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes[END_REF] used values from ISO 6946 [START_REF]Building components and building elements -Thermal resistance and thermal transmittance -Calculation methods[END_REF]. In addition, Daniel-ski et al. [START_REF] Danielski | Diagnosis of buildings thermal performance-a quantitative method using thermography under non-steady state heat flow[END_REF] used linear regression between measured heat flux and indoor/outdoor temperature differences to estimate the wall thermal transmittance. Other studies rather focused on outdoor measurements. Albatici et al. [START_REF] Albatici | Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site[END_REF] [33], Nardi et al. [START_REF] Nardi | Quantitative thermography for the estimation of the U-value: state of the art and a case study[END_REF] and Dall'O et al. [START_REF] Dall'o | Infrared screening of residential buildings for energy audit purposes: results of a field test[END_REF] used an empirical correlation based on the wind speed to estimate the heat transfer coefficient. Bienvenido et al. thoroughly studied the influence of the correlation chosen for the internal [START_REF] Bienvenido-Huertas | Influence of ICHTC correlations on the thermal characterization of façades using the quantitative internal infrared thermography method[END_REF] and external [START_REF] Bienvenido-Huertas | Comparison of quantitative IRT to estimate U-value using different approximations of ECHTC in multi-leaf walls[END_REF] coefficients on results of quantitative IRT methods. Finally, Ibos et al. [START_REF] Ibos | A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography[END_REF] implemented and compared three IRT methods to ISO 9869-1 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF] and pointed out the high dispersion results obtained. Nevertheless, for steady-state methods to be accurate, several recommendations have to be followed, which limits their applicability. For instance, the weather conditions have to remain constant during several consecutive days to ensure a quasi-steady-state regime and measurements have to last for at least several days, up to several months. Dynamic methods were developed to overcome the limitations of steady-state approaches. Basically, more advanced dynamic data analysis include the fluctuations in measured heat fluxes and temperatures instead of canceling them out. In essence, they are models constructed from measurement data (inverse modeling). Roulet et al. [START_REF] Roulet | In situ U-value measurement: reliable results in shorter time by dynamic interpretation of the measured data. Thermal Performance of the Exterior Envelopes of Buildings III[END_REF] proposed a linear model having a thermal conductivity and several time constants as unknowns. The system of equation is solved using ordinary least squares (OLS) based on measurements data. Anderlind [START_REF] Anderlind | Multiple regression analysis of in situ thermal measurements, Study of an attic insulated with 800 mm loose fill insulation[END_REF] [41] later proposed a simplification of this approach by expressing the heat flux as the sum of two terms: one for the steady-state behavior and the other for dynamic variations. Alternatively, many studies used stochastic gray-box models: Gutschker [START_REF] Gutschker | Parameter identification with the software package LORD[END_REF], Baker et al. [START_REF] Baker | PASLINK and dynamic outdoor testing of building components[END_REF], Jimenez et al. [START_REF] Jiménez | Application of different dynamic analysis approaches to the estimation of the building component U value[END_REF], Deconinck et al. [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF] [46], Naveros et al. [START_REF] Naveros | Setting up and validating a complex model for a simple homogeneous wall[END_REF] and Bacher et al. [START_REF] Bacher | Identifying suitable models for the heat dynamics of buildings[END_REF]. Theses models depend on parameters which have a physical meaning (usually thermal resistances and capacities: the so-called R-C models). Biddulph et al. [START_REF] Biddulph | Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements[END_REF] proposed a method using Bayesian inference to estimate the parameters and this method was improved by Gori et al. [50] [51]. De Simon et al. [START_REF] Simon | Quantifying uncertainty in thermophysical properties of walls by means of Bayesian inversion[END_REF] also applied Bayesian inference to quantify the estimation uncertainty of thermophysical properties of walls. Bienvenido et al. [START_REF] Bienvenido-Huertas | Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method[END_REF] developed a multilayer perceptron to estimate the U -value with the correction for storage effects. The authors then optimized the method [START_REF] Bienvenido-Huertas | Optimizing the evaluation of thermal transmittance with the thermometric method using multilayer perceptrons[END_REF] and compared it two other types of data processing tools [START_REF] Bienvenido-Huertas | Towards an in-situ evaluation methodology of thermal resistance of basement walls in buildings[END_REF].

Other studies use black-box ARX models ("Auto Regressive with eXogenous inputs"). ARX models (and similar models such as ARMA, ARMAX, ...) belong to the System Identification area. This framework is a well known domain that has its main application in automatic (for control purpose mainly) and in signal processing [START_REF] Ljung | System identification: theory for the user[END_REF]. They have the advantage of being rather simple to use. Jimenez et al. [START_REF] Jiménez | tification of the main thermal characteristics of building components using MATLAB[END_REF] was one of the first to use ARX models for the estimation of physical parameters. The authors present the relationship between R-C networks and parametric models. Naveros et al. [START_REF] Naveros | Physical parameters identification of walls using ARX models obtained by deduction[END_REF] further developed this idea. Several other references used ARX models and usually made a comparison with some of the above-mentioned methods: Lambie et al. [START_REF] Lambie | The thermal resistance of retrofitted building components based on in-situ measurements[END_REF] [44], Jimenez et al. [START_REF] Jimenez | Models for describing the thermal characteristics of building components[END_REF], Deconinck et al. [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF]. Madsen et al. [START_REF] Madsen | Thermal performance characterization using time series data-IEA EBC Annex 58 Guidelines[END_REF] provided guidelines for the thermal performance characterization using time series data in buildings. Jimenez et al. [START_REF] Jimenez | Models for describing the thermal characteristics of building components[END_REF] compare linear and non linear approaches. ARX models are also used for the in situ characterization of building global heat loss coefficient (HLC): [START_REF] Senave | Towards the characterization of the heat loss coefficient via on-board monitoring: Physical interpretation of ARX model coefficients[END_REF] [63] [START_REF] Lambie | The co-heating test as a means to evaluate the efficiency of thermal retrofit measures applied on residential buildings[END_REF].

