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Abstract

Classical in situ measurement methods of building wall thermal resistance are based on steady-state assump-
tions. This limits their applicability given their high sensitivity to outdoor conditions and the duration required
to obtain accurate results. To overcome these limitations, the present paper introduces an in situ method for the
assessment of building wall thermal resistance. It is based on rapid active measurements: indoor air is heated
for several hours. In addition, unlike common active methods based only on temperatures, the proposed method
is based on measurements of a heat flux and one or several temperatures. Two approaches are implemented and
compared to estimate wall thermal characteristics from measurements. In the first approach, inverse technique
are used based on “white-box” models derived from the heat equation. The best direct model to choose depends
on the type of wall tested and weather conditions. In the second approach, ARX “black-box” models are used.
The proposed methods were thoroughly tested on a full-size load-bearing wall equipped with a classical internal
insulation system commonly found in french buildings. The wall was built inside a climate chamber in order
to assess the robustness of the methods to various outdoor conditions. The results demonstrated that, for type
of wall, both approaches lead to accurate and repeatable results if the external temperature remains roughly
constant. With varying external conditions, white-box models remained accurate while ARX “black-box” models
did not.
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Nomenclature

Acronyms

ARMA Auto-Regressive with Moving Average

ARX
HFM
HLC
IRT
MISO
OLS
SISO

Auto-Regressive with eXogenous input
Heat Flux Meter

Heat Loss Coefficient

Infrared Thermography

Multiple Inputs, Single Output
Ordinary Least Squares

Single Input, Single Output

Greek Symbols

«@ polynomial coefficient

B parameter vector (white-box)
0 parameter vector (ARX)

r gamma function

A Lagrange weighting factor

w pulsation

€ noise

%) heat flux

Roman Symbols

b thermal effusivity JK™
h total heat transfer coefficient
k layer index

M thermal quadrupole matrix
N number of points

n polynomial order

P Laplace variable

R thermal resistance

T temperature

t time

u uncertainty

X reduced sensitivity coefficient
Superscripts

~ Laplace transform

A estimated value

Subscripts

e external

i internal

in internal interface

mo model

S surface

rad.s™!

W.m ™2

1.m72.871/2

Wm 2Kt

1 Introduction

The European Union (EU) 2030 climate & energy framework
set three main targets to fight against global warming: 40%
cuts in greenhouse gas emissions (from 1990 levels), 31% share
for renewable energy, and 32.5% improvement in energy effi-
ciency. In addition, residential and non-residential buildings
account for about 40% of total energy consumption in the
EU [1]. The building sector has therefore a major role to
play to reach these goals and minimize our environmental
footprint.

Many research projects focus on the minimization of build-
ing energy consumption. It was shown that one of the most
effective solutions, both for construction and renovation, are
to increase the thermal insulation of the envelope. In this
context, it is important to assess the thermal performance of
buildings. The estimation of these performances is usually
based on theoretical calculations and sometimes on numeri-
cal simulations. When in situ measurements are undertaken,
the results often show some discrepancies with predictions.
This is the so-called “performance gap” (see [2], [3] and ref-
erences therein). The mismatch between theory and practice
may have various origins such as material properties differ-
ence, aging, thermal bridging, moisture and quality of con-
struction. In order to correctly address issues related to the
“performance gap”, knowledge of the overall building energy
losses is not enough. Rather, the local thermal performance
of each building element (wall, roof, windows, ...) is required.

An accurate energy audit of a building therefore needs
an estimation of the walls thermal transmittance U or ther-
mal resistance R. Existing standardized methods are based
on steady-state assumptions. They usually require very long
measurements and are highly sensitive to outdoor conditions.
Several dynamic and active methods were also developed in
academia. They are usually robust to outdoor conditions.
However, these methods also present some limitations which
should be addressed for a wider uptake of in situ measure-
ments by the construction industry. The duration required to
perform in situ measurement is often recognized as the main
challenge.

In this context, this study proposes an active method-
ology. It mainly consists in heating the indoor air and us-
ing inverse methods to estimate the wall thermal resistance
from heat flux and temperature measurements. Unlike active
temperature-temperature common approaches, this heat flux-
temperature alternative enables to bypass the surface heat
transfer coefficient and therefore to reduce a major source of
uncertainty (problem of parameter identifiability, see [4] for
instance). In addition, only a few hours of measurements
(typically 6 to 8) are required. Two types of approaches are
proposed for the inverse procedure. First, non-linear “white-
box” models are used. They are derived from the heat equa-
tion and model the different layers of the wall. The models
of the second type are linear “black-box” models from the
ARX framework. The methods are validated on a full-scale
wall built inside a climate chamber. The layout of this wall
is commonly found in the French building stock: it is a load
bearing wall with an internal insulation system.

Section 2 of this paper presents a state of the art of in situ
measurements methods for the assessment of building wall
thermal resistance (or transmittance). Section 3 presents the
wall studied in the present work, its steady-state characteri-
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zation and the equipment used. Section 4 details the inverse
methods and the two types of models implemented: “white”
and “black” box. Results on an example are detailed to illus-
trate the methods. Finally, the latter are tested on various
conditions in section 5 to assess their robustness.

2 State of the art

Several reviews of in situ measurement methods of U-value
were recently published (e.g., see Bienvenido-Huertas et al. [5],
Soares et al. [6] and Teni et al. [7]).

The techniques may be classified in three categories: steady-
state, dynamic and active methods. In the two last categories,
the dynamic behavior of the wall is analyzed, the difference
is that active methods rely on an artificial thermal load.

Steady-state methods are more commonly used because
they are rather simple to implement and to analyze. In the
literature, many authors refer to the two following standards:
ISO 8990 [8] and ISO 9869-1 [9]. The former details the ex-
perimental protocol to use in order to measure the thermal
resistance R of a wall in steady-state thanks to the use of a
hot box test facility. However, the ISO 9869-1 [9] standard
deals with in situ measurements. The method consists in im-
plementing a heat flux meter (HFM) on the internal surface of
a wall and to measure the internal and external temperatures.
This is the most used method in the community. The wall U-
value is calculated from time-averages of the measured quan-
tities. Ficco et al. [10] studied the experimental aspects of the
application of this so-called “average method” (such as the ef-
fects of measurement conditions). This technique is based on
stationary boundary conditions. Yet, proper steady-states are
almost never encountered in situ so the average method relies
on averaged data as an approximation for measurements un-
der stationary conditions. A variation of this approach (also
detailed in ISO 9869-1 [9]) adds a storage effect correction
but in essence it remains a semi-stationary analysis method.
Several papers highlighted the limitations of the ISO 9869-1
standard, see for instance Rasooli et al. [11], Evangelisti et
al. [12], Gaspar et al. [13] [14].

