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The Variable Sampling Interval EWMA 𝑿 ̅Chart with Estimated Process Parameters 

ABSTRACT 

The exponentially weighted moving average (EWMA) 𝑋̅ chart with the variable-sampling-

interval (VSI) feature is usually scrutinized under the assumption of known process parameters. 

However, in practice, process parameters are usually unknown and they need to be estimated 

from the in-control Phase-I dataset. With this in mind, this paper proposes the VSI EWMA 𝑋̅ 

chart where the process parameters are estimated. A Markov Chain approach is adopted to 

derive the run-length properties of the VSI EWMA 𝑋̅ chart with estimated process parameters. 

The standard deviation of the average time to signal (SDATS) is employed to measure the 

practitioner-to-practitioner variation in the control chart’s performance. This variation occurs 

because different Phase-I datasets are used among practitioners to estimate the process 

parameters. Based on the SDATS criterion, this paper provides recommendations regarding 

the minimum number of required Phase-I samples. For an optimum implementation, this paper 

develops two optimization algorithms for the VSI EWMA 𝑋̅ chart with estimated process 

parameters, i.e. by minimizing the (i) out-of-control AATS (expected value of the average time 

to signal) and (ii) out-of-control EAATS (expected value of the AATS), for the cases of 

deterministic and unknown shift sizes, respectively. With the implementation of these new 

design procedures, the VSI EWMA 𝑋̅ chart with estimated process parameters is not only able 

to achieve a desirable in-control performance, but it is also able to quickly detect changes in 

the process. 

Keywords: expected value of the average time to signal, known and unknown shift sizes, 

optimization design, parameter estimation, standard deviation of the average time to signal, 

standard deviation of the time to signal 

 

1. Introduction 

Contemporarily, controlling and improving quality are vitally viewed in the global market. 

A business that can delight customers with improved quality of products and services, 

dominates and establishes good reputation in the business world. A control chart is an excellent 

process monitoring technique to reduce variability in key parameters. A well-designed control 

chart enables practitioners to quickly detect process shifts before manufacturing many 

nonconforming products. Some recent studies regarding control charts are those by Chong et 

al. [1], Kang et al. [2], Teoh et al. [3, 4] and Yeong et al. [5]. There are two phases of process 
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monitoring in the application of control charts. In Phase-I, an in-control dataset is collected and 

analyzed in a retrospective analysis. Then, appropriate control limits are computed in Phase-I 

in order to monitor Phase-II production. In Phase-II, a control chart is prospectively used to 

detect changes that occur at an unknown time point.   

The vast majority of researches on process monitoring focuses on the formulation of Phase-

II control charts. Particular attention has been devoted to the development of adaptive control 

schemes as they are more sensitive for the detection of small to moderate shifts compared to 

the fixed control schemes. Adaptive charts allow the charts’ parameters, i.e. the sample size, 

sampling interval, and / or control limits’ coefficient, to vary depending on the location of the 

previous sample statistic plotted on the chart. A control chart with the feature of variable 

sampling intervals (VSI) is one of the adaptive charts. In a VSI chart, the next sampling interval 

is long, when there is no indication of process changes; while the next sampling interval is 

short, whenever there is an indication that an out-of-control situation is likely to occur. To 

enhance the inspection efficiency of the fixed-sampling-interval (FSI) Exponentially Weighted 

Moving Average (EWMA) 𝑋̅ chart, Saccucci, Amin, and Lucas [6] adopted the VSI feature in 

designing the EWMA 𝑋̅ chart. The VSI R-EWMA and VSI S2-EWMA charts proposed by 

Castagliola et al. [7, 8], respectively, substantially enhance the statistical efficiency of their 

corresponding FSI charts. The VSI EWMA chart shows a significant improvements in 

detecting process mean shifts under both cases of normality and non-normality (Lin and Chou 

[9]). Economic models of the VSI EWMA charts were developed by Chou, Chen, and Liu [10] 

and Xue, Xu, and Liu [11] under the cases of normality and non-normality, respectively. Their 

proposed economic models are able to reduce the expected total cost and process production 

cycle cost. Yang [12] demonstrated that the VSI EWMA average loss chart is effective in 

monitoring the process mean and variability simultaneously. This leads to a reduction of the 

required time, resources and efforts in implementing the control charting method. The VSI 

EWMA chart for monitoring the coefficient of variation remarkably outperforms its 

corresponding Shewhart, VSI, Synthetic and FSI EWMA charts (Yeong et al. [13]). Due to the 

attractiveness of the VSI EWMA chart, Yang and Yu [14, 15] applied the VSI EWMA charts 

to monitor the process mean of a cascade process and an automobile braking system with 

incorrect adjustment, respectively.  