However, these models require a significant amount of data to be accurate (several days to several weeks). By using an artificial thermal load, active methods are a good alternative. Not only are they faster than other methods, they are also less sensitive to weather conditions. Gagliano et al. [START_REF] Gagliano | Assessment of the dynamic thermal performance of massive buildings[END_REF] and Ricciu et al. [START_REF] Ricciu | Thermal properties of building walls: Indirect estimation using the inverse method with a harmonic approach[END_REF] estimated the dynamic thermal properties of walls using a harmonic thermal load, following recommendations from standard ISO 13786 [START_REF]Thermal performance of building components-Dynamic thermal characteristics-Calculation methods[END_REF]. The properties are estimated from an inverse technique based on the phase lag and amplitude ratio of temperature and heat flux either side of the wall. Lakatos et al. [START_REF] Lakatos | Comprehensive thermal transmittance investigations carried out on opaque aerogel insulation blanket[END_REF] applied the same method for the characterization of opaque aerogel insulation blankets. However, these harmonic approaches were used in climate chamber and are not very suitable for in situ measurements. Meulemans et al. [START_REF] Meulemans | QUB/e: A Novel Transient Experimental Method for in situ Measurements of the Thermal Performance of Building Fabrics[END_REF] [70] [START_REF] Sougkakis | An assessment of the qub method for predicting the whole building thermal performance under actual operating conditions[END_REF] present a method which consists in heating the interior of a building and fitting a simple two-parameters model to the data in order to estimate the thermal transmittance (or thermal resistance) of a building element. The main advantage of this technique is its rapidity (only a few hours are needed, typically one night). A few references use inverse techniques to estimate wall thermal resistance from active tests. Rasooli et al. [START_REF] Rasooli | A response factorbased method for the rapid in-situ determination of walls thermal resistance in existing buildings[END_REF] [72] present an active method based on a triangular thermal load of the internal surface. The wall thermal resistance as well as the outer layers thermal conductivity and volumetric heat capacity are determined from inverse modeling of the Response Factors. Rouchier [START_REF] Rouchier | Solving inverse problems in building physics: An overview of guidelines for a careful and optimal use of data[END_REF] proposes an overview of the main guidelines for a careful and optimal use of inverse techniques in buildings. The methods are illustrated on the example of a simple R-C gray-box model. Yang et al. [START_REF] Yang | Short time non-destructive evaluation of thermal performances of building walls by studying transient heat transfer[END_REF] used a heat flux-temperature deconvolution method to estimate a wall thermal resistance from reconstruction of the unit-step response. Other studies rather used "white-box" models. These approaches are inspired from the field of non-destructive testing (NDT) [START_REF] Maldague | Theory and practice of infrared technology for nondestructive testing[END_REF]. Larbi Youcef et al. [START_REF] Larbi Youcef | Quantitative diagnosis of insulated building walls of restored old constructions using active infrared thermography[END_REF] developed in laboratory a device to measure wall thermal resistances from active IRT. The authors use halogen spots on the internal side to ensure a uniform radiant heating inside the device. Chaffar et al. [START_REF] Chaffar | Thermal characterization of homogeneous walls using inverse method[END_REF] estimated the thermal properties of homogeneous walls by heating one face and recording the temperature of the other face using IRT. However, these later studies were limited by the high sensitivity to the heat exchange coefficient.

As a conclusion, several measurement methods for the assessment of a wall thermal resistance (or transmittance) were developed in the literature. Some of them (including the standardized techniques) are based on steady-state assumptions. They usually require very long measurements and are highly sensitive to outdoor conditions. Several dynamic and active methods were also developed but most of them still rely on long measurements. Finally, some active methods are based on temperature-temperature measurements, which makes them sensitive to the surface heat transfer coefficient. The proposed method aims at overcoming these limitations.

3 Experimental setup

Presentation

The measurements were performed on a real wall built inside a climate chamber at CEREMA in Nancy, France. The latter chamber used is 4 × 4 × 3 m 3 and contains two independent modules able to control the air temperature between -30 and 30°C. The wall was built between these two modules so that a different temperature can be set between each side of the wall. The wall is 3.2 m wide and 2 m high and a small door on the right hand side was installed. It is made of concrete building blocks (see Fig 1) and a standard internal insulation system (see Fig 2). This is a very common configuration encountered in French buildings.

Wall (building blocks) Door

Figure 1: Photography of the wall before installation of the insulation system.

The insulation system consists in 10 cm of glass wool, gypsum plates, and some metal rails to hold them. The layout of this three-layer wall is illustrated in Fig 3 . The metal rails are thermal bridges into the wall: the heat transfers are two or three dimensional in their vicinity. Yet, the gypsum plate in the middle is only attached by rails on its borders, so there is a large "sound area" (1.2 m free of thermal bridge) in the center of the wall. An infrared camera was used to check if heat transfers on this area are really 1D, that is to say if the surface temperature is uniform. 

Glass wool

Steady-state characterization

The thermal resistance of the wall was first determined according to ISO 9869-1 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF]. The values obtained are used as references for validation of the active methods. A 20 K temperature difference is imposed between the internal and external ambiances for several days (at least three) so that a steady-state is reached. The regulation system of the climate chamber avoids any significant air stratification. The wall thermal resistance is worked out from measurement of the surface heat flux ϕsi (with a HFM on the sound area of the internal surface) and the temperature difference ∆Tsie between the two faces of the wall:

R = ∆Tsie ϕsi (1)
Similarly, the thermal resistance of the insulation system (gypsum + glass wool) was determined from measurement of the temperature between the glass wool layer and the building blocks. The values obtained are summarized in Tab 1.

Table 1: Measured quantities and calculated thermal resistance (ISO 9869-1 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF]).

Whole wall

Insulation system (gypsum+glass wool) ∆T sie (K)

18.9 ± 0.1 16.9 ± 0.1

ϕ si W.m -2 5.35 ± 3% 5.35 ± 3% R m 2 .K.W -1
3.49 ± 0.11 3.15 ± 0.10

The uncertainties on R are propagated from measurement uncertainties on ∆T and ϕ [START_REF] Iso | Guide to the Expression of Uncertainty in Measurement[END_REF]:

uR = R × u∆T ∆T 2 + uϕ ϕ 2 (2) 
According to the manufacturer, the glass wool has a thermal resistance of 3.12 m 2 .K 1 .W -1 (for a 100 mm thickness). This value is in good agreement with the measured thermal resistance of the insulation system (which is slightly above because it includes the gypsum layer).

Dynamic (active) methodologies

This section presents the two active methods developed. There are based on the same measurement data. The algorithms used were implemented in Matlab.

Experimental protocol

Presentation

To perform active measurements, one needs to apply an artificial thermal load to the building. In the present study, it was chosen to use two 500 W electric fan heaters to heat up the internal air. This thermal load (which is similar to the one used in the QUB/e method [START_REF] Meulemans | QUB/e: A Novel Transient Experimental Method for in situ Measurements of the Thermal Performance of Building Fabrics[END_REF]) has the advantage of being easy to implement in situ. In addition, it provides a rather uniform heating of the wall (not perfect because of air stratification). In contrast, the use of a radiant heating source would only heat up a limited area of the wall. The air temperatures measured during a typical active test are plotted in Fig 4 . The initial internal and external temperatures were set at 15 and 5°C respectively for two days so that a steady-state was achieved. When the heaters are turned on, the regulation system on the same side of the wall is simultaneously turned off. After 8 hours of constant heating, the internal air temperature rises by 15°C up to 30°C. The temperature oscillations observed in Indoor surface quantities Tsi and ϕsi will be fed to the models in order to work out the wall thermal resistance. Instead of ϕsi, the indoor room temperature Ti could have been chosen. Heat flux ϕsi was preferred for several reasons. First, a model built with Tsi and Ti would have to include an additional parameter: the total heat transfer coefficient h. This quantity accounts for both radiative and convective heat transfers. The inverse problem (see section 4.2) would be more ill-posed because this additional parameter would have a very high sensitivity whereas its value is of no interest in our study. Second, temperature Ti is very complex to measure as it is the so called "operative temperature". Similarly to the h coefficient, it combines radiative and convective surface heat transfers. In the building sector, the operative temperature is usually supposed equal to the air temperature. This assumption is relevant in quasi-steady state, when the indoor environment is close to thermal equilibrium. However, it is no longer valid here in active tests. Because the internal air is rapidly heated, its temperature becomes very different from the mean radiant temperature. Consequently, using ϕsi and Tsi as inputs of the inverse model allow overcoming these difficulties.

