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Abstract. We developed a high-resolution surface flux inver-
sion system based on the global Eulerian–Lagrangian cou-
pled tracer transport model composed of the National Insti-
tute for Environmental Studies (NIES) transport model (TM;
collectively NIES-TM) and the FLEXible PARTicle disper-
sion model (FLEXPART). The inversion system is named
NTFVAR (NIES-TM–FLEXPART-variational) as it applies
a variational optimization to estimate surface fluxes. We
tested the system by estimating optimized corrections to
natural surface CO2 fluxes to achieve the best fit to atmo-
spheric CO2 data collected by the global in situ network
as a necessary step towards the capability of estimating an-
thropogenic CO2 emissions. We employed the Lagrangian
particle dispersion model (LPDM) FLEXPART to calcu-
late surface flux footprints of CO2 observations at a spa-

tial resolution of 0.1◦× 0.1◦. The LPDM is coupled with a
global atmospheric tracer transport model (NIES-TM). Our
inversion technique uses an adjoint of the coupled transport
model in an iterative optimization procedure. The flux er-
ror covariance operator was implemented via implicit diffu-
sion. Biweekly flux corrections to prior flux fields were es-
timated for the years 2010–2012 from in situ CO2 data in-
cluded in the Observation Package (ObsPack) data set. High-
resolution prior flux fields were prepared using the Open-
Data Inventory for Anthropogenic Carbon dioxide (ODIAC)
for fossil fuel combustion, the Global Fire Assimilation Sys-
tem (GFAS) for biomass burning, the Vegetation Integra-
tive SImulator for Trace gases (VISIT) model for terres-
trial biosphere exchange, and the Ocean Tracer Transport
Model (OTTM) for oceanic exchange. The terrestrial bio-
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spheric flux field was constructed using a vegetation mo-
saic map and a separate simulation of CO2 fluxes at a daily
time step by the VISIT model for each vegetation type. The
prior flux uncertainty for the terrestrial biosphere was scaled
proportionally to the monthly mean gross primary produc-
tion (GPP) by the Moderate Resolution Imaging Spectro-
radiometer (MODIS) MOD17 product. The inverse system
calculates flux corrections to the prior fluxes in the form of
a relatively smooth field multiplied by high-resolution pat-
terns of the prior flux uncertainties for land and ocean, fol-
lowing the coastlines and fine-scale vegetation productivity
gradients. The resulting flux estimates improved the fit to the
observations taken at continuous observation sites, reproduc-
ing both the seasonal and short-term concentration variabili-
ties including high CO2 concentration events associated with
anthropogenic emissions. The use of a high-resolution atmo-
spheric transport in global CO2 flux inversions has the advan-
tage of better resolving the transported mixed signals from
the anthropogenic and biospheric sources in densely popu-
lated continental regions. Thus, it has the potential to achieve
better separation between fluxes from terrestrial ecosystems
and strong localized sources, such as anthropogenic emis-
sions and forest fires. Further improvements in the mod-
elling system are needed as our posterior fit was better than
that of the National Oceanic and Atmospheric Administra-
tion (NOAA)’s CarbonTracker for only a fraction of the mon-
itoring sites, i.e. mostly at coastal and island locations where
background and local flux signals are mixed.

1 Introduction

Inverse modelling of the surface fluxes is implemented by
using chemical transport model simulations to match atmo-
spheric observations of greenhouse gases (GHGs). CO2 flux
inversion studies started from addressing large-scale flux dis-
tributions (Enting and Mansbridge, 1989; Tans et al., 1990;
Gurney et al., 2002; Peylin et al., 2013, and others) using
background monitoring site data and global transport models
at low and medium spatial resolutions, targeting the extrac-
tion of the information on large and highly variable fluxes
of CO2 from terrestrial ecosystems and oceans. The mer-
its of improving the spatial resolutions of global transport
simulations to 9–25 km, which this study aims to demon-
strate, have been also discussed by previous studies, such as
Agusti-Panareda et al. (2019) and Maksyutov et al. (2008).
However, global inverse modelling studies have never been
conducted at these spatial resolutions. On the other hand,
regional-scale fluxes, such as national emissions of non-CO2
GHGs, have been estimated using inverse modelling tools
that rely on regional (mostly Lagrangian) transport algo-
rithms which are capable of resolving surface flux contribu-
tions to atmospheric concentrations at resolutions from 1 to
100 km (Vermeulen et al., 1999; Manning et al., 2011; Stohl

et al., 2009; Rödenbeck et al., 2009; Henne et al., 2016; He
et al., 2018; Schuh et al., 2013; Lauvaux et al., 2016 and oth-
ers). Extension of the regional Lagrangian inverse modelling
to the global scale, based on the combination of the three-
dimensional (3-D) global Eulerian model and Lagrangian
model, has been implemented in several studies (Rugby et
al., 2011; Zhuravlev et al., 2013; Shirai et al., 2017). They
have demonstrated an enhanced capability to resolve the re-
gional and local concentration variabilities driven by fine-
scale surface emission patterns, while the inverse modelling
schemes rely on regional and global basis functions that yield
concentration responses of regional fluxes at observational
sites. A disadvantage of using the regional basis functions
in inverse modelling is the flux aggregation errors, as noted
by Kaminski et al. (2001). This has been addressed by de-
veloping grid-based inversion schemes based on variational
assimilation algorithms that yield flux corrections that are
not tied to aggregated flux regions (Rödenbeck et al., 2003;
Chevallier et al., 2005; Baker et al., 2006, and others). In or-
der to implement a grid-based inversion scheme that is suit-
able for optimizing surface fluxes using the high-resolution
atmospheric transport capability of the Lagrangian model, an
adjoint of a coupled Eulerian–Lagrangian model is needed,
as reported by Belikov et al. (2016).

In this study, we applied an adjoint of the coupled
Eulerian–Lagrangian transport model, which is a revised ver-
sion of Belikov et al. (2016), to the problem of surface flux
inversion, based on a coupled transport model with a spa-
tial resolution of the Lagrangian model at 0.1◦ longitude–
latitude. While global higher-resolution transport simula-
tions can be implemented with coupled Eulerian–Lagrangian
models (e.g. Ganshin et al., 2012), the choice of the model
resolution in our inversion system was dictated mostly by the
availability of the prior surface CO2 fluxes.

The practical need for running high-resolution atmo-
spheric transport simulations at the global scale is currently
driven by expanding the GHG-observing capabilities towards
quantifying anthropogenic emissions by observing GHGs at
the vicinity of emission sources (Nassar et al., 2017; Lau-
vaux et al., 2020). These include observations in both back-
ground and urban sites with tall towers, commercial aero-
planes, and satellites. At the same time, the focus of inverse
modelling is evolving towards studies of the anthropogenic
emissions, with a target of making better estimates of re-
gional and national emissions in support of national and re-
gional GHG emission reporting and control measures (Man-
ning et al., 2011; Henne et al., 2016; Lauvaux et al., 2020).
In that context, global-scale, high-resolution inverse mod-
elling approaches have the advantage of closing global bud-
gets, while regional- and national-scale inverse modelling ap-
proaches with limited area models require boundary condi-
tions normally provided by global model simulations with
optimized fluxes. Often there is an additional degree of free-
dom introduced by allowing corrections to the boundary con-
centration distribution to improve a fit at the observation

Atmos. Chem. Phys., 21, 1245–1266, 2021 https://doi.org/10.5194/acp-21-1245-2021



S. Maksyutov et al.: Technical note: A high-resolution inverse modelling technique for CO2 fluxes 1247

sites (Manning et al., 2011). As a result, the global total of
regional emission estimates does not necessarily match the
balance constrained by global mean concentration trends. A
global coupled Eulerian–Lagrangian model, such as Ganshin
et al. (2012), has the potential to address both the objectives;
that is, closing the global balance and operating at the range
of scales from a single city (Lauvaux et al., 2016) to a large
country or continental scale. Here we report the development
of a high-resolution inverse modelling technique that is suit-
able for application at a broad range of spatial scales. We ap-
plied it to the problem of estimating the distribution of CO2
fluxes over the globe that provides the best model fit to the
observations. In separate studies, the same inversion system
was applied to the inverse modelling of methane emissions
(Wang et al., 2019; Janardanan et al., 2020).

