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The pore size distribution of a porous medium is often estimated from the retention curve or the invading 
fluid flow rate curve using simple relationships more or less explicitly based on the consideration that the porous 
medium is made of a bundle of cylindrical parallel tubes. This type of determination is tested using pore 
network simulations. Starting from two- or three-dimensional networks, the characteristics of which are known 
a priori, the estimation of the throat size distribution (TSD) is performed using the standard methods in the case 
of drainage. Results show a significant discrepancy with the input data. The disagreement is more pronounced 
when the fluid flow rate curve is employed together with the parallel tubes assumption. The physical origins of 
these shortcomings are identified. A method, based on pore network simulations combined with a genetic 
algorithm and the hill climbing algorithm, is then designed, which makes simultaneous use of the nonwetting 
fluid flow rate curve and the retention curve of the medium. Very significant improvement is achieved in the 
estimation of the TSD using this procedure.

DOI: 10.1103/PhysRevE.103.023303

I. INTRODUCTION

The pore size distribution (PSD) is a key structure charac-
teristic of a porous medium of major importance to model flow
and transport processes. A simple method for determining the
PSD is to use the retention curve, i.e., the fluid potential to
saturation relationship [1]. As discussed for instance in [2,3],
this is often performed assuming more or less explicitly that
the pore system can be represented by a bundle of parallel
cylindrical capillary tubes of circular cross section with a
random distribution of radii. However, except for a few partic-
ular systems, for example the Anopore membrane discussed
in [4], the microstructure of a porous medium is generally
significantly different from a simple bundle of parallel cylin-
drical tubes. Most porous materials are rather characterized
by a system of highly interconnected pores. As a result, the
information on the PSD obtained from simple interpretation
based on this representation is questionable and must be cau-
tiously assessed [3]. Another issue is that the PSD obtained
in this way makes no difference between the throats, i.e., the
constrictions in the pore space, and the pore bodies, defined
here as the local larger cavities. Making such a distinction
between pore throats and pore bodies is a classical feature of
pore network models (PNMs) [5]. This is justified by the fact
that constrictions are largely controlling the capillary effects
since menisci tend to get preferentially pined in constrictions.
They are also decisive for transport phenomena since, for
example, the pressure drop between two adjacent pore bodies
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can be essentially controlled by the constriction connecting
them when this constriction is sufficiently narrow compared
to the pore body size [6,7]. This distinguishes the PSD, which
corresponds to the pore bodies in the PNM partition of the
pore space, from the throat size distribution (TSD), i.e., the
distribution of constriction sizes. In this context, the question
arises as to whether it is possible to identify both the PSD and
TSD, or at least the TSD, from relatively basic information
such as the retention curve or the flow rate curve, the latter
denoting the flow rate to fluid potential relationship. With
the development of imaging techniques, e.g., micro-x-ray to-
mography, this approach may be itself questioned since the
TSD and the PSD can be determined by means of various
algorithms applied to segmented images of the microstructure
[8,9]. However, imaging devices are expensive and the seg-
mentation of the pore space in pore bodies and pore throats
is rarely straightforward, requiring the treatment of a huge
amount of data. Moreover, obtaining reliable images for ma-
terials with pore bodies and throats in the submicronic range
is not an easy task. As a result, cheaper and more routine
characterization techniques are still quite desirable.

In what follows, the focus is laid on the TSD. The intrinsic
permeability and porosity, together with the retention and
nonwetting fluid flow rate curves, are supposed to be known,
i.e., are available from measurement for a pair of fluids for
which the wetting fluid is perfectly wetting. In addition to
the assessment of two classical TSD extraction methods, the
objective of the paper is to explore whether this information
is sufficient to characterize the TSD. Taking into account
the nonwetting fluid flow rate is motivated by the fact that
the evaluation of a porosimetry technique, referred to as the
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fluid-fluid displacement porosimetry (FFDP) [10,11], is also
of interest. In this technique, a perfectly wetting liquid is dis-
placed by a nonwetting one through a series of pressure steps
and the nonwetting flow rate through the sample is recorded
for each pressure step. The flow rate vs pressure curve is then
harnessed to extract the TSD [10]. In the context of FFDP,
the situation under study in the present paper can actually be
seen as a quasistatic version, referred to as QSFFDP, where
QS stands for quasistatic. Contrary to the classical FFDP
technique where the viscous pressure drop across the sample
in the nonwetting fluid is on the order of the capillary pres-
sure, the viscous pressure drop remains small compared to the
capillary pressure. Actually, this corresponds to the situation
considered in practice for determining the nonwetting fluid
relative permeability. Considering the flow rate curve so as to
use the same convention as in the FFDP or the nonwetting
fluid relative permeability curve is strictly equivalent in the
quasistatic limit under consideration here. The classical FFDP
(as opposed to the QSFFDP) will be the object of a future
study.

On this basis, the idea is then to rely on pore network
simulations. The approach is similar to the one presented
in [3]. Starting from a perfectly known microstructure with
interconnected pore bodies, referred to as the reference net-
work, an immiscible displacement is performed numerically
for conditions similar to the ones employed for the classical
retention curve measurement. The TSD is extracted from the
retention curve and flow rate data using classical extraction
methods based on the bundle of capillary tubes model. The
TSD obtained with this procedure is compared to the actual
TSD. The decisive feature here is that the TSD is perfectly
known a priori for the reference medium. This allows illus-
trating and assessing the limitations of the classical methods
for the TSD determination. Then, the question arises as to
how the use of the immiscible displacement data can be
improved when the microstructure is clearly not a simple
system of parallel tubes. This amounts to considering an
ill-posed inverse problem in which the objective is to de-
termine the TSD. Regarding the method used to compute
the displacement in the network, main possibilities can be
divided into direct simulations like lattice Boltzmann methods
[12] or volume of fluid models [13], etc., and PNMs [5].
As will be explained below, the TSD identification method
requires computing the immiscible displacement many times.
In this respect, PNMs are well adapted as this technique re-
quires much shorter computational time compared to direct
simulations.

The present paper is organized as follows. In Sec. II, two
classical methods for determining the PSD (more exactly
the TSD) from the nonwetting fluid flow rate curve or the
retention curve are recalled. The pore network models are
presented in Sec. III. The algorithms used to simulate the
displacement and compute the flow rate and retention curves
are presented in Sec. IV. The assessment of the TSD deter-
mination from the classical methods is presented in Sec. V.
In Sec. VI, a method to determine the TSD from both the
nonwetting fluid normalized flow rate and retention curves us-
ing PNM simulations combined with an optimization method
is presented. A short discussion is presented in Sec. VII.
Conclusions are drawn in Sec. VIII.

II. FLOW RATE POROSIMETRY AND RETENTION
CURVE POROSIMETRY

Suppose the retention curve, Pc(S), flow rate curve, QNW

(Pc), and porosity, ε, are known, Pc(S) being the capillary
pressure, QNW the nonwetting fluid flow rate for the qua-
sistatic fluid distribution corresponding to Pc(S), and S the
wetting fluid saturation. Considering the generalized Darcy’s
law implies

QNW = A
kkr (Pc)

μ

�P

L
(1)

where μ is the nonwetting fluid viscosity, A is the porous
medium cross-sectional surface area, L is the sample length,
k is the porous medium intrinsic permeability, and kr is the
nonwetting fluid relative permeability. In addition, �P is the
pressure difference between the inlet and outlet in the non-
wetting fluid. In the quasistatic limit under consideration here,
�P is small compared to the capillary pressure. Throughout
the paper, a constant �P is considered independently of the
capillary pressure.