Measurement campaign

To assess the repeatability and robustness of the method, several configurations were tested during the experimental campaign. There are summarized in Tab 2. During the whole campaign, the internal air temperature Tair,i remains equal to 15°C (except of course during the active tests). The differences come from the external air temperature Tair,e. In configurations 1 and 2, the external air temperature Tair,e is constant and equal to 5 and 15°C respectively. In these configurations, the wall is at thermal equilibrium before the test. The data plotted in figures 4 and 5 were measured in configuration 1.

In the other configurations, Tair,e is no longer constant: it has a sinusoïdal evolution which simulates day/ night cycles. The mean value of these oscillations is 5°C except for configuration 6 (15°C). Three amplitudes were tested: 5, 10 and 15 K (peak-to-peak amplitudes) for configurations 3, 4 and 5-6 respectively. Even though the oscillations simulate day/night cycles, their period was set to 32 h instead of 24 h. This setting has a practical motivation: it enables to perform an active test every day at the same hour with different Tair,e. This is illustrated in Fig 6 where the temperatures are plotted for several consecutive days (Tin is the temperature of the interface between the glass wool and the concrete blocks). This simulates in situ experiments undertaken at different moments of the day. Given that low frequencies thermal waves penetrate deeper a wall than high frequencies ones, the chosen period of 32 h is a conservative choice.

Estimation approach 1: white-box models

This method consists in using an inverse technique with a "white-box" model to estimate the thermal properties of the 

Active tests

Presentation of inverse technique used

This is a non-linear parameter estimation problem [79] [80].

First, a direct model has to be defined. In this study, the surface heat flux ϕsi was chosen to be the output of the model whereas measured temperatures are inputs. The other way around could have been used but, as detailed below, only the noise on the output is taken into account in the analysis while the noise on the inputs has to be neglected. Given that measurement noise is much more significant on ϕsi than Tsi (see Fig 5), the former was chosen as output. We define a model ϕmo which depends on some parameters gathered in the vector β. It is supposed unbiased and corrupted by a Gaussian noise ε of zero mean and of standard deviation σϕ:

ϕ = ϕ mo (β) + ε (3) 
with ϕ the measurements. For the sake of clarity, the dependency to the inputs (such as Tsi) is omitted in the notations. The objective of the inversion procedure is to find the optimum parameter vector β that minimizes the difference between the model and the measurements. This difference is quantified by the quadratic cost function J:

J (β) = N i=1 (ϕ (ti) -ϕmo (β, ti)) 2 (4)
with N the number of measurement points and t the time. Because the model is non-linear in its parameter, the optimum vector β is determined by an iterative procedure (see section 4.2.5). Inverse problems are ill-posed in the Hadamard sense [START_REF] Hadamard | Lectures on Cauchy's Problem in Linear Partial Differential Equations[END_REF], parameters estimation by inverse methods are thus not straightforward to use. One must therefore be careful in the choice of the direct problem: its complexity has to be adapted to the problem. Indeed, a model with too few parameters will not be able to capture the physical phenomenon encountered while a model with too many parameters will be ill-posed and will not be identifiable. The model needs to have about as many parameters as degrees of freedom of the problem. Several tools are useful to determine the number of degrees of freedom, that will be presented in the next paragraphs.

Direct model definition and reduction

The direct model is built using the thermal quadrupole formalism [START_REF] Maillet | Thermal quadrupoles: solving the heat equation through integral transforms[END_REF]. This approach uses the Laplace transform of the heat equation. The thermal quadrupoles are very convenient to model one-dimensional multi-layer problems, like the current one. In the Laplace domain, the relationships between the surface temperature and heat flux on each side of the wall are simply given by a 2-by-2 matrix multiplication:

Tsi ϕsi = M × Tse ϕse (5) 
where the coefficients of matrix M contain the intrinsic thermal properties of the wall. In the case of a single homogeneous layer k, its matrix is given by:

M k = cosh R k b k √ p sinh R k b k √ p / b k √ p sinh R k b k √ p × b k √ p cosh R k b k √ p (6 
) with R k and b k the thermal resistance and effusivity of the layer. The couple (R, b) was chosen to parameterize the quadrupole matrix because R is the parameter we want to estimate here and b has the advantage of being independent on the layer thickness. Basically, any couple of quantities among R, b, C, and τ could have been equally selected (C is the layer thermal capacity and τ its thermal characteristic time). This choice has no impact on the well-posedness of the problem: R will be estimated with the same uncertainty regardless of the other parameter chosen.

In the case of a multi-layer wall, matrix M is simply given by multiplication of each layer matrix. For a three-layer wall, matrix M is given by:

M = M1M2M3 (7) 
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In the present study, indices 1, 2 and 3 refer to the gypsum, glass wool and building blocks layers respectively. The contact resistance between each layer has been ignored hereby because they are much smaller than the resistance of building materials. We introduce the following notation:

M = A B C D (8) 
Thus, Eq 5 may be re-written as:

ϕsi = D B Tsi + 1 B Tse (9) 
This means that if the thermal properties of the wall are known, ϕsi can be derived from Tsi and Tse. The De Hoog algorithm [START_REF] De Hoog | An improved method for numerical inversion of Laplace transforms[END_REF] is finally used to numerically work out the inverse Laplace transform and generate data in the time domain.

From Eq 9, for different models (named A, B, C and D) were derived. These are presented below and summarized in Tab 3.

Model A

This model uses a simplified version of Eq 9. It has been observed that during the duration of an active experiment (typically maximum 8 h), the temperature Tin of the interface between the glass wool and the concrete blocks barely increases (see Fig 5). Indeed, not only are the blocks located behind an insulating material (the thermal wave needs time to reach them), they have also a very high thermal inertia. Thus, model A excludes the third layer and replaces it by the boundary condition Tin=constant. Since initial values are removed, this is equivalent to Tin = 0. This model only takes into account the first two layers (gypsum and glass wool) hence the "1-2" subscripts in Tab 3. This simplified model has four unknown parameters (two per modeled layer) and is useful to estimate the thermal resistance of the insulation system. The concrete blocks have a little contribution to the overall thermal resistance anyway.

Model B

Similarly to model A, the concrete blocks layer is excluded from model B and the same four unknown parameters remain. However, temperature Tin is not supposed null but is measured. Model B therefore has two inputs: Tsi and Tin. This configuration is not applicable in situ since no thermocouple can be installed inside the wall. Nevertheless, it is useful to gain valuable insight on the experiment. In addition, in the case of a light wall (without high inertia materials), this two layers model could be applied by replacing Tin by Tse.

Model C

This model is more complete than the previous ones as it includes all three layers (see the "1-3" subscripts in Tab 3). Thus, model C has six parameters. The rear surface temperature Tse is measured and is an input of the model. However, the parameters of the third layer (R3 and b3) cannot be estimated with the other ones because of strong correlations (see section 4.2.4): they are supposed to be known. In practice, one could use standard values for this type of material. For more accuracy, it is proposed here to estimate them by using model D.