The objective of this study is to optimize the natural CO2
fluxes in order to provide background CO2 concentration
fields for estimating fossil CO2 emissions where the advan-
tage of the high-resolution approach is more evident. The pa-
per is organized as follows: Sect. 1 provides an introduction,
Sect. 2 contains the transport model and its adjoint, Sect. 3
introduces the prior fluxes, observational data set, and grid-
ded flux uncertainties, Sect. 4 gives the formulation of the in-
verse modelling problem and numerical solution, and Sect. 5
presents the simulation results and discussion, followed by
the summary and conclusions.

2 The coupled tracer transport model, its adjoint, and
the implementation

For the simulation of the CO2 transport in the atmosphere,
we used the coupled Eulerian–Lagrangian model NIES-TM–
FLEXPART (defined as the National Institute for Environ-
mental Studies transport model coupled with the FLEXible
PARTicle dispersion model), which is a modified version
of the model described by Belikov et al. (2016). The cou-
pled transport model is computationally more efficient in
comparison to the Eulerian model if both models are run
on the same spatial resolution. Belikov et al. (2016) con-
firmed that the coupled model with a Lagrangian model res-
olution of 1◦× ◦ performs similarly when coupled with Eu-
lerian model at either a 1.25◦× 1.25◦ or 2.5◦× 2.5◦ resolu-
tion, and performance degradation was only seen when using
a 10◦× 10◦ resolution Eulerian model. The coupled model
consists of NIES-TM v08.1i, with a horizontal resolution of
2.5◦×2.5◦ and 32 hybrid–isentropic vertical levels (Belikov
et al., 2013), and the FLEXPART model v.8.0 (Stohl et al.,
2005), run in backward mode with a surface flux resolution
of 0.1◦× 0.1◦. Both models use the Japan 25-year reanal-
ysis (JRA-25) and/or Japan Meteorological Agency (JMA)
Climate Data Assimilation System (JCDAS) meteorology
(Onogi et al., 2007), with 40 vertical levels interpolated to a
1.25◦× 1.25◦ grid. The use of low-resolution wind fields for
high-resolution transport is better justified for cases of nearly

geostrophic flow over flat terrain, as discussed by Ganshin et
al. (2012). It should be useful in the future to adapt this mod-
elling framework to using reanalyses recently made available
at 0.25–0.3◦ resolution, even if the tests with higher resolu-
tion winds by Ware et al. (2019) did not show a large im-
provement over a lower resolution.

The coupled transport model was derived from the
Global Eulerian–Lagrangian Coupled Atmospheric transport
model (GELCA; Ganshin et al., 2012; Zhuravlev et al.,
2013; Shirai et al., 2017). To facilitate model application
in our iterative inversion algorithm, all the components of
the model, i.e. the Eulerian model and the coupler, are in-
tegrated into one executable (online coupling), as described
in Belikov et al. (2016), while the original GELCA model
implements Eulerian and Lagrangian components sequen-
tially and then applies the coupler (offline coupling). The
changes in the current version with respect to the version
presented by Belikov et al. (2016) include an adjoint code
derivation for model components, using the adjoint code
compiler Tapenade (Hascoet and Pascual, 2013) instead of
using the TAF (transformation of algorithms in Fortran) com-
piler (Giering and Kaminski, 2003). Additionally, the in-
dexing and sorting algorithms for the transport matrix were
revised to allow efficient memory use for processing large
matrices of Lagrangian particle dispersion model (LPDM)-
driven responses to surface fluxes arising in the case of high-
resolution surface fluxes and a large number of observa-
tions, especially when using satellite data. A manually de-
rived adjoint of the NIES-TM v08.1i is used, as in Belikov et
al. (2016), due to its computational efficiency. In the version
of the model that includes the manually coded adjoint, only
the second-order van Leer algorithm (van Leer, 1977) is im-
plemented, as opposed to the third-order algorithm typically
used in forward models (Belikov et al., 2013).

3 Prior fluxes, flux uncertainties, and observations

Prior CO2 fluxes were prepared as a combination of monthly
varying fossil fuel emissions by the Open-Data Inven-
tory for Anthropogenic Carbon dioxide (ODIAC), avail-
able at a global 30 arcsec resolution (e.g. Oda et al., 2018);
ocean–atmosphere exchanges by the Ocean Tracer Transport
Model (OTTM) 4-D variational assimilation system, avail-
able at a 1◦ resolution (Valsala and Maksyutov, 2010); daily
CO2 emissions by biomass burning from the Global Fire As-
similation System (GFAS) data set, provided by the Coper-
nicus services at a 0.1◦ resolution (Kaiser et al., 2012); and
the daily varying climatology of terrestrial biospheric CO2
exchange, simulated by the optimized Vegetation Integrative
SImulator for Trace gases (VISIT) model (Ito, 2010; Saito et
al., 2014). Figure 1 presents samples of the four prior flux
components (fossil, vegetation, biomass burning, and ocean)
used in the forward simulation.
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Figure 1. Examples of prior CO2 fluxes (units gC m−2 d−1). (a) Emissions from fossil fuel burning by ODIAC (January 2011). (b) Fluxes
from the terrestrial biosphere by the optimized VISIT model (day 160; 9 June 2011). (c) Emissions from biomass burning by GFAS in Africa
(10 January 2011). (d) Fluxes due to the ocean–atmosphere exchange by the OTTM assimilation model (January 2011).

3.1 Emissions from fossil fuel

For the fossil fuel CO2 emissions (emissions due to fossil
fuel combustion and cement manufacturing), we used the
ODIAC data product (Oda and Maksyutov, 2011, 2015; Oda
et al., 2018) at a 0.1◦×0.1◦ resolution on monthly basis. The
2016 version of the ODIAC data product (ODIAC2016; Oda
et al., 2018) is based on global and national emission esti-
mates and monthly estimates made by the Carbon Dioxide
Information Analysis Center (CDIAC; Boden et al., 2016;
Andres et al., 2011). For spatial disaggregation, it uses the
emission data for power plant emissions by the CARbon
Monitoring for Action (CARMA) database (Wheeler and
Ummel, 2008), while the rest of the national total emis-
sions on land were distributed using spatial patterns provided
by nighttime lights data collected by the Defence Meteoro-
logical Satellite Program (DMSP) satellites (Elvidge et al.,
1999). The ODIAC fluxes were aggregated to a 0.1◦ reso-
lution from the high-resolution ODIAC data (1× 1 km). The
ODIAC emission product is suitable for this kind of study be-
cause the global total emission is constrained by updated es-
timates, while providing a high-resolution emission estimate.
Thus, it can be applied to carbon budget problems across dif-
ferent scales.