To extract the TSD from the retention curve, a pore size,
r, is associated to a value of Pc using the Young-Laplace
equation

Pc = 2γ cosθ

r
(2)

where the contact angle is θ = 0 in our case (perfectly wetting
displaced fluid) and γ is the interfacial tension. For simplicity,
trapping phenomena [14] are assumed negligible so that S
varies in the interval [0,1]. The wetting fluid saturation, S,
corresponding to r is then simply defined as [15]

S = ∫r
0 Vp(r) f (r)dr

∫+∞
0 Vp(r) f (r)dr

(3)

where Vp(r) is the volume of a pore of size r and f (r) is the
pore size distribution, i.e., the pore size probability density
function (p.d.f.). Deriving Eq. (3) with respect to r yields

dS

dr
= Vp(r) f (r)

∫+∞
0 Vp(r) f (r)dr

. (4)

Since, by definition, ∫+∞
0 Vp(r) f (r)dr = ε VPM, where

VPM is the porous medium volume, this leads to

f (r) = εVPM

Vp(r)

dS

dr
. (5)

In discrete form, Eq. (5) can be expressed as

fk (rAB) = εVPM

Vp(rAB)

(
S(PcB) − S(PcA)

rB − rA

)
(6)

where PcA and PcB are two close values of Pc and rAB =
(rA + rB)/2, rA and rB being determined from Eq. (2). Within
the framework of the model of a bundle of parallel cylindrical
tubes, the volume of a pore is expressed as Vp(r) = πr2L
where L is the tube length assuming straight tubes. Under
these circumstances, Eq. (6) is expressed as

fk (rAB) = εVPM

πL
r−2

AB

(
S(PcB) − S(PcA)

rB − rA

)
. (7)
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The value of fk is then normalized according to

dk (rAB) = fk∑n
i=1 fi

. (8)

Here, n is the number of classes considered to compute the
discrete p.d.f. Hence, dk (rAB) represents the fraction of pores
(number of pores divided by total number of pores) the sizes
of which are in class k.

The method for determining the TSD from the flow rate
QNW(Pc) is similar and also explicitly relies on the model of
a bundle of parallel cylindrical tubes. It is also similar to the
one used in the FFDP technique [10]. In the bundle of tubes
model, the flow rate is computed applying Poiseuille’s law in
each tube containing the nonwetting fluid:

QNW = �Pπ

8μL

∫ +∞

rmin

r4 fQ(r)dr (9)

where the tube length is again L assuming straight tubes and

rmin = 2γ cosθ

Pc
, (10)

fQ being again the TSD. In principle, fQ = f . However, a
different notation is used since it is not obvious that both
procedures lead to the same TSD when the porous medium
microstructure is different from a bundle of parallel tubes.

Combining Eqs. (1) and (10), assuming �P = const � Pc

independently of the capillary pressure, and deriving the en-
suing equation with respect to r lead to

dQNW

dr
= −�Pπ

8 μL
r4 fQ(r) (11)

and thus

fQ(r) = − 8 μL

�Pπ
r−4 dQNW

dr
. (12)

Equation (12) can be expressed in discrete form as [10]

fQk (rAB) = − 8 μL

�Pπ
r−4

AB

(QNWB − QNWA

rB − rA

)
. (13)

The value of fQk is then normalized as

dQk (rAB) = fQk∑n
i=1 fQi

(14)

In what follows, water is considered as the wetting fluid
and air as the displacing fluid. Thus γ = 0.072 N/m and μ =
μnw = 10−5 Pa s.

III. INTERCONNECTED MODEL POROUS MEDIUM

The QS immiscible displacement is simulated considering
simple model porous media referred to as PNMs. In a PNM,
the pore space is represented as a network of pore bodies
connected by narrower channels. The pore bodies correspond
to locally larger volumes whereas the channels correspond
to the throats of the pore space, i.e., the narrower passages,
also referred to as the constrictions, between pore bodies.
Although it is possible to construct the network from digital
images of real microstructures (see, e.g., [16]), simpler net-
works are sufficient for testing the QSFFDP. In what follows,

FIG. 1. Square (2D) (a) and cubic (3D) (b) pore networks.

square [two-dimensional (2D)] and cubic [three-dimensional
(3D)] networks are considered. As illustrated in Fig. 1, pore
bodies are spheres of radius rp located at the nodes of a regular
grid. The distance between two adjacent nodes is the lattice
spacing, a, with a = 350 μm in the simulations presented
below. The size of the network is the number of nodes (pore
bodies) in each direction [for example, Fig. 1(a) shows a 8 × 5
square network]. Throats are cylindrical channels of radius
rt . The throat size is randomly distributed according to a
given p.d.f. Similarly, the pore body size can be distributed
according to a given p.d.f. with the constraint that the pore
body size is equal to or greater than the largest throat to which
it is connected. In what follows, several types of p.d.f. will
be considered, namely, uniform, Gaussian, log normal, and
bimodal. Also, it can be noted that the network coordination
number, i.e., the number of throats connected to a pore body,
is 4 for the 2D square network and 6 for the 3D cubic network.

IV. FLUID-FLUID IMMISCIBLE QUASISTATIC
DISPLACEMENT SIMULATION

Modeling of immiscible two-phase flow displacements on
a network has been the subject of many works and the reader
is referred to [5,17,18] for reviews. Here, the interest is on
the displacement of a wetting fluid by a nonwetting one in the
network. This process is known as drainage. In the quasistatic
limit considered for the present paper, it was shown that
drainage can be simulated using a simple algorithm referred
to as the invasion percolation (IP) algorithm [19–21]. This
algorithm can be summarized as follows. A pressure differ-
ence, Pck, between the two phases is applied by imposing a
pressure increment in the nonwetting phase in contact with
one face of the network, identified as the inlet face. The
opposite face is the outlet, whereas all the other faces of the
network are kept impervious. At each pressure increment,
all the throats containing a meniscus for which the capillary
pressure threshold, Pcth, as expressed by Eq. (2), is such that
Pck � Pcth are identified. The throat for which (Pck − Pcth )/Pck

is maximum, hence corresponding to the interfacial throat of
maximum diameter among the interfacial throats such that
(Pck−Pcth )

Pck
> 0, is invaded together with the adjacent pore body

if the latter was not already invaded in a previous step. If this
pore body was occupied by the wetting fluid, new menisci
are then positioned at the entrance of the throats occupied
by the wetting fluid and connected to the newly invaded pore
body. In other words, the list of interfacial throats is updated
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so as to remove the invaded throat and add the throats con-
nected to the newly invaded pore body and occupied by the
wetting fluid. This procedure is repeated until there are no
unstable menisci remaining in the network, i.e., until there
exists no throat for which (Pck−Pcth )

Pck
> 0. The resulting wetting

- nonwetting fluid distribution corresponds to the equilibrium
distribution at the specified value of Pck. For a sufficiently low
pressure difference between the two fluids, the wetting phase
displacement is not sufficient for the invading phase to reach
the network outlet. The first equilibrium for which the invad-
ing fluid reaches the outlet corresponds to the breakthrough
(BT) and is characterized by Pck = PcBT. While incrementing
the displacing fluid pressure, the fluid distribution at BT is
the first for which the nonwetting fluid can flow through the
network, which means that QNW = 0 for Pck < PcBT while
QNW > 0 for Pck � PcBT. Note that the invasion rules de-
scribed above correspond to a quasistatic drainage process
without trapping. This means that an element, pore body, or
throat, occupied by the wetting fluid, is assumed to be always
connected to the outlet face, possibly through liquid films
[22] present in the pore body and throat surface roughness
and/or in a subnetwork of small crevices at the throat and
pore body walls. Trapping rules could be implemented (see for
instance [14]), but, for simplicity, they are not considered in
what follows. It can be argued that neglecting trapping is not
consistent with the considered cylindrical throat shape since
this shape favors trapping phenomena as opposed to throats of
a polygonal cross section which favor corner flows [22] and
thus the wetting fluid hydraulic connectivity throughout the
network. However, what is really important within the scope
of the present paper is to consider the same flow physics in
the reference network and the networks in the optimization
procedure (see Sec. VI). The idea is to keep the simulations
as simple as possible in the present effort. For this reason,
trapping phenomena have been neglected without explicitly
considering corner flows and thus throats of a polygonal cross
section.