Model D

This model differs from the others as it is not meant to estimate the thermal resistance of the insulation system. It was built to provide values of R3 and b3 to feed model C and only models the building blocks ("3" subscript). It takes as output the surface heat flux ϕse measured with a HFM on the external side of the wall. The input is the external surface temperature Tse. As boundary condition, the heat flux between layers 2 and 3 is supposed null. This simplifying assumption is deemed reasonable given the presence of thermal insulation. This model is not applicable if the external temperature is constant. It can therefore only be used in configurations 3 to 6.

Implementation of model inputs

The direct models depend on the parameter vector β but also on one or two inputs (see equations in Tab 3). These inputs are temperatures: Tsi, Tin or Tse. The thermal quadrupole formalism requires to have an analytical expression of the Laplace transform of these temperatures (see Eq 9). In Non Destructive Testing [START_REF] Maldague | Theory and practice of infrared technology for nondestructive testing[END_REF], thermal loads are usually a pulse or a step, so that the Laplace transform of the input is simple and only depends on one constant. Here, the evolution of the inputs is more complex. Therefore, the chosen approach is to fit a function of known Laplace transform on the input curves. This function does not need to have any physical meaning, but is must be as close as possible to the measured data. Several functions were tested and it was found that a polynomial fitted well Tin or Tse whereas a polynomial in 1/j gave better results on Tsi:

Tsi (α, t) = m j=1 αjt 1/j (10)
with α the vector of parameters that is adjusted during the fitting process. The later is made with the Levenberg-Marquardt algorithm (see paragraph 4.2.5). The Laplace transform of the previous function is given by:

Tsi (α, p) = m j=1 αj Γ 1 j + 1 p 1 j +1 (11) 
with Γ the gamma function. Figure 7 shows the fit on the example of Tsi with m = 7 . It may be seen that the chosen function fits well the measurement data. The degree m of the polynomial was set high enough to make the residuals (difference between measurements and model) as low as possible. A high degree do not affect the well-posedness of the problem, it only lightly slows down the calculations (which is not an issue given that the estimation is almost instantaneous).

The components of vector α are set before estimation of the thermal resistance so they are not included in the vector of unknown parameters β. In addition, it is important to point out that this fit removes the measurement noise on the inputs of models A, B, C and D (see Tab 3). Therefore, this noise will be supposed null in the evaluation of the estimation uncertainties of the wall thermal resistance: only the noise on the output ϕsi is taken into account (see next paragraph). Yet, given that the signal to noise ratio is a great deal higher on the temperatures than on the heat flux, this hypothesis 

𝑇 𝑠𝑖 𝑇 𝑖𝑛 = 𝑐𝑠𝑡 𝜑 𝑠𝑖 A ϕ si = D1-2 B1-2 T si β = [R 1 b 1 R 2 b 2 ] 1 𝑇 𝑠𝑖 𝜑 𝑠𝑖 𝑇 𝑖𝑛 2 B ϕ si = D1-2 B1-2 T si + 1 B1-2 T in β = [R 1 b 1 R 2 b 2 ] 1 𝑇 𝑠𝑖 𝜑 𝑠𝑖 𝑇 𝑠𝑒 2 3 C ϕ si = D1-3 B1-3 T si + 1 B1-3 T se β = [R 1 b 1 R 2 b 2 R 3 b 3 ]
(R 3 and b 3 are supposed to be known)

𝜑 𝑠𝑒 𝑇 𝑠𝑒 3 𝜑 𝑖𝑛 = 0 D ϕ se = C3 A3 T se β = [R 3 b 3 ]
has a limited impact on the uncertainty calculation. This justifies the choice of ϕsi as output. 

Sensitivity analysis and estimation uncertainties

Inverse problems are usually ill-posed. The sensitivity analysis is required to determine the model number of degrees of freedom and to assess the identifiability of the parameters.

For the sake of conciseness, only the sensitivity analysis of model A is detailed here. We define the reduced sensitivity coefficients to each parameter βj:

X * (βj) = βj ∂ϕ mo ∂βj (12) 
These coefficients are all expressed in the unit of the out-put which makes them comparable. In non-linear problems such as this one, sensitivities are defined locally (they depend on β). Figure 8 plots the evolution of these sensitivities with β = β the optimum vector after parameter estimation (see section 4.2.5).

Figure 8: Reduced sensitivities of model A (configuration 1).

First, it may be noted that the sensitivities to the parameters of the first layer, R1 and b1 have a larger amplitude than those of the second layer (R2 and b2). This is because the model is more sensitive to parameters of the closest layer to the measurement location of ϕsi. The curves of X * (R1) and X * (b1) also have a similar shape: R1 and b1 are correlated. It might be complex to estimate them both accurately: many different combinations of them might predict the same heat flux ϕmo. In addition, b2 has a low reduced sensitivity when compared to the other ones so its estimation uncertainty will be greater. Finally, the sensitivity to R2 has a non negligible amplitude and a unique shape.

The sensitivity to R2 keeps increasing with time (in absolute values). This suggests that there is a minimum experiment duration for the estimation of R2 to be accurate. In addition, because the sensitivity to R2 is small at the beginning of the experiment, the first instants are not taken into account in the estimation procedure.

The uncertainty over the estimated parameters are derived from the variance-covariance matrix:

cov ≈      var βi cov βi, βj • • • cov βi, βj var βj • • • . . . . . . . . .      (13) 
with cov = σ 2 ϕ X T X -1 (14) 
Thus, the variances over the estimated parameters are directly proportional to the variance σ 2 ϕ of the heat flux measurement noise. If the measurement uncertainty includes a constant component (bias), this one is removed when the initial conditions are subtracted. This is one of the advantages of the active approach: only variations in temperatures and heat fluxes are analyzed.

We define the hybrid matrix Vcor:

Vcor ≈        var βi / βi ρij • • • ρij var βj / βj • • • . . . . . . . . .        (15) 
where the off-diagonal terms are the correlation parameters. They range between -1 and 1 and quantify the correlations between pairs of parameters: the closer ρij is to -1 or 1, the more parameters βi and βj are correlated. The diagonal terms of the Vcor matrix are the relative uncertainty of estimation of the parameters. The matrix is symmetric. 

where the noise level taken was representative of an experiment: σϕ = 0.4 W.m -2 . In addition, reference values for the parameter were taken. They are given in Tab 4.

The comments previously made on Fig 8 are confirmed by this matrix. Indeed, the correlation coefficient between R1 and b1 is close to 1 (-0.98) which proves that these two parameters are correlated. Also, parameter b2 is estimated with a relative uncertainty of 10% whereas it is not very much correlated to any other parameter. This is due to its low sensitivity. The estimation of R2 is rather accurate given that its relative uncertainty is only 2%.