As in the case of most control charts, the VSI EWMA charts are typically designed with 

the assumption that the quality characteristic is normally distributed with known process mean 

and variance. The fact that traditional control charts require full knowledge of the process 
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parameters in Phase-I, is not practical in real life and industrial applications. These process 

parameters are usually unknown and they need to be estimated from an in-control Phase-I 

dataset. Jensen et al. [16] and Psarakis, Vyniou, and Castagliola [17] provided a comprehensive 

literature review on the performance of control charts when the process parameters are 

estimated. It has been long recognized that by using estimates in place of known process 

parameters, the performance of the control chart is significantly degraded (see, for example, 

Epprecht, Loureiro, and Chakraborti [18]; Jones, Champ, and Rigdon [19]; Quinino, Ho, and 

Trindade [20]). This is due to the additional variability of the estimates computed from the 

Phase-I process. Jones [21] stated that the EWMA chart that fails to account for process-

parameter estimates, has an increase in the false alarm rate and a reduction in the detection 

ability of process changes. To address these problems, much efforts have been devoted to 

design control charts by accurately accounting for process-parameter estimates (see, for 

example, Hany and Mahmoud [22]; Lim et al. [23]; Saleh et al. [24]; Teoh et al. [25]; Zhang 

et al. [26]). Since control charts with the VSI feature are more sensitive to small shifts, Jensen 

et al. [16] noted that these type of control charts are more seriously influenced by process 

parameter estimation. Therefore, the issue of unknown process parameters of the VSI EWMA 𝑋̅ chart remains a practical problem to practitioners. This setback motivates the design of an 

optimal VSI EWMA 𝑋̅ chart with estimated process parameters in this paper. 

In this paper, we investigate the performance of the VSI EWMA 𝑋̅ chart when process 

parameters are estimated. To the best of the authors’ knowledge, this issue has not been 

addressed in the existing literature. The performance of Phase-II control charts are commonly 

evaluated using the average time to signal (ATS) and standard deviation of the time to signal 

(SDTS) criteria. Note that both ATS and SDTS become random variables when process 

parameters are estimated as different Phase-I data sets are being adopted by practitioners. This 

leads to randomness in the chart’s performance among practitioners, namely practitioner-to-

practitioner variation. Therefore, for complete evaluation, the VSI EWMA 𝑋 ̅ chart with 

estimated process parameters is evaluated, in terms of the expected value of the ATS (AATS), 

average of the SDTS (ASDTS) and standard deviation of the ATS (SDATS). Unlike ATS and 

SDTS, AATS and ASDTS are obtained by averaging all possible values of the parameter 

estimates. Note that the SDATS is analyzed in this paper to account for practitioner-to-

practitioner variability in the control chart’s performance. A similar performance metric, i.e. 

the standard deviation of the average run length (SDARL) was proposed by Jones and Steiner 

[27] and further used by Faraz, Woodall, and Heuchenne [28], Saleh et al. [24], and Zhang, 
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Megahed, and Woodall [29]. Moreover, by means of the Markov chain approach, the AATS, 

ASDTS, SDATS, expected value of the average sampling interval (AASI) and expected value 

of the AATS (EAATS), specifically for the VSI EWMA 𝑋̅ chart with estimated process 

parameters, are derived in this paper. Both zero and steady states are considered. The zero-state 

run lengths are the run lengths of a control chart initialized at the initial state; while the steady-

state run lengths are the run lengths of a control chart observed after the control statistic has 

reached the steady state. Using these formulae, the characteristics of the run-length and optimal 

chart’s parameters of the VSI EWMA 𝑋̅ chart with estimated process parameters can easily be 

obtained.  

In practice, it is important for quality practitioners to compute the optimal parameters of 

the VSI EWMA 𝑋̅ chart with estimated process parameters, in order to optimally implement 

the proposed chart. In this paper, we optimally design the VSI EWMA 𝑋̅ chart with estimated 

process parameters by minimizing the (i) out-of-control AATS (AATS1) and (ii) out-of-control 

EAATS (EAATS1), for the cases of deterministic and unknown shift sizes, respectively. The 

unknown shift-size condition is vitally viewed recently. In reality, the size of a process shift in 

the future is usually unknown. This will lead to a poor performance if the actual shift size is 

not the same as the one adopted in the design of the VSI EWMA 𝑋̅ chart with estimated process 

parameters. To cope with this random shift-size problem, the EAATS which is the AATS 

integrated over a shift-size distribution, is proposed in this paper. A similar approach was 

suggested by Castagliola, Celano, and Psarakis [30], Celano et al. [31], and Wu, 

Shamsuzzaman, and Pan [32], in designing control charts with known process parameters. 

The remainder of this paper is structured as follows: In Section 2, we review the operation 

of the VSI EWMA 𝑋̅ chart. The run-length properties of the VSI EWMA 𝑋̅ chart with known 

and estimated process parameters are presented in Section 3. Section 4 compares the VSI 

EWMA 𝑋̅ chart’s performance between the cases of known and estimated process parameters. 

Section 5 suggests two optimal-design procedures for the VSI EWMA 𝑋̅ chart with estimated 

process parameters, i.e. by minimizing the (i) AATS1 and (ii) EAATS1. A comparison between 

the zero-state and steady-state performances of the VSI EWMA 𝑋̅ chart with known and 

estimated process parameters are discussed in Section 6. The VSI EWMA 𝑋̅ chart with 

estimated process parameters is implemented with real data in Section 7. Finally, conclusions 

are drawn in Section 8. 

 

2. The VSI EWMA 𝑿̅ chart  
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 Assume that (Yi,1, Yi,2, ..., Yi,n) is a Phase-II sample of n independent and identically 

distributed normal random variables, i.e. Yi,j ~ N (µ , σ0
2) for i = 1, 2, … and j = 1, 2, …, n. 

Here, µ and σ0
2 are the mean and in-control variance, respectively. When the process 

parameters are known, the VSI EWMA 𝑋̅ chart’s statistic at time i is defined as  

   11i i iZ  = W  + Z   , for i   1, 2, …, (1) 

where the initial value Z0 = µ0. In Equation (1), λ is a smoothing constant such that 0 < λ ≤ 1 

and Wi is the standardized sample mean when the process is in-control, i.e.  