Each pressure increment provides a point in the graph
of the retention curve, the fluid potential being the capillary
pressure (i.e., the pressure difference between the nonwetting
and wetting fluids) and the saturation being computed from
the equilibrium fluid distribution. Next, the computation of
the nonwetting fluid flow rate, QNW, after breakthrough is
performed as follows [5]. At each saturation equilibrium,
a pressure difference, �P, much smaller than the capillary
pressure characterizing this equilibrium, is applied in the non-
wetting fluid between the network inlet and outlet. For the
resulting flow, the mass conservation equation is expressed at
each invaded pore body i:

QNW i, j = 0 (15)

where QNW i, j is the nonwetting fluid volume flow rate be-
tween pore body i and adjacent pore body j. If the throat
between pore bodies i and j is occupied by the wetting fluid
then QNW i, j = 0. If the throat is occupied by the nonwetting
fluid, then

QNW i, j = πr4
t i, j

8μNWli, j
�Pi, j (16)

where rt i, j and li, j are the radius and length of the throat
linking the two pore bodies, respectively, while �Pi, j is
the pressure drop in the nonwetting phase between the two
neighboring pore bodies. Taking into account the pressure
boundary conditions at the inlet (Pinlet = �P + Poutlet) and
outlet (Poutlet = Cte) and the zero flux condition imposed on
the lateral faces of the network, Eqs. (15) and (16) lead to a
linear system for the pressure field in the nonwetting fluid.
This system is numerically solved using the conjugate gradi-
ent method. Once the pressure field is obtained, QNW can be
computed either at the outlet or inlet using Poiseuille’s law
applied to all nonwetting fluid throats connected to the outlet
or inlet, respectively.

In summary, the fluid-fluid distribution is computed, in a
first step, neglecting the viscous pressure drop in each fluid
phase on the grounds that capillary effects are dominant. For
this given fluid-fluid distribution, the flow is computed in a
second step as indicated above. This is carried out by sampling
the capillary pressure, Pc, with successive increasing values,
Pck, the former step allowing the determination of the reten-
tion curve and the latter allowing the determination of the flow
rate curve. Examples of fluid distribution in a 2D network are
reported in Fig. 2.

Figure 3 shows the retention curve and the nonwetting
fluid normalized flow rate Qn = QNW

Qmax
obtained with the above

algorithm for a 50 × 50 square network with Gaussian distri-
butions for both the TSD and PSD having mean radii of 30 and
90 μm and standard deviations of 5 and 10 μm, respectively.
Here, Qmax is the flow rate that would be obtained when the
network is fully invaded and the same �P as the one used
to compute QNW is applied, which means that Qmax = A k

μ
�P
L ,

and thus, from Eq. (1), that Qn = kr .

V. ASSESSMENT OF TSD EXTRACTION FROM THE
PARALLEL TUBES MODELS

As illustrated in Fig. 3, the PNM allows us to simulate the
flow rate and retention (or capillary) curves with the decisive
advantage that the TSD (and the PSD) of the medium is
perfectly known a priori; it is referred to as the reference TSD
in the following. Then, starting from the computed curves, the
standard determination procedures can be used, i.e., Eqs. (6)
and (13), in order to extract the TSD (or PSD) and compare
the result with the reference TSD (or PSD). Since the throats
control the displacement process, it is reasonable to expect
that only the TSD can be determined. The TSD obtained from
the parallel tubes model using either Eq. (6) or Eq. (13) is
referred to as the simple model TSD, i.e., the SMTSD. A
2D square 50 × 50 network and a 3D cubic 20 × 20 × 20
network were considered for the comparison.

For each network, the Qn(Pc) and Pc(S) curves were com-
puted and the SMTSD extracted using Eqs. (6) and (13). In
order to get smoother results, the extracted data, for a given
type of network, were averaged over 100 realizations of the
network. This corresponds to 100 realizations of each net-
work type for which throat and pore body sizes are randomly
assigned according to the given p.d.f. This means that the
fluid-fluid displacement was computed 100 times for each
case under consideration. Then the SMTSD was extracted
from each flow rate curve and each retention curve, yielding
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FIG. 2. Examples of fluid-fluid distribution computed in a 30 × 30 2D network with a uniform TSD characterized by rmin = 20 μm and
rmax = 60 μm. Invading fluid in blue enters the network at the bottom face: (a) Pc = 2900 Pa, S = 0.82, (b) Pc = 3250 Pa, S = 0.71, (c)
Pc = 3650 Pa, S = 0.55, (d) Pc = 4250 Pa, S = 0.12.
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FIG. 3. Example of computed retention curve (i.e., capillary pressure vs the wetting fluid saturation) (a) and nonwetting fluid normalized 
flow rate curve  (b) for  a 50 × 50 square network with Gaussian PSD (mean radius, 90 μm; standard deviation, 10 μm) and TSD (mean radius, 
30 μm; standard deviation, 5 μm).
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FIG. 4. Comparison of the TSD obtained from the simple model (SMTSD) using the retention curve Pc(S), i.e., Eq. (6), and the reference
(real) TSD for various cases: (a) 2D 50 × 50 network, uniform p.d.f., rmax = 40 μm, rmin = 20 μm, (b) 2D 50 × 50 network, Gaussian p.d.f.,
rmoy = 20 μm, σ = 2 μm, (c) 3D 20 × 20 × 20 network, uniform p.d.f., rmax = 40 μm, rmin = 20 μm, (d) 3D 20 × 20 × 20 network, Gaussian
p.d.f., rmoy = 20 μm, σ = 2 μm.

2 × 100 TSD. Then, for either the flow rate curves or the
retention curves, the average TSD is computed from the 100
TSD. This average is presented and discussed below. A “case”
is defined by the dimensionality of the network, i.e., square
or cubic; the size of the network; the selected p.d.f., i.e.,
uniform or Gaussian; and the parameters of the p.d.f., namely,
the minimum and maximum radii, rmin and rmax, respectively,
for the uniform distribution or the mean size and standard
deviation, rmoy and σ , respectively, for the pore bodies and
the throats in the case of a Gaussian p.d.f.

The comparison between the reference TSD and the
SMTSD for various cases when the retention curve informa-
tion [Eq. (6)] is used is presented in Fig. 4 and Table I. As can
be seen, the SMTSD does not match the reference TSD, in
particular for the uniform distribution for which the uniform
nature is not retrieved. For the 3D networks, it can be seen that
the SM procedure introduces skewness towards large throat
size. In brief, the simple model (SM) does not contain the
necessary information to predict the reference TSD.

As illustrated in Fig. 5 and Table I, the SMTSD is some-
what less well estimated from the flow rate curve compared
to the case where the capillary curve information is used.

