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In this work, we discuss the nature of Dzyaloshinskii-Moriya interaction (DMI) in transition metal
heterostructures. We first derive the expression of DMI in the small spatial gradient limit using
Keldysh formalism. This derivation provides us with a Green’s function formula that is well adapted
to tight-binding Hamiltonians. With this tool, we first uncover the role of orbital mixing: using both
a toy model and a realistic multi-orbital Hamiltonian representing transition metal heterostructures,
we show that symmetry breaking enables the onset of interfacial orbital momentum that is at the
origin of the DMI. We then investigate the contribution of the different layers to the DMI and reveal
that it can expand over several nonmagnetic metal layers depending on the Fermi energy, thereby
revealing the complex orbital texture of the band structure. Finally, we examine the thickness
dependence of DMI on both ferromagnetic and nonmagnetic metal thicknesses and we find that
whereas the former remains very weak, the latter can be substantial.

I. INTRODUCTION

Magnetic textures presenting a well-defined chirality
are of major interest due to their potential applications in
data storage1, brain-inspired architectures2–4, and reser-
voir computing5. Homochiral spin spirals6–8, quasi-one
dimensional Néel walls9–11, magnetic skyrmions12–20 in
perpendicularly magnetized systems, but also merons
in planar magnetic heterostructures21,22 are currently
the object of intense theoretical and experimental
investigations as they display high current-velocity
characteristics23,24. The key mechanism underlying
these magnetic entities is the Dzyaloshinskii-Moriya
interaction25,26 (DMI), an antisymmetric magnetic ex-
change that forces neighboring magnetic moments to
align perpendicular to each other.

In the atomistic limit, where the magnetic moments
are localized and well defined, the Dzyaloshinskii-Moriya
(DM) energy reads

EDM =
∑
ij

Dij · (Si × Sj), (1)

where Si is the direction of the magnetic moment at site
i, Dij is the DM vector and the sum runs over all the
pairs i, j of the system. In this general definition, DMI
is not limited to nearest neighbors and from the sym-
metry viewpoint, Dij is determined by Moriya’s rules26.
In the micromagnetic limit, where the magnetic order is
represented by a continuous vector field m with smooth
spatial variation, DMI is rewritten

EDM =
∑
α

m · (Dα × ∂αm), (2)

where ∂α = ∂/∂α is the spatial gradient along the direc-
tion eα and the DM vector Dα fulfills Neumann’s sym-
metry principle. As discussed in this work, one can show

that Dα possesses the same tensorial form as the current-
driven damping-like torque tensor27. From a theoreti-
cal standpoint, DMI is usually studied within either the
atomistic or the micromagnetic limit. Whereas the atom-
istic form, Eq. (1), is certainly more general, the micro-
magnetic form, Eq. (2), is often sufficient to describe the
behavior of magnetic soft modes such as smooth domain
walls and skyrmions. In contrast, the atomistic form
is well adapted to study magnetic texture with strong,
short-range canting like in weak ferromagnets and non-
collinear antiferromagnets for instance.

The physical origin of this interaction at transition
metal interfaces has been the object of numerous numer-
ical investigations using density functional theory. The
most straightforward approach consists in computing the
energy of a spin cycloid or spiral in real space and deter-
mining the energy difference between states of opposite
chirality. In density functional theory, such a spin spiral
can be built by constraining the direction of the mag-
netic moments by applying a penalty energy on each of
them28.Upon varying the length of the spin spiral (i.e.,
varying the size of the unit cell), the various DM vectors
for nearest neighbors, next-nearest neighbors, etc. can
be extracted using Eq. (1). This approach has been used
to compute the DM vector in ferroelectric magnets such
as MgCr2O4

29 or Cu2OSeO3
30 and recently extended to

transition metal interfaces31. The ”constrained moment”
method has the advantage of being applicable to materi-
als with large spin-orbit coupling. However, it becomes
computationally prohibitive in the long-wavelength limit
(typically when the spin spiral wavelength exceeds 10
atomic sites) and is therefore more appropriate to com-
pute the short-range DMI of insulating magnets than the
long-range DMI of magnetic metals.

Alternatively, one can build spin spirals in the
reciprocal space32 employing the generalized Bloch
theorem33,34. This approach, exact in the absence of
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spin-orbit coupling, permits the modeling of spin spirals
of arbitrary wavelength. DMI is then computed to the
first order in spin-orbit coupling35,36. This method is lim-
ited to materials with weak enough spin-orbit coupling.
DMI introduces an additional dispersion that is odd in
the spin spiral momentum q and the DM vector is usu-
ally evaluated taking the limit q → 0. This approach has
been used to compute the DM vector in a wide range of
transition metal interfaces6,37–43. It is particularly well
adapted to identify the emergence of chiral ground states,
such as homochiral spin spirals6,38.