 0

0

i
i

Y    
W  = 

n





 , (2) 

where 𝑌̅𝑖 is the sample mean of the ith sample and µ0 is the in-control mean.  

 Because of standardization, the upper control limit (UCL) and lower control limit (LCL) 

of the VSI EWMA 𝑋̅ chart are 

 2UCL / LCL  
2

= K






 , (3) 

where K2 is the control limit coefficient of the VSI EWMA 𝑋̅ chart. The upper warning limit 

(UWL) and lower warning limit (LWL) of the VSI EWMA 𝑋̅ chart can be written as 

 1UWL / LWL
2

 = K






, (4) 

where K1 is the warning limit coefficient. Note that K1 ˃ 0 and K2 ˃ K1.  

A graphical view of the VSI EWMA 𝑋̅ chart is shown in Figure 1. The VSI EWMA 𝑋̅ 

chart divides the chart into three regions, which are the safe region, the warning region, and 

the out-of-control region. In this paper, we assume that the VSI EWMA 𝑋̅ chart only takes two 

sampling intervals, i.e. the long (h1) and short (h2) sampling intervals, such that h1 > h2. 

Reynolds et al. [33] showed that the detection effectiveness of the VSI scheme can be achieved 

by using only two sampling intervals; thus the complexity of the chart can be maintained in a 

favorable situation. The operation of the VSI EWMA 𝑋̅ chart is described as follows: 

Step 1: Take a sample of n observations. 

Step2: Compute the standardized sample mean (Wi) and control charting statistic (Zi) as in 

Equations (2) and (1), respectively.  

Step 3: If the control statistic falls in the safe region, i.e. Zi ∈ [LWL, UWL], the process is 

declared as in-control and the next sample is taken after a long sampling interval (h1). 
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Step 4: If the control statistic falls in the warning region, i.e. Zi ∈ [LCL, LWL) ∪ (UWL, UCL], 

the process is still considered as in-control and the next sample is taken after a short 

sampling interval (h2) in order to tighten the process. 

Step 5: If the control statistic falls in the out-of-control region, i.e. Zi ˃ UCL or Zi ˂ LCL, the 

process is declared as out-of-control. Assignable cause(s) must be searched and 

discarded.  

 

3. The run-length properties of the VSI EWMA 𝑿̅ chart 

3.1 The VSI EWMA 𝑋̅ chart with known process parameters 

 The Markov chain approach, originally proposed by Brook and Evans [34], is adopted to 

evaluate the run-length properties of the VSI EWMA 𝑋̅ chart. Specifically, by referring to 

Figure 2, the interval between UCL and LCL is divided into 2g + 1 subintervals, each of width 

2d, where 2d = (UCL – LCL) / (2g + 1). A sufficiently large number of subintervals (say g = 

100, i.e. 2g + 1 = 201) will enhance this finite approach to accurately evaluate the run-length 

properties of the VSI EWMA 𝑋̅ chart. If Hγ – d < Zi < Hγ + d, for γ = – g, ..., –1, 0, 1, …, g, the 

control charting statistic (Zi) is in the transient state γ at time i; otherwise, Zi is in the absorbing 

state, i.e.  Zi ∈ (–∞, LCL) ∪ (UCL, +∞). Here, Hγ is the midpoint of the γth
 subinterval. Let R 

be the (2g +1) × (2g +1) matrix of probabilities (Rk,γ) for the (2g +1) transient states, i.e. 

  R=
( 
   
 𝑅−𝑔,−𝑔 ⋯ 𝑅−𝑔,−1⋮ ⋮ ⋮𝑅−1,−𝑔 ⋯ 𝑅−1,−1 𝑅−𝑔,0 𝑅−𝑔,+1 ⋯⋮ ⋮ ⋮𝑅−1,0 𝑅−1,+1 ⋯ 𝑅−𝑔,+𝑔⋮𝑅−1,+𝑔𝑅0,−𝑔 ⋯ 𝑅0,−1𝑅+1,−𝑔 ⋯ 𝑅+1,−1⋮𝑅+𝑔,−𝑔 ⋮⋯ ⋮𝑅+𝑔,−1

𝑅0,0 𝑅0,+1 ⋯𝑅+1,0 𝑅+1,+1 ⋯⋮𝑅+𝑔,0 ⋮𝑅+𝑔,+1 ⋮⋯
𝑅0,+𝑔𝑅+1,+𝑔⋮𝑅+𝑔,+𝑔) 

   
 

. (5) 

Then, the transition probabilities (Rk,γ), for k, γ = –g, ..., –1, 0, 1, …, g, are equal to  

  Rk,γ 
(1 ) (1 )k kH d H H d H

n n
  

 
 

        
       

   
, (6) 

where Φ(.) represents the standard normal cumulative distribution function (cdf) and δ is the 

magnitude of the standardized mean shift, i.e. δ = | µ1 – µ0| / σ0. Here, µ1 is the out-of-control 

mean. If δ = 0, the process is in-control; otherwise, it is out-of-control. 