3.2 Terrestrial biosphere fluxes

CO2 fluxes by the terrestrial biosphere at a resolution of 0.1◦

were constructed using a vegetation mosaic approach, com-
bining the vegetation map data by the Synergetic Land Cover
Product (SYNMAP) data set (Jung et al., 2006), available
at a 30 arcsec resolution, with terrestrial biospheric CO2 ex-
changes simulated by the optimized VISIT model (Saito et
al., 2014) for each vegetation type in every 0.5◦ grid at a
daily time step. The area fraction of each vegetation type is
derived from SYNMAP data for each 0.1◦ grid. The CO2 net
ecosystem exchange (NEE) fluxes on a 0.1◦ grid were pre-
pared by combining the vegetation-type-specific fluxes with
vegetation area fraction data on a 0.1◦ grid. By averaging the
daily flux data for the period of 2000–2005, the flux clima-
tology was derived for use in the recent years (after 2010)
when the VISIT model simulation based on JRA-25–JCDAS
reanalysis data was not available. Although the use of clima-
tology in the place of original fluxes degrades the prior, the
posterior fluxes show significant departures from prior, thus
reducing the impact of missing the prior variations. The diur-
nal cycle was not resolved, as it requires one to also produce
the gross primary production and ecosystem respiration. To
estimate the effect of excluding the diurnal cycle in the prior
fluxes for our selected time of sampling the observations,
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we compared CO2 concentrations simulated with diurnally
varying fluxes at an hourly time step with those made with
daily mean fluxes produced by the Simple Biosphere (SiB)
model for 2002–2003 (Denning et al, 1996), as used in the
Transcom continuous intercomparison (Law et al, 2008). The
results show that, for background monitoring sites, the differ-
ence is not significant (below 0.1 parts per million – ppm),
similar to the result by Denning et al. (1996). For continental
sites, the difference between the two simulations was com-
bined into four seasonal values, and the data for the season
with the largest difference are shown in Fig. A1. Positive bias
by simulation with daily constant flux, with respect to diur-
nally varying fluxes, is of the order of 0.5 to 1 ppm, and it
is larger during the middle of the growing season. Inclusion
of the diurnally varying fluxes in the place of the daily mean
has the potential to change the seasonality of posterior fluxes
by inversion in a favourable direction, as there are regions
where flux seasonality is somewhat stronger than expected
(Sect. 5.2).

3.3 Emissions from biomass burning

Daily biomass burning CO2 emissions by the Global Fire As-
similation System (GFAS) data set rely on assimilating fire
radiative power (FRP) observations from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) instruments on
board the Terra and Aqua satellites (Kaiser et al., 2012). The
fire emissions at a 0.1◦ resolution are calculated from FRP
with land-cover-specific conversion factors compiled from a
literature survey. The GFAS system adds corrections for ob-
servation gaps in the observations and filters spurious FRP
observations of volcanoes, gas flares, and other sources. The
fluxes are inputted to the model at the surface, which may
lead to an underestimation of the injection height for strong
burning events and the occasional overestimation of biomass
burning signals simulated at surface stations.

3.4 Oceanic exchange flux

The air–sea CO2 flux component for the flux inversion used
an optimized estimate of oceanic CO2 fluxes by Valsala and
Maksyutov (2010). The data set was constructed with a vari-
ational assimilation of the observed partial pressure of sur-
face ocean CO2 (pCO2), available in Takahashi et al. (2017)
database, into the OTTM (Valsala et al., 2008), coupled with
a simple one-component ecosystem model. The assimilation
consists of a variational optimization method that minimizes
the model observation differences of the surface ocean dis-
solved inorganic carbon (DIC or pCO2) within the 2-month
time window. The OTTM model fluxes produced on a 1◦×1◦

grid at monthly time step were interpolated to a 0.1◦× 0.1◦

grid, taking into account the land fraction map derived from
the 1 km resolution MODIS land cover product.

3.5 Flux uncertainties for land and ocean

CO2 flux uncertainties are needed for both land and ocean re-
gions. Climatological, monthly varying flux uncertainties for
land were set to 20 % of the MODIS gross primary produc-
tivity (GPP) product (MOD17A2), available on a 0.05◦ grid
at a monthly resolution (Running et al., 2004). Oceanic flux
uncertainties were based on the sum of the standard deviation
of the OTTM assimilated flux from the climatology by Taka-
hashi et al. (2009) and the monthly variance of the interan-
nually varying OTTM fluxes (Valsala and Maksyutov, 2010),
with a minimum value of 0.02 gC m−2 d−1, in the same way
as in the lower spatial resolution inverse model by Maksyu-
tov et al. (2013). Oceanic flux uncertainties were first esti-
mated on a 1◦×1◦ resolution at a monthly time step and then
interpolated to a 0.1◦×0.1◦ grid, with the same procedure as
for the oceanic fluxes.

3.6 Atmospheric CO2 observations

We used CO2 observation data distributed as the Ob-
servation Package–CO2 (ObsPack–CO2) GLOBALVIEW-
plus v2.1 (Cooperative Global Atmospheric Data Integra-
tion Project, 2016). The data from the flask sites were used
as an average concentration for a pair of flasks. Afternoon
(15:00 to 16:00 LT – local time) average concentrations were
used for continuous observations over land and for remote
background observation sites. For the continuous moun-
tain top observations, we used early morning observations
(05:00 to 06:00 LT). The geographical local time was used,
as defined by the universal coordinated time (UTC), with a
longitude-dependent offset. The list of the observation loca-
tions with the ObsPack site ID, site names, data providers,
and data references appears in Table A1, accompanied by
a site map in Fig. A2. The aircraft observational data col-
lected by the NOAA aircraft programme at Briggsdale, Col-
orado (CAR), Cape May, New Jersey (CMA), Dahlen, North
Dakota (DND), Homer, Illinois (HIL), Portsmouth, New
Hampshire (NHA), Poker Flats, Alaska (PFA), Rarotonga,
Cook Islands (RTA), Charleston, South Carolina (SCA),
Sinton, Texas (TGC; Sweeney et al., 2015), and also by
the Comprehensive Observation Network for TRace gases
by AIrLiner (CONTRAIL) project over the western Pa-
cific (CON; Machida et al., 2008) were grouped into averages
for each 1 km altitude bin, with the altitude counted from sea
level. Within the 1 km altitude range, the average value of
both concentration and the altitude was taken. Aircraft ob-
servations were not assimilated, as they were only intended
for use in the validation of the results.
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4 Inverse modelling algorithm

4.1 Flux optimization problem

The inverse problem of atmospheric transport is formulated
by Enting (2002) as finding the surface fluxes that minimize
the misfit between the transport model simulation yf +H ·
(xp+x) and the vector of observations y, where yf is the for-
ward simulation without the surface fluxes, xp is the known
prior flux, x is the unknown flux correction, and H represents
the transport model. The equation y = yf+H·(xp+x) has to
be solved for the unknown flux correction x, and x is solved
for at the transport model grid scale (Kaminski et al., 2001).
By introducing the residual misfit vector r = y−(yf+H·xp),
the problem can be formulated as minimizing a norm of dif-
ference (r −H · x) weighted by the data uncertainties. As
the observation data alone are not sufficient to uniquely de-
fine the solution x, an additional regularization is required.
By introducing additional constraints on the amplitude and
smoothness of the solution, the inverse modelling problem is
formulated (Tarantola, 2005) as solving for the optimal value
of the vector x at the minimum of a cost function J (x) as
follows:

J (x)=
1
2
(H ·x− r)T ·R−1

· (H ·x− r)+
1
2
xT
·B−1

·x, (1)

where x is the optimized flux, R is the covariance matrix
for observations, and B is the covariance matrix for surface
fluxes. By introducing a decomposition of B as B= L ·LT

(construction of matrix L explained in detail in Sect. 4.2) and
a variable substitution x = L · z, the second term in Eq. (1)
is simplified. At the same time, by assuming that R can be
decomposed into R= σT

·σ , where σ is a vector of data un-
certainties, and introducing expressions b = σ−1

· (r−H ·x)
and A= σ−1

·H ·L, the new form of Eq. (1) is introduced as
follows:

J (z)=
1
2

(
(A · z− b)T(A · z− b)+ zT

· z
)
. (2)

The solution minimizing J (z) can be obtained by forcing the
derivative ∂J (z)/∂z= AT(A · z− b)+ z to be zero, which
results in the following:(
ATA+ I

)
· z= ATb. (3)

An optimal solution z at the minimum of the cost
function J (z) is found iteratively with the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (Broyden,
1969; Nocedal, 1980), as implemented by Gilbert and
Lemarechal (1989). The method requires the ability to ac-
curately estimate the cost function J (z) and its gradient
AT(A · z− b)+ z and has modest memory storage demands.
Given the solution z, the flux correction vector x is then
found by reversing the variable substitution as x = L · z.