In the magnetic multilayers where Néel walls and room
temperature skyrmions are observed, these chiral mag-
netic textures usually display smooth spatial gradient
and long exchange length (typically 10 nm or more in
perpendicularly magnetized materials). In this situation,
the micromagnetic form, Eq. (2), seems more adapted
to describe the onset of magnetic chirality. Within the
micromagnetic limit, the DM vector can be computed
by expanding the magnetic energy to the first order
in magnetic gradient, an approach recently adopted by
Freimuth et al.27,44,45 and Kikuchi et al.46. Within lin-
ear response theory, it can be shown that the DM vec-
tor is related to the Berry curvature in the mixed spin-
momentum space. In Kikuchi’s theory, DMI is expressed
as EDM = (~/2)

∫
Ω
m · [(Js ·∇)×m]d3r, where Js is the

equilibrium spin current that interacts with the magnetic
texture. Mankovsky and Ebert47 have recently computed
DMI using Freimuth’s theory implemented on fully rel-
ativistic Korringa-Kohn-Rostoker Green’s function tech-
nique.

Irrespective of the method employed, the theoreti-
cal investigations of DMI at metallic interfaces have
pointed out the importance of interfacial 3d-5d orbital
hybridization42. Since the magnetism is mostly localized
on 3d orbitals whereas spin-orbit coupling is mostly car-
ried by 5d orbitals, a proper balance between 3d and 5d
orbitals is required to obtain large DMI, a trend con-
firmed experimentally48. The role of orbital hybridiza-
tion has also been indirectly probed through the depen-
dence of DMI on the magnetization induced in the non-
magnetic metal49,50. While it is clear that DMI scales
with 3d-5d hybridization51, the impact of inversion sym-
metry breaking on the magnitude of DMI has remained
difficult to established experimentally. Recently, Kim et
al.52 demonstrated that DMI scales with the orbital as-
phericity arising from interfacial symmetry breaking, a
feature confirmed by density functional theory. This as-
phericity is associated with the equilibrium orbital mag-
netic moment, which was also suggested to play an im-
portant role in the onset of DMI53. We also recently
proposed to tune DMI through interfacial oxidation43,
an effect confirmed experimentally54.

A question that remains scarcely addressed is the local-
ized or delocalized nature of DMI. For instance, consid-
ering magnetic transition metal chains deposited on top
of nonmagnetic substrates, Kashid et al.37 have pointed
out that DMI extends far beyond the nearest neighbor

interaction. Belabbes et al.42 showed that in W/Mn,
DMI arises from the contribution of the first three W
monolayers away from the interface. Experimentally,
it is observed that DMI increases upon increasing the
nonmagnetic metal thickness and saturates after a few
nanometers55, a scale that seems roughly comparable to
the spin relaxation length.

In the present work, we investigate the magnitude and
symmetry of DMI in a nonmagnetic metal/ferromagnet
heterostructure using a multi-orbital tight-binding model
within the two-center Slater-Koster parameterization.
We uncover the role of orbital mixing and show that DMI
can extend over several monolayers away from the inter-
face. Correspondingly, we examine the thickness depen-
dence of DMI and find that it can be substantial. This
Article is organized as follows: In Section II, we derive an
expression for DMI to the first order in spatial gradient
using Keldysh formalism. Then, Section III presents the
multi-orbital tight-binding model of the transition metal
heterostructure. The results are discussed in Section IV
and confronted to the oversimplified Rashba model. Fi-
nally, concluding remarks are given in Section V.

II. KELDYSH FORMALISM FOR DMI

As stated in the introduction, several methods have
been proposed to compute DMI from first principles. To
the best of our knowledge, the most popular approaches
are the generalized Bloch theorem36 and the real-space
spin spiral methods56. In the present work, we aim to de-
velop a Green’s function formula that is suitable to our
numerical platform. Such a Green’s function formula has
been derived by Freimuth et al.27 a few years ago by com-
puting the energy of the system in the presence of a spin
spiral and taking the long wave length limit. Here, we
derive the DMI energy by computing the non-equilibrium
response of the system in the presence of a gradient of
magnetization within Keldysh formalism. As discussed
below, in the limit of weak disorder and neglecting vertex
corrections, our results boil down to the formula derived
by Freimuth et al.27.

Following Keldysh formalism57,58, the lesser Green’s
function reads

Ĝ< = (ĜR ⊗ Σ̂<)⊗ ĜA, (3)

where ⊗ ≈ 1 + i~
2

(←−
∂ p ·

−→
∂ r −

←−
∂ r ·
−→
∂ p

)
is the Moyal

product expanded to the first order in spatial gradient.
The retarded (advanced) Green’s function fulfills Dyson’s
equation (

ε−H0 − Σ̂R(A)
)
⊗ ĜR(A) = 1̂. (4)

Here, H0 is the system’s Hamiltonian in the absence of

disorder, and the symbol
←−
∂ i means that the derivative

applies to the left, while
−→
∂ i applies to the right. Let us
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now derive the lesser Green’s function to the first order
in spatial gradient. We obtain

Ĝ< = ĜRΣ̂<ĜA − ~Im
[
∂pĜ

RΣ̂<∂rĜ
A
]

(5)

−~Im
[
∂pĜ

R∂rΣ̂
<ĜA

]
+ ~Im

[
∂rĜ

R∂pΣ̂<ĜA
]
.