Infrared thermography (IRT) is also widely used for the
assessment of building wall thermal transmittance in steady-
state. Several reviews were written on the topic, such as
Balaras et al. [15] and Kylili et al. [16]. The best conditions
for the use of thermography are presented and discussed in
Barreira et al. [17] and Lehmann et al. [18]. Passive IRT is
a commonly used tool for qualitative assessments of build-
ing envelopes (see ISO 13187 [19]). It enables to detect ir-
regularities and defaults on a building envelope (see for in-
stance Ocafia et al. [20], Garcez et al. [21], Menezes et al [22]
and Taylor et al. [23]). Standard ISO 9869-2 [24] describes
a methodology to estimate wall thermal transmittance from
passive IRT and other sensors. The method is derived from
Kato et al. [25]. It uses specific sensors to measure the op-
erative temperature on each side of the wall as well as the
indoor total heat transfer coefficient. Many studies use a
method based on the decomposition of the surface heat flux
into its radiative and convective components in steady-state.
Some focused on indoor measurements. Madding [26] and
Tejedor et al. [27] [28] estimated the convective heat trans-
fer coefficient from empirical correlations while Fokaides et
al. [29] used values from ISO 6946 [30]. In addition, Daniel-

ski et al. [31] used linear regression between measured heat
flux and indoor/outdoor temperature differences to estimate
the wall thermal transmittance. Other studies rather focused
on outdoor measurements. Albatici et al. [32] [33], Nardi et
al. [34] and Dall’O et al. [35] used an empirical correlation
based on the wind speed to estimate the heat transfer coef-
ficient. Bienvenido et al. thoroughly studied the influence of
the correlation chosen for the internal [36] and external [37]
coefficients on results of quantitative IRT methods. Finally,
Ibos et al. [38] implemented and compared three IRT methods
to ISO 9869-1 [9] and pointed out the high dispersion results
obtained. Nevertheless, for steady-state methods to be ac-
curate, several recommendations have to be followed, which
limits their applicability. For instance, the weather conditions
have to remain constant during several consecutive days to en-
sure a quasi-steady-state regime and measurements have to
last for at least several days, up to several months.

Dynamic methods were developed to overcome the limi-
tations of steady-state approaches. Basically, more advanced
dynamic data analysis include the fluctuations in measured
heat fluxes and temperatures instead of canceling them out.
In essence, they are models constructed from measurement
data (inverse modeling). Roulet et al. [39] proposed a lin-
ear model having a thermal conductivity and several time
constants as unknowns. The system of equation is solved
using ordinary least squares (OLS) based on measurements
data. Anderlind [40] [41] later proposed a simplification of
this approach by expressing the heat flux as the sum of two
terms: one for the steady-state behavior and the other for dy-
namic variations. Alternatively, many studies used stochastic
gray-box models: Gutschker [42], Baker et al. [43], Jimenez
et al. [44], Deconinck et al. [45] [46], Naveros et al. [47]
and Bacher et al. [48]. Theses models depend on parame-
ters which have a physical meaning (usually thermal resis-
tances and capacities: the so-called R-C models). Biddulph
et al. [49] proposed a method using Bayesian inference to esti-
mate the parameters and this method was improved by Gori
et al. [50] [51]. De Simon et al. [52] also applied Bayesian
inference to quantify the estimation uncertainty of thermo-
physical properties of walls. Bienvenido et al. [53] developed
a multilayer perceptron to estimate the U-value with the cor-
rection for storage effects. The authors then optimized the
method [54] and compared it two other types of data process-
ing tools [55].

Other studies use black-box ARX models (“Auto Regres-
sive with eXogenous inputs”). ARX models (and similar mod-
els such as ARMA, ARMAX, ...) belong to the System Iden-
tification area. This framework is a well known domain that
has its main application in automatic (for control purpose
mainly) and in signal processing [56]. They have the ad-
vantage of being rather simple to use. Jimenez et al. [57]
was one of the first to use ARX models for the estimation
of physical parameters. The authors present the relationship
between R-C networks and parametric models. Naveros et al.
[58] further developed this idea. Several other references used
ARX models and usually made a comparison with some of the
above-mentioned methods: Lambie et al. [59] [44], Jimenez et
al. [60], Deconinck et al. [45]. Madsen et al. [61] provided
guidelines for the thermal performance characterization us-
ing time series data in buildings. Jimenez et al. [60] compare
linear and non linear approaches. ARX models are also used
for the in situ characterization of building global heat loss
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coefficient (HLC): [62] [63] [64].

However, these models require a significant amount of
data to be accurate (several days to several weeks). By using
an artificial thermal load, active methods are a good alter-
native. Not only are they faster than other methods, they
are also less sensitive to weather conditions. Gagliano et al.
[65] and Ricciu et al. [66] estimated the dynamic thermal
properties of walls using a harmonic thermal load, following
recommendations from standard ISO 13786 [67]. The prop-
erties are estimated from an inverse technique based on the
phase lag and amplitude ratio of temperature and heat flux
either side of the wall. Lakatos et al. [68] applied the same
method for the characterization of opaque aerogel insulation
blankets. However, these harmonic approaches were used in
climate chamber and are not very suitable for in situ mea-
surements. Meulemans et al. [69] [70] [71] present a method
which consists in heating the interior of a building and fitting
a simple two-parameters model to the data in order to esti-
mate the thermal transmittance (or thermal resistance) of a
building element. The main advantage of this technique is its
rapidity (only a few hours are needed, typically one night). A
few references use inverse techniques to estimate wall thermal
resistance from active tests. Rasooli et al. [11] [72] present an
active method based on a triangular thermal load of the inter-
nal surface. The wall thermal resistance as well as the outer
layers thermal conductivity and volumetric heat capacity are
determined from inverse modeling of the Response Factors.
Rouchier 73] proposes an overview of the main guidelines for
a careful and optimal use of inverse techniques in buildings.
The methods are illustrated on the example of a simple R-C
gray-box model. Yang et al. [74] used a heat flux-temperature
deconvolution method to estimate a wall thermal resistance
from reconstruction of the unit-step response. Other studies
rather used “white-box” models. These approaches are in-
spired from the field of non-destructive testing (NDT) [75].
Larbi Youcef et al. [4] developed in laboratory a device to
measure wall thermal resistances from active IRT. The au-
thors use halogen spots on the internal side to ensure a uni-
form radiant heating inside the device. Chaffar et al. [76]
estimated the thermal properties of homogeneous walls by
heating one face and recording the temperature of the other
face using IRT. However, these later studies were limited by
the high sensitivity to the heat exchange coefficient.

As a conclusion, several measurement methods for the
assessment of a wall thermal resistance (or transmittance)
were developed in the literature. Some of them (including the
standardized techniques) are based on steady-state assump-
tions. They usually require very long measurements and are
highly sensitive to outdoor conditions. Several dynamic and
active methods were also developed but most of them still
rely on long measurements. Finally, some active methods
are based on temperature- temperature measurements, which
makes them sensitive to the surface heat transfer coefficient.
The proposed method aims at overcoming these limitations.

3 Experimental setup

3.1 Presentation

The measurements were performed on a real wall built inside
a climate chamber at CEREMA in Nancy, France. The latter

chamber used is 4 x 4 x 3 m® and contains two independent
modules able to control the air temperature between -30 and
30°C. The wall was built between these two modules so that a
different temperature can be set between each side of the wall.
The wall is 3.2 m wide and 2 m high and a small door on the
right hand side was installed. It is made of concrete building
blocks (see Fig 1) and a standard internal insulation system
(see Fig 2). This is a very common configuration encountered
in French buildings.

Figure 1: Photography of the wall before installation of
the insulation system.

The insulation system consists in 10 cm of glass wool,
gypsum plates, and some metal rails to hold them. The layout
of this three-layer wall is illustrated in Fig 3. The metal rails
are thermal bridges into the wall: the heat transfers are two
or three dimensional in their vicinity. Yet, the gypsum plate
in the middle is only attached by rails on its borders, so there
is a large “sound area” (1.2 m free of thermal bridge) in the
center of the wall. An infrared camera was used to check if
heat transfers on this area are really 1D, that is to say if the
surface temperature is uniform.

Figure 2: Photography of the wall before installation of
the last gypsum boards.
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Figure 3: Scheme of the wall layout.