In particular, it can be noticed that the larger throats are not
identified.

A major shortcoming is that some throat sizes are not
retrieved at all. In the case of the 2D network with a uni-
form distribution for instance, the throat sizes in the upper
half of the distribution are not retrieved, in particular while
employing the flow rate curve. Thus, only half of the throat
sizes is actually identified. The same problem can be noticed
with the 3D network, but to a lesser extent since the range
of nonidentified throat sizes is narrower (but here again the
larger throats are not identified). Insights on this result can be
gained from percolation theory [23]. In the percolation theory,
a certain fraction, p, of throats are “active.” This fraction of ac-
tive throats (or “bonds” in the language of percolation theory)
is distributed randomly. Suppose p is progressively increased
starting from p = 0. For a particular value, pc, of this fraction,
a percolating path (a path of interconnected active throats
connecting the inlet to the outlet) forms for the first time in
the network. The quantity pc is the percolation threshold of
the network the value of which depends on the network [23].
For a square network in bond percolation, pc = 0.5, whereas
pc ≈ 0.25 for a cubic network.
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TABLE I. Comparison between the reference TSD and the SMTSD (parallel tubes) obtained from the Young-Laplace equation and the
capillary pressure (or retention) curve, Eq. (6), or from the normalized flow rate curve, Eq. (13), for various cases.

Parallel tubes model and Pc(S) Parallel tubes model and Qn(S)

Statistical moments (μm) Reference TSD SMTSD Relative error (%) SMTSD Relative error (%)

Uniform p.d.f. 2D network Mean 30 28.84 3.88 24.14 19.53
Standard deviation 5.75 2.78 48.3 2.72 52.64

Gaussian p.d.f. 2D network Mean 20 19.84 0.79 18.08 9.58
Standard deviation 2 0.92 54.04 1.4 30.1

Uniform p.d.f. 3D network Mean 30 30.94 3.14 25.38 15.4
Standard deviation 5.75 4.79 16.77 3.77 34.44

Gaussian p.d.f. 3D network Mean 20 20.69 3.45 18.6 7
Standard deviation 2 1.19 40.5 1.59 20.3
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FIG. 5. Comparison of the TSD obtained from the parallel tubes model (SMTSD) and the reference (real) TSD for various cases using 
the flow rate information, Eq. (13). rc is the critical radius corresponding to the network percolation threshold: (a) 2D 50 × 50 network, 
uniform p.d.f., rmax = 40 μm, rmin = 20 μm, rc = 30 μm, (b) 2D 50 × 50 network, Gaussian p.d.f., rmoy = 20 μm, σ = 2 μm, rc = 20 μm,
(c) 3D 20 × 20 × 20 network, uniform p.d.f., rmax = 40 μm, rmin = 20 μm, rc = 35 μm, (d) 3D 20 × 20 × 20 network, Gaussian p.d.f., rmoy = 
20 μm, σ = 2 μm, rc = 21.4 μm.
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In the present context, an active throat is a throat that
can be invaded, i.e., a throat such that Pck � Pcth, and the
breakthrough corresponds to the percolation threshold since
there is no nonwetting fluid path flowing through the network
before breakthrough. The percolation threshold can thus be
related to the TSD:

pc =
∫ ∞

rc

f (r)dr = 1 −
∫ rc

0
f (r)dr = 1 − F (rc) (17)

where rc is the percolation radius, i.e., the radius given by
Pcth = PcBT, f being the reference TSD p.d.f., and F the cor-
responding cumulative distribution function [24].

Thus, the threshold or percolation radius, rc, represents
the critical radius above which the flow rate is nonzero. This
means that, when the bundle of parallel tubes model is consid-
ered, all the throats of the network having radii greater than the
threshold radius, which are hence invaded by the nonwetting
fluid prior to the BT, cannot be determined by the parallel
tubes model.

From Eq. (17), rc is given by

rc = rmax(1 − pc) + pcrmin (18)

for a uniform p.d.f., where rmax and rmin are the maximum and
the minimum radii of the (reference) TSD, respectively. For a
Gaussian TSD, the threshold radius is given by

rc = rmoy +
√

2 σ erf−1(1 − 2pc) (19)

where erf−1 is the inverse error function.
For a square lattice (pc = 0.5), the above relationships give

rc = rmax+rmin
2 and rc = rmoy for the uniform and Gaussian

p.d.f., respectively. For a cubic lattice (pc ≈ 0.25), one obtains
rc = 3

4 rmax + 1
4 rmin and rc = rmoy +

√
2
2 σ for the uniform

and Gaussian p.d.f., respectively. The values are reported in
Fig. 5. The analytical threshold radii are perfectly consistent
with the results shown in the TSD comparisons in Fig. 5.
In summary, the parallel tubes model is not the appropriate
representation able to identify the throat sizes greater than
the critical radius corresponding to the network percolation
threshold. The greater the percolation threshold, the larger the
range of missing throats in the TSD determination with the
parallel tubes model.

VI. BEYOND THE TSD EXTRACTION FROM THE
PARALLEL TUBES MODEL

The observation above calls upon more sophisticated pro-
cedures to extract the TSD of a porous material from data
available from a primary drainage process. As shown in the
previous section, the standard and commonly used models
to extract the TSD do not allow determining the reference
TSD from the Qn(Pc) or Pc(S) data. This unsatisfactory sit-
uation is explained by two reasons. First, for a given pressure
step, all the newly invaded throats, regardless of their sizes,
are assigned to a single throat size value corresponding to
the imposed pressure difference related to the Young-Laplace
equation (2). Second, when the determination of the TSD is
based on the flow rate curve, all the radius values larger than
the percolation radius cannot be determined since the flow
rate is zero until breakthrough is reached, hence providing no
information on all the throats of radius larger than the critical

value. Thus, the question arises as to whether a better use
of the Qn(Pc) and Pc(S) curves can be performed in order
to predict the reference TSD. An attempt in this direction is
presented in the following.

A. TSD determination as an inverse problem

In essence, the problem to be solved is an inverse problem
relying on the following question: knowing the Qn(Pc) and
Pc(S) curves, can the TSD of the corresponding medium be
reliably predicted? In this procedure, the direct problem is of
course to predict the Qn(Pc) and Pc(S) curves of the porous
medium under consideration. In addition, the inverse problem
is solved using again the PNM and the direct problem is
solved as in the previous section using the IP algorithm in
the absence of trapping, considering the pressure and no flux
boundary conditions already mentioned in Sec. IV. Actually,
a somewhat simplified version of this inverse problem is tack-
led, assuming that the pore network structure is known. This
means that the minimization procedure to fit Qn(Pc) and Pc(S)
is carried out for a given type of network, i.e., square or cubic
for instance. In other words, for a given type of network (a
50 × 50 2D square network for instance), the objective is
to correctly identify the TSD. The assumption that the pore
network structure is known a priori is further discussed in
Sec. VII below. To build and test the procedure, a particular
realization of the network, with specified p.d.f. parameters,
is used as the reference network the TSD of which is hence
known. It shall be viewed as the porous medium to be char-
acterized for which the experimental measurement of Qn(Pc)
and Pc(S) would have been performed in practice and the TSD
of which is to be determined.