Parameter estimation

The optimum parameter vector β that minimizes the distance between the model and the measurements is estimated using the Levenberg-Marquardt algorithm described in [START_REF] Levenberg | A method for the solution of certain nonlinear problems in least squares[END_REF], [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] and [START_REF] Moré | The Levenberg-Marquardt algorithm: implementation and theory[END_REF]. This algorithm is commonly used in parameter estimation problems because of its robustness. Figure 9 plots the measurement data ϕsi alongside the reconstructed model after estimation of the optimum parameters. The latter are given in Tab 4. The residuals are unsigned (flat) and of rather small magnitude, which is a prerequisite for the parameter estimation to be accurate. 

β unit estimation reference R 1 m 2 .K.W -1 0.05 ± 0.01 0.06 b 1 J.K -1 .m -2 .s -1/2 421 ± 24 420 R 2 m 2 .K.W -1 3.04 ± 0.05 3.12 b 2 J.K -1 .m -2 .s -1/2
35.9 ± 3.5 2

The reference values given in Tab 4 have different origins: measurements in laboratory with the Hot Disk method [START_REF] Gustafsson | Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials[END_REF] (for R1 and b1), manufacturer data (for R2) and standard value from the literature [START_REF] Jones | On the thermal diffusivity of insulating glass wool[END_REF] (b2 = 21 J.K -1 .m -2 .s -1/2 , calculated from thermal conductivity and diffusivity).

Thus, the proposed inverse method successfully estimated the thermal properties of the insulation system, especially R1, b1 and R2. Thermal resistance R2 is only about 5% away from its reference value. The estimated parameter b2 is further from its reference value but the latter is not very much reliable because it is a standard value from the literature.

Robustness of the method

On the one hand, since the minimization procedure is iterative, the initial parameter vector chosen might have an impact on the estimated values if local minima of the cost function exist. It was checked here that changing the initial conditions do not affect the estimation.

On the other hand, the duration of the active tests was set to about 8 h. This choice is justified because a longer experiment would not improve the estimation of the thermal resistance. Indeed, Fig 10 plots R1 + R2 and its uncertainty for several durations of the same experiment. Only the upper limit of the time horizon is modified: the lower one is kept constant equal to 10 min. Indeed, the first points were to be removed because HFM measurements are not accurate at the beginning of the experiment (the heat flux increase is too fast). It was noted that increasing further the lower bound of the time horizon has a little impact on the results.

It may be observed on Fig 10 that after about 6 h, the estimation of the thermal resistance is no longer affected by the duration of the experiment. Also, the uncertainty on the resistance decreases during the first six hours and then stabilizes. Thus, for this wall, longer experiments are not required.

Figure 10: Impact of experiment duration (upper limit of time horizon) on thermal resistance estimation with the "white-box" approach.

Estimation approach 2: black-box models

Introduction to ARX models

ARX models belong to the system identification framework [START_REF] Ljung | System identification: theory for the user[END_REF]. They consist in identifying the parameters involved in a linear relation between input(s) and output(s), from measurements of these quantities. Similarly to the "white-box" method, we take heat flux ϕsi as input and temperatures (Tsi, Tin or Tse) as outputs. For any point of the time series, the last few measurements points of the output are linked to the few last points of the inputs. The problem is written as:

A (q) ϕsi = B (q) Tsi + C (q) Tse ( 17 
)
where q is the delay (or back-shift) operator defined such that q -1 y (k) = y (k -1) with y either an input or an output time series. A, B and C are polynomials in q. Their orders are na, n b -1 and nc -1 respectively:

A (q) = 1 + a1q -1 + ... + an a q -na (18) 
B (q) = b0 + b1q -1 + ... + bn b -1q -n b +1 (19) 
C (q) = c0 + c1q -1 + ... + cn c -1q -nc+1
(20) Equation 17 is analogous to Eq 9 but parameters ai, bi and ci have no physical meaning ("Black-box" model). Equations 18 to 20 define an ARMA model (Auto-Regressive with Moving Average). The ARX formulation is similar except that polynomials B and C are multiplied by a time shift operator q -n k where the number n k is the number of input samples that occur before the input affects the output (also called the "dead time" in the system). For the sake of clarity, we take n k = 0 in the following equations.

By analogy to "white-box" models A, B and C presented in Tab 3, we define three ARX models: A', B', and C'. They use the same data as their "white-box" counterparts. They are presented in Tab 5.

Presentation

For the sake of clarity, the methodology is detailed on the case of model A'. It only has one input (Tsi): it is a "Single Input, Single Output" (SISO) case:

A (q) ϕsi = B (q) Tsi (21) 
For any instant k, an estimator of the output ϕ (k) is given by:

ϕ (k) = - na j=1 ajϕsi (k -j) + n b -1 j=0 bjTsi (k -j) ( 22 
)
The problem is linear and may be written in matrix form:

ϕ mo (θ) = Hθ (23)
with θ the parameter vector:

θ = [a1, ..., an a , b0, ..., bn b -1] T ( 24 
)
Matrix H contains the measured inputs and output, as shown in Eq 25 (subscripts "si" were removed for clarity): 

H =             ϕ (n -1) ϕ (n -2) • • • ϕ (n -na) T (n) T (n -1) • • • T (n -n b + 1) ϕ (n) ϕ (n -1) . . . . . . T (n + 1) T (n) . . . . . . . . . . . . . . . ϕ (n -2) . . . . . . . . . T (n -1) ϕ (n + na -1) • • • ϕ (n) ϕ (n -1) T (n + n b + 1) • • • T (n + 1) T (n) . . . . . . . . . . . . . . . . . . . . . . . . ϕ (N -1) ϕ (N -2) • • • ϕ (N -na) T (N ) T (N -1) • • • T (N -n b + 1)             (25)
𝑇 𝑠𝑖 𝑇 𝑖𝑛 = 𝑐𝑠𝑡 𝜑 𝑠𝑖 A' A (q) ϕ si = B (q) T si θ = [a 1 , ..., a na , b 0 , ..., b n b -1 ] 1 𝑇 𝑠𝑖 𝜑 𝑠𝑖 𝑇 𝑖𝑛 2 B' A (q) ϕ si = B (q) T si + C (q) T in θ = [a 1 , ..., a na , b 0 , ..., b n b -1 , c 0 , ..., c nc-1 ] 1 𝑇 𝑠𝑖 𝜑 𝑠𝑖 𝑇 𝑠𝑒 2 3 C' A (q) ϕ si = B (q) T si + C (q) T se θ = [a 1 , ..., a na , b 0 , ..., b n b -1 , c 0 , ..., c nc-1 ]
Like in the previous method (see Eq 3), the output ϕsi is supposed corrupted with a white noise ε of standard deviation σϕ:

ϕ si = ϕ mo (θ) + ε = Hθ + ε (26) 
For matrix H to be full, the first n -1 of the N measurements points are removed:

ϕ si = [ϕsi (n) , ϕsi (n + 1) , ..., ϕsi (N )] T (27) 
with n = max (na + 1, n b ). The Ordinary Least Square (OLS) estimator θ of this linear over-determined problem is:

θ = H T H -1 H T ϕ si (28) 
We are not interested here in the values of each parameter contained in vector θ. However, the wall thermal resistance may be expressed explicitly in terms of these parameters. Eq 21 may be re-written into the form of a transfer function (here an admittance):