 By using the Markov chain approach, the conditional zero-state ATS and SDTS of the VSI 

EWMA 𝑋̅ chart are computed as (Saccucci, Amin and Lucas [6]) 

   T T TATS    q Qb q b q Q I b , (7) 
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and 

     2T TSDTS  q QB 2Q I b q Qb , (8) 

respectively, where q = (0, …, 1, …, 0)T is the (2g +1) × 1 initial probability vector with all the 

elements equal to zero except the state g + 1 which is unity. Note that unity in state g + 1 

corresponds to the state containing µ0. Also, in Equations (7) and (8), Q = (I – R)–1 is the 

fundamental matrix, I is an identity matrix, b is the vector of sampling intervals (with entries 

h1 or h2) corresponding to the discretized states of the Markov chain, and B is a diagonal matrix 

with the γ th element equal to bγ. Here, bγ represents the sampling interval when Zi is in state Hγ, 

i.e. 

 
1

2

, LWL UWL

, otherwise              

h H
b

h




 
 


. (9) 

 For the steady-state case, we adopt the cyclical steady-state vector of probabilities (qss) 

proposed by Darroch and Seneta [35], i.e. 

 
 
 

1T

1T T
ss










I R q
q

1 I R q
. (10) 

The cyclical steady-state probability vector (qss) is computed assuming that the Markov chain 

restarts with the initial probability vector q when it reaches the absorbing state. Therefore, the 

conditional steady-state ATS and SDTS of the VSI EWMA 𝑋̅ chart can easily be obtained by 

replacing q in Equations (7) and (8) with qss. Then the conditional steady-state ATS and SDTS 

become 

   T T TATS ss ss ss   q Qb q b q Q I b , (11) 

and 

     2T TSDTS ss ss  q QB 2Q I b q Qb , (12) 

respectively. 

 To have a fair comparison with other FSI control charts, it is important that the in-control 

ASI (ASI0) of the VSI EWMA 𝑋̅ chart is equal to the sampling interval of the FSI charts. To 

the best of the authors’ knowledge, all the existing literatures do not disclose how the ASI 

formula is actually derived. In this paper, we propose a simple formula to solve this problem. 

Note that the ASI of the VSI EWMA 𝑋̅ chart corresponds to a process functioning over an 

infinite horizon. Therefore, qss is applied in our ASI formula. Since the probabilities of the 
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vector qss are associated with the long (h1) and short (h2) sampling intervals of vector b, the 

conditional ASI can easily be computed by 

 TASI  1 (
ssq ⨀b), (13) 

where 1 = (1, 1, ..., 1)T and ⨀ is the element-wise multiplication of the vectors.  

 

3.2 The VSI EWMA 𝑋̅ chart with estimated process parameters 

 When µ0 and σ0 are unknown, they have to be estimated from m in-control Phase-I samples, 

each containing n measurements {Xi,1, Xi,2, ..., Xi,n}, for i = 1, 2, ..., m. The measurements within 

and between samples are assumed to be independent and Xi,j ~ N (µ , σ0
2). The commonly used 

estimator 𝜇̂0 of parameter µ0 is the grand mean, i.e. 

  0
1

1ˆ
m

i

i

X
m




  ,  (14) 

where 
,1

n

i i jj
X X n


  is the sample mean of ith sample. The unbiased estimator  𝜎̂0 of 

parameter σ0 is the pooled estimator (Jones [21]), i.e. 

 pooled

0

4,

ˆ
m

S

c
  ,  (15) 

where    2

pooled ,1 1
( 1)

m n

i j ii j
S X X m n

 
    and 

     4, 2 ( 1) 1 2 ( 1) ( 1) 2
m

c m n m n m n             . Among all the five estimators of 

standard deviation considered in Saleh et al. [24], they showed that the estimator 𝜎̂0 in Equation 

(15) is one of the best estimators. Therefore, Equation (15) is adopted in this paper to estimate 

the parameter σ0.  

 To compute the chart statistic Zi of the VSI EWMA 𝑋̅ chart with estimated process 

parameters in Equation (1), replace Wi in Equation (2) with  𝑊̂𝑖   as follows: 

  0

0

ˆˆ
ˆ

i
i

Y    
W  = 

n





. (16)  

Then, the transition probability ( ,
ˆ

kR  ) for the transient states of the matrix R̂  is equal to 

  ,

(1 )ˆ k

k

H d H U
R V n

m








     

      
  

 

  
(1 )

k
H d H U

V n
m

 



     

    
  

. (17)  
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The detailed derivation of ,
ˆ

kR   in Equation (17) is shown in the Appendix. Note that matrix R̂

is matrix R in Equation (5), for which the probabilities ,k
R   are replaced by ,

ˆ
kR  . In Equation 

(17), the random variable V is defined as the ratio of the estimated in-control standard deviation 

to the actual in-control standard deviation of the process, i.e. 

  0

0

ˆ
V




 ; (18) 

while the random variable U is the standardized distance from the estimated in-control process 

mean to the actual in-control process mean, i.e. 

 0 0

0

ˆ
U

mn

 



 . (19)   

It is known that 2
V follows a gamma distribution with parameters [m (n – 1)] / 2 and 

  2
4,2 1 mm n c   , i.e. 2

V ~     2
4,1 2, 2 1

m
G m n  m n c        (Zhang et al. [26]). Therefore, 

the probability density function (pdf) of V is  

    
 

2

2
4,

1 2
2 ,

2 1
V G

m

m n
f v vf v

m n c

 
    

, (20) 

where  Gf   is the pdf of the gamma distribution with parameters  1 2m n    and 

  2
4,2 1 mm n c   . The standard normal random variable U in Equation (19) follows the N(0, 1) 

distribution. Hence, the pdf of U is 

    Uf u u , (21)  

where     denotes the pdf of a standard normal distribution. 