3.2 Sensors and data acquisition

Several contact sensors were implemented inside the climate
chamber: on the wall surface as well as inside it. They are
illustrated in Fig 3. Heat flux meters from the Captec®© man-
ufacturer monitor the surface heat fluxes. They are 100 x
100 mm? large, have a 0.54mm thickness and a sensitivity
superior to 60 pV.(W.m™2)~! given with a 3% uncertainty.
Temperatures are measured with type-T thermocouples. The
air temperature is measured in the center of the room by
thermocouples shielded from radiation with aluminum tape.
A platinum sensor was used to calibrate the thermocouples
over the range 0°C - 50°C. It was used with an AOIP TM6612
temperature datalogger. The measurement uncertainty of
this reference is 0.2°C. An external calibration of these de-
vices was performed in order to ensure the metrological trace-
ability to the ITS-90 [77]. The HFMs were covered with adhe-
sive tape that have similar optical properties as the wall sur-
face: same emissivity (0.94 in the 2-20 pm band) and diffuse
reflection’. This enables the sensors to be as less intrusive as
possible. Temperatures and heat fluxes are recorded every 3s
and averaged every 5 points. HFMs and TCs are plugged on
National Instruments© NI9214 conditioning modules. These
modules communicate with a PC computer via a 8-slot NI
CompactDAQ USB chassis. The experimental setup is mon-
itored by a LabView®© application.

3.3 Steady-state characterization

The thermal resistance of the wall was first determined ac-
cording to ISO 9869-1 [9]. The values obtained are used as
references for validation of the active methods. A 20 K tem-
perature difference is imposed between the internal and ex-
ternal ambiances for several days (at least three) so that a
steady-state is reached. The regulation system of the cli-
mate chamber avoids any significant air stratification. The
wall thermal resistance is worked out from measurement of
the surface heat flux ¢ (with a HFM on the sound area

IThe emissivities were measured with an infrared spectrometer
(Frontier model, from Perkin-Elmer©) equipped with an integrat-
ing sphere (from Pike©). A diffusing gold surface (SpectraGold©)
was used as reference and its reflectance was measured by an inde-
pendent method at the French National Metrology Institute (LNE:
Laboratoire National de métrologie et d’Essais).

of the internal surface) and the temperature difference ATge
between the two faces of the wall:

A,I’sie
— 1
o (1)

Similarly, the thermal resistance of the insulation system
(gypsum + glass wool) was determined from measurement of
the temperature between the glass wool layer and the building
blocks. The values obtained are summarized in Tab 1.

R:

Table 1: Measured quantities and calculated thermal re-
sistance (ISO 9869-1 [9]).

Insulation system

Whole wall
(gypsum-+glass wool)
ATy (K) 18.9£0.1 16.9+0.1
¢si (Wm™2)  5.35+3% 5.35 £ 3%
R (m*K.W™') 349+0.11 3.15 +0.10

The uncertainties on R are propagated from measurement
uncertainties on AT and ¢ [78]:

2
uaT \ 2 U
() (2
UR \/ AT + < o
According to the manufacturer, the glass wool has a ther-
mal resistance of 3.12 m%. K" W~! (for a 100 mm thickness).
This value is in good agreement with the measured thermal

resistance of the insulation system (which is slightly above
because it includes the gypsum layer).

(2)

4 Dynamic (active) methodologies

This section presents the two active methods developed. There
are based on the same measurement data. The algorithms
used were implemented in Matlab.

4.1 Experimental protocol
4.1.1 Presentation

To perform active measurements, one needs to apply an ar-
tificial thermal load to the building. In the present study,
it was chosen to use two 500 W electric fan heaters to heat
up the internal air. This thermal load (which is similar to
the one used in the QUB/e method [69]) has the advantage
of being easy to implement in situ. In addition, it provides
a rather uniform heating of the wall (not perfect because of
air stratification). In contrast, the use of a radiant heating
source would only heat up a limited area of the wall. The air
temperatures measured during a typical active test are plot-
ted in Fig 4. The initial internal and external temperatures
were set at 15 and 5°C respectively for two days so that a
steady-state was achieved. When the heaters are turned on,
the regulation system on the same side of the wall is simul-
taneously turned off. After 8 hours of constant heating, the
internal air temperature rises by 15°C up to 30°C. The tem-
perature oscillations observed in Fig 4 are due to the climate
chamber regulation systems.
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Figure 4: Internal and external air temperatures during
an active test (the heaters are turned on at ¢t = 0).

Figure 5 plots the evolution of the wall surface tempera-
ture Ty and heat flux ¢si, measured on the sound area (away
from the thermal bridges) during the same experiment. The
temperature T, of the interface between the glass wool and
the concrete blocks is also plotted. The surface temperature
increases up to 28°C whereas the heat flux rapidly reaches
a maximum and then decreases. Temperature Ti, remains
almost constant during the experiment.

16 30
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10l 120~
g >
= =
= 8 S
N 415
6
110
4
2 L L L 5

Figure 5: Surface heat flux and temperature measured
on the internal wall surface during an active test, as well
as wall internal temperature.

Indoor surface quantities Ty and s will be fed to the
models in order to work out the wall thermal resistance.
Instead of ¢si, the indoor room temperature 7; could have
been chosen. Heat flux ¢si was preferred for several reasons.
First, a model built with Ty and T; would have to include
an additional parameter: the total heat transfer coefficient
h. This quantity accounts for both radiative and convective
heat transfers. The inverse problem (see section 4.2) would
be more ill-posed because this additional parameter would
have a very high sensitivity whereas its value is of no inter-
est in our study. Second, temperature T; is very complex to

measure as it is the so called “operative temperature”. Simi-
larly to the h coefficient, it combines radiative and convective
surface heat transfers. In the building sector, the operative
temperature is usually supposed equal to the air temperature.
This assumption is relevant in quasi-steady state, when the
indoor environment is close to thermal equilibrium. However,
it is no longer valid here in active tests. Because the internal
air is rapidly heated, its temperature becomes very different
from the mean radiant temperature. Consequently, using @s;
and Ty; as inputs of the inverse model allow overcoming these
difficulties.

4.1.2 Measurement campaign

To assess the repeatability and robustness of the method, sev-
eral configurations were tested during the experimental cam-
paign. There are summarized in Tab 2. During the whole
campaign, the internal air temperature Th,i; remains equal
to 15°C (except of course during the active tests). The dif-
ferences come from the external air temperature Taire. In
configurations 1 and 2, the external air temperature Tair.e
is constant and equal to 5 and 15°C respectively. In these
configurations, the wall is at thermal equilibrium before the
test. The data plotted in figures 4 and 5 were measured in
configuration 1.

In the other configurations, Thir,e is no longer constant:
it has a sinusoidal evolution which simulates day,/ night cy-
cles. The mean value of these oscillations is 5°C except for
configuration 6 (15°C). Three amplitudes were tested: 5, 10
and 15 K (peak-to-peak amplitudes) for configurations 3, 4
and 5-6 respectively.

Table 2: Summary of active tests configurations.

. . number
Conﬁg Tair,i ( C) Tair,e ( C) of tests
1 15 5 )
2 15 15 3
3 15 5+ 2.5 cos (wt) 4
4 15 5+ 5.0 cos (wt) 4
5 15 5+ 7.5 cos (wt) 8
6 15 15 + 7.5 cos (wt) 3

Even though the oscillations simulate day/night cycles,
their period was set to 32 h instead of 24 h. This setting
has a practical motivation: it enables to perform an active
test every day at the same hour with different Thir . This is
illustrated in Fig 6 where the temperatures are plotted for sev-
eral consecutive days (Ti, is the temperature of the interface
between the glass wool and the concrete blocks). This simu-
lates in situ experiments undertaken at different moments of
the day. Given that low frequencies thermal waves penetrate
deeper a wall than high frequencies ones, the chosen period
of 32 h is a conservative choice.

4.2 Estimation approach 1: white-box mod-

els

This method consists in using an inverse technique with a
“white-box” model to estimate the thermal properties of the
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Figure 6: Example of internal and external temperatures for consecutive active tests (configuration 5).

wall from measurements. Throughout this section, one exper-
iment is taken as an example to present the active method.
It is the one already introduced in Fig 4 and it belongs to
configuration 1.