In the limit of short range impurities, the self-energies

are local, i.e., Σ̂α = niV
2
0

∫
d3k

(2π)3 Ĝ
α, with α = A,R,<.

Therefore, ∂pΣ̂α = 0 and the last term in Eq. (5)

vanishes. Since the system is at equilibrium57, Σ̂< =(
Σ̂A − Σ̂R

)
f(ε), where f(ε) is Fermi-Dirac distribution.

Therefore, the first term in Eq. (5) reads

ĜRΣ̂<ĜA = ĜR
(

Σ̂A − Σ̂R
)
ĜAf(ε). (6)

This term must also be expanded to the first order in
spatial gradient. To do so, one uses Dyson’s equation for
the retarded Green’s function, Eq. (4), and expands the
Moyal product. We obtain

ĜR = ĜR0 + ĜR0

(
Σ̂R − Σ̂R0

)
ĜRΣ̂<ĜA (7)

− i~
2

(
−ĜR0 ∂pH0∂rĜ

R + ĜR0 ∂rH0∂pĜ
R
)

− i~
2
ĜR0 ∂rΣ̂

R∂pĜ
R.

Here Σ̂R0 is the self-energy at the zero-th order in spa-
tial gradient, and we defined the unperturbed retarded

Green’s function ĜR0 =
(
ε−H0 − Σ̂R0

)−1

. The first or-

der perturbation of the retarded Green’s function, ĜR∇ =

ĜR − ĜR0 , reads

ĜR∇ = ĜR0 Σ̂R∇Ĝ
R
0 (8)

− i~
2

(
ĜR0 ∂rH0∂pĜ

R
0 − ĜR0 ∂pH0∂rĜ

R
0

)
,

where we defined Σ̂R∇ = Σ̂R − Σ̂R0 = niV
2
0

∫
d3k

(2π)3 Ĝ
R
∇.

After some algebra, and making use of

Σ̂A0 − Σ̂R0 =
(
ĜR0

)−1

−
(
ĜA0

)−1

, (9)

∂pĜ
R
0 = ĜR0 ∂pH0Ĝ

R
0 , (10)

∂rĜ
R
0 = ĜR0 ∂r(H0 + Σ̂R0 )ĜR0 , (11)

we obtain the final expression for the first order perturba-

tion to the lesser Green’s function, Ĝ<∇ = Im
[
ĜR∇

]
f(ε),

where

ĜR∇ = − i~
2
ĜR0

(
∂r(H0 + Σ̂R0 )ĜR0 ∂pH0 (12)

−∂pH0Ĝ
R
0 (H0 + Σ̂R0 ) + 2iΣ̂R∇

)
ĜR0 .

One notices that Eq. (12) involves self-consistent treat-

ment of the disorder. In other words, ĜR∇ depends on

Σ̂R∇, which shows that the above expression includes ver-
tex corrections, in the same spirit as Ref. 58. Now, we
can finally express the correction to the total energy

〈H0 − µ〉 = ~
∫

dε

2πi
Tr
[
(H0 − µ)Ĝ<∇

]
. (13)

By using the identity H0 − µ = ε − µ − Σ̂R0 −
(
ĜR0

)−1

and −
(
ĜR0

)2

= ∂εĜ
R
0 , we obtain the general expression

for the DM energy

〈H0 − µ〉 = A+B + C, (14)

with

A = −~Re

∫
dε

2π
(ε− µ)f(ε)Tr

[(
∂r(H0 + Σ̂R0 )ĜR0 ∂pH0

−∂pH0Ĝ
R
0 ∂r(H0 + Σ̂R0 ) + 2iΣ̂R∇

)
∂εĜ

R
0

]
, (15)

B = −~Re

∫
dε

2π
f(ε)Tr

[(
∂r(H0 + Σ̂R0 )ĜR0 ∂pH0

−∂pH0Ĝ
R
0 ∂r(H0 + Σ̂R0 )

)
ĜR0 Σ̂R0 Ĝ

R
0

]
, (16)

C = 2~Im

∫
dε

2π
f(ε)Tr

[
Σ̂R∇Ĝ

R
0

(
1 + Σ̂R0 Ĝ

R
0

)]
. (17)

Let us now simplify this formula. Neglecting the contri-
bution of the self-energy, denoting v̂j = ∂pjH0 and recog-
nizing that ∂rH0 = (m×∂rm) ·T , where T = m×∂mH0

is the torque operator, we obtain

〈H0 − µ〉 =
∑
ij

Dijei · (m× ∂jm) (18)

Dij = ~Re

∫
dε

2π
(ε− µ)f(ε)×

Tr
[
Ti
(
∂εĜ

R
0 v̂jĜ

R
0 − ĜR0 v̂j∂εĜR0

)]
. (19)

This expression is exactly the one obtained in Ref. 27
(up to a ”-” sign). This is the expression we will use in
the next section to compute the DMI coefficient.