 By using the same Markov chain approach as for the case of known process parameters, the 

zero-state ATS of the VSI EWMA 𝑋̅ chart with estimated process parameters can be obtained 

as 

  T T Tˆ ˆATS   q Qb q b q Q I b , (22) 

where   1ˆ ˆ 
 Q I R  is the fundamental matrix. Similarly, the steady-state ATS of the VSI 

EWMA 𝑋̅ chart with estimated process parameters can easily be obtained by replacing q in 

Equation (22) with ˆ
ssq , where ˆ

ssq  is qss in Equation (10), for which the matrix R is replaced 

by R̂ . Then the steady-state ATS becomes  
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  T T Tˆ ˆˆ ˆ ˆATS
ss ss ss

   q Qb q b q Q I b . (23) 

The zero- and steady-state ATSs in Equations (22) and (23), respectively, are functions of the 

random variables 0̂  and 0̂ , or similarly, the random variables U and V. Then, the 

unconditional zero- or steady-state AATS, which averages across the practitioner-to-

practitioner variability, can be obtained as 

      
0

AATS ATS ATS 
U V

E f u f v dvdu
 


    ; (24) 

while the zero- or steady-state SDATS is obtained as 

  2 2SDATS ATS AATSE  , (25) 

where      2 2

0
ATS ATS

U V
E  f u f v dvdu

 


   . Note that for computing the zero-state 

AATS and SDATS, the zero-state ATS in Equation (22) is used; while for computing the 

steady-state AATS and SDATS, the steady-state ATS in Equation (23) is employed. 

 The unconditional zero-state ASDTS, which averages over all the possible values of the 

parameter estimations, is equal to 

         
2

T T

0 0

ˆ ˆ ˆASDTS U V U Vf u f v dvdu f u f v dvdu
   

 

         q QB 2Q I b q Qb . (26) 

By using a similar approach, the unconditional steady-state ASDTS is obtained by replacing q 

in Equation (26) with ˆ
ssq , i.e. 

         
2

T T

0 0

ˆ ˆ ˆˆ ˆASDTS ss U V ss U Vf u f v dvdu f u f v dvdu
   

 

         q QB 2Q I b q Qb . (27) 

The difference between SDATS and ASDTS is that SDATS shows that the ATS is a random 

variable, which is not shown by ASDTS. Similarly, the unconditional AASI of the VSI EWMA 𝑋̅ chart with estimated parameters can be computed as  

   T

0
ˆAASI ASI ( ssE

 


    1 q ⨀    ) U Vf u f v dvdub . (28)  

The Gaussian quadrature method is employed to approximate the integrations in Equations (24) 

to (28); while the Monte Carlo simulation is used to validate the accuracy of all the numerical 

results presented in this paper. 

 

4.  A comparison of performances between the VSI EWMA 𝑿̅ chart with estimated and 

known process parameters 
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 It is crucial to take note that the goal of this paper is to investigate the impact of Phase-I 

parameter estimation on the VSI EWMA 𝑋̅ chart’s performance, instead of showing the 

superiority of the VSI EWMA 𝑋̅ chart over other control charts. For the VSI EWMA 𝑋̅ chart 

with estimated process parameters, the AATS, ASDTS and SDATS are used to evaluate the 

chart’s performance. These performance measures are denoted as AATS0, ASDTS0 and 

SDATS0 when the process is in-control; while AATS1, ASDTS1, and SDATS1 are used to 

denote these measures for the out-of-control situation. On the contrary, the performance of the 

VSI EWMA 𝑋̅ chart with known process parameters, is evaluated using the ATS and SDTS 

criteria. When the process parameters are known, the ATS is a constant value; thus, the SDATS 

value is equal to zero. Similarly, the ATS0 and SDTS0 represent the in-control ATS and SDTS, 

respectively, for the VSI EWMA 𝑋̅ chart with known process parameters; while the ATS1 and 

SDTS1 represent the out-of-control ATS and SDTS, respectively. 

 Table 1 presents the zero-state AATS, ASDTS and SDATS values for the in-control and 

out-of-control cases of the VSI EWMA 𝑋̅ chart with estimated (m ∈ {25, 50, 100, 1000, 2000}) 

and known (m =  ) process parameters. Table 1 considers different combinations of chart’s 

parameters (λ, K1, K2), sample size n = 5, ASI0 = 1, standardized mean shifts δ ∈ {0.2, 0.4, 0.6, 

0.8, 1.0, 1.5, 2.0}, and sampling intervals (h1, h2) ∈ {(1.5, 0.5), (1.3, 0.1), (1.9, 0.1)}. The 

chart’s parameters (λ, K1, K2) displayed in the second column of Table 1 are obtained by 

minimizing the zero-state ATS1 of the VSI EWMA 𝑋̅ chart with known process parameters (m 

= +∞), subject to the fixed values of zero-state ATS0 = 370.40 and ASI0 = 1. The results in 

columns 3 to 8 are computed using the specific combination of (λ, K1, K2) displayed in the 

second column of Table 1 and the formulae in Section 3. The values of the performance 

measures shown in the first row of each cell represent the in-control cases; while those shown 

in the second row of each cell represent the out-of-control cases. For example, when δ = 0.8 

and (h1, h2) = (1.5, 0.5), the optimal chart’s parameters (λ, K1, K2) for minimizing the zero-state 