The inverse problem is solved using an optimization
method based on a searching algorithm which is a hybrid
version of the genetic and hill climbing algorithms [25]. The
genetic algorithm [26,27] is a searching algorithm based on
the biological evolution laws including reproduction, muta-
tion, and natural selection. A population of individuals is first
defined. In our case, the individuals are realizations of the
pore network. Every individual has genes. A gene in a pore
network is either a throat or a pore body characterized by its
size. The algorithm is relying on a fitness function the value of
which is estimated from a direct solution for each individual.
The fitness function, denoted fit(rt ) in its generic form, is
an objective function comparing the curve obtained by direct
simulation for the individual to the reference one, rt being a
vector the components of which are the individual throat radii.
The genetic algorithm aims at minimizing this fitness function
[26].

The overall algorithm can be summarized by the following
steps.

The first step consists in generating a series of N0 parent re-
alizations (N0 = 16 in this paper) to which evolutionary laws
and natural selection are applied. In the most general case,
both the throat and pore body sizes vary from one element
(pore body or throat) to the other in the network. Referring for
instance to the computation of the normalized flow rate, it is
clear from Eq. (16) that the local volume flow rate through a
throat depends not only on the throat radius, but also on the
adjacent pore bodies radii. Indeed, by construction, the length
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of a throat li, j is expressed as

li, j = a − rpi, j − rpi+1, j (20)

where a is the lattice spacing and rpi, j and rpi+1, j are the
radii of the two adjacent pore bodies. As a result, the Qn(Pc)
and Pc(S) curves depend not only on the TSD but also on
the PSD. Thus, the pore body size should be kept as a vari-
able in the optimization process in order to keep generality.
However, as already mentioned, the drainage process is essen-
tially sensitive to the TSD and the impact of the PSD on the
flow rate can be reasonably neglected. Thus, the pore body
size is taken as constant (equal to 80 μm) in what follows.
Consequently, generation of individuals is carried out by only
varying the throat sizes. The minimum and maximum radii
of the TSD are determined from the invasion percolation
procedure carried out on the reference network. The minimum
throat radius, rmin 0, is given by Eq. (2) at the corresponding
pressure step when the saturation becomes equal to zero.
Conversely, the maximum throat radius, rmax 0, cannot be as
exactly determined as rmin 0. It is approximately specified by
multiplying by a factor 1.3 the radius corresponding to the
first pressure step at which the saturation is no longer equal
to 1.

In order to introduce diversity in the initial popu-
lation, individuals are generated within N0b class inter-
vals. The ith interval has also a uniform p.d.f. with
minimum and maximum radii, rmin i and rmax i, respec-
tively, given by rmin i = (N0b+i)rmin 0+(N0b−i)rmax 0

2N0b
and rmax i =

(N0b−i)rmin 0+(N0b+i)rmax 0
2N0b

. The number of individuals generated

in the ith interval is N0i so that N0 = ∑N0b
i=1 N0i. Here, N0b = 4

and N0i = 4. The normalized nonwetting fluid flow rate and
capillary pressure retention curves, together with the corre-
sponding fitness function of interest, are computed for each
individual parent. After this initialization procedure, the ge-
netic algorithm is executed according to the following steps.

(1) The natural selection is applied following a tourna-
ment method [26]. This is achieved by randomly choosing a
subset of N1 individuals among the generation of individuals
(here, N1 = 5) and the two ones featuring the best fitness
values are selected.

(2) Two evolutionary operators, namely, crossover and
mutation, are applied to the two selected parent individuals.
Crossover is the process by which the two selected parent
individuals give birth to a child realization by randomly
exchanging throat sizes (genes). Mutation is an operation ap-
plied separately to both selected parent realizations. It consists
in altering genes (the sizes of randomly chosen throats). Mu-
tations are generally supposed to happen rarely. In the present
case, the mutation rate is taken equal to 0.01. In our case this
means that in a 50 × 50 network, for instance, 12 throats
are selected randomly in each direction. Then the sizes of
these 24 throats are specified randomly between rmin and rmax

according a uniform p.d.f.
(3) The Qn(Pc) and Pc(S) curves and the fitness values for

the two children are computed and, among the four individuals
(the two parents and the two children), the two individuals
having the best fitness values are selected. They are kept to
form the new generation.

(4) Steps 1–3 are repeated until there are no more individ-
uals from the current parent population and a new generation
of N0 individuals is formed.

(5) The process made of steps 1–4 is iterated until con-
vergence is reached. This means that the generation of N0

networks obtained at the end of steps 1–4 forms the new
parent generation when convergence has not been reached. By
convergence, it is meant that the fitness of all the individuals
from one generation to the following one does not change by
more than about 0.1%.

For all the cases under study in this paper, 200 generations
(iterations) were enough to reach convergence at which the
solution is estimated to be close to the global solution. Then a
new step is performed using the hill climbing algorithm.

The solution obtained from the genetic algorithm is global
in the sense that the population of all the individuals is
optimized by adjusting their overall genes content. When con-
sidering a network with its given TSD, the genetic algorithm,
which operates on randomly selected throats, keeps in fact this
TSD. A network with a Gaussian TSD, for example, is such
that throat radii close to the mean radius are more likely to
be selected than others. This limits the population diversity.
The objective of the hill climbing algorithm, which, like the
genetic algorithm, is a searching algorithm, is to gradually
modify the throat size p.d.f. within a single individual so as
to converge toward the TSD of the reference network. To this
purpose, the hill climbing algorithm is operated on the best
fitted individual in the population once the genetic algorithm
ends. It attempts to find a better solution by adjusting only
a single variable among all the variables. By contrast to the
genetic algorithm where the throat radii are adjusted, the hill
climbing algorithm [25] aims at the adjustment of the throat
densities. Once the lower and upper bounds of the TSD are
specified at the starting point of the optimization process,
the distribution can be divided into class intervals, or bins.
Then the density of throat sizes belonging to each bin can be
determined, i.e., the fraction of throats having a size within
the radius interval corresponding to the bin. The hill climbing
algorithm aims at determining the optimal density of each
bin. To summarize, the genetic algorithm is a multidirectional
search algorithm operating on radii belonging to different
distribution bins, whereas the hill climbing algorithm is a
unidirectional algorithm that operates only on radii belonging
to a pair of defined bins. Actually, as the sum of all distribution
bin densities must be equal to 1, the hill climbing algorithm
operates on two bin densities by increasing one (the positive
bin) and decreasing the other (the negative bin) with the same
amount. Thus, two bins must be selected. In our case, the two
bins of the best fitted individual resulting from the genetic
algorithm are randomly chosen. A relatively small randomly
chosen number of throats are interchanged between the nega-
tive and positive bins. If the fitness function is improved, the
modified individual is retained and the hill climbing process
is repeated until the fitness function does not improve. When
it is not improved, another test is performed by randomly
choosing a different couple of bins. The fitness function for
the hill climbing algorithm is equivalent to the one considered
for the genetic algorithm and is denoted by fit(d) in its generic
form, where d is the distribution density vector. The difference
between the genetic and hill climbing algorithms lies in the
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FIG. 6. Optimization algorithm chart.

variables to control for minimizing the objective function.
Fitness functions are detailed in the following section. The
optimization algorithm is summarized in the chart depicted in
Fig. 6.

B. Fitness functions

The direct problem solution provides the Qn(Pc) and Pc(S)
curves of the reference network, i.e., the one for which the
TSD from either the normalized flow rate curve or the cap-
illary pressure curve data, or both, is to be determined. As
indicated above, the network is a 2D, 50 × 50 square network,
with a lattice spacing of 350 μm and a chosen TSD as will be
further presented in the results section. The initial N0i individ-
uals (also 2D, 50 × 50 square networks with a lattice spacing
of 350 μm) are generated in the N0b class intervals having a
uniform TSD with their own minimum and maximum radii as
mentioned above.