4.2.1 Presentation of inverse technique used

This is a non-linear parameter estimation problem [79] [80].
First, a direct model has to be defined. In this study, the
surface heat flux g was chosen to be the output of the model
whereas measured temperatures are inputs. The other way
around could have been used but, as detailed below, only
the noise on the output is taken into account in the analysis
while the noise on the inputs has to be neglected. Given that
measurement noise is much more significant on ¢ than Ty
(see Fig 5), the former was chosen as output.

We define a model ¢mo which depends on some param-
eters gathered in the vector 3. It is supposed unbiased and
corrupted by a Gaussian noise € of zero mean and of standard
deviation o,:

P=pm(B)+e ®3)

with ¢ the measurements. For the sake of clarity, the

dependency to the inputs (such as Ty;) is omitted in the nota-

tions. The objective of the inversion procedure is to find the

optimum parameter vector 3 that minimizes the difference

between the model and the measurements. This difference is
quantified by the quadratic cost function J:

N
JB) =3 (¢ (1) = oo (B,1))?
i=1

with N the number of measurement points and ¢ the time.
Because the model is non-linear in its parameter, the opti-
mum vector 3 is determined by an iterative procedure (see
section 4.2.5). Inverse problems are ill-posed in the Hadamard
sense [81], parameters estimation by inverse methods are thus
not straightforward to use. One must therefore be careful in
the choice of the direct problem: its complexity has to be
adapted to the problem. Indeed, a model with too few pa-
rameters will not be able to capture the physical phenomenon
encountered while a model with too many parameters will be

(4)

ill-posed and will not be identifiable. The model needs to
have about as many parameters as degrees of freedom of the
problem. Several tools are useful to determine the number of
degrees of freedom, that will be presented in the next para-
graphs.

4.2.2 Direct model definition and reduction

The direct model is built using the thermal quadrupole for-
malism [82]. This approach uses the Laplace transform of the
heat equation. The thermal quadrupoles are very convenient
to model one-dimensional multi-layer problems, like the cur-
rent one. In the Laplace domain, the relationships between
the surface temperature and heat flux on each side of the wall
are simply given by a 2-by-2 matrix multiplication:

EIRER Ry

where the coefficients of matrix M contain the intrinsic
thermal properties of the wall. In the case of a single homo-
geneous layer k, its matrix is given by:

Tse

o (4)

cosh (R;Cb;C \/;T))
sinh (Rkbk\/ﬁ) X bk\/f)

M. — [ sinh (Rkbk\/ﬁ) / (bk\/ﬁ)
=
cosh (Rkbk \/f))

with Ry and by the thermal resistance and effusivity of
the layer. The couple (R,b) was chosen to parameterize the
quadrupole matrix because R is the parameter we want to
estimate here and b has the advantage of being independent
on the layer thickness. Basically, any couple of quantities
among R, b, C, and 7 could have been equally selected (C
is the layer thermal capacity and 7 its thermal characteristic
time). This choice has no impact on the well-posedness of
the problem: R will be estimated with the same uncertainty
regardless of the other parameter chosen.

In the case of a multi-layer wall, matrix M is simply given
by multiplication of each layer matrix. For a three-layer wall,
matrix M is given by:

M = M1 M;Ms (7)
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In the present study, indices 1, 2 and 3 refer to the gyp-
sum, glass wool and building blocks layers respectively. The
contact resistance between each layer has been ignored hereby
because they are much smaller than the resistance of building
materials. We introduce the following notation:

c D (8)

Thus, Eq 5 may be re-written as:

o[t 3]

si—*jsi *jse 9
s B B )

This means that if the thermal properties of the wall are
known, @g can be derived from Ty and Ty.. The De Hoog al-
gorithm [83] is finally used to numerically work out the inverse
Laplace transform and generate data in the time domain.

From Eq 9, for different models (named A, B, C and D)
were derived. These are presented below and summarized in
Tab 3.

Model A

This model uses a simplified version of Eq 9. It has been
observed that during the duration of an active experiment
(typically maximum 8 h), the temperature Tin of the inter-
face between the glass wool and the concrete blocks barely
increases (see Fig 5). Indeed, not only are the blocks located
behind an insulating material (the thermal wave needs time
to reach them), they have also a very high thermal inertia.
Thus, model A excludes the third layer and replaces it by the
boundary condition Tin:consﬁn‘c. Since initial values are re-
moved, this is equivalent to Ti, = 0. This model only takes
into account the first two layers (gypsum and glass wool)
hence the “1-2” subscripts in Tab 3. This simplified model
has four unknown parameters (two per modeled layer) and
is useful to estimate the thermal resistance of the insulation
system. The concrete blocks have a little contribution to the
overall thermal resistance anyway.

Model B

Similarly to model A, the concrete blocks layer is excluded
from model B and the same four unknown parameters re-
main. However, temperature T, is not supposed null but is
measured. Model B therefore has two inputs: Ts and Tin.
This configuration is not applicable in situ since no thermo-
couple can be installed inside the wall. Nevertheless, it is use-
ful to gain valuable insight on the experiment. In addition, in
the case of a light wall (without high inertia materials), this
two layers model could be applied by replacing Ti, by Tse.

Model C

This model is more complete than the previous ones as it
includes all three layers (see the “1-3” subscripts in Tab 3).
Thus, model C has six parameters. The rear surface temper-
ature Tge is measured and is an input of the model. However,
the parameters of the third layer (Rs and b3) cannot be esti-
mated with the other ones because of strong correlations (see
section 4.2.4): they are supposed to be known. In practice,
one could use standard values for this type of material. For
more accuracy, it is proposed here to estimate them by using
model D.

Model D

This model differs from the others as it is not meant to esti-
mate the thermal resistance of the insulation system. It was
built to provide values of Rs and bs to feed model C and
only models the building blocks (“3” subscript). It takes as
output the surface heat flux ¢se measured with a HFM on
the external side of the wall. The input is the external sur-
face temperature Ts.. As boundary condition, the heat flux
between layers 2 and 3 is supposed null. This simplifying
assumption is deemed reasonable given the presence of ther-
mal insulation. This model is not applicable if the external
temperature is constant. It can therefore only be used in
configurations 3 to 6.

4.2.3 Implementation of model inputs

The direct models depend on the parameter vector 3 but also
on one or two inputs (see equations in Tab 3). These inputs
are temperatures: Tgi, Tin or Tie. The thermal quadrupole
formalism requires to have an analytical expression of the
Laplace transform of these temperatures (see Eq 9). In Non
Destructive Testing [75], thermal loads are usually a pulse or
a step, so that the Laplace transform of the input is simple
and only depends on one constant. Here, the evolution of
the inputs is more complex. Therefore, the chosen approach
is to fit a function of known Laplace transform on the input
curves. This function does not need to have any physical
meaning, but is must be as close as possible to the measured
data. Several functions were tested and it was found that a
polynomial fitted well T, or Tse whereas a polynomial in 1/5
gave better results on Tg;:

Ty (a,t) =Y ayt'’ (10)
j=1
with a the vector of parameters that is adjusted during
the fitting process. The later is made with the Levenberg-
Marquardt algorithm (see paragraph 4.2.5). The Laplace
transform of the previous function is given by:

. m o T(i41
Tsi (o, p) = ZO(]'(J1+1 ) (11)
j=1 pJ

with I' the gamma function. Figure 7 shows the fit on the
example of Ty with m = 7 . It may be seen that the chosen
function fits well the measurement data. The degree m of the
polynomial was set high enough to make the residuals (differ-
ence between measurements and model) as low as possible. A
high degree do not affect the well-posedness of the problem,
it only lightly slows down the calculations (which is not an
issue given that the estimation is almost instantaneous).