ATS1 are (0.346, 0.657, 2.946), for the VSI EWMA 𝑋̅ chart with known process parameters 

(m = +∞). This set of parameters yields zero-state (ATS0, SDTS0) and (ATS1, SDTS1) values 

of (370.40, 369.94) and (1.72, 1.23), respectively, when m = +∞. Also, when m = 50, the same 

set of chart’s parameters (λ, K1, K2) = (0.346, 0.657, 2.946) gives zero-state (AATS0, ASDTS0, 

SDATS0) = (323.37, 422.60, 192.98) and (AATS1, ASDTS1, SDATS1) = (1.77, 1.36, 0.39) (see 

Table 1). 

 It is noticed in Table 1 that the results for the cases of estimated process parameters, are 

significantly different from that of the case with known process parameters, especially when 
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m and δ are small. This difference is due to the existence of variability in the process parameter 

estimation. For a fixed value of δ, the difference between the zero-state values of (AATS, 

ASDTS, SDATS) and (ATS, SDTS, SDATS) associated with estimated and known process 

parameters, respectively, generally reduces as m increases. Note that SDATS = 0 for all the 

cases of known process parameters. For instance, if δ = 0.2 and (h1, h2) = (1.9, 0.1), the zero-

state (AATS1, ASDTS1, SDATS1) = (41.16, 114.93, 76.67) and (20.80, 26.36, 13.69) for m = 

25 and 100, respectively, as opposed to the zero-state (ATS1, SDTS1, SDATS1) = (17.25, 14.56, 

0) for m = +∞ (see Table 1). The difference between the zero-state values of (AATS1, ASDTS1, 

SDATS1) and (ATS1, SDTS1, SDATS1) for the cases of estimated and known process 

parameters, respectively, becomes negligible even for small m when the mean shifts become 

large (δ ≥ 1.5). For small shifts (δ ≤ 0.6), it is observed from Table 1 that at least 1000 samples 

are needed for the chart with estimated process parameters to achieve a similar performance to 

the chart with known process parameters. For both the in-control and out-of-control cases, 

Table 1 clearly shows that as the zero-state SDATS decreases, the zero-state values of (AATS, 

ASDTS) converge to the corresponding zero-state values of (ATS, SDTS). Note that a small 

SDATS value indicates that the AATS value is close to the ATS value. 

 This paper also identifies the number of Phase-I samples m required to achieve a stable 

zero-state AATS performance and a sufficiently small value of SDATS. Zhang et al. [29] 

recommended that the SDATS value should be within 10% of the ATS value so that a 

reasonable chart performance can be attained, though it is still reflecting a considerable amount 

of variation. Table 2 gives the minimum number of Phase-I samples m required by the VSI 

EWMA 𝑋̅ chart with estimated process parameters, for both the in-control (first row of each 

cell) and out-of-control (second row of each cell) cases. This minimum number of m is obtained 

such that the zero-state SDATS value does not exceed 10% of the corresponding zero-state 

ATS value. In Table 2, we consider δ ∈{0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}, n = 5 and (h1, h2) ∈ 

{(1.5, 0.5), (1.7, 0.3), (1.3, 0.1), (1.5, 0.1), (1.9, 0.1), (4.0, 0.1)}. It is a common practice to fix 

(h1, h2). Therefore, the choice of the combinations of (h1, h2) throughout this paper is based on 

the recommendation by Reynolds et al. [33]. The optimal chart’s parameters (λ, K1, K2) of the 

VSI EWMA 𝑋̅ chart with known process parameters (m = +∞), which are listed in the last 

column of Tables 3 and 4, are adopted here to identify the minimum number of m required for 

all the cases considered in Table 2.  

 From Table 2, it is obvious that a large number of m, i.e. around 1000 to 1500 Phase-I 

samples are needed to attain a zero-state SDATS0 that is within 10% of the desired zero-state 
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ATS0 = 370.40. The minimum number of m (i.e. m = 1400 to 2000) required is more 

pronounced for a very small shift (δ = 0.2). As expected, the minimum number of m required 

decreases as δ increases. For example, when (h1, h2) = (1.5, 0.1), the VSI EWMA 𝑋̅ chart with 

estimated process parameters requires m = 630 when δ = 0.4, but this value of m reduces to 90 

when δ = 1.5.  

 From Tables 1 and 2, it is obvious that a significant large number of Phase-I samples m is 

needed to achieve a reasonable control chart’s performance. Nevertheless, using a large number 

of m is impractical in most applications. Also, from Tables 1 and 2, the zero-state AATS0 

values obtained for the cases of δ ≤ 1.0 or in other words, small λ, are generally lower than the 

desired zero-state ATS0, even for a very large m. This will lead to an unfavorable high false 

alarm rate. For example, when (h1, h2) = (1.5, 0.5) and δ = 0.2 (or λ = 0.048), the zero-state 

AATS0 = 350.37 (see Table 2) of the estimated-parameter case, is lower than the zero-state 

ATS0 = 370.40 of the corresponding known-parameter case. To overcome these problems, 

approaches based on bootstrapping the Phase-I data for the construction of an approximate 

confidence interval for the control limits was suggested by Gandy and Kvaløy [36]. 