Y (q) = B (q) A (q) = n b -1 j=0 bjq -j na j=0 ajq -j (29) 
The thermal resistance is defined in steady-state. It is the inverse of value of the transfer function for a null frequency:

R = A (1) B (1) = 1 + na j=1 aj n b -1 j=0 bj (30) 

Uncertainties

Similarly to Eq 14, the uncertainties over the parameters are given by the variance-covariance matrix:

cov θ = σ 2 ϕ H T H -1 (31) 
These uncertainties are then propagated through Eq 30 to work out the uncertainty on R:

σ 2 R = X.cov θ .X T (32) 
with X the sensitivity matrix:

X = ∂R ∂a1 , . . . , ∂R ∂an a , ∂R ∂b0 , . . . , ∂R ∂bn b -1 (33) 
The partial derivatives in the expression of X are then given by:

∀j ∈ 1; na , ∂R ∂a j = -A(1) B(1) 2 ∀j ∈ 0; n b -1 , ∂R ∂b j = 1 B(1) (34) 

MISO case

In the MISO case (Multiple Inputs, Single Output), such as with models B' and C', there is no explicit formulation of the wall thermal resistance from parameters aj, bj and cj. Instead, two thermal resistances (noted Ri and Re) may be derived from Eq 17:

Ri = A (1) B (1) (35) 
Re = A (1) C (1) (36) 
There is no relationship between these estimated resistances and the wall thermal resistances R1, R2 and R3.

In most studies dealing with this issue, these two estimations of R are combined into a single value by a Lagrange weighting [START_REF] Jiménez | tification of the main thermal characteristics of building components using MATLAB[END_REF] [59] [62] [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF]:

R = λ Ri + (1 -λ) Re (37) 
where the weighting factor λ was chosen to minimize the uncertainty on R:

λ = Var (Re) -Covar (Ri, Re) Var (Ri) + Var (Re) -Covar (Ri, Re) (38) 
This formulation has no physical meaning. This procedure was tested but it turned out that the estimated value was very far from the reference and the associated uncertainty was very large. In addition, the algorithm is not stable: slightly changing the time horizon significantly changes the result. It is thought that the MISO formulation needs more data to converge than the SISO one because it has more parameters to determine. Indeed, the previous studies which successfully use this kind of MISO ARX models are all based on much longer measurement campaigns. Jiménez et al. [START_REF] Jiménez | tification of the main thermal characteristics of building components using MATLAB[END_REF] and Senave et al. [START_REF] Senave | Towards the characterization of the heat loss coefficient via on-board monitoring: Physical interpretation of ARX model coefficients[END_REF] both used measurements recorded during 20 consecutive days to estimate a wall thermal resistance and a HLC respectively. Lambie and Saelens [START_REF] Lambie | The thermal resistance of retrofitted building components based on in-situ measurements[END_REF] performed two experimental campaigns of 15 and 35 days respectivley (HLC estimation). Deconinck and Roels [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF] used a dataset of 60 days and showed that a minimum of 20 days was required for their ARX method to give accurate results (thermal resistance estimation). In comparison to these durations, the present study deals with only 8 consecutive hours of measurement data which is almost two orders or magnitude shorter. From this perspective, implementing this model on more data (much longer experiments) might give better results but the present rapid method focuses on short measurements (i.e., less than 24 hours).

Choice of number of parameters

Number na, n b and n k (as well as nc if applicable) have to be defined. First, it was observed that increasing n k does not significantly change the estimated value whereas it increases notably its uncertainties. In addition, there is no physical justification here to support the existence of dead time between internal surface temperatures and heat fluxes. Therefore, n k was set to zero. Fig 11 plots the estimated resistance R as a function of na with n b = na for model A' and configuration 1. It may be observed than the fewer the parameters, the higher the bias on the estimated value and the higher the estimation uncertainty. To be more specific, above about na = n b = 10, the estimated resistance and its uncertainty are both independent on the number of parameters. Thus, given that the calculations are almost instantaneous (even for a high number of parameters), setting high values for na and n b is a relevant conservative choice. The na = n b condition was taken to simplify the analysis. It was observed that setting different values for na and n b does not reduce the minimum number of parameters required for the estimation to be accurate. Consequently, na = n b = 25 is set for the estimations. 

Impact of time horizon

Figure 12 plots the estimated thermal resistance for several durations of the active test: the time horizon upper bound is changed whereas its lower bound is kept constant (10 min). This analysis was performed on a longer test (about 12h).

Figure 12: Impact of experiment duration on thermal resistance estimation (ARX approach).

It is clear that the uncertainty increases if the experiment duration decreases below 5 h. However, unlike with the "white-box" model (Fig 10), the estimated resistance keeps increasing slightly with time above 5 h (although the slope flattens so much that R seems to converge after about 10h). This is because the thermal resistance R estimated by the ARX approach is supposed to be the total resistance of the wall (R1 + R2 + R3). In theory, R asymptotically reaches this overall resistance after a very long time. This was checked on synthetic data modeling a much longer active test. As mentioned above, a test duration of a few hours (even 12 h) is not enough to probe the bearing layer and to estimate its thermal resistance with an active methodology. Therefore, R corresponds here to the resistance of the insulation system.

Finally, it is interesting to point out that the ARX approach is more robust than the "white-box" approach for short experiments. Indeed, after only 2 h, it is able to estimate a thermal resistance rather close to the one of the insulation system, and with a decent uncertainty.

5 Test of the method on different configurations

Constant external conditions

This section presents the results obtained on experiments carried out when the external temperature is constant (configurations 1 and 2 in Tab 2). The thermal resistance of the insulation system (gypsum + glass wool) and the entire wall was determined using models A and A' respectively (see Tab 5).

The results of estimations are summarized in Tab 6. Steadystate value are obtained from ISO 9869-1, see section 3.3. The average and standard deviation of the estimated quantities are given. Several conclusions may be drawn from it. First, the "white-box" and "black-box" approaches give very similar results. The thermal resistance is slightly underestimated but the distance to the reference value of R1 +R2 is almost always below 5%. The "white-box" model seems to predict a slightly higher thermal resistance than the ARX model. Thus, both approaches estimates rather well the thermal resistance of the insulation system. It may be noted that the ARX approach was supposed to estimate the global thermal resistance of the wall: R1 + R2 + R3. This bias is also explained by the very high thermal inertia of the building blocks layer: the latter is not probed by the active experiment.

Also, configurations 1 and 2 lead to the same results whereas they have a different initial temperature gradient: 10 and 0 K respectively. This reflects the superimposition theorem: constant temperature gradients are canceled out when initial conditions are subtracted. This is one of the main advantages of these active methods: only temperature and heat flux relative variations are analyzed. This would allow performing measurements all year long (as long as the external temperature is close to be constant), rather that only in winter like with steady-state methods.

Finally, the methods are repeatable as the dispersion of the results for the eight experiments undertaken is rather small (around 5%). It is also of the same order of magnitude as the estimation uncertainty.