III. TIGHT-BINDING MODEL

A. Preliminaries

Before entering into the details of the multi-orbital
model proposed in this work, we introduce a simple min-
imal model for DMI, inspired from Ref. 37. The model
is a diatomic chain along the x-direction, whose bot-
tom non-magnetic atoms possess both pz and px orbitals
while the top magnetic atoms possess pz orbitals only.
The bottom atoms possess spin-orbit coupling, while the
top atoms carry magnetism. This toy model, depicted
in Fig. 1(a), represents an oversimplified nonmagnetic
metal/ferromagnet heterostructure. In the {ptz,pbz,pbx}
basis, where pην is the ν-th orbital of chain η, the Hamil-
tonian of the system reads
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Hchain =

 εtk Vzz Vzx
V ∗zz εzk 0
V ∗zx 0 εxk

 . (20)

Here pην refers to the ν-th orbital of the top (η = t) or
bottom chain (η = b), Vzz = (Vσ + Vπ) cos kxa/2 and
Vzx = −i(Vσ − Vπ) sin kxa/2. Vπ,σ are the Slater-Koster
hopping integrals59. In addition, we turn on spin-orbit
couplingHso on the bottom chain and magnetic exchange
Hex on the top chain. Explicitly,

Hso = ξ

0 0 0
0 0 −iσ̂y
0 iσ̂y 0

 , (21)

and

Hex = ∆

σ̂ ·m 0 0
0 0 0
0 0 0

 . (22)

Let us now use Eq. (18) to obtain an explicit expression
of the DMI energy to the first order in exchange ∆ and
spin-orbit coupling ξ. By doing so, we intend to reveal
the orbital mixing due to symmetry breaking that is at
the origin of DMI. We first rewrite Eq. (19) as Dij =

~
∫
dε
2π (ε− µ)f(ε)g(ε), with

g(ε) = ReTr
[
v̂jĜ

R
0 [ĜR0 , Ti]ĜR0

]
. (23)

The inner commutator can be extended to the first order
in both spin-orbit coupling and exchange,

[ĜR0 , Ti] ≈ [ĜR00HsoĜ
R
00, Ti], (24)

where

ĜR00 = (ε−H0 + i0+)−1, (25)

=
∑
n,s

|n〉 ⊗ |s〉〈s| ⊗ 〈n|
ε− εn + i0+

, (26)

and |n〉⊗ |s〉 is the eigenstate of Hchain, i.e., evaluated in
the absence of spin-orbit coupling and exchange interac-
tion. After some algebra, we obtain

g(ε) = −ξRe
Im [〈n|v̂j |m〉〈m|Ti|p〉〈p|Ll|n〉〈s|σk|s′〉〈s′|σl|s〉]

(ε− εm + i0+)(ε− εp + i0+)(ε− εn)2
.

(27)

Summation over n,m, p and s, s′ is assumed for short-
handedness. The diagonalization of Hamiltonian (20)
gives us three eigenstates. In order to make our result
as simple as possible, we assume that εzk = εxk. Then, we
end up with three bands with dispersion

ε0
k = εzk, (28)

ε±k =
εtk + εzk

2
± 1

2
γk, (29)

FIG. 1. (Color online) Schematics of the two tight-binding
models discussed in this work. (a) Two-orbital diatomic
chain: The atoms of the bottom chain (gray) possess both px

and pz orbitals and spin-orbit coupling, while the atoms of
the top chain (blue) has only pz orbitals and supports mag-
netism. (b) Multi-orbital bilayer heterostructure: The het-
erostructure is composed of two bcc monoatomic thin films
whose elements possess all five d orbitals. The bottom layer
(grey) is a nonmagnetic metal, whereas the top layer (blue)
is magnetic. Both layers possess spin-orbit coupling.

with γk =
√

(εtk − εzk)2 + 4(|Vzz|2 + |Vzx|2), correspond-
ing to the eigenstates

|0〉 = −Ṽzx|pbz〉+ Ṽzz|pbx〉, (30)

|+〉 = cosχ|ptz〉+ sinχ
(
Ṽzz|pbz〉+ Ṽ ∗zx|pbx〉

)
, (31)

|−〉 = − sinχ|ptz〉+ cosχ
(
Ṽzz|pbz〉+ Ṽ ∗zx|pbx〉

)
,

(32)

where cos 2χ = (εtk − εzk)/γk and

Ṽzz =
Vzz√

|Vzz|2 + |Vzx|2
, Ṽzx =

Vzz√
|Vzz|2 + |Vzx|2

.

After some algebra, we obtain

Dyx = ~s∆ξ(V 2
σ − V 2

π )

∫
dk

∆5
k

sin kxa× (33)[
v+
x f(ε−)(ε− − µ)− v−x f(ε+)(ε+ − µ)

]
,

and all the other matrix elements are zero. We retrieve
in this simple expression all the key features of DMI at
interfaces. It is, to the lowest order, linear in both spin-
orbit coupling and magnetic exchange and proportional
to the inversion symmetry breaking through Vzx. This
potential characterizes the admixture between pbz and pbx
orbitals, mediated by ptz orbitals. This admixture enables
the onset of an orbital momentum along y, which results
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in the emergence Dyx. One can extend this scenario to
d orbitals: admixture between two orthogonal orbitals,
mediated by a symmetry breaking coupling term, can re-
sult in a non-vanishing orbital momentum, as illustrated
in Fig. 2. The multi-orbital tight-binding model pre-
sented below intends to encompass such admixtures at
interfaces.