Alternatively, since a very large number of m is unavailable at the initial state, Epprecht, 

Loureiro, and Chakraborti [18] suggested an alternative method that consists to start 

monitoring the arriving Phase-II samples by computing the trial control limits with the 

available Phase-I samples. Then, the trial control limits are kept revising periodically with the 

in-control data, until the required minimum number of in-control samples is obtained.  

 From Tables 1 and 2, we can conclude that the optimal chart’s parameters for the case of 

known process parameters are inappropriate to be used in the case of estimated process 

parameters. Therefore, new optimal chart’s parameters (λ, K1, K2) specially designed for the 

VSI EWMA  𝑋̅ chart with estimated process parameters need to be proposed in this paper (see 

Section 5). As pointed out by Montgomery [37], the main purpose of Statistical Process Control 

(SPC) is a fast detection of the occurrence of any assignable causes of process shifts. 

Accordingly, an optimal design of a control chart is vitally viewed in SPC in order to obtain a 

fast detection speed of any out-of-control situation. Since the approach proposed by Epprecht, 

Loureiro, and Chakraborti [18] is easier to be incorporated into the optimal designs of the 

chart’s parameters, it is recommended to be used together with the proposed optimal designs 

of the VSI EWMA  𝑋̅ chart with estimated process parameters in this paper.  

 

5. Optimal designs of the VSI EWMA 𝑿̅ chart with estimated process parameters 
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This section presents two optimal designs of the VSI EWMA 𝑋̅ chart with estimated 

process parameters, i.e. by minimizing the (i) AATS1 (δopt) and (ii) EAATS1(δmin, δmax) for 

deterministic and unknown shift sizes, respectively. Here, δopt is the magnitude of the desired 

mean shift for which a quick detection is needed; while δmin and δmax are the lower and upper 

bounds of the mean shift, respectively. Two optimization programs, for solving the optimal 

design models in (i) and (ii), are developed using the ScicosLab (http://www.scicoslab.org/) 

software to compute the optimal parameters (λ, K1, K2) of the VSI EWMA 𝑋̅ chart with 

estimated process parameters. These programs can be requested from the first author. By taking 

the parameter estimation into consideration, new combinations of the optimal chart’s 

parameters (λ, K1, K2) will be computed accordingly so that the values of AATS1 and EAATS1 

are minimized.  

 

5.1 AATS optimization for the VSI EWMA 𝑋̅ chart with estimated process parameters 

The first proposed optimal design is the AATS optimization of the VSI EWMA 𝑋̅ chart 

with estimated process parameters for sensitizing the detection of a specific shift in the mean. 

This optimization model is mathematically written as  

  
1 2

1 opt
, , 

Minimize  AATS
K K

 ,  (29) 

subject to 

(i) AATS0 = 𝜏 and (30) 

(ii) AASI0 = h, (31) 

where τ is the desired in-control AATS value and h is the desired in-control AASI (AASI0) 

value. In the rest of this paper, we assume that AATS0 = 𝜏 = 370.40 and AASI0 = h =1. It is 

common to adopt AASI0 = 1 time unit as the sampling interval for the FSI-type chart (hF) is set 

equal to hF = 1 time unit (Castagliola, Celano and Fichera [7]). This will ensure that both the 

FSI-type and VSI-type control charts have AATS0 = 370.40 time units. 

 Using the above optimization model (29) – (31), the steps for obtaining the optimal (λ, K1, 

K2) combination of the VSI EWMA 𝑋̅ chart with estimated process parameters are illustrated 

as follows: 

Step 1: Specify m, n, h, h1, h2, δopt and τ.  

Step 2: For every λ {0.01, 0.011, 0.012, …, 0.999, 1}, determine K1 and K2 by means of a 

nonlinear equation solver to satisfy constraint (30), i.e. AATS0 = τ and constraint (31), 

i.e. AASI0 = h. Hence, all the possible (λ, K1, K2) combinations that fulfill the two 

constraints (30) and (31), when δ = 0, can be obtained in this step.  
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Step 3: For any δopt ≠ 0 (out-of-control case), identify the optimal (λ, K1, K2) combination that 

yields the smallest AATS1 value among all the (λ, K1, K2) combinations found in Step 

2.   

For the VSI EWMA 𝑋̅ chart with known process parameters, the same optimization model in 

(29) – (31) is employed; however, the ATS and ASI are used instead of the AATS and AASI. 

 Tables 3 and 4 present the optimal (λ, K1, K2) combinations and their corresponding zero-

state (AATS1, ASDTS1, SDATS1) values of the VSI EWMA 𝑋̅ chart with estimated process 

parameters (m ∈ {25, 50, 100, 1000, 2000}), for n = 5, and different combinations of δopt and 

(h1, h2). The entries for the case of known process parameters (m = +∞) are also tabulated in 

the last column of Tables 3 and 4. The optimal chart’s parameters (λ, K1, K2), which are 

displayed in the first row of each cell, are obtained through the optimization model (29) – (31); 

while the zero-state (AATS1, ASDTS1, SDATS1) and (ATS1, SDTS1) values, which are 

displayed in the second row of each cell, are computed from the formulae shown in Sections 

3.2 and 3.1, respectively. For example, when (h1, h2) = (4.0, 0.1) and m = 100, the optimal 

chart’s parameters that minimize zero-state AATS1 for δopt = 0.4, are (λ, K1, K2) = (0.149, 0.291, 

2.866). These optimal chart’s parameters give zero-state (AATS1, ASDTS1, SDATS1) = (4.43, 

5.32, 1.27) (see Table 4). Here, the zero-state AATS1 = 4.43 is the smallest zero-state AATS1 

for δopt = 0.4, among all the zero-state AATS1s computed from all the possible (λ, K1, K2) 

combinations that give zero-state AATS0 = 370.40 and AASI0 = 1. 