For the same pressure steps as the ones considered for the
reference Qn(Pc) and Pc(S) curves, the optimization process,
following the genetic and hill climbing algorithms, is per-
formed. Again, this implies to solve the direct problem for
every individual considered in the optimization process. The
TSD at each step of the optimization procedure is compared
to the reference one by evaluating the fitness function, which
is defined as the cumulative error function. If the optimization
is based on the normalized flow rate Qn = QNW

Qmax
, this fitness

function is given by

fitQn (ω) =
n

j=1

|Qn−ref j − Qn−ind j (ω)|, ω = rt , d (21)

where n is the total number of pressure steps; Qn−ref j and
Qn−ind j are, respectively, the reference and individual normal-
ized flow rates corresponding to the jth pressure increment;
and ω = rt , d depending on whether the algorithm is at the
genetic or hill climbing stage. Again, flow rates are considered
so as to use the same convention as for the FFDP [10]. How-
ever, it should be clear that Qn = kr in the quasistatic limit
under consideration, where kr is the nonwetting fluid relative
permeability.

Similarly, if the optimization is based on the capillary
pressure curve, the fitness function is defined as

fitεPc (ω) =
n

j=1

|εref Sref j − εindSind j (ω)|, ω = rt , d (22)

where Sref j and Sind j are the reference and individual satura-
tions at the jth pressure increment, respectively. As can be
inferred from Eq. (22), where εref and εind are, respectively,
the reference and individual porosities, the porosity is actually
also considered as a variable to optimize. By definition, εS is
computed as

εS = Vnoninv

Vtotal
(23)

where Vnoninv is the volume of the pore space not invaded at the
j th step and Vtotal is the total volume of the porous medium.
The wetting fluid volume fraction, εS, does not involve the
total pore space volume, Vpores, but only the volume of the
noninvaded pore bodies and throats as a variable to adjust.
This is preferable to the saturation as the latter depends on
both Vnoninv and Vpores that can have different impact on the
fitness function. Actually, the variable that is adjusted is the
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FIG. 7. Top: Reference Gaussian TSD (a) and reference uniform TSD (b) for a 50 × 50 square network. Bottom: TSD obtained from the
optimization procedure using both the normalized flow rate and capillary pressure curve as target data. The TSDs in (c) and (d) are to be
compared with the TSDs in (a) and (b), respectively.

porosity when the saturation is equal to 1; otherwise, it is the
saturation function.

When both the flow rate and the capillary pressure curves
are considered, then the fitness function is defined as

fitQn−εPc (ω) =
n

j=1

|Qn−ref j − Qn−ind j (ω)|

+ fp

n

j=1

|εref Sref j − εindkSind j (ω)|,

ω = rt , d (24)

where fp is a penalization factor that is taken as constant and
computed as

fp = 1

εref
. (25)

The idea with the weighted definition in Eq. (24) is actually
to give more importance to the capillary pressure curve in the
optimization process.

C. Results

Results are first discussed for a reference network with a
Gaussian TSD having a mean radius of 40 μm and a standard

deviation of 10 μm. This reference TSD is shown in Fig. 7(a).
As mentioned in Sec. VIB, the initial population that must
be generated at the beginning of the optimization process
is composed of realizations with uniform distributions, thus
with a type of p.d.f. different from the Gaussian one of the
reference network.

Results on optimized TSDs when the target data are only
the capillary pressure curve [Eq. (22)] (left column), only the
normalized flow rate curve [Eq. (21)] (middle column), and
both the retention and normalized flow rate curves [Eq. (24)]
(right column) are represented in Fig. 8. Corresponding quan-
titative results are reported in Table II.

As can be seen from Fig. 8 and Table II, using the cap-
illary pressure leads to a better result than when only the
normalized flow rate curve is employed. Not surprisingly,
the best result is obtained when both the retention curve
and the normalized flow rate curve are used in the opti-
mization process. Indeed, comparing the reference TSD in
Fig. 7(a) to the optimized one obtained with this proce-
dure in Fig. 7(c) shows a very good agreement. This is
also confirmed by the results in Table II. As illustrated in
Fig. 8 (right column), the retention and normalized flow
rate curves resulting from the optimization procedure repro-
duce very well the corresponding curves of the reference
case.
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FIG. 8. Results of optimization procedure considering the capillary pressure curve only as target data (left column), the normalized flow
rate curve only (middle column), and both the normalized flow rate (equivalent to kr) and capillary pressure curves (right column), when the
reference p.d.f. is Gaussian [as depicted in Fig. 7(a)].

A similar test was performed when the reference TSD is
uniform [Fig. 7(b)]. The results are represented in Fig. 8 and
quantitative data in Table III. Here again, the TSD obtained
considering the capillary pressure curve only is closer to the
reference one than when the optimization is based on the nor-
malized flow rate curve only. The best result is again obtained
when both the capillary pressure and the normalized flow rate
curves are used in the optimization procedure. However, as

illustrated in Figs. 7(b) and 7(d), the optimization is less per-
formant than in the case of a Gaussian TSD for the reference
medium. This discrepancy can be explained by the uncertainty
on the distribution upper bound associated to the difficulty of
accurately determining the maximum throat radius, rmax 0, as
mentioned in Sec. VIA. This inaccuracy leads us to introduce
some throats greater than the maximum radius (50 μm) in
the reference distribution during the optimization procedure.

TABLE II. Comparison between the reference and optimized TSDs when the reference TSD is the Gaussian TSD depicted in Fig. 7(a).

Pc(S) only Qn(Pc ) only Both Pc(S) and Qn(Pc )

Statistical Reference Optimized Relative Optimized Relative Optimized Relative
moments (μm) TSD TSD error (%) TSD error (%) TSD error (%)

Mean 40 39.57 1.08% 43.53 8.83 40.24 0.6
Standard deviation 9.9 11.37 14.85 15.18 53.33 9.77 1.31
Skewness −0.01 0.06 0.45 0.043
Kurtosis 3 3.275 9.16 2.57 14.33 2.77 7.67
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TABLE III. Comparison between the reference TSD and the obtained TSD, where the reference TSD is the uniform TSD depicted in
Fig. 7(b).

Pc(S) only Qn(Pc ) only Both Pc(S) and Qn(Pc )

Statistical Reference Optimized Relative Optimized Relative Optimize TSD Relative
moments (μm) TSD TSD error (%) TSD error (%) TSD error (%)

Mean 40 39.88 0.29% 43.67 9.18 39.93 0.18
Standard deviation 5.77 6.36 10.22 10.72 85.79 5.97 3.47
Skewness 0.01 0.91 0.97 0.42
Kurtosis 1.8 5.06 181 2.99 66.1 2.93 62.78

This effect is of course much less sensitive in the case of
distributions of Gaussian or log-normal types for which the
relative density of throats close to the distribution upper bound
is much lower than in a uniform distribution.

As also shown in Fig. 9, the capillary and normalized flow
rate curves of the optimized network almost perfectly match
the ones of the reference network. However, the match for the

capillary curve is not satisfactory for the lower values of the
capillary pressure when only the normalized flow rate data
are used in the optimization procedure. This also holds in the
case of the Gaussian reference TSD (see Fig. 8). This is an
additional illustration of the impact of the distribution upper
bound specification and also of the percolation threshold issue
discussed in Sec. V.
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FIG. 9. Optimization results considering only the capillary pressure curve as target data (left column), only the normalized flow rate curve 
(middle column), and both the normalized flow rate and capillary pressure curves (right column). The reference p.d.f. is the uniform one 
reported in Fig. 7(b).
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FIG. 10. Results of the optimization procedure using both the normalized flow rate and capillary pressure curves as target data for a 50 × 50
square network having a reference log-normal TSD (a) and bimodal TSD (b). Figures in the left and right columns are for the log-normal and
bimodal distributions, respectively. The optimized TSDs in (c) and (d) are to be compared with the reference TSDs in (a) and (b), respectively.