FIG. 2. (Color online) Schematics of the spin momentum
induced by mixing d orbitals in the presence of spin-orbit
coupling.

B. Transition metal heterostructure

We now move on to the description of the tight-binding
model of our transition metal heterostructure. Since this
method has been described in Ref. 60, we summarize its
main features below and refer the reader to Ref. 60 for
more details. The structure is depicted on Fig. 1(b) and
consists of two adjacent transition metal layers with bcc
crystal structure and equal lattice parameter. The model
is constituted of monolayers stacked on top of each other
along the (001) direction. The individual Hamiltonian of
a monolayer reads

H0 = Hmono ⊗ σ̂0 +Hex +Hsoc. (34)

The first term is the 10×10 Hamiltonian of the mono-
layer without magnetic exchange. Hmono is written in
the basis {dxy,dyz,dzx,dx2−y2 ,dz2} and its matrix el-
ements are written assuming two-center Slater-Koster
parameterization59. The second term is the exchange
interaction between the itinerant spins and the mag-
netic order, and the third term is the spin-orbit coupling
Hamiltonian written in Russel-Saunders scheme,

Hsoc = ξso


0 iσ̂y −iσ̂x 0 2iσ̂z
−iσ̂y 0 iσ̂z −i

√
3σ̂x −iσ̂x

iσ̂x −iσ̂z 0 i
√

3σ̂y −iσ̂y
0 i

√
3σ̂x −i

√
3σ̂y 0 0

−2iσ̂z iσ̂x iσ̂y 0 0

 .

(35)
Each monolayer is connected to its top first and second-

nearest neighbor through off-diagonal matrices, T1 and

T2, respectively. The Hamiltonian of one bcc layer is
then

Hlayer =



H0 T1 T2 0

T †1 H0 T1 T2
. . .

T †2 T †1 H0 T1
. . .

0 T †2 T †1 H0
. . .

. . .
. . .

. . .
. . .


(36)

We adopt the parameters computed by
Papaconstantopoulos61 for bulk bcc Fe and bcc W
(see Ref.60 for details). With these parameters, we
determine the Hamiltonian for the nonmagnetic and
ferromagnetic layers, HNM and HF. Finally, the het-
erostructure is obtained by stitching two individual slabs
together, yielding the total Hamiltonian

H =

(
HF T FN

T FN,† HNM

)
. (37)

The hopping matrix T FN is simply given by T1 and T2

adopting the parameters of Table I in Ref.62. At zero
temperature, the chemical potential equals the Fermi en-
ergy, µ = EF = 14 eV. The density of state of the struc-
ture can be obtained by computing − 1

π Im[ĜR], where

ĜR = (ε−H + iΓ) is the retarded Green’s function and
Γ is the homogeneous broadening, as shown in Fig. 3.
Our minimal multi-orbital model serves as a platform to
our investigation on DMI.

FIG. 3. (Color online) The spin-resolved density of states of
FM(5)/NM(7) bilayer with EF = 14 eV. The blue shaded area
corresponds to the contribution of the nonmagnetic metal,
while the red shaded area corresponds to the ferromagnetic
metal contribution. The vertical dotted line indicates EF =
12.6 eV.

We would like to emphasize that because magnetism
arises from both spin and orbital moments, DMI also pos-
sesses both orbital and spin contributions, as discussed
in the case of La2CuO4 by Ref. 53. In certain systems,
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FIG. 4. (Color online) Orbital-resolved band structure of FM(5)/NM(7) bilayer. The band structure is projected on (a) dxy,
(b) dyz, (c) dzx, (d) dz2 and (e) dx2−y2 . The scale spans from 0 (dark blue) to 1 (red). Close to Fermi level (white dashed line),
one can see that dxy, dz2 and dx2−y2 contributions are isotropic in momentum, while dyz and dzx contributions are anisotropic.

such as correlated oxides, the orbital contribution to the
overall magnetism is important and therefore can sub-
stantially contribute to DMI53. The theory presented in
section II does in principle account for the orbital contri-
bution. Nonetheless, in transition metal multilayers the
orbital moment is usually quenched due to the high sym-
metry of the bulk metal and slightly increases close to
the interface due to symmetry lowering63. Although we
acknowledge that the influence of this orbital moment de-
serves further study, we neglect this orbital contribution
in the present work.

Before closing this brief presentation, let us inspect the
band structure of the heterostructure along the X̄−Γ̄−Ȳ

path, projected on the various d orbitals, as displayed in
Fig. 4. As mentioned in the previous section, the ad-
mixture of two orthogonal such orbitals favors the onset
of DMI (see Fig. 2), and it is therefore instructive to
identify the momentum-dependent orbital texture close
to Fermi level. From Fig. 4, we see that dxy, dx2−y2 and
dz2 are isotropic in momentum [Figs. 4(a), (d), and (e)],
dz2 being dominant [light blue in Fig. 4(d)] over dxy and
dx2−y2 [blue in Figs. 4(a,e)] at Fermi level. In contrast,
dyz and dzx are weaker [dark blue in Figs. 4(b,c)] and dis-
play an anisotropic texture: their magnitude along along
the Γ̄ − Ȳ path is different from their magnitude along
Γ̄− X̄ path.