The components of vector a are set before estimation of
the thermal resistance so they are not included in the vector
of unknown parameters 8. In addition, it is important to
point out that this fit removes the measurement noise on the
inputs of models A, B, C and D (see Tab 3). Therefore, this
noise will be supposed null in the evaluation of the estimation
uncertainties of the wall thermal resistance: only the noise
on the output ¢g; is taken into account (see next paragraph).
Yet, given that the signal to noise ratio is a great deal higher
on the temperatures than on the heat flux, this hypothesis
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Table 3: Summary of “white-box” direct models.

Model Illustration Equation Parameters
Psi . —~
A > Psi = % si B=[R1 b1 Ry b9
Tsi Tin = cst
Psi — D172 — —
B —> ¢si = 5=T + 52— Tin B =[R1 b1 Ry by
Tsi Tin
Psi . —~ —
c = G = 22T + 5= The B=[R1 by Ry by Ry b]
Tsi Tse

(R3 and b3 are supposed to be known)

Pin = Pse
D RS 2
TS@

C3T

Pse = A, tse

B = [R3 bs]

has a limited impact on the uncertainty calculation. This

justifies the choice of g as output.
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Figure 7: Polynomial fit on model input Ty (with m =
7).

4.2.4 Sensitivity analysis and estimation uncer-
tainties

Inverse problems are usually ill-posed. The sensitivity anal-
ysis is required to determine the model number of degrees of
freedom and to assess the identifiability of the parameters.
For the sake of conciseness, only the sensitivity analysis of
model A is detailed here.

We define the reduced sensitivity coefficients to each pa-
rameter [3;:

* 9]
X" (8;) =By gé;'o

These coefficients are all expressed in the unit of the out-

(12)

put which makes them comparable. In non-linear problems
such as this one, sensitivities are defined locally (they depend
on (3). Figure 8 plots the evolution of these sensitivities with

B = B the optimum vector after parameter estimation (see
section 4.2.5).
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Figure 8: Reduced sensitivities of model A (configuration

1).

First, it may be noted that the sensitivities to the parame-
ters of the first layer, R1 and b; have a larger amplitude than
those of the second layer (R2 and b2). This is because the
model is more sensitive to parameters of the closest layer to
the measurement location of ¢si. The curves of X* (R1) and
X™ (b1) also have a similar shape: R; and b; are correlated.
It might be complex to estimate them both accurately: many
different combinations of them might predict the same heat
flux Ymo. In addition, by has a low reduced sensitivity when
compared to the other ones so its estimation uncertainty will
be greater. Finally, the sensitivity to R has a non negligible
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amplitude and a unique shape.

The sensitivity to Rz keeps increasing with time (in ab-
solute values). This suggests that there is a minimum exper-
iment duration for the estimation of R2 to be accurate. In
addition, because the sensitivity to Rz is small at the begin-
ning of the experiment, the first instants are not taken into
account in the estimation procedure.

The uncertainty over the estimated parameters are de-
rived from the variance-covariance matrix:

(3 cov (30)

cov ~ | cov (Bu 31) var (B]) (13)

with

-1
cov = a5 (XTX) (14)

Thus, the variances over the estimated parameters are
directly proportional to the variance (73, of the heat flux mea-
surement noise. If the measurement uncertainty includes a
constant component (bias), this one is removed when the ini-
tial conditions are subtracted. This is one of the advantages
of the active approach: only variations in temperatures and
heat fluxes are analyzed.

We define the hybrid matrix Veor:

var (51)/ Bi pij

Veor var (Bj)/ﬁj (15)

Pij

where the off-diagonal terms are the correlation parame-
ters. They range between -1 and 1 and quantify the correla-
tions between pairs of parameters: the closer p;; is to -1 or 1,
the more parameters 3; and ; are correlated. The diagonal
terms of the V.o, matrix are the relative uncertainty of esti-
mation of the parameters. The matrix is symmetric. For the
given example (Fig 5):

0.13 098 —031 —0.67
0.06 026 053

Veor = 0.02 052 (16)
sym 0.10

where the noise level taken was representative of an ex-
periment: o, = 0.4 W.m™2. In addition, reference values for
the parameter were taken. They are given in Tab 4.

The comments previously made on Fig 8 are confirmed
by this matrix. Indeed, the correlation coefficient between
R: and b; is close to 1 (-0.98) which proves that these two
parameters are correlated. Also, parameter b is estimated
with a relative uncertainty of 10% whereas it is not very much
correlated to any other parameter. This is due to its low
sensitivity. The estimation of Ro is rather accurate given
that its relative uncertainty is only 2%.

4.2.5 Parameter estimation

The optimum parameter vector B that minimizes the dis-
tance between the model and the measurements is estimated
using the Levenberg-Marquardt algorithm described in [84],

10

[85] and [86]. This algorithm is commonly used in parameter
estimation problems because of its robustness. Figure 9 plots
the measurement data s alongside the reconstructed model
after estimation of the optimum parameters. The latter are
given in Tab 4. The residuals are unsigned (flat) and of rather
small magnitude, which is a prerequisite for the parameter es-
timation to be accurate.

15 ‘
Measurements ¢

Model gpmu(ﬁ)
Residuals ¢ — ¢no(8)

Figure 9: Comparison between measurements and recon-
structed model after parameter estimation.

Table 4: Estimated parameters B with reference values.

B unit estimation reference
Ry m>K.W! 0.05 +0.01 0.06
by JK lm2s Y2 421+24 420
Ry mzK.W™! 3.04 +0.05 3.12
by JK 'm2sY? 359+35 2

The reference values given in Tab 4 have different origins:
measurements in laboratory with the Hot Disk method [87]
(for Ry and b:1), manufacturer data (for R2) and standard
value from the literature [88] (by = 21 J K 1.m~2.s7/2, cal-
culated from thermal conductivity and diffusivity).

Thus, the proposed inverse method successfully estimated
the thermal properties of the insulation system, especially R1,
by and Ra. Thermal resistance Rs is only about 5% away from
its reference value. The estimated parameter b is further
from its reference value but the latter is not very much reliable
because it is a standard value from the literature.

4.2.6 Robustness of the method

On the one hand, since the minimization procedure is itera-
tive, the initial parameter vector chosen might have an impact
on the estimated values if local minima of the cost function
exist. It was checked here that changing the initial conditions
do not affect the estimation.

On the other hand, the duration of the active tests was
set to about 8 h. This choice is justified because a longer
experiment would not improve the estimation of the thermal
resistance. Indeed, Fig 10 plots Ri + R2 and its uncertainty
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for several durations of the same experiment. Only the upper
limit of the time horizon is modified: the lower one is kept
constant equal to 10 min. Indeed, the first points were to
be removed because HFM measurements are not accurate at
the beginning of the experiment (the heat flux increase is too
fast). It was noted that increasing further the lower bound of
the time horizon has a little impact on the results.

It may be observed on Fig 10 that after about 6 h, the
estimation of the thermal resistance is no longer affected by
the duration of the experiment. Also, the uncertainty on
the resistance decreases during the first six hours and then
stabilizes. Thus, for this wall, longer experiments are not

. wm

4 6
Active test duration (h)

3.3

3.2

3.1

R + Ry (mQ.K.W‘l)

2.9

=

2.8

Figure 10: Impact of experiment duration (upper limit
of time horizon) on thermal resistance estimation with
the “white-box” approach.