Consequently, in the favorable case when the external temperature is constant, there is no need here to use more complex models to estimate the performance of the thermal insulation. Only two measured quantities are required: the internal surface heat flux ϕsi and temperature Tsi. It is not possible to determine the thermal resistance of the concrete layer in this configuration. Indeed, as explained above, during the 8 hours of the experiment, the temperature of the concrete blocks barely increases so this layer cannot be probed. A very much longer experiment would be required which would not be representative of in situ active measurements. The authors do not see it as an issue. Indeed, the bearing layer only represents a small part of the overall thermal resistance (10% here). Besides, in the context of the energy audit of a new building, the main objective it to assess the performance of the insulating materials. Finally, the method could be applied before and after energy retrofitting work to quantify the increment in thermal resistance.

Varying external conditions

When the external temperature is not stable, the estimation of the thermal resistance is more complex. This section analyzes the impact of variations in the external temperature on estimation procedures. Here, the white-box approach was used. Indeed, the ARX MISO models was not able to accurately predict the thermal resistance. The result was significantly biased and the estimation uncertainty was very large, as detailed in section 4.3.4.

Table 7 summarizes the estimations of R1 + R2 in configurations 3 to 6 using models A, B and C.

First, it may be observed that in configuration 3, the estimations only have a small bias (maximum 15%). Consequently, for this type of wall, model A is suitable when the external temperature varies with an amplitude up to about 5 K.

Then, it appears that results from model A are significantly biased for some experiments but rather accurate for others. This entirely depends on the behavior of Tair,e before and during the experiment. In every configuration (except number 6), at least four active tests are performed following the pattern shown in Fig 6 . For the first test, Tair,e is around the maximum of its sinusoid. It increases during the second test, is around its minimum during the third one and decreases for the fourth test. These four regimes correspond to the four symbols ∩, , ∪ and used in Tab 7. For every configuration, model A always over-predicts the resistance when Tair,e is around its maximum, under-predicts it when Tair,e is around its minimum and paradoxically predicts it well when Tair,e varies significantly. These observations are explained by the evolution of the temperature Tin between the insulation system and the concrete blocks (see Fig 6). Indeed, material inertia induce a phase lag of about 6 h between Tair,e and Tin. Consequently, when Tair,e is rather stable around an extremum, Tin varies a lot, and vice versa. Thus, inaccurate estimations correspond to situations in which Tin varies significantly. Model A was indeed based on the assumption of a constant Tin. For in situ applications on this type of wall, it is therefore recommended to start the active test at sunset (when the temperature starts decreasing). This is in accordance with usual guidelines for in situ thermal diagnoses of buildings which recommend measurements to be performed by night. The estimation uncertainties are smaller that the spread (standard deviation) between measurements, which confirms that a single experiment might lead to an accurate estimation of the thermal resistance.

Models B was developed to overcome this limitation. Instead of considering Tin constant, this temperature is measured and taken as an input of the model. As shown in Tab 7, the thermal resistance is now well estimated for every experiments: results are within the 10% band (relative difference to the reference value) and even within the 5% band most of the time. Hence, model B is not limited by variations of the external temperature. However, it requires to implement a temperature sensor inside the wall, which is not possible in situ. For a lightweight wall without significant thermal mass, the external surface temperature could be used instead.

Model C is more applicable as it only relies on surface measurements. Nevertheless, it requires prior knowledge of Table 7: Estimations of thermal resistance for varying external temperature (cells are filled in gray when the estimated value is more than 10% away from the steady-state reference value). Depending on the experiment, T air,e is around a maximum: ∩, or increasing: , or around a minimum: ∪, or decreasing: 

Config Exp T air,e Model A Model B Model C (R 1 + R 2 ) (R 1 + R 2 ) (R 1 + R 2 ) Reference Steady - 3 

Conclusion

This paper proposes a rapid active method for the measurement of the thermal resistance of a building wall. It consists in heating the indoor air for a few hours and to apply inverse methods to measured surface heat flux and temperature. Two different types of models were implemented and compared: "white-box" models and ARX "black-box" models. The methodologies were tested on a full-scale load-bearing wall on which a conventional internal insulation system was fixed. This type of wall is representative of about three quarters of french buildings. The wall was built inside a climate chamber so that the environment could be controlled on both side. The active tests typically lasted 8 hours during which the indoor air temperature rose by about 15 K. When the external temperature was constant, both approaches were able to estimate the thermal resistance of the insulation system (90% of the overall thermal resistance). They are based on "simple" models (models A and A') that only need measurements of the internal surface heat flux and temperature within about 6 h. The methods showed a good repeatability (5%) and the relative difference to the reference value, obtained from ISO 9869-1 [START_REF]Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF], was below 5%. These models could not estimate the overall thermal resistance of the wall. However, this limitation is not deemed major because the insulation system represents most of the overall thermal resistance (90% here). In addition, in the case of a building retrofit, the application of the method before and after refurbishment could quantify the increase in thermal resistance because the heavy layer is unchanged.

The robustness of the method on this type of wall was assessed by undertaking experiment with unsteady external temperature. Estimations with simple models A and A' were still rather accurate if the amplitude of the external temperature variations was smaller than 5 K. Above this limit, the simple models (both "white" and "black" box) only delivered good results if the active test was performed at moments of the day when the temperature inside the wall was rather constant. Because of material thermal inertia, this corresponds to moment when the variation of the external temperature is maximum.

More complex "white-box" models (B and C) were developed to overcome the limitations due to a varying external temperature. They lead to accurate estimations of the wall thermal resistance (below 10% difference to the reference value) in every configuration tested. However, model B requires the measurement of the temperature inside the wall, which is hardly applicable in situ. It was presented here for a better understanding of the problem. Model C only relies on surface measurements but requires some a priori knowledge about the bearing layer thermal properties. Though, the later may be derived from external surface measurements with a distinct model (model D). It may be noted that for lightweight walls (low thermal inertia), this two step procedure might not be required. Similarly, more complex ARX models were also tested (several inputs). They were not able to correctly estimate the thermal resistance with the proposed active procedure when the external temperature was not constant. This is due to the short measurement duration: the previous studies which successfully used similar MISO ARX models are all based on much longer datasets (from 6 to 35 consecutive days of measurement).

As a conclusion, for the studied wall, "white-box" models delivered more accurate and robust estimates than the "black-box" (ARX) models tested, except for very short measurements (around 2 h) for which the ARX approach were more stable. The models implemented and their applicability are summarized in Tab 8. The complete methodology to estimate the wall thermal resistance with an inverse method using a "white-box" model is summarized in Fig 13.

Future work will consist in validating the methods on other types of walls and other types of insulation systems (e.g. external insulation). The conclusions drawn in this study are valid for a massive wall with an internal insulation. The authors do not anticipate any difficulty to apply the same methods to lightweight walls. The best "white-box" model to choose will depend on the wall considered and the weather conditions. In addition, Bayesian inference could be used to better quantify the uncertainty over the estimation of the thermal resistance, especially for models in which some parameters are supposed perfectly known. Finally, the authors are currently working on an extension of these methods to non-homogeneous walls using infrared thermography. Indeed, the current approach is a local estimate whereas future work could extend it to distribution of thermal resistance or thermal transmittance over a wall and to thermal bridges characterization. 