This feature promotes the inverse orbital galvanic
effect, i.e., the generation of non-equilibrium orbital
momentum64, illustrated on Fig. 5. From Fig. 5(a,b), we
see that the Lx and Ly components are antisymmetric in
momentum k along Γ̄− Ȳ and Γ̄− X̄ paths, respectively.
In contrast, the Lz component is isotropic and even in
momentum. In other words, L ∝ z×k. As a consequence,
based on Fig. 2 and Fig. 4, we can propose the follow-
ing scenario: around Fermi level, the admixture dxy-dzx
(dxy-dyz) produces a non-equilibrium orbital momentum
Ly (Lx) along the Γ̄− X̄ (Γ̄− Ȳ) path. In the presence of
magnetization gradient along x, this orbital momentum
promotes the onset of a DM vector along y, i.e., Dyx.
Symmetrically, the admixture dxy-dyz promotes the on-
set of a DM vector along x for a magnetization gradient
along y, i.e., Dxy.

IV. RESULTS

A. Symmetry analysis

As explicitly demonstrated in Ref. 27, the DMI coeffi-
cient Dij possesses the same symmetries as the damping-
like torque coefficient, tij , defined as T iDL = tijEj , Ej
being the j-th component of the electric field. At an in-
terface with the highest symmetry C∞, the damping-like
torque reads65

TDL ∝m× [m× (z×E)], (38)

or, equivalently,

t̂C∞ ∝

 mxmy m2
z +m2

y 0
−m2

z −m2
y −mxmy 0

mymz −mxmz 0

 ≡ D̂C∞ . (39)

By identifying the matrix elements of D̂C∞ to that of t̂C∞ ,
we obtain the DMI energy

EDM = Dm · [(z×∇)×m], (40)
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FIG. 5. (Color online) Band structure of FM(5)/NM(7) bilayer projected on the three components of the orbital momentum.
Lx and Ly are antisymmetric along Ȳ − Γ̄ − Ȳ and X̄ − Γ̄ − X̄, respectively, whereas Lz remains even in momentum.
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FIG. 6. (Color online) The different coefficients of the
DMI tensor as a function of the Fermi energy, computed in
FM(5)/NM(7) bilayer using our multi-orbital tight-binding
approach. In this calculation, the broadening is set to Γ = 50
meV and EF = 14 eV.

as expected at such interfaces. The coefficient D can be
obtained by solving Eq. (18) for the magnetic Rashba
Hamiltonian,

H =
p̂2

2m
+ αR(z× σ̂) · k + ∆σ̂ ·m. (41)

In the constant relaxation time approximation, the re-
tarded Green’s function reads ĜR = 1

2

∑
s

1+sσ̂·n
ε−εk,s+iΓ ,

where

εk,s =
~2k2

2m
+ sλk, n = −(αR/λk)z× k, (42)

λk =
√

∆2 + α2
R − 2∆αRk sin θ sin(ϕ− ϕm). (43)

Using Eq. (18), we obtain

EDM = −~∆Re

∫
dε

2π
(ε− εF )f(ε)

∫
d2k

4π2
× (44)

Tr
[
v̂jĜ

R(σ̂ · ∂jm)∂εĜ
R − v̂j∂εĜR(σ̂ · ∂jm)ĜR

]
.

= αR∆
∑
s

∫
d2k

2π2

s(εk,s − EF )f(εk,s)

(εk,s − εk,−s)2
[n× (z×∇)] ·m

(45)

After solving the integral, we get the final expression

EDM =
αREF

2π

m

~2
m · [(z×∇)×m] , (46)

from which we can see that

Dxy = −Dyx =
αREF

2π

m

~2
, (47)

Dxx = Dyy = 0 (48)

In this expression, the magnetic exchange ∆ does not
appear explicitly due to an accidental cancellation with
the denominator ∝ εk,s − εk,−s, a feature specific to the
ideal case of the free electron Rashba gas.

In systems that deviate from the ideal Rashba case,
such as transition metal multilayers, the damping-like
torque display higher order behavior that feature torque
components of unusual symmetry66,67, beyond that of
Eq. (38). Since we did observe these additional features
in the tight-binding model presented here62, one could
reasonably expect that the associated DMI might also
display higher order contributions. The DMI coefficients
for the transition metal heterostructure are reported on
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Fig. 6 as a function of the Fermi energy. The multi-
orbital tight-binding model, in spite of its much higher
complexity than the Rashba Hamiltonian, Eq. (41), also
displays Dxx = Dyy = 0 and Dxy = −Dyx 6= 0, in
contrast with the damping-like torque discussed above.