4.3 Estimation approach 2: black-box mod-

els
4.3.1 Introduction to ARX models

ARX models belong to the system identification framework [56].
They consist in identifying the parameters involved in a linear
relation between input(s) and output(s), from measurements
of these quantities. Similarly to the “white-box” method, we
take heat flux s as input and temperatures (Tgi, Tin or Tse)
as outputs. For any point of the time series, the last few
measurements points of the output are linked to the few last
points of the inputs. The problem is written as:

A(q) psi = B(q) Tsi + C (q) Tie (17)

where ¢ is the delay (or back-shift) operator defined such
that ¢~y (k) = y (k — 1) with y either an input or an output
time series. A, B and C' are polynomials in q. Their orders
are ng, np — 1 and n. — 1 respectively:

-1
AlQ)=14+aiq +..+an,q "° (18)
B(q)=bo+b1g  +.tbpy_1qg ™ (19)

-1
C(q=co+ciqg +..+ Cno_1q” Tt (20)

Equation 17 is analogous to Eq 9 but parameters a;, b;
and ¢; have no physical meaning (“Black-box” model). Equa-
tions 18 to 20 define an ARMA model (Auto-Regressive with
Moving Average). The ARX formulation is similar except
that polynomials B and C are multiplied by a time shift op-
erator ¢~ "* where the number mnj is the number of input
samples that occur before the input affects the output (also
called the “dead time” in the system). For the sake of clarity,
we take ni = 0 in the following equations.

By analogy to “white-box” models A, B and C presented
in Tab 3, we define three ARX models: A’, B’, and C’. They
use the same data as their “white-box” counterparts. They
are presented in Tab 5.

4.3.2 Presentation

For the sake of clarity, the methodology is detailed on the
case of model A’. It only has one input (Ts;): it is a “Single
Input, Single Output” (SISO) case:

A(q) psi = B(q) Tsi (21)

For any instant k, an estimator of the output ¢ (k) is given
by:

ny—1

—J)+ Z b;Tsi (k — 4) (22)

Gk) == ajpu(k
=1

The problem is linear and may be written in matrix form:

Pmo (0) = HO (23)
with 0 the parameter vector:
0: [047.4.,ana7b0,4..7bnb,1}T (24)

Matrix H contains the measured inputs and output, as shown
in Eq 25 (subscripts “si” were removed for clarity):

(-1  pn-2 p(n-n)  T@  Tm-1) T(n—my+1) ]
o (n) o (n—1) : T+l  T(n) :
H= 5 o p(n-2) 5 T(n—1) (25)
o(n+nq—1) o) @n-1) T(m+n+1) T(m+1) T
L e(N-1) (N2 p(N—ny)  T(N)  T(N-1) T(N - +1)
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Table 5: Summary of ARX models.

Model Mustration Equation Parameters
A7 2’ A(q> SOSi :B(q)Tsl 0: [a/],...,G/na,b(),...,bnbf]_]
Tsi Tin = cst
B’ b A(Q) SOSi :B(q)Thl+C(q)ﬂ 9: [ala"'7ana)b07"';bnb—17CO7"'ac’rLc—1]
Tsi Tin
07 gb A(Q) Psi :B(Q)T51+C(Q)Tse 9: [a/la-~'aanaab0a"'7bnb—17007"'acnc—1]
Tsi Tse

Like in the previous method (see Eq 3), the output ¢g; is
supposed corrupted with a white noise € of standard deviation
Op:

Poi = Pmo (0) Te=HO +e (26)

For matrix H to be full, the first n — 1 of the N measure-
ments points are removed:

T

Poi = [wsi (), i (n+ 1), ..., 0si (V)] (27)

with » = max (n, + 1,m). The Ordinary Least Square

(OLS) estimator @ of this linear over-determined problem is:
—~ -1

0= (HTH) H (28)

We are not interested here in the values of each param-

eter contained in vector 8. However, the wall thermal resis-

tance may be expressed explicitly in terms of these param-

eters. Eq 21 may be re-written into the form of a transfer

function (here an admittance):

ny—1 —J

Y (q) = B(q) _ Zjio bjq ‘

Alq) Zyio ajq™’

The thermal resistance is defined in steady-state. It is the

inverse of value of the transfer function for a null frequency:

(29)

A1) 143050

E = =
B(1)  Ymity

(30)

4.3.3 Uncertainties

Similarly to Eq 14, the uncertainties over the parameters are
given by the variance-covariance matrix:

cov (5) = ai (HTH)
These uncertainties are then propagated through Eq 30
to work out the uncertainty on R:

B (31)

ok = X.cov (5) X7 (32)
with X the sensitivity matrix:
OR OR OR OR
X=|—)... —_—...
|:aa1 ’ ’ 8ana ’ 8[)07 ’ 8bnb71:| (33)

The partial derivatives in the expression of X are then
given by:

; . R _ _ A
vy € [1;n4], 2a, = BT (34)
Vi € [0;ns — 1], %:ﬁ

4.3.4 MISO case

In the MISO case (Multiple Inputs, Single Output), such as
with models B’ and C’, there is no explicit formulation of
the wall thermal resistance from parameters a;, b; and c;.
Instead, two thermal resistances (noted R; and R.) may be
derived from Eq 17:

— (1
R; = 7(1
— ¢!

‘T o

b

(35)

vy

(36)

~—

There is no relationship between these estimated resis-
tances and the wall thermal resistances R;, R2 and Rs.

In most studies dealing with this issue, these two estima-
tions of R are combined into a single value by a Lagrange
weighting [57] [59] [62] [45]:

R=ARi+(1-))Re (37)

where the weighting factor A was chosen to minimize the
uncertainty on R:

_ Var (R.) — Covar (R;, Re)
~ Var (R;) + Var (R.) — Covar (R;, R.)
This formulation has no physical meaning. This proce-
dure was tested but it turned out that the estimated value
was very far from the reference and the associated uncer-
tainty was very large. In addition, the algorithm is not sta-
ble: slightly changing the time horizon significantly changes
the result. It is thought that the MISO formulation needs
more data to converge than the SISO one because it has more
parameters to determine. Indeed, the previous studies which
successfully use this kind of MISO ARX models are all based
on much longer measurement campaigns. Jiménez et al. [57]
and Senave et al. [62] both used measurements recorded dur-
ing 20 consecutive days to estimate a wall thermal resistance

(38)
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and a HLC respectively. Lambie and Saelens [59] performed
two experimental campaigns of 15 and 35 days respectivley
(HLC estimation). Deconinck and Roels [45] used a dataset of
60 days and showed that a minimum of 20 days was required
for their ARX method to give accurate results (thermal re-
sistance estimation). In comparison to these durations, the
present study deals with only 8 consecutive hours of measure-
ment data which is almost two orders or magnitude shorter.
From this perspective, implementing this model on more data
(much longer experiments) might give better results but the
present rapid method focuses on short measurements (i.e.,
less than 24 hours).

4.3.5 Choice of number of parameters

Number nq, ny and ny (as well as n. if applicable) have to
be defined. First, it was observed that increasing nj does not
significantly change the estimated value whereas it increases
notably its uncertainties. In addition, there is no physical jus-
tification here to support the existence of dead time between
internal surface temperatures and heat fluxes. Therefore, ny
was set to zero. Fig 11 plots the estimated resistance R as
a function of n, with n, = n, for model A’ and configura-
tion 1. It may be observed than the fewer the parameters,
the higher the bias on the estimated value and the higher
the estimation uncertainty. To be more specific, above about
ne = np = 10, the estimated resistance and its uncertainty
are both independent on the number of parameters. Thus,
given that the calculations are almost instantaneous (even
for a high number of parameters), setting high values for n,
and np is a relevant conservative choice. The n, = n; con-
dition was taken to simplify the analysis. It was observed
that setting different values for n, and n, does not reduce
the minimum number of parameters required for the estima-
tion to be accurate. Consequently, n, = n, = 25 is set for
the estimations.
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Figure 11: Impact of ARX model number of parameters
on the estimated thermal resistance.