The convergence of the solution may be affected by the
accuracy of the adjoint. The result of the duality test, de-

fined as the norm of the difference between the NIES-TM–
FLEXPART forward and adjoint modes estimated as (< y|H·
x >−<HT

· y|x >)/(< y|H · x >), was found to be of the
order of 10−9, while for the Lagrangian component based on
the receptor sensitivity matrices prepared with FLEXPART,
it is about 10−15 when calculated in double precision (same
as in Belikov et al., 2016). The formulation of the minimiza-
tion problem, as presented by Eq. (2), is convenient for the
derivation of the flux uncertainties, as it is possible to solve
Eq. (3) via the truncated singular value decomposition (SVD)
and estimate the regional flux uncertainties based on the de-
rived singular vectors (Meirink et al., 2008). Alternatively,
as mentioned by Fisher and Courtier (1995), it is also pos-
sible to use the flux increments derived at each iteration of
the BFGS algorithm in the place of the singular vectors. Al-
though we did not use SVD to construct the posterior covari-
ances in this study, we tested the solving of the optimization
problem with SVD. We derived the SVD of ATA using a
computer code by Wu and Simon (2000), which implements
an algorithm proposed by Lanczos (1950), and confirmed
that this approach yields practically the same solution as the
one obtained with the BFGS algorithm. The Lanczos (1950)
algorithm is a commonly used SVD technique, applied in the
case of a large, sparse matrix or a linear operator, when it is
impractical to make direct use of the SVD of A. A truncated
SVD of A is given by the expression A≈ U6VT, where 6 is
the diagonal matrix of n singular values, while U and V are
the matrices of left and right singular vectors. Variable sub-
stitutions, including the following:

z= VTs, d = UTb, (4)

transform z into a space of singular vectors s and reduce
Eq. (3) to (6T6+ I) · s =6Td , resulting in the following
solution:

s =6Td/
(
6T6+ I

)
, (5)

which is evaluated directly, as 6 is diagonal. In case of hav-
ing only n largest singular values, the elements of the so-
lution s are given by si = λidi/(λ2

i + 1) for all i ≤ n. Once
the solution (Eq. 5) is found, it is taken back to the space of
the dimensional fluxes z by applying variable substitutions
(Eq. 4). For fluxes, we have x = L·z, z= VTs, and d = UTb;
thus, the solution is provided by the following:

x = LV ·
6T(

6T6+ I
) ·UTb. (6)

Another variant of the SVD approach may be more memory
efficient in the case of a very large dimension of a flux vector.
Then, applying SVD to AAT instead of ATA can save some
memory, as in a representer method (Bennett, 1992). It gives
the same solution as the SVD of ATA and uses less interme-
diate memory storage when the dimension of the observation
vector y is lower compared to that of the flux vector x.
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The forward and adjoint mode simulations with the trans-
port model needed to implement the iterative optimization
are composed of several steps, as follows:

1. Running the Lagrangian model FLEXPART to produce
the source–receptor sensitivity matrices. For each obser-
vation event, a backward transport simulation with the
FLEXPART model is implemented to produce the sur-
face flux footprints, at a 0.1◦× 0.1◦ latitude–longitude
resolution, and the 3-D concentration field footprint,
taken at the end of the backward simulation run (ending
at the coupling time of 00:00 Greenwich mean time –
GMT). The coupling time is set to be within 2 to 3 d be-
fore the observation event. The surface flux sensitivity
data are recorded in the unit of ppm (gC m−2 d−1)−1.
The flux footprints are saved at a daily or hourly time
step, depending on available surface fluxes.

2. Running the coupled transport model forward, which in-
cludes the following:

a. Running the 3-D Eulerian model NIES-TM from
the 3-D initial concentration field, with the pre-
scribed surface fluxes. This includes sampling the
3-D field at model coupling times for each obser-
vation, according to 3-D concentration field foot-
prints calculated at the first step by FLEXPART.
NIES-TM reads the same 0.1◦ fluxes as the La-
grangian transport model and remaps them onto its
2.5◦× 2.5◦ grid before including them in the sim-
ulation. For each observation event, the fluxes used
in Eulerian and Lagrangian components are sepa-
rated by the coupling time, so that there is no double
counting of fluxes for the same date in the coupled
model simulation.

b. Using the two-dimensional (2-D) surface flux foot-
prints prepared with the Lagrangian model to cal-
culate the surface flux contribution to the simulated
concentrations for the last 3 d.

c. Combining the concentration contributions pro-
duced by Eulerian (a) and Lagrangian (b) compo-
nents to give the total simulated concentration.

3. In the inverse modelling, the transport model is run in
the following three modes:

a. The forward model is first run with prescribed prior
fluxes, starting from the 3-D initial CO2 concentra-
tion field, to calculate the residual misfit (difference
between the observation and the model simulation).

b. At the inverse modelling/optimization step, only
the flux corrections are propagated in the for-
ward model runs, which are optimized to minimize
the observation–model misfit. The prescribed prior
fluxes are not used (switched off) at this step. The
model starts from a zero 3-D initial concentration

field and runs forward, with flux corrections up-
dated by the optimization algorithm at every iter-
ation, to produce simulated concentrations. Correc-
tions to the 3-D initial concentration field are not
estimated and, thus, not included in the control vec-
tor. Instead, the model is given a spin-up period of
3 months before the target flux estimation period to
adjust the simulated concentration to the observa-
tions.

c. In the adjoint mode, the adjoint mode atmospheric
transport is simulated backward in time, starting
from the vector of residuals to produce a gradient
of the cost function (defined as Eq. 1) with respect
to the surface fluxes. Given the gradient, the opti-
mization algorithm provides the new flux correc-
tions field. For convenience, the transport model
and its adjoint are implemented as procedures suit-
able for direct communication mode.

Step 1 is carried out in the same way as in other versions of
the coupled transport model (Zhuravlev et al., 2013; Shirai
et al., 2017). In steps 2 and 3, the procedure of running the
forward and adjoint model is organized differently. At the be-
ginning of the transport model runs, all the data prepared by
the Lagrangian model are stored in the computer memory in
order to save on the time required for reading and re-sorting
the data at each iteration. The fraction of the CPU time spent
on running the Eulerian component of the coupled transport
model is 82 %, with 1 % used on the Lagrangian component
and 17 % used for covariance.

To create the initial concentration field, we used a 3-D
snapshot of the CO2 concentration for the same day from
a simulation of the previous year, which is already optimized
(usually 1 October or 1 January). When such a simulation
was not available, we took a snapshot from an available year
and corrected it globally for the concentration difference be-
tween these years, using the NOAA monthly mean data for
the South Pole as representative for the global mean concen-
tration. When the optimized fields are not available, the out-
put of the multiyear spin-up simulation is used, with the same
adjustment to the South Pole observations.

4.2 Implementation of covariance matrices L and B

We optimized surface flux fields separately for two sets of
fluxes in every grid globally, for land and ocean regions, fol-
lowing the approaches by Meirink et al. (2008) and Basu
et al. (2013), who suggested optimizing for global surface
flux fields separately for each optimized flux category. Sep-
arating the total flux into independent flux categories, each
with its own flux uncertainty pattern, results in using ho-
mogenous spatial covariance matrices, significantly simpli-
fying the coding of the matrix B. The matrix B can be given
as the product of a diagonal matrix of flux uncertainties and a
matrix with 1.0 as diagonal elements, while non-diagonal el-
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ements are exponentially declining with the squared distance
between grid points (Meirink et al., 2008). In practice, an
extra scaling of the uncertainty is needed to balance the con-
straint on fluxes with the data uncertainty, which also impacts
the regional flux uncertainties. Several empirical methods are
in use, where the tuning parameters are a horizontal scale
(Meirink et al., 2008) and an uncertainty multiplier (Cheval-
lier et al., 2005; Rödenbeck, 2005). In our B matrix design,
we follow Meirink et al. (2008) in representing B matrix as
the multiple of the non-dimensional covariance matrix C and
the diagonal matrix of the flux uncertainty D as B= DT

·C·D.
C matrix is commonly implemented as a band matrix, with
non-diagonal elements declining as∼ exp(−x2/l2), with the
distance x between the grid cells as in 2-D spline algorithms
(Wahba and Wendelberger, 1980). Multiplication by the ma-
trix C becomes computationally costly at a high spatial res-
olution in cases where the correlation distance l is much
larger than the size of the model grid. The correlation dis-
tance used here is 500 km for land and ocean and 2 weeks
in time. The rationale of applying a correlation distance of
500 km in the case of a regional inversion over the continen-
tal USA with a model grid size of 40 km was discussed by
Schuh et al. (2010). In that case, the use of an implicit diffu-
sion with a directional splitting to approximate the Gaussian
shape appears to be computationally more efficient than the
direct application of the Gaussian-shaped smoothing func-
tion, as the number of floating-point operations per grid point
does not grow with the ratio of the correlation distance l to
the grid size. The covariance matrix based on the diffusion
operator is popular in many ocean data assimilation systems,
as it is a convenient way to deal with coastlines (e.g. Derber
and Rosati, 1989; Weaver and Courtier, 2001).