We conclude this discussion by computing the Dxy co-
efficient as a function of the disorder strength Γ. As
exposed in Eqs. (33) and (46), DMI is an intrinsic mech-
anism in the sense that when disorder vanishes, it con-
verges to a finite value27, similarly to the damping-like
torque in this respect68. However, as discussed in Section
II, in the presence of short-range disorder the self-energy

is non-vanishing and reads Σ̂R(A) = niV
2
0

∫
d3k

(2π)3 Ĝ
R(A).

This self-energy should be computed self-consistently in
order to account for all scattering orders. Since this pro-
cedure is highly computationally demanding, it is conven-
tional to reduce the self-energy to a constant broadening
Σ̂R(A) = ∓iΓ, equivalent to the constant relaxation time
approximation in Boltzmann transport equation. We re-
port the disorder dependence of the Dxy coefficient for
two different Fermi energies in Fig. 7. Due to numerical
limitations, we could not test the limit of vanishing disor-
der. Nonetheless, the DMI coefficient displays a smooth
decay as a function of disorder [∝ 1/(η2 + Γ2)], smaller
than the one expected for an extrinsic effect (∝ 1/Γ).
This observation is important because it emphasizes the
major impact of disorder on the DMI coefficient, despite
its ”intrinsic” origin. In the ideally clean limit, the in-
trinsic origin of the DMI reveals itself through the im-
portance of the ”band anticrossing”, resulting in sharp
peaks when spanning across the band structure69,70. In
real materials though, thermally activated phonons and
defects induce a finite broadening Γ, which washes out
these singularities. From the transport calculations per-
formed in Ref. 60, we estimate that this broadening is
about 20 meV, corresponding to a conductivity of ∼107

Ω−1·m−1. In other words, in realistic systems the value
of DMI is unlikely to be equal to the one obtained in
the clean limit and should be substantially smaller. An
estimation solely based on the clean limit systematically
overestimates DMI.

B. Orbital decomposition of DMI

As we have seen in Section III, DMI arises from the
orbital momentum stemming from the admixture of the
atomic orbitals induced by symmetry breaking. Whereas
the toy model of Section III was based solely on px and pz
orbitals, giving rise to Ly orbital momentum, our multi-
orbital model for the transition metal heterostructure in-
volves all the 10 d-orbitals. To understand which or-
bitals are involved in the emergence of interfacial DMI,
one can contemplate the chart provided in Fig. 2. This
figure schematically represents the spin momentum di-
rection induced by the atomic spin-orbit coupling upon
the mixing of two d atomic orbitals.

In order to stabilize a perpendicular Néel spin spiral

30 60 90 120 150 180 210
-8

-6

-4

-2

0

Γ (meV)

D
x
y

(
m

eV
/Å

)

EF = 14eV

EF = 12.6eV

FIG. 7. (Color online) The DMI coefficient Dxy as a function
of the disorder broadening in FM(5)/NM(7) bilayer, for two
values of the Fermi energy.

propagating along x, the orbital momentum must be
aligned along y, which can be obtained by the follow-
ing admixture: dzx-dz2 , dxy-dyz and dzx-dx2−y2 . Simi-
larly, in order to induce a perpendicular Néel spin spiral
along y, the orbital momentum must be aligned along
x, which can be obtained by mixing: dyz-dz2 , dxy-dzx
and dyz-dx2−y2 . In Fig. 8, the DMI coefficient Dxy is
calculated by only turning on the spin-orbit coupling co-
efficient that mixes two specific orbitals. In this figure,
the spin-orbit coupling of the ferromagnetic layer is set
to zero, for simplicity. We see that the dominant contri-
butions to DMI come from dyz-dz2 (red), dxy-dzx (blue)
and dyz-dx2−y2 (orange), all orbital combinations giving
an orbital momentum along Lx. This orbital-resolved di-
agram demonstrates that the scenario discussed in Sec-
tion III remains mostly valid in our multi-orbital sys-
tem. Notice that the specific orbital contributions are
strongly energy dependent, which reflects the fact that
the electronic band structure displays strong orbital tex-
ture [Fig. 4]. Finally, we emphasize that performing the
same analysis on the DMI coefficient Dyx gives orbitals
combinations that yield an orbital momentum Ly.

Figure 9 displays the same orbital-resolved DMI when
spin-orbit coupling is present in both metals. Whereas
the DMI orbital decomposition remains mostly unaf-
fected for low (EF < 12 eV) and high energies (EF > 14
eV), we notice that the contribution from dyz-dx2−y2 (or-
ange) increases substantially around EF ≈ 14 eV, re-
flecting the important role of interfacial orbital mixing
between the magnetic and nonmagnetic orbitals at this
energy.
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FIG. 8. (Color online) Dxy as a function of the Fermi energy
when turning on only specific coefficients of the spin-orbit
coupling matrix, in FM(5)/NM(7) bilayer. Here the spin-
orbit coupling of the ferromagnetic layer is turned off. The
broadening is set to Γ = 50 meV and EF = 14 eV.
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FIG. 9. (Color online) Dxy as a function of the Fermi energy
when turning on only specific coefficients of the spin-orbit
coupling matrix, in FM(5)/NM(7) bilayer. The spin-orbit
coupling of both the ferromagnetic and nonmagnetic layers is
turned on. The broadening is set to Γ = 50 meV and EF = 14
eV.