Figure 2 :

 2 Figure 2: Photography of the wall before installation of the last gypsum boards.

Figure 3 :

 3 Figure 3: Scheme of the wall layout.
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 2 Sensors and data acquisitionSeveral contact sensors were implemented inside the climate chamber: on the wall surface as well as inside it. They are illustrated in Fig 3. Heat flux meters from the Captec © manufacturer monitor the surface heat fluxes. They are 100 × 100 mm² large, have a 0.54 mm thickness and a sensitivity superior to 60 µV.(W.m -2 ) -1 given with a 3 % uncertainty. Temperatures are measured with type-T thermocouples. The air temperature is measured in the center of the room by thermocouples shielded from radiation with aluminum tape. A platinum sensor was used to calibrate the thermocouples over the range 0 • C -50 • C. It was used with an AOIP TM6612 temperature datalogger. The measurement uncertainty of this reference is 0.2 •C. An external calibration of these devices was performed in order to ensure the metrological traceability to the ITS-90[START_REF] Preston-Thomas | The international temperature scale of 1990 (ITS-90)[END_REF]. The HFMs were covered with adhesive tape that have similar optical properties as the wall surface: same emissivity (0.94 in the 2-20 µm band) and diffuse reflection1 . This enables the sensors to be as less intrusive as possible. Temperatures and heat fluxes are recorded every 3 s and averaged every 5 points. HFMs and TCs are plugged on National Instruments © NI9214 conditioning modules. These modules communicate with a PC computer via a 8-slot NI CompactDAQ USB chassis. The experimental setup is monitored by a LabView © application.

  Fig 4 are due to the climate chamber regulation systems.

Figure 4 :

 4 Figure 4: Internal and external air temperatures during an active test (the heaters are turned on at t = 0).

Figure 5

 5 Figure5plots the evolution of the wall surface temperature Tsi and heat flux ϕsi, measured on the sound area (away from the thermal bridges) during the same experiment. The temperature Tin of the interface between the glass wool and the concrete blocks is also plotted. The surface temperature increases up to 28°C whereas the heat flux rapidly reaches a maximum and then decreases. Temperature Tin remains almost constant during the experiment.

Figure 5 :

 5 Figure 5: Surface heat flux and temperature measured on the internal wall surface during an active test, as well as wall internal temperature.

Figure 6 :

 6 Figure 6: Example of internal and external temperatures for consecutive active tests (configuration 5).

Figure 7 :

 7 Figure 7: Polynomial fit on model input T si (with m = 7).

Figure 9 :

 9 Figure 9: Comparison between measurements and reconstructed model after parameter estimation.

Figure 11 :

 11 Figure 11: Impact of ARX model number of parameters on the estimated thermal resistance.

Table 8 : 6 ≈ 2 Figure 13 :

 86213 Figure13: Summary of thermal resistance estimation methodology with the "white-box" approach.

Table 2 :

 2 Summary of active tests configurations.

	Config T air,i (°C)	T air,e (°C)	number of tests
	1	15	5	5
	2	15	15	3
	3	15	5 + 2.5 cos (ωt)	4
	4	15	5 + 5.0 cos (ωt)	4
	5	15	5 + 7.5 cos (ωt)	8
	6	15	15 + 7.5 cos (ωt)	3

Table 3 :

 3 Summary of "white-box" direct models.

	Model	Illustration	Equation	Parameters
		1 2		

Table 4 :

 4 Estimated parameters β with reference values.

Table 5 :

 5 Summary of ARX models.

	Model	Illustration	Equation	Parameters
		1 2		

Table 6 :

 6 Estimations of thermal resistance for a constant external temperature with two approaches: model A = "white-box", model A' = "black-box". + R 2 ) (R 1 + R 2 + R 3 )

	Config (R 1 Reference Model A Exp Steady 3.15 ± 0.10 -state	Model A' 3.49 ± 0.11
		1	3.09 ± 0.04	3.01 ± 0.03
		2	3.05 ± 0.03	3.01 ± 0.02
	1	3	3.16 ± 0.03	3.07 ± 0.02
		4	3.14 ± 0.06	2.96 ± 0.03
		5	3.07 ± 0.02	3.01 ± 0.01
		6	3.06 ± 0.04	2.93 ± 0.02
	2	7	3.16 ± 0.02	3.10 ± 0.01
		8	3.09 ± 0.02	3.04 ± 0.02
	average		3.10	3.01
	standard deviation	0.04	0.06

  R3 and b3 are first estimated using model D. The later is fed with measurements of ϕse and Tse recorded during one oscillation period of the external air temperature. The estimated values are R3 = 0.28 m 2 .K.W -1 and b3 = 703 J.K -1 .m -2 .s -1/2 . These values are then used in model C to estimate the thermal properties of the insulation layer. The results, shown in Tab 7, are as good as with model B: the thermal resistance may be estimated regardless of the evolution of Tair,e. The estimated uncertainties are of the same magnitude as the spread between experiments. Finally, it may be noted that model C supposes R3 and b3 perfectly known, which means that their uncertainty do not contribute to the uncertainty of R1 + R2.

		-state		.15 ± 0.10 3.15 ± 0.10 3.15 ± 0.10
		1	∩	3.62 ± 0.07 3.01 ± 0.06 2.98 ± 0.06
	3	2 3	∪	3.20 ± 0.06 3.05 ± 0.07 3.02 ± 0.07 2.81 ± 0.06 2.99 ± 0.07 3.01 ± 0.07
		4		3.11 ± 0.05 3.02 ± 0.05 3.05 ± 0.05
		5	∩	4.19 ± 0.12 2.96 ± 0.07 2.90 ± 0.08
	4	6 7	∪	3.25 ± 0.07 3.05 ± 0.09 3.01 ± 0.83 2.64 ± 0.04 3.16 ± 0.05 3.20 ± 0.06
		8		3.01 ± 0.05 2.93 ± 0.04 2.95 ± 0.04
		9	∩	5.84 ± 0.33 3.42 ± 0.15 3.33 ± 0.15
		10	∩	6.09 ± 0.32 3.40 ± 0.13 3.36 ± 0.13
		11		3.20 ± 0.08 3.08 ± 0.10 3.06 ± 0.13
	5	12 13	∪	3.10 ± 0.07 2.96 ± 0.09 2.93 ± 0.13 2.23 ± 0.04 2.95 ± 0.06 2.99 ± 0.06
		14	∪	2.23 ± 0.04 2.95 ± 0.12 2.99 ± 0.05
		15		3.07 ± 0.06 3.07 ± 0.05 3.08 ± 0.05
		16		3.08 ± 0.06 3.00 ± 0.05 3.01 ± 0.05
		17	∩	5.15 ± 0.24 3.02 ± 0.08 2.96 ± 0.10
	6	18		3.40 ± 0.08 2.99 ± 0.12 2.97 ± 0.14
		19		2.92 ± 0.08 2.95 ± 0.05 2.94 ± 0.05
		average		3.48	3.05	3.04
	standard deviation		1.09	0.14	0.13
	the thermal properties of the bearing layer: R3 and b3. In-
	deed, the inverse problem is too ill-posed if all the parame-
	ters are estimated at once. A two step procedure is there-
	fore proposed:			
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