The idea of using the solution of the diffusion equation in-
stead of multiplying a vector by the covariance matrix can
be presented briefly in a 1-D case. Consider a discrete prob-
lem of multiplying a vector representing a function g(λ) on a
grid with spacing1λ by a symmetric matrix which has diag-
onal elements equal to one, and non-diagonal ones declining
as exp(− 1

2 (i1λ)
2/d2), with a distance of i points from the

diagonal, where d is covariance length. Its continuous ana-
logue is an application of a Gaussian-shaped smoother in the
form G(λ,λ′)= exp(− 1

2 (λ− λ
′)2/d2) to a function g(λ) as

follows:

g̃(λ)=

l∫
−l

exp
(
−

1
2
(λ− λ′)2/d2

)
g(λ′)dλ′, (7)

where the smoothing window size l should be several times
larger than d. The expression in Eq. (7) looks exactly like the
solution of a 1-D diffusion equation, as follows:

∂g

∂t
−D

∂2g

∂λ2 = 0, (8)

whereD is the diffusivity. The solution of Eq. (8) is given by

g̃(λ)= 1√
2πp2

l∫
−l

exp(− 1
2 (λ−λ

′)2/p2)g(λ′)dλ′, where p2
=

2D1t , g(λ) is the initial distribution, and1t is the time step
(Crank, 1975). Based on this equivalence, instead of multi-
plying a vector by the covariance matrix, we solve the dis-
crete form of Eq. (8) by the backward-in-time, central-in-
space implicit method.

Applying the diffusion operator for the covariance matrix
helps to achieve the spatial homogeneity between polar and
equatorial regions, as diffusion produces a theoretically uni-
form effect on flux fields – regardless of the polar singularity.
The diffusion operator works as a low-pass filter, selectively
suppressing all the wavelengths shorter than the covariance
length scale. As we need to construct the covariance matrix B
in the form B= L·LT, we choose to construct L first and then
derive its transpose LT. The factorization of L is given by
L= uF · (Lxy ⊗Lt) ·m, where Lt is the 1-D covariance ma-
trix for the time dimension, and ⊗ is a Kronecker product.
We approximate the 2-D covariance Lxy by splitting it into
two dimensions, namely latitude and longitude as in Chua
and Bennett (2001), and apply several iterations of this pro-
cess. The horizontal covariance Lxy is implemented inN = 3
iterations of 1-D diffusion so that Lxy = (Lx ⊗Ly)N , where
Lx and Ly are the covariance operators for longitude and lat-
itude directions, respectively, while uF is the diagonal matrix
of flux uncertainty for each grid cell and each flux category
(land and ocean), and m is the diagonal matrix of a map fac-
tor, which is introduced to scale the contributions to the cost
function by model grid area, with diagonal elements given by
m= cos−1/2θ (where θ is latitude).

This design of the covariance operator helps to preserve
the high-resolution structure of the resultant flux corrections,
given by x = L · z= uF · (Lxy ⊗Lt) ·m · z, as it can be fac-
tored into a multiple of uncertainty uF and a scaling factor
S = (Lxy ⊗Lt) ·m · z as x = uF ·S. While the scaling fac-
tor S is smoothed with a covariance length of 500 km, the
original structure of the spatial heterogeneity of surface flux
uncertainty uF is still preserved at the original high resolution
in the optimized flux corrections x.

The adjoint operators LT
x and LT

y are derived by apply-
ing the adjoint code compiler Tapenade (Hascoet and Pas-
cual, 2013) to the Fortran code of modules that approxi-
mate the operators Lx and Ly by implicit diffusion. Lt and
its transpose LT

t are of lower dimensions and are designed,
as in Meirink et al. (2008), by deriving the square root of
the Gaussian-shaped time covariance matrix with direct SVD
(Press et al., 1992).

A notable merit of the algorithm is that it minimizes the
use of the computer’s memory, avoiding allocations of the
memory space that are larger than several times the dimen-
sion of the observation and flux vectors, making it suitable
for ingesting large amounts of surface and space-based ob-
servations. It should be mentioned that the computer memory
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demand for accommodating the surface flux sensitivity ma-
trices for massive space-based observations can be a limiting
factor, as discussed by Miller et al. (2020).

4.3 Inversion set-up

The combination of the coupled transport model NIES-TM–
FLEXPART (as described in Sect. 2) with the variational
optimization algorithm (Sect. 4.1 and 4.2) constitutes the
inverse modelling system NIES-TM–FLEXPART-VAR (NT-
FVAR or NIES-TM–FLEXPART-variational). We tested the
inversion algorithm presented in previous sections with the
problem of finding the best fit to the CO2 observations pro-
vided by the ObsPack data set by optimizing the corrections
to the land and ocean fluxes. By design, our inverse mod-
elling system produced smoothed fields of scaling factors
that are multiplied by the fine-resolution flux uncertainty
fields to give flux corrections. We derived the surface CO2
flux corrections at a 0.1◦ resolution and biweekly time step.
Our purpose is to demonstrate that we can optimize fluxes
to improve the fit to the observations, using an iterative
optimization procedure based on a high-resolution coupled
transport model and its adjoint. Our report is limited to the
technical development towards achieving the capability of
estimating anthropogenic CO2 emissions based on atmo-
spheric observations, and we do not elaborate on the impact
of simulating the tracer transport at a high resolution on
the quality of the optimized natural fluxes, which requires
an additional study. The flux optimization was applied to a
short time window of 18 months for each optimized year,
and the simulation starts on 1 October, 3 months ahead of
the target year. A spin-up period of 3 months is given to
let the inversion adjust the modelled concentration to the
observations so that a balance is achieved between fluxes,
concentrations, and concentration trends. The simulation
is continued until reaching the limit of 45 cost function
gradient calls, and by that time, the M1QN3 procedure
by Gilbert and Lamarechal (1989) is able to complete
30 iterations. Figure A3 presents the cost function reduction
in the case of optimizing fluxes for 2011 and completing
61 gradient calls. The cost function reduction declines
nearly exponentially, by almost 3 times, for each 10 gradient
calls completed. The relative improvement between 41 and
61 gradient calls is 1.5 % of the total reduction from the first
to the 61 gradient calls. We optimized fluxes for 3 years
from 2010 to 2012 and analysed the simulated concentration
fit at the observation sites. The average root mean squared
misfits (RMSE) between the optimized concentrations and
the observations are compared with a forward simulation
with prior fluxes and optimized simulation. For evaluation,
we used statistics of the optimized simulations by the op-
erational NOAA’s CarbonTracker inverse modelling system
(ObsPack_co2_1_CARBONTRACKER_CT2017_2018-05-
02; Peters et al., 2007).