Two additional tests were performed considering a refer-
ence log-normal distribution [as depicted in Fig. 10(a)] and
the expected more challenging bimodal distribution depicted
in Fig. 10(b). For these cases, only the full optimization proce-

dure, i.e., the one based on both Pc(S) and Qn(Pc), was used.
As can be seen from Fig. 10 and Table IV, results are quite
satisfactory. Here also, as shown in Fig. 11, the match between
the reference capillary pressure and the normalized flow rate

TABLE IV. Comparison between the reference and optimized TSDs using both the capillary pressure and normalized flow rate curves as
target data, where the reference TSD is the log-normal one depicted in Fig. 10(a) or the bimodal one depicted in Fig. 10(b).

Log-normal TSD Bimodal TSD

Statistical moments (μm) Reference TSD Optimized TSD Relative error (%) Reference TSD Optimized TSD Relative error (%)

Mean 39.84 39.85 0.003 35.3 35.09 0.6
Standard deviation 9.83 9.8 0.3 16.61 17.07 2.8
Skewness 0.63 0.58 7.94 0.06 0.245
Kurtosis 3.48 3.33 4.31 1.71 2.01 17.54
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FIG. 11. Results of the optimization procedure using both the normalized flow rate and capillary pressure curves as target data for a 50 × 50
square network having a reference log-normal TSD (a) and bimodal TSD (b). Figures in the left and right columns are for the log-normal and
bimodal distributions, respectively. Comparison of the reference and optimized capillary (or retention) curves (a), (b) and normalized flow rate
(or relative permeability) curves (c), (d).

curves and the curves resulting from the optimization pro-
cedure is excellent. Finally, among the four reference TSDs
considered here, results obtained for the uniform one are the
less accurate, mainly because of the uncertainty associated
with the distribution upper bound specification.

VII. DISCUSSION

To further illustrate the interest of the optimization ap-
proach compared to the conventional approaches based on
the consideration of the parallel tubes model and either the
normalized flow rate curve [Eq. (13)] or the Young-Laplace
equation and the retention curve [Eq. (6)], the simple model
(i.e., the parallel tubes model) was applied to the bimodal
reference network [Fig. 10(b)]. The results are represented in
Fig. 12 and reported in Table V.

As can be seen, the bimodal nature of the distribution
cannot be identified using the simple model. The approach
based on the normalized flow rate curve and the parallel tubes
model, i.e., Eq. (13), only captures the throat sizes below the
percolation threshold (as discussed in Sec. V). As a result,

only throats in the range of the lower peak distribution are
retrieved. When the capillary pressure curve combined with
the Young-Laplace equation is used, i.e., Eq. (6), throats over
a larger range of size are identified but the bimodal nature of
the distribution is not at all retrieved. However, as indicated
in Table V, the procedure based on the capillary pressure
curve, i.e., Eq. (6), leads to a satisfactory estimate of the
throat size mean value. Actually, as can be seen also from
Table I, the use of the capillary pressure curve information in
conjunction with the Young-Laplace equation for the parallel
tubes model leads to the same result, i.e., the throat size mean
value is reasonably well predicted. Note from Tables II and
III that it is also the case with the optimization procedure:
the throat size mean value is well predicted when the capil-
lary pressure curve information is used [and also when both
the Pc(S) and Qn(Pc) information are used as can be seen
from Tables II–V]. An explanation of this fact, i.e., the fact
that the use of the retention curve in conjunction with the
Young-Laplace equation and the parallel tubes model leads
to a good estimate of the mean throat size, is proposed in the
Appendix.
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FIG. 12. Reference bimodal TSD (a), SMTSD identified using Eq. (13), i.e., the normalized flow rate curve and the parallel tubes model
(b), and SMTSD identified using Eq. (6), i.e., the capillary pressure curve and the parallel tubes model (c).

For perspective, we offer the following remarks on the
above results. Although the TSD identification based on the
optimization procedure clearly leads to much better results
than the simple parallel tubes model, several points are worth
being recalled or discussed. First, trapping phenomena were
ignored. It would be interesting to investigate the possible im-
pact of this phenomenon on the TSD determination. Second,
the optimization procedure has been tested considering only
the throat size variability. In other words, the pore body size
variability (the PSD) was not considered. In this respect, it
would be interesting to explore the ability of the optimization
procedure to capture both the PSD and the TSD. Third, the
optimization procedure has been performed for given pore
network structures, i.e., square or cubic in our simulations. It
can certainly be argued that, in general, the network structure
is unknown a priori. In addition, the pore network that can
represent a real porous medium is rarely structured but rather
unstructured. This means that the distance between two adja-
cent pore bodies may vary, as well as the local coordination
number, i.e., the number of pore bodies to which a given
pore body is directly connected. Therefore, an interesting
question to address will be to test the impact of the structure.
In other words, if cubic networks are used, for instance, in
the optimization procedure with reference data obtained from
a medium the 3D pore network of which is obviously not
cubic, will the procedure still be relevant, or at least provide
significantly better results than those obtained using the much
simpler procedures making use of Eq. (6) or Eq. (13)? Since
the microstructures of porous media can be quite diverse, it
can be surmised that the quality of the results will also be
quite diverse depending on the medium pore network struc-
ture and how close it is from a cubic network. In principle,

the optimization procedure can of course be used for pore
networks different from cubic. However, this may be cumber-
some, keeping in mind that many realizations of the network
must be generated. Here, the use of stochastic network gen-
erators [28] might be an option. From a practical point of
view, a simpler option may be to create a catalog of various
pore network structures (cubic, Voronoi, etc.) and choose the
one which seems the closest to the structure of the porous
medium to be characterized. This choice could be guided by
images from the microstructure or partial information on this
structure. However, when detailed digital 3D images of the
microstructure are available, it is probably simpler to try to
extract the PSD and/or the TSD directly from the images
[8,9]. Nevertheless, it would be interesting to test whether
the use of the Qn(Pc) and Pc(S) curves with the optimization
procedure might help characterize the microstructure by test-
ing different pore network structures available in the catalog.
Another type of situation is when the throat or pore body sizes
change due to some coupled phenomena (particle trapping,
dissolution or precipitation, or biofilm development). Using
the optimization procedure to characterize the pore network
evolution can be much simpler than repeated 3D imaging. In
this case, one could use a stochastic pore network generator
based on data obtained on initial images of the microstructure.
Nevertheless, this requires determining the retention curves
and the nonwetting fluid normalized flow rate (as well as the
porosity and the permeability) repeatedly. Finally, the network
size considered in this paper remains quite small, and this was
mainly motivated by the interest which was focused on the
characterization of thin porous media with only few pores over
their thickness [29]. One can wonder whether increasing the
network size might affect the results. Although tests in this

TABLE V. Comparison of the throat size mean values of the reference TSD with those obtained using the parallel tubes model and
normalized flow rate curve, Eq. (13), or the capillary pressure curve combined with the Young-Laplace equation, Eq. (6), for the reference
bimodal TSD depicted in Fig. 10(b).