4.3.6 Impact of time horizon

Figure 12 plots the estimated thermal resistance for several
durations of the active test: the time horizon upper bound is

changed whereas its lower bound is kept constant (10 min).
This analysis was performed on a longer test (about 12h).
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Figure 12: Impact of experiment duration on thermal

resistance estimation (ARX approach).

It is clear that the uncertainty increases if the experi-
ment duration decreases below 5 h. However, unlike with the
“white-box” model (Fig 10), the estimated resistance keeps
increasing slightly with time above 5 h (although the slope
flattens so much that R seems to converge after about 10h).
This is because the thermal resistance R estimated by the
ARX approach is supposed to be the total resistance of the
wall (R1 + Rz + R3). In theory, R asymptotically reaches this
overall resistance after a very long time. This was checked
on synthetic data modeling a much longer active test. As
mentioned above, a test duration of a few hours (even 12 h)
is not enough to probe the bearing layer and to estimate its
thermal resistance with an active methodology. Therefore, R
corresponds here to the resistance of the insulation system.

Finally, it is interesting to point out that the ARX ap-
proach is more robust than the “white-box” approach for short
experiments. Indeed, after only 2 h, it is able to estimate a
thermal resistance rather close to the one of the insulation
system, and with a decent uncertainty.

5 Test of the method on different
configurations

5.1 Constant external conditions

This section presents the results obtained on experiments car-
ried out when the external temperature is constant (configu-
rations 1 and 2 in Tab 2). The thermal resistance of the insu-
lation system (gypsum + glass wool) and the entire wall was
determined using models A and A’ respectively (see Tab 5).
The results of estimations are summarized in Tab 6. Steady-
state value are obtained from ISO 9869-1, see section 3.3.
The average and standard deviation of the estimated quanti-
ties are given.

Several conclusions may be drawn from it. First, the
“white-box” and “black-box” approaches give very similar re-
sults. The thermal resistance is slightly underestimated but

13
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the distance to the reference value of R1+ R2 is almost always
below 5%. The “white-box” model seems to predict a slightly
higher thermal resistance than the ARX model. Thus, both
approaches estimates rather well the thermal resistance of the
insulation system. It may be noted that the ARX approach
was supposed to estimate the global thermal resistance of the
wall: R1 + Rz + Rs. This bias is also explained by the very
high thermal inertia of the building blocks layer: the latter is
not probed by the active experiment.

Also, configurations 1 and 2 lead to the same results
whereas they have a different initial temperature gradient:
10 and 0 K respectively. This reflects the superimposition
theorem: constant temperature gradients are canceled out
when initial conditions are subtracted. This is one of the
main advantages of these active methods: only temperature
and heat flux relative variations are analyzed. This would
allow performing measurements all year long (as long as the
external temperature is close to be constant), rather that only
in winter like with steady-state methods.

Finally, the methods are repeatable as the dispersion of
the results for the eight experiments undertaken is rather
small (around 5%). It is also of the same order of magni-
tude as the estimation uncertainty.

Consequently, in the favorable case when the external
temperature is constant, there is no need here to use more
complex models to estimate the performance of the thermal
insulation. Only two measured quantities are required: the
internal surface heat flux ¢s and temperature Tg;.

Table 6: Estimations of thermal resistance for a con-
stant external temperature with two approaches: model
A = “white-box”, model A’ = “black-box”.

Config Exp Model A Model A’
(R1+ R2) (Ry1+ Ra+ R3)
Reference 'Y s1540010 3494011
-state

1 3.09 +0.04 3.01+0.03

2 3.054+0.03 3.01 +0.02

1 3 3.16 +0.03 3.07 +£0.02

4 3.14 +0.06 2.96 4+ 0.03

5 3.07 +0.02 3.01 +0.01

6 3.06 +0.04 2.93 +0.02

2 7 3.16 +0.02 3.10 £0.01

8 3.09 +0.02 3.04 +0.02
average 3.10 3.01
standard deviation 0.04 0.06

It is not possible to determine the thermal resistance of
the concrete layer in this configuration. Indeed, as explained
above, during the 8 hours of the experiment, the temperature
of the concrete blocks barely increases so this layer cannot be
probed. A very much longer experiment would be required
which would not be representative of in situ active measure-
ments. The authors do not see it as an issue. Indeed, the
bearing layer only represents a small part of the overall ther-
mal resistance (10% here). Besides, in the context of the
energy audit of a new building, the main objective it to as-
sess the performance of the insulating materials. Finally, the
method could be applied before and after energy retrofitting
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work to quantify the increment in thermal resistance.

5.2 Varying external conditions

When the external temperature is not stable, the estimation
of the thermal resistance is more complex. This section an-
alyzes the impact of variations in the external temperature
on estimation procedures. Here, the white-box approach was
used. Indeed, the ARX MISO models was not able to accu-
rately predict the thermal resistance. The result was signifi-
cantly biased and the estimation uncertainty was very large,
as detailed in section 4.3.4.

Table 7 summarizes the estimations of R; + R» in config-
urations 3 to 6 using models A, B and C.

First, it may be observed that in configuration 3, the es-
timations only have a small bias (maximum 15%). Conse-
quently, for this type of wall, model A is suitable when the
external temperature varies with an amplitude up to about
5 K.

Then, it appears that results from model A are signifi-
cantly biased for some experiments but rather accurate for
others. This entirely depends on the behavior of T.ire before
and during the experiment. In every configuration (except
number 6), at least four active tests are performed follow-
ing the pattern shown in Fig 6. For the first test, Tair,e is
around the maximum of its sinusoid. It increases during the
second test, is around its minimum during the third one and
decreases for the fourth test. These four regimes correspond
to the four symbols N, 7, U and \, used in Tab 7. For
every configuration, model A always over-predicts the resis-
tance when Tiire is around its maximum, under-predicts it
when Thire is around its minimum and paradoxically predicts
it well when Thir e varies significantly. These observations are
explained by the evolution of the temperature Ti, between
the insulation system and the concrete blocks (see Fig 6).
Indeed, material inertia induce a phase lag of about 6 h be-
tween Tair,e and Tin. Consequently, when Thir e is rather stable
around an extremum, T}, varies a lot, and vice versa. Thus,
inaccurate estimations correspond to situations in which Ti,
varies significantly. Model A was indeed based on the as-
sumption of a constant Ti,. For in situ applications on this
type of wall, it is therefore recommended to start the active
test at sunset (when the temperature starts decreasing). This
is in accordance with usual guidelines for in situ thermal di-
agnoses of buildings which recommend measurements to be
performed by night. The estimation uncertainties are smaller
that the spread (standard deviation) between measurements,
which confirms that a single experiment might lead to an ac-
curate estimation of the thermal resistance.

Models B was developed to overcome this limitation. In-
stead of considering Ti, constant, this temperature is mea-
sured and taken as an input of the model. As shown in Tab 7,
the thermal resistance is now well estimated for every exper-
iments: results are within the 10% band (relative difference
to the reference value) and even within the 5% band most of
the time. Hence, model B is not limited by variations of the
external temperature. However, it requires to implement a
temperature sensor inside the wall, which is not possible in
situ. For a lightweight wall without significant thermal mass,
the external surface temperature could be used instead.