5 Results and discussion

5.1 Analysis of the posterior model fit to the
observations

We compared the results of the forward simulation with prior
and optimized fluxes with the processed observations for
ground observation sites, as shown in Table A1, and air-
borne vertical profiles were used for an independent valida-
tion (Table A2). Figure 2 shows the observations with for-
ward (prior) and optimized simulations at Barrow (BRW),
Jungfraujoch (JFJ), Wisconsin (LEF), Pallas (PAL), Yonagu-
nijima (YON), and Syowa (SYO). The optimization yielded
improved seasonal variations in the simulated concentration,
including the phase and the amplitude at most sites. At SYO,
we found synoptic scale variations with an amplitude of the
order of few tenths of a part per million that were, to a
large extent, captured by the model. Plots for BRW and JFJ
show the ability of the inversion to correct the seasonal cycle,
while the difference between model and observations in the
Southern Hemisphere (SYO) is contributed by the interan-
nual variations in the carbon cycle. The model–observation
mismatch (RMSE) for surface sites included in the ObsPack
is presented in Fig. 3 for forward and optimized simulation
and mean bias for optimized data. The model was able to
reduce the model to observation mismatch for most back-
ground sites where the seasonal cycle is affected mostly by
natural terrestrial and oceanic fluxes, while the average re-
duction in the mismatch from forward to optimized simula-
tion is 14 %, which is defined as the mean ratio of the op-
timized mismatch to the forward mismatch taken for each
site. The reason for the relatively small reduction is the addi-
tion of climatological flux corrections to the prior simulation,
estimated by inverse modelling of 2 years of data, namely
2009 and 2010. As a result, the inversion starts from the
initial flux distributions already adjusted to fit the seasonal
cycle of the observed concentration. The correction for the
difference in the global concentration trend between years is
not made; thus, there are visible differences between prior
and optimized simulations in the southern hemispheric back-
ground sites. At most of the Antarctic sites, the mean poste-
rior (after optimization) mismatch (reported as RMSE) is of
the order of 0.2 ppm. Over the land, closer to anthropogenic
sources, there is a less relative reduction in the mismatch on
an annual mean scale. One of the reasons for seeing little
improvement is that fossil CO2 emissions are kept fixed and
only the natural fluxes are optimized (while the strong sig-
nal from fossil emission is not affected by flux corrections).
Another possible contributor to the large mismatch over land
is the neglect of the diurnal cycle, under the assumption of
using only observations at well-mixed conditions, and also
the limited ability of the low-resolution reanalysis data set to
capture frontal processes in the extratropical continental at-
mosphere, as discussed by Parazzoo et al. (2011). The mean
mismatch was reduced from 2.60 to 2.42 ppm by the flux op-

https://doi.org/10.5194/acp-21-1245-2021 Atmos. Chem. Phys., 21, 1245–1266, 2021



1254 S. Maksyutov et al.: Technical note: A high-resolution inverse modelling technique for CO2 fluxes

timization, while the mean mismatch to the uncertainty ratio
decreases after optimization by 19 % from 0.94 to 0.78. The
mean correlation between modelled and observed data im-
proves from r2

= 0.43 (r2 – coefficient of determination) for
the simulation driven by prior fluxes to r2

= 0.59 for the op-
timized simulation. To remove the effect of the interannual
CO2 growth on CO2 variabilities, the mean growth trend was
subtracted from the data before estimating the r2.

Figure 3 also shows, for the purpose of comparison, the
statistics of the average misfit for the optimized simulation
by CarbonTracker for the same period and same monitor-
ing stations. The comparison is useful for understanding
the strengths and weaknesses of the inversion system pre-
sented here. Over the background monitoring sites, the high-
resolution model does not show any advantage over Carbon-
Tracker in terms of the fit between the optimized model sim-
ulation and observations, which may indicate a better perfor-
mance by the Eulerian model, TM5, used in CarbonTracker.
On the other hand, several sites where the high-resolution
model shows better fits to observations over CarbonTracker
are located inland or near the coast, closer to anthropogenic
and biogenic sources. A smaller misfit was achieved by
the high-resolution model at Key Biscayne (KEY), Bar-
ing Head (BHD), Mariana Islands (GMI), and Cape Ku-
mukahi (KUM), among others, which can be attributed to
coastal/island locations, while there is little or no advan-
tage at mountain sites like Mauna Loa (MLO) or Jungfrau-
joch (JFJ). This result may be influenced by differences in the
model physics between NIES-TM–FLEXPART and TM5 in
the lower troposphere, near the top of the boundary layer, and
in shallow cumuli. The mismatch (RMSE) between our op-
timized model and observations for the 102 sites used in the
inversion is only 4 % lower on average than that by Carbon-
Tracker. It is not yet clear if there is a systematic advantage of
one or the other system in any particular site category, other
than for coastal/island sites mentioned above. For the average
misfit comparison, all data, both assimilated and not assimi-
lated, are included for sites shown in Fig. 3. The results for
Cape Grim (CGO) were not counted due to the use of differ-
ent data sets, as our system used only the NOAA flask data,
which underwent background selection (by wind direction)
at the time of sampling.

As an independent validation, a comparison of the unop-
timized and optimized simulation to the vertical profile data
is shown in Fig. 4. For each vertical profile site, the observa-
tions were grouped by altitude, at a 1 km interval. The alti-
tude code (e.g. 005, 015, 025, 035, . . . ) to be added to the site
identifier was constructed as the altitude of the midlevel mul-
tiplied by 10. The observations at PFA (Poker Flat, Alaska)
between the surface and 1 km were grouped as PFA005 (mid-
altitude 0.5 km), while those in the 5 to 6 km range were
designated as PFA055 (mid-altitude 5.5 km). As for the op-
timized surface data in Fig. 3, we show the RMSE for for-
ward simulation with prior fluxes, optimized simulation, and
CarbonTracker and mean bias for optimized data. Carbon-

Tracker shows a better fit at most of the altitude ranges,
except for the lowest 1 km where the results shown by the
two systems were similar. Concurrently, the mean correla-
tion between modelled and observed data did not improve
from the prior (r2

= 0.70) to the optimized simulation (r2
=

0.63), while the mean RMSE declined a little from 1.86 to
1.85 ppm. The comparison to CarbonTracker (CT 2017),
with a mean RMSE of 1.53 ppm, suggests that the free tro-
pospheric performance of our system can be improved by
implementing a more detailed vertical mixing processes in
the Lagrangian and Eulerian component models.

5.2 Comparison of prior and posterior fluxes

As mentioned in Sect. 4.2, the flux corrections estimated by
the inverse model showed fine-scale features, despite using
large covariance lengths, because those were made of the
high-resolution data uncertainty multiplied by the smooth
fields of scaling factor and estimated separately for each of
the optimized flux categories, namely land biosphere and
ocean. Examples of the flux corrections and posterior fluxes
(excluding fossil emissions) are presented in Fig. 5. The flux
corrections and fluxes are shown in Fig. 5 for 1 month (Au-
gust 2011) as an illustration, and they are not representative
of a seasonal or climatological mean. The sign of the flux
corrections changed from positive (source) in the eastern side
(continental China) to negative (sink) over the Russian coast
and Japanese islands, while the posterior fluxes appeared as
a terrestrial sink all over the area. The flux adjustment was
driven by the fit to nearby observations made over South Ko-
rea and Japan.

To illustrate the change in fluxes from prior to posterior
estimates by the inversion at the scale of large aggregated re-
gions, the monthly mean fluxes (excluding fossil emissions)
averaged for 3 years (2010–2012) are plotted in Fig. 6 for
eight selected Transcom regions (as defined by Gurney et
al., 2002; see the map in Fig. A2). The plots include prior,
optimized, and, for reference, optimized fluxes by Carbon-
Tracker (CT 2017). For some regions, the posterior is close
to the prior, which is often the case when there are too few
observations in the region to drive the corrections to prior
fluxes. Boreal North America (region 1), temperate North
America (region 2), and Europe (region 11) are better con-
strained by observations, while Northern Africa (region 5),
Southern Africa (region 6), temperate Asia (region 8), trop-
ical Asia (region 9), and boreal Asia (region 7) are less
constrained. The optimized flux is similar to the prior for
Africa (regions 5 and 6), tropical Asia (region 9), and tem-
perate Asia (region 8), while there is a substantial adjustment
for boreal Asia (region 7), which seems to be adjusted to fit
the observations outside the region. For both boreal regions,
the prior flux seasonality appears weaker than in both poste-
rior and CarbonTracker fluxes, which could indicate a prob-
lem with vegetation-type mapping in a higher resolution ver-
sion of the prior flux model. For regions 1, 6, 7, and 11, the
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Figure 2. Time series of simulated and observed concentrations (blue – observed; plum – forward (unoptimized); green – optimized) at
Barrow (BRW), Jungfraujoch (JFJ), Wisconsin (LEF), Pallas (PAL), Syowa (SYO), and Yonagunijima (YON).