C. Thickness dependence

An important question that remained to be addressed
is whether DMI is localized at the interface or whether
it extends away from it. As mentioned in the intro-

duction, it has been experimentally observed that in
CoFeB/Pt heterostructure DMI increases upon increas-
ing the nonmagnetic metal thickness and saturates af-
ter a few nanometers55, on a scale that seems roughly
comparable to the spin relaxation length. From the
theoretical viewpoint, Yang et al.31 computed DMI in
Co/Pt(111) and found that is it dominated by the up-
permost Pt layer, while Belabbes et al.42 computed DMI
in Mn/W(001) and found that the first three W layers
contribute to the total DMI. Although these two calcula-
tions are performed using different methods (real-space
spin spiral versus momentum-space spin spiral), they in-
dicate that different materials may display quite different
behaviors.

In Fig. 10, we report the energy-dependent DMI coef-
ficient when turning on the spin-orbit coupling param-
eter of a given monolayer away from the interface in
FM(3)/NM(10) while turning off the spin-orbit coupling
of the other layers. This procedure is only valid in the
limit of weak spin-orbit coupling, but does provide a qual-
itative picture of the delocalized nature of DMI as long
as the overall band structure remains weakly modified
by the spin-orbit coupling of individual layers. Figure 10
shows that whereas DMI is often dominated by the up-
permost nonmagnetic metal monolayer (thick blue line),
the contribution of the sub-monolayers is very sensitive to
the energy (thin colored lines). At Fermi energy, DMI is
entirely dominated by the uppermost nonmagnetic metal
layer. However, around 13.5 eV contributions from the
second and third monolayers become significant (verti-
cal dotted line in Fig. 10), indicating that the Bloch
states participating to DMI have a delocalized character.
At 12.6 eV, only the second and third layers contribute
whereas the first layer close to the interface does not (ver-
tical dashed line in Fig. 10). This complex behavior re-
flects again the high sensitivity of the orbital composition
of the band structure as a function of the energy. It also
indicates that the nature of DMI, localized close to the
interface or delocalized away from it, is material sensi-
tive. This suggests that such a feature could be tuned by
doping the nonmagnetic metal and modifying the Fermi
level.

To conclude this study, let us now turn our attention
towards the thickness dependence of DMI. Upon varying
the thickness of the nonmagnetic metal, DMI shows a
large modulation as reported in Fig. 11(a). At 14 eV
(blue symbols), this oscillation only extends over a few
monolayers (typically 1 nm), which is understood from
our previous discussion: at 14 eV, the DMI is dominated
by the first nonmagnetic metal layer, resulting in oscilla-
tions confined close to the interface. In contrast, at 12.6
eV (red symbols), DMI does not saturate before about 20
monolayers, corresponding to about 2.3 nm, revealing the
delocalized nature of DMI at this energy. Figure 11(b)
shows the dependence of DMI when varying the thickness
of the ferromagnetic layer. At both Fermi energies, 14 eV
and 12.6 eV, DMI saturates after a few monolayers only
(∼ 8 monolayers, corresponding to less than 1 nm). This
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FIG. 10. (Color online) Dxy as a function of the Fermi energy
when turning on the spin-orbit coupling only on specific lay-
ers. The vertical dashed and dotted lines indicate EF = 12.6
eV and EF = 13.5 eV, respectively.

fast saturation is attributed to the spin dephasing, i.e., to
the alignment of the spin of the delocalized electrons on
the local magnetization of the ferromagnet. Due to the
large exchange, any spin misalignment due to the mag-
netic texture is absorbed close to the interface, resulting
in an interfacial behavior.

V. CONCLUSION

In this work, we discussed the nature of DMI in tran-
sition metal heterostructures. We first derived the ex-
pression of DMI in the weak spatial gradient limit within
Keldysh formalism. This derivation provides us with a
Green’s function formula that is well adapted to tight-
binding Hamiltonians. With this tool, we first uncover
the role of orbital mixing and show that symmetry break-
ing enables the onset of interfacial orbital momentum
that is at the origin of the DMI. We finally investigate
the different layers to the DMI and reveal that it can ex-
pand over several nonmagnetic metal layers depending on

the Fermi energy, thereby revealing the complex orbital
texture of the band structure. Finally, we examine the
thickness dependence of DMI on both ferromagnetic and
nonmagnetic metal thicknesses and we find that whereas
the former remains very weak, the thickness dependence
of DMI as a function of the nonmagnetic metal thickness
can be substantial.
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FIG. 11. (Color online) Thickness dependence of Dxy when
(a) varying the nonmagnetic thickness and setting the ferro-
magnetic layer to 3 monolayers, and (b) varying the ferromag-
netic thickness and setting the nonmagnetic layer to 5 mono-
layers. The calculations have been performed for EF = 14 eV
(blue) and 12.6 eV (red).
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