Model C is more applicable as it only relies on surface
measurements. Nevertheless, it requires prior knowledge of
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Table 7: Estimations of thermal resistance for varying external temperature (cells are filled in gray when the
estimated value is more than 10% away from the steady-state reference value). Depending on the experiment, Tyiy o
is around a maximum: N, or increasing: *, or around a minimum: U, or decreasing:

Config Exp T Model A Model B Model C
" (R1 + R2) (R1 + R2) (R1+ R»)
Reference Y 5954010 3154010 3.1540.10
-state
1 N 3.62+0.07 3.01+£0.06 2.98+0.06
3 2 Va 3.20+0.06 3.05+0.07 3.024+0.07
3 U 2.81+£0.06 2.99+0.07 3.01+0.07
4 ¢ 3.114+0.05 3.02+0.05 3.05+0.05
5 N 4.19+0.12 2.964+0.07 2.90+0.08
4 6 N 3.25+£0.07 3.0564+0.09 3.01£0.83
7 U 2.64 +0.04 3.16+0.05 3.20+0.06
8 AW 3.014+£0.06 2.934+0.04 2.95+0.04
9 N 584+0.33 3.42+0.15 3.33+0.15
10 N 6.09+0.32 3.404+0.13 3.36£0.13
11 N 3.20+£0.08 3.084+0.10 3.06+0.13
5 12 Ve 3.10+£0.07 2964+0.09 2.93+0.13
13 U 2.23+0.04 2.954+0.06 2.99-+0.06
14 U 2.23+0.04 2954+0.12 2.99-+0.05
15 ¢ 3.07+0.06 3.07+0.05 3.08+0.05
16 ¢ 3.08+0.06 3.00+£0.05 3.01+0.05
17 N 5.15+0.24 3.024+0.08 2.964+0.10
6 18 Ve 3.404+0.08 2994+0.12 2.97+0.14
19 Ny 2.924+0.08 2.954+0.06 2.94-+0.05
average 3.48 3.05 3.04
standard deviation 1.09 0.14 0.13

the thermal properties of the bearing layer: Rs and bs. In-
deed, the inverse problem is too ill-posed if all the parame-
ters are estimated at once. A two step procedure is there-
fore proposed: R3 and b3 are first estimated using model D.
The later is fed with measurements of ¢s. and T recorded
during one oscillation period of the external air tempera-
ture. The estimated values are Rs = 0.28 m?2.K.W™! and
bz = 703 JK 1m 25 Y2 These values are then used in
model C to estimate the thermal properties of the insulation
layer. The results, shown in Tab 7, are as good as with model
B: the thermal resistance may be estimated regardless of the
evolution of Thiire. The estimated uncertainties are of the
same magnitude as the spread between experiments. Finally,
it may be noted that model C supposes R3 and bs perfectly
known, which means that their uncertainty do not contribute
to the uncertainty of Ry + Ra.

6 Conclusion

This paper proposes a rapid active method for the measure-
ment of the thermal resistance of a building wall. It con-
sists in heating the indoor air for a few hours and to apply
inverse methods to measured surface heat flux and temper-
ature. Two different types of models were implemented and
compared: “white-box” models and ARX “black-box” models.
The methodologies were tested on a full-scale load-bearing
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wall on which a conventional internal insulation system was
fixed. This type of wall is representative of about three quar-
ters of french buildings. The wall was built inside a climate
chamber so that the environment could be controlled on both
side. The active tests typically lasted 8 hours during which
the indoor air temperature rose by about 15 K.

When the external temperature was constant, both ap-
proaches were able to estimate the thermal resistance of the
insulation system (90% of the overall thermal resistance).
They are based on “simple” models (models A and A’) that
only need measurements of the internal surface heat flux and
temperature within about 6 h. The methods showed a good
repeatability (5%) and the relative difference to the reference
value, obtained from ISO 9869-1 [9], was below 5%. These
models could not estimate the overall thermal resistance of
the wall. However, this limitation is not deemed major be-
cause the insulation system represents most of the overall
thermal resistance (90% here). In addition, in the case of a
building retrofit, the application of the method before and
after refurbishment could quantify the increase in thermal
resistance because the heavy layer is unchanged.

The robustness of the method on this type of wall was
assessed by undertaking experiment with unsteady external
temperature. Estimations with simple models A and A’ were
still rather accurate if the amplitude of the external temper-
ature variations was smaller than 5 K. Above this limit, the
simple models (both “white” and ”black” box) only delivered
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good results if the active test was performed at moments of
the day when the temperature inside the wall was rather con-
stant. Because of material thermal inertia, this corresponds
to moment when the variation of the external temperature is
maximum.

More complex “white-box” models (B and C) were de-
veloped to overcome the limitations due to a varying exter-
nal temperature. They lead to accurate estimations of the
wall thermal resistance (below 10% difference to the refer-
ence value) in every configuration tested. However, model B
requires the measurement of the temperature inside the wall,
which is hardly applicable in situ. It was presented here for
a better understanding of the problem. Model C only relies
on surface measurements but requires some a priori knowl-
edge about the bearing layer thermal properties. Though,
the later may be derived from external surface measurements
with a distinct model (model D). It may be noted that for
lightweight walls (low thermal inertia), this two step proce-
dure might not be required. Similarly, more complex ARX
models were also tested (several inputs). They were not able
to correctly estimate the thermal resistance with the proposed
active procedure when the external temperature was not con-
stant. This is due to the short measurement duration: the
previous studies which successfully used similar MISO ARX
models are all based on much longer datasets (from 6 to 35
consecutive days of measurement).

As a conclusion, for the studied wall, "white-box" mod-
els delivered more accurate and robust estimates than the
"black-box" (ARX) models tested, except for very short mea-
surements (around 2 h) for which the ARX approach were
more stable. The models implemented and their applicabil-
ity are summarized in Tab 8. The complete methodology to
estimate the wall thermal resistance with an inverse method
using a “white-box” model is summarized in Fig 13.

Future work will consist in validating the methods on
other types of walls and other types of insulation systems
(e.g. external insulation). The conclusions drawn in this
study are valid for a massive wall with an internal insula-
tion. The authors do not anticipate any difficulty to apply
the same methods to lightweight walls. The best “white-box”
model to choose will depend on the wall considered and the
weather conditions. In addition, Bayesian inference could be
used to better quantify the uncertainty over the estimation of
the thermal resistance, especially for models in which some
parameters are supposed perfectly known. Finally, the au-
thors are currently working on an extension of these methods
to non-homogeneous walls using infrared thermography. In-
deed, the current approach is a local estimate whereas future
work could extend it to distribution of thermal resistance or
thermal transmittance over a wall and to thermal bridges
characterization.
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Table 8: Summary of models (v'= yes, x = no, xv"= not true in all configurations, NA = Not Applicable).

Model A B C+D A B’ C
White-box (W) or Black-box (B) W W W B B B
only surface measurements v X v v X v
only indoor measurements v X X v b be
robust to T, variations in [0, 5] K v v v v NA NA
robust to T, variations in [5, 15| K xv' v xv' NA NA
minimum experiment duration (h) ~6 ~6 ~6 ~2 NA NA
Experimental aspects Theoretical aspects
Control indoor Temperature From wall and weather conditions,
(It should be constant for at least 24h) define the direct model (white-box)
l = number of layers
= boundary conditions
Use an infrared camera to identify a uniform zone = parameters to estimate
(free of thermal bridge) on the wall * time horizon experiment duration D
Implement sensors on the uniform zone. At least: l
= Indoor surface: a HFM and a thermocouple . .
= Outdoor surface: a thermocouple (and Perform reduced sensitivity analysis

potentially a HFM)

l

Arrange several heaters in the room for the
heating to be as uniform as possible

Is the problem
well-posed ?

(the air temperature should rise by at least 10K yes
during the test) Make inversion on heat flux
(minimize difference between measurements and
model)
Carry out active test J,
between 5 and 8h, depending on the wall

Sampling: at least every 10s

l

Substract initial conditions to measurements
(temperatures and heat fluxes)

l

Fit a polynomial on measured temperature(s)

Perform residuals analysis

Are residuals
unsigned and of small
agnitude 2
yes

no

Estimation of wall thermal properties:
Thermal resistance and estimation uncertainty

Figure 13: Summary of thermal resistance estimation methodology with the “white-box” approach.
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