Figure 3. Root mean square difference between model and observations and absolute bias in 2010–2012 for (surface) sites included in
inversion (blue – prior; pink – optimized; orange – CT 2017; green – absolute value of mean difference (bias) for optimized).
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Figure 4. Root mean square difference between model and observations and absolute bias in 2010–2012 for aircraft sites not included in
inversion (blue – prior; orange – optimized; magenta – CT 2017; green – absolute value of mean difference (bias) for optimized).

Figure 5. Optimized flux correction (a) and posterior flux (b) maps for August 2011 (units gC m−2 d−1; fossil emissions excluded).

corrected fluxes are closer to CarbonTracker, and for tem-
perate North America, temperate Asia, and Northern Africa,
the amplitude of flux seasonality is estimated to be stronger,
which can be caused by stronger vertical/horizontal mixing
in the transport model as compared to the transport in Car-
bonTracker. A more detailed comparison with other inverse
model results and independent estimates (e.g. by Jung et al.,
2020) should be made after improving the inversion set-up,
notably by improving the transport model meteorology, sea-
sonality, and diurnal cycle in prior fluxes and the seasonality
in prior flux uncertainties.

6 Summary and conclusions

A grid-based CO2 flux inversion system that is suitable for
the inverse estimation of the surface fluxes at a biweekly time
step and a 0.1◦ spatial resolution was developed. To imple-
ment the high-resolution simulation capability, several devel-
opments were completed. High-resolution prior fluxes were
prepared for the following three surface flux categories: fos-
sil emissions by the ODIAC data set were based on the point
source database and night lights, biomass burning emis-
sions (GFAS) were based on MODIS observations of fire
radiative power, and biosphere exchange was based on the
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Figure 6. Monthly mean prior, optimized, and CarbonTracker fluxes (fossil emissions excluded) averaged for 2010–2012 for selected
Transcom-3 regions (units gC m−2 d−1).

mosaic representation of land cover and the process-based
VISIT model simulation. A high-resolution atmospheric
transport for a global set of observations was achieved by
combining short-term simulations with the high-resolution
Lagrangian model, FLEXPART, with a global 3-D simula-
tion with the medium-resolution Eulerian model, NIES-TM.
The use of variational optimization with a gradient-based
method in the inversion helps to avoid the need for invert-
ing large matrices with dimensions dictated by the number
of optimized flux grids or the number of observations. Ac-
cordingly, the adjoint of the coupled transport model was
developed to apply the variational optimization. A compu-
tationally efficient implementation of the flux error covari-
ance operator is achieved by using an implicit diffusion algo-
rithm. Overall, the presented algorithm demonstrated the fea-
sibility of the high-resolution inverse modelling at the global
scale, extending the capabilities achieved by regional high-
resolution modelling approaches used for estimating the na-
tional greenhouse gas emissions for a comparison with the
national greenhouse gas inventories. A comparison of the
optimized simulation to the observations showed some im-
provements over the lower-resolution CarbonTracker model
for some continental and coastal observation sites located
closer to anthropogenic emissions and strong biospheric
fluxes, but it also demonstrates the need for further improve-
ment of the inverse modelling system components. Trans-
port model errors can be reduced by improving the transport
modelling algorithms in the Eulerian and Lagrangian mod-
els and using a combination of recent higher-resolution re-
analysis data with high-resolution wind data simulations by
regional models in the regions of interest. Our inverse mod-
elling algorithm can be further improved by tuning the uncer-
tainty scaling and spatial and temporal covariance distances.
Prior fluxes can be improved by developing high-resolution,

diurnally varying biospheric fluxes, developing a more de-
tailed fossil emission inventory and updating the estimates
of biomass burning and oceanic fluxes.
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Appendix A

Table A1. List of the observation sites included in the ObsPack data set.

Site ID Lat Long Site name Lab name Sampling Reference

ALT 82.45 −62.51 Alert EC In situ Worthy et al. (2003)
ALT 82.45 −62.51 Alert NOAA Flask Conway et al. (1994)
AMS −37.8 77.54 Amsterdam Island LSCE In situ Gaudry et al. (1991)
AMT 45.03 −68.68 Argyle NOAA In situ Andrews et al. (2014)
ARA −23.86 148.47 Arcturus CSIRO Flask Francey et al. (2003)
ASC −7.97 −14.40 Ascension Island NOAA Flask Conway et al. (1994)
ASK 23.26 5.63 Assekrem NOAA Flask Conway et al. (1994)
AZR 38.77 −27.38 Terceira Island NOAA Flask Conway et al. (1994)
BAO 40.05 −105.00 Boulder Atmospheric Observatory NOAA In situ Andrews et al. (2014)
BCK −116.1 62.80 Bechoko EC In situ Worthy et al. (2003)
BHD −41.41 174.87 Baring Head Station NOAA Flask Conway et al. (1994)
BHD −41.41 174.87 Baring Head Station NIWA In situ Brailsford et al. (2012)
BMW 32.27 −64.88 Tudor Hill NOAA Flask Conway et al. (1994)
BRA 51.2 −104.7 Bratt’s Lake Saskatchewan EC In situ Worthy et al. (2003)
BRW 71.32 −156.61 Barrow NOAA Flask Conway et al. (1994)
BRW 71.32 −156.61 Barrow NOAA In situ Peterson et al. (1986)
CBA 55.21 −162.72 Cold Bay NOAA Flask Conway et al. (1994)
CES 51.97 4.93 Cesar ECN In situ Vermeulen et al. (2011)
CGO −40.68 144.69 Cape Grim NOAA Flask Conway et al. (1994)
CHL 58.75 −94.07 Churchill EC In situ Worthy et al. (2003)
CHR 1.70 −157.15 Christmas Island NOAA Flask Conway et al. (1994)
CIB 41.81 −4.93 Centro de investigación de la Baja Atmósfera NOAA Flask Conway et al. (1994)
CPT −34.35 18.49 Cape Point NOAA Flask Conway et al. (1994)
CPT −34.35 18.49 Cape Point SAWS In situ Brunke et al. (2004)
CRI 15.08 73.83 Cape Rama CSIRO Flask Francey et al. (2003)
CRZ −46.43 51.85 Crozet Islands NOAA Flask Conway et al. (1994)
CYA −66.28 110.52 Casey CSIRO Flask Francey et al. (2003)
DRP −59.12 −63.63 Drake Passage NOAA Ship flask Conway et al. (1994)
EGB 44.23 −79.78 Egbert EC In situ Worthy et al. (2003)
EIC −27.15 −109.45 Easter Island NOAA Flask Conway et al. (1994)
ESP 49.38 −126.54 Estevan Point EC In situ Worthy et al. (2003)
EST 51.66 −110.21 Esther EC In situ Worthy et al. (2003)
ETL 54.35 −104.98 East Trout Lake EC In situ Worthy et al. (2003)
FSD 49.88 −81.57 Fraserdale EC In situ Worthy et al. (2003)
GMI 13.39 144.66 Mariana Islands NOAA Flask Conway et al. (1994)
GPA −12.25 131.04 Gunn Point CSIRO Flask Francey et al. (2003)
HBA −75.61 −26.21 Halley Research Station NOAA Flask Conway et al. (1994)
HDP 40.56 −111.65 Hidden Peak (Snowbird) NCAR In situ Stephens et al. (2011)
HPB 47.80 11.02 Hohenpeißenberg NOAA Flask Conway et al. (1994)
HUN 46.95 16.65 Hegyhátsál HMS In situ Haszpra et al. (2001)
HUN 46.95 16.65 Hegyhátsál NOAA Flask Conway et al. (1994)
INX −86.02 39.79 INFLUX (Indianapolis Flux Experiment) NOAA Flask Conway et al. (1994)
IZO 28.31 −16.50 Izana NOAA Flask Conway et al. (1994)
IZO 28.31 −16.50 Izana AEMET In situ Gomez-Pelaez et al. (2011)
JFJ 46.55 7.99 Jungfraujoch KUP In situ Uglietti et al. (2011)
KAS 49.23 19.98 Kasprowy Wierch AGH In situ Necki et al. (2003)
KEY 25.66 −80.16 Key Biscayne NOAA Flask Conway et al. (1994)
KUM 19.52 −154.82 Cape Kumukahi NOAA Flask Conway et al. (1994)
LEF 45.95 −90.27 Park Falls NOAA In situ Andrews et al. (2014)
LJO 32.87 −117.26 La Jolla SIO Flask Keeling et al. (2005)
LLB 54.95 −112.45 Lac La Biche EC In situ Worthy et al. (2003)
LLB 54.95 −112.45 Lac La Biche NOAA Flask Conway et al. (1994)
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Table A1. Continued.