Parallel tubes model

Reference TSD Qn(Pc ) Pc(S)

Mean (μm) Mean (μm) Relative error (%) Mean (μm) Relative error (%)
35.3 19.6 44.48 35.3 0.3
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direction could be interesting, it can be noted, for instance,
that the problem associated with the network percolation
threshold, when the flow rate information is used, will still
be present whatever the network size. As a consequence, the
simple models [based on Eq. (6) or Eq. (13)] are not expected
to perform better whatever the network size.

Another issue not addressed in the present paper is the
possible impact of finite-size effects (see, e.g., [30]), when
considering relatively small networks. The finite-size effects
are of course more important in small networks and might
hamper the simulations. It is assumed that the network con-
sidered in the present paper is sufficiently large for the results
to be valid for much larger pore networks.

It should also be noted that the optimization procedure is
significantly more intense in terms of computational resources
and computer programming compared to the conventional
procedures based on the parallel tubes model, which actually
correspond to negligible computational times. For a 50 × 50
network, the computational time of one simulation corre-
sponding to the computation of the Qn(Pc) and Pc(S) curves
considering 60 pressure steps is on average 3.66 s (using a
single CPU 2.5-GHz Xeon processor). The genetic algorithm
is run considering 200 generations. Each generation includes
16 individuals, hence involving 16 Qn(Pc) and 16 Pc(S) curves
simulations. Thus the computational time associated with one
generation is 16 3.66 ≈ 58.56 s. The computational time of
the genetic algorithm step is therefore 200 × 58.56 = 11 712 s
(3 h, 16 min). The hill climbing algorithm step is performed
over a single network but typically requires between 500 and
700 Qn(Pc) and Pc(S) curves simulations, which correspond to
a computational time of about 35 min. The total computational
time for a 50 × 50 network is therefore around 4 h. Since
the latter is relatively important even for a small network, the
question arises as to whether the method can be realistically
used in practice. In this respect, one can first notice that the
code is written in MATLAB. A C or FORTRAN version would
be significantly more efficient. The IP algorithm used to com-
pute the Pc(S) curve could be made more effective, (see for
instance [31,32]). Some algorithm parallelization [a genetic
algorithm, a linear system solver for the computation of the
Qn(Pc) curve, etc.] is also expected to considerably reduce
the computational time. Also, as mentioned previously, the
porosimetry method considered in the paper is primarily de-
veloped for the characterization of thin porous media, like fuel
cell porous components, [16], filtration membranes, [10], etc.
The number of pores over the thickness of such media can be
quite small, less than 10 for the porous component considered
in [16] for instance. Thus, the network need not necessarily be
large. Also, network size for the computations of properties
over a representative elementary volume is typically of a few
tens of pores [5]. In summary, the possibility of seriously
improving the computational performances, compared to our
current code, are sufficiently significant for considering that
the computational performances should not be an issue for
using the method in practice.

VIII. CONCLUSION

Pore network simulations were developed to assess
the performance of two conventional and simple methods

aiming at the determination of the TSD of a porous medium
from macroscopic data such as the retention curve and/or
the normalized flow rate curve. It was shown that using the
normalized flow rate curve alone, which is roughly an infor-
mation similar to the one used in the FFPD technique [10],
is not satisfactory since all the throats greater than the criti-
cal throat corresponding to the network percolation threshold
cannot be identified. On the whole, if a parallel tubes model
is considered, the procedure based on the capillary pressure
curve combined with the Young-Laplace equation leads to
better determination of the mean radius than the procedure
based on the normalized flow rate curve. However, all the
invaded pores at a given pressure step in both procedures
are assigned to one pore size corresponding to the speci-
fied capillary pressure regardless of their actual sizes. Thus,
these simple procedures do not make any distinction between
the TSD and the PSD. In order to alleviate the limitations
of these conventional TSD identification methods, a proce-
dure combining pore network simulations and an optimization
technique based on a genetic algorithm and the hill climbing
algorithm was developed. This algorithm leads to much better
results compared to the simpler methods. Referring again to
the FFPD, the paper also indicates that the knowledge of
the nonwetting fluid normalized flow rate is not sufficient to
determine the TSD. Using the porosity and the retention curve
as additional information is necessary to obtain satisfactory
results.

However, the optimization procedure is significantly more
intense in terms of computational resources and computer
programming compared to the conventional procedures. Effi-
cient algorithms, programming languages, and computational
procedures (parallelization) are desirable for practical use of
the optimization procedure so as to perform the optimization
over a sufficiently large network in a reasonably short time.
Also, a somewhat simple situation has been considered to
test the optimization procedure. Only the TSD was taken into
account and no variability in the pore body size was envis-
aged. The network structure and size were the same in the
reference network and the various networks generated during
the optimization procedure. Certainly, more work is needed to
fully explore the capability of the approach proposed in the
present paper with the aim of solving the ill-posed problem
consisting in identifying the TSD (and the PSD) from macro-
scopic data such as the normalized flow rate and capillary
pressure curves. Nevertheless, results obtained here are very
encouraging and suggest to further investigate the way opened
by the methodology developed in this paper.
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APPENDIX: MEAN THROAT SIZE FROM THE
RETENTION CURVE

Some explanation of the fact that the use of the retention
curve in conjunction with the Young-Laplace equation always
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TABLE VI. Comparison between the mean throat radius in the TSD and the radius predicted by Eq. (A7).

p.d.f. rM (μm) λ r̄ [from Eq. (A7)] r̄ (from p.d.f.) (μm)

Uniform 2D (Table I) 30.91 23.5 29.5 29.6
Gaussian 2D (Table I) 20.42 35.3 19.8 19.9
Uniform 3D (Table I) 35.85 15 33.3 33.32
Gaussian 3D (Table I) 21.64 32.5 20.95 20.98

lead to a satisfactory estimate of the mean throat size is pro-
posed in this appendix.

By definition the mean throat size is given by

r̄ =
∫ +∞

0
r fn(r)dr =

∫ rmax

rmin

r fn(r)dr (A1)

where fn(r) is the normalized p.d.f. According to Eq. (8),

fn(r) = f (r)

∫rmax
rmin

f (r)dr
. (A2)

Combining Eqs. (A1) and (A2) with Eq. (5) yields

r̄ = 1

∫rmax
rmin

1
Vp(r)

dS
dr dr

∫ rmax

rmin

r

Vp(r)

dS

dr
dr. (A3)

Assuming Vp(r) = πr2L (parallel tubes model) yields

r̄ = 1

∫rmax
rmin

r−2 dS
dr dr

∫ rmax

rmin

r−1 dS

dr
dr. (A4)

To relate S and r the Brooks and Corey representation [33]
for the retention curve may be invoked, which in our case

takes the form

S =
( Pc

PM

)−λ

(A5)

where PM and λ are two parameters that must be fitted to
represent the retention curve. Introducing rM = 2γ

PM
, where rM

actually corresponds to the radius of the largest throat at the
network inlet, and using Eq. (2) for θ = 0 leads us to express
Eq. (A5) as

S =
( rM

r

)−λ

. (A6)

Substituting Eq. (A6) into Eq. (A4) leads after some calcu-
lations and the assumption that rM ≈ rmax to

r̄ ≈ (λ − 2)

λ − 1
rM . (A7)

Fitting the values of PM and λ for the networks featuring
a Gaussian and uniform TSD explored in this paper (see
Sec. V) and applying Eq. (A7) lead to the results presented
in Table VI.

These results justify why the capillary curve contains the
required information that can restitute a relevant value of the
mean throat radius.
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