Site ID Lat Long Site name Lab name Sampling Reference

LMP 35.52 12.62 Lampedusa NOAA Flask Conway et al. (1994)
LUT 53.4 6.35 Lutjewad RUG In situ Van der Laan et al. (2009)
MAA −67.62 62.87 Mawson Station CSIRO Flask Francey et al. (2003)
MEX 18.98 −97.31 High Altitude Global Climate Observation Center NOAA Flask Conway et al. (1994)
MHD 53.33 −9.9 Mace Head NOAA Flask Conway et al. (1994)
MHD 53.33 −9.9 Mace Head LSCE In situ Ramonet et al. (2010)
MID 28.21 −177.38 Sand Island NOAA Flask Conway et al. (1994)
MLO 19.54 −155.58 Mauna Loa NOAA Flask Conway et al. (1994)
MLO 19.54 −155.58 Mauna Loa NOAA In situ Thoning et al. (1989)
MNM 24.28 153.98 Minamitorishima JMA In situ Tsutsumi et al. (2005)
MQA −54.48 158.97 Macquarie Island CSIRO Flask Francey et al. (2003)
NAT −5.51 −35.26 Farol de Mae Luíza Lighthouse NOAA Flask Conway et al. (1994)
NMB −23.58 15.03 Gobabeb NOAA Flask Conway et al. (1994)
NWR 40.05 −105.59 Niwot Ridge NOAA Flask Conway et al. (1994)
NWR 40.05 −105.59 Niwot Ridge NCAR In situ Stephens et al. (2011)
OTA −38.52 142.82 Otway CSIRO Flask Francey et al. (2003)
OXK 50.03 11.81 Ochsenkopf NOAA Flask Conway et al. (1994)
PAL 67.97 24.12 Pallas-Sammaltunturi NOAA Flask Conway et al. (1994)
PAL 67.97 24.12 Pallas-Sammaltunturi FMI In situ Hatakka et al. (2003)
POC Pacific Ocean cruise NOAA Flask Conway et al. (1994)
PSA −64.92 −64 Palmer Station NOAA Flask Conway et al. (1994)
RPB 13.16 −59.43 Ragged Point NOAA Flask Conway et al. (1994)
RYO 39.03 141.82 Ryori JMA In situ Tsutsumi et al. (2005)
SCT 33.41 −81.83 Beech Island NOAA In situ Andrews et al. (2014)
SEY −4.68 55.53 Mahé island NOAA Flask Conway et al. (1994)
SGP 36.8 −97.5 Southern Great Plains NOAA Flask Conway et al. (1994)
SHM 52.72 174.1 Shemya Island NOAA Flask Conway et al. (1994)
SMO −14.25 −170.56 Tutuila NOAA Flask Conway et al. (1994)
SMO −14.25 −170.56 Tutuila NOAA In situ Halter et al. (1988)
SNP 38.62 −78.35 Shenandoah National Park NOAA In situ Andrews et al. (2014)
SPL 40.45 −106.73 Storm Peak Laboratory (Desert Research Institute) NCAR In situ Stephens et al. (2011)
SPO −89.98 −24.8 South Pole NOAA Flask Conway et al. (1994)
SPO −89.98 −24.8 South Pole NOAA In situ Gillette et al. (1987)
STR 37.76 −122.45 Sutro Tower NOAA Flask Andrews et al. (2014)
SUM 72.6 −38.42 Summit NOAA Flask Conway et al. (1994)
SYO −69.01 39.59 Syowa Station Tohoku U. In situ Morimoto et al. (2003)
TAP 36.73 126.13 Tae-ahn Peninsula NOAA Flask Conway et al. (1994)
THD 41.05 −124.15 Trinidad Head NOAA Flask Conway et al. (1994)
USH −54.85 −68.31 Ushuaia NOAA Flask Conway et al. (1994)
UTA 39.9 −113.72 Wendover NOAA Flask Conway et al. (1994)
UUM 44.45 111.1 Ulaan-Uul NOAA Flask Conway et al. (1994)
WAO 52.95 1.12 Weybourne UEA In situ Forster and Bandy (2006)
WBI 41.73 −91.35 West Branch NOAA In situ Andrews et al. (2014)
WGC 38.27 −121.49 Walnut Grove NOAA In situ Andrews et al. (2014)
WIS 30.86 34.78 Weizmann Institute of Science NOAA Flask Conway et al. (1994)
WKT 31.32 −97.33 Moody NOAA In situ Andrews et al. (2014)
WLG 36.29 100.9 Mount Waliguan NOAA Flask Conway et al. (1994)
WSA 43.93 −60.02 Sable Island EC In situ Worthy et al. (2003)
YON 24.47 123.02 Yonagunijima JMA In situ Tsutsumi et al. (2005)
ZEP 78.91 11.89 Ny-Ålesund NOAA Flask Conway et al. (1994)
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Table A2. Validation sites. Aircraft data collected by NOAA and the Earth System Research Laboratory (ESRL; Sweeney et al., 2015) and
NIES (Machida et al., 2008).

Site ID Lat Long Site/project name Territory Lab name

ACG 68 −165 Coast Guard Alaska Alaska NOAA
CAR 41 −104 Briggsdale Colorado NOAA
CMA 39 −74 Offshore Cape May New Jersey NOAA
CON CONTRAIL West Pacific NIES
DND 47 −99 Dahlen North Dakota NOAA
ESP 49 −127 Estevan Point British Columbia NOAA
ETL 54 −105 East Trout Lake Saskatchewan NOAA
INX 40 −86 Indianapolis Flux Experiment Indianapolis NOAA
LEF 46 −90 Park Falls Wisconsin NOAA
HIL 40 −88 Homer Illinois NOAA
NHA 43 −71 Offshore Portsmouth New Hampshire NOAA
PFA 65 −148 Poker Flat Alaska NOAA
RTA −21 −160 Rarotonga Rarotonga NOAA
SCA 33 −79 Offshore Charleston South Carolina NOAA
SGP 37 −98 Southern Great Plains Oklahoma NOAA
TGC 28 −97 Offshore Corpus Christi Texas NOAA
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Figure A1. Simulated diurnal cycle bias, showing the 3-month mean in the growing season (units in ppm).

Figure A2. A map of observation sites and Transcom regions (triangles – surface flask sites; squares – continuous; circles – aircraft) used in
this study.

Figure A3. Rate of cost function decline, with gradient calls for the extended year 2011 inversion, and reduction relative to 61 gradient calls.
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Code and data availability. The inverse model and forward
transport model code can be made available to potential research
collaborators upon reasonable request. The ObsPack data set is
available from NOAA/ESRL (https://doi.org/10.15138/g3059z;
Cooperative Global Atmospheric Data Integration Project, 2016).
The ODIAC fossil fuel emission data set is available from
the Global Environmental Database hosted by CGER/NIES
(https://doi.org/10.17595/20170411.001; Oda and Maksyutov,
2015).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-1245-2021-supplement.
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