 The results in Tables 3 and 4 show that for a fixed value of δopt, the zero-state (AATS1, 

ASDTS1) values generally decrease and approach the zero-state (ATS1, SDTS1) values as m 

increases. For example, when (h1, h2) = (1.5, 0.1) and δopt = 0.4, the zero-state (AATS1, 

ASDTS1) values are obtained as (10.08, 16.31) for m = 25. These values decrease to (7.76, 

5.72) for m = 100. When m = 2000, these zero-state (AATS1, ASDTS1) values further decrease 

to (7.10, 4.80), which are quite similar to the zero-state (ATS1, SDTS1) = (7.05, 4.44) values 

for m = + ∞ (see Table 3). For large δopt (δopt ≥ 1.5), the difference between zero-state (AATS1, 

ASDTS1) and (ATS1, SDTS1) values becomes negligible. As expected, the zero-state SDATS1 

value shown in Tables 3 and 4 decreases as m increases. It is obvious from Tables 3 and 4 that 

a small optimal λ is adopted for a small δopt and vice versa, for both the cases of known and 

estimated process parameters.  

 The zero-state (AATS1, ASDTS1, SDATS1) values obtained in Tables 3 and 4, are generally 

larger than those in Table 1. Although the performance of the out-of-control situation shown 

in Table 1 is better than that in Tables 3 and 4, the performance of the in-control situation, i.e. 
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the zero-state AATS0 in Table 1 is worse than the desired value of the zero-state AATS0 = 

370.40 obtained in Tables 3 and 4. For instance, let us consider (h1, h2) = (1.5, 0.5), m = 25 and 

δopt = 0.2, where the zero-state (AATS1, ASDTS1, SDATS1) = (70.43, 215.32, 148.80) and the 

desired zero-state AATS0 = 370.4 are acquired with the optimal chart’s parameters (λ, K1, K2) 

= (0.020, 0.814, 2.505) specially designed for the case of estimated process parameters (see 

Table 3). However, for the same combination of (h1, h2, m, δ), the zero-state (AATS1, ASDTS1, 

SDATS1) = (45.53, 108.60, 72.46) and AATS0 = 190.18 are obtained by using the optimal 

chart’s parameters (λ, K1, K2) = (0.048, 0.614, 2.484) associated with the case of known process 

parameters (see Table 1). It is expected that a small zero-state AATS0 value will give a small 

zero-state AATS1 value and vice versa. The zero-state AATS0 values in Table 1 are somewhat 

very small, especially for small m and the cases of δ ≤ 1.0 or in other words, small λ. A small 

AATS0 value will result in a high false alarm rate. On the contrary, by using the optimization 

model (29) – (31), Tables 3 and 4 give the optimal chart’s parameters (λ, K1, K2) that have a 

desirable zero-state AATS0 = 370.40, which solve the problem of a high false alarm rate in 

Table 1. In the context of SPC, a low false alarm rate is desirable, so that management does 

not need to waste unnecessary time and resources to identify non-existing assignable causes. 

 

5.2 EAATS optimization for the VSI EWMA 𝑋̅ chart with estimated process parameters  

In practice, the actual shift size is usually unknown and cannot be exactly specified in 

advance. This is due to the absence of related historical data. Hence, the performance of the 

VSI EWMA 𝑋̅ chart with estimated process parameters will be badly affected if a practitioner 

adopts the optimal chart’s parameters for an assumed fixed shift size when a shift with a 

different size actually occurs. For example, if m = 100, n = 5, (h1, h2) = (1.7, 0.3), the optimal 

chart’s parameters (λ, K1, K2) = (0.370, 0.665, 2.979) for δopt = 0.8 are obtained from Table 3. 

If the actual mean shift size is δ = 0.2 or 0.4 and the selected parameters (λ, K1, K2) = (0.370, 

0.665, 2.979) are used, the zero-state (AATS1, ASDTS1, SDATS1) = (69.40, 94.11, 45.28) or 

(9.31, 10.24, 3.83), respectively, are obtained. Then, the relative errors for δ ∈{0.2, 0.4} are 

{(159.54%, 213.60%, 174.42%), (48.72%, 109.84%, 142.41%)} corresponding to the zero-

state (AATS1, ASDTS1, SDATS1) values shown in Table 3. These relative errors increase as 

the discrepancy between the expected and the real shift δ increases. Note that the relative error 

for zero-state AATS1 when the actual shift size is δ = 0.2, is computed as 100%   |69.40 – 

26.74| / 26.74 = 159.54%. The relative errors for both the zero-state ASDTS1 and SDATS1 are 

obtained in the same way. 
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In order to cope with the random shift-size problem, the second proposed optimal design is 

the EAATS optimization of the VSI EWMA 𝑋̅ chart with estimated process parameters to 

achieve an overall good detection performance for a specified process shift domain. The 

EAATS is computed as 

       max

min 0
EAATS AATS ATS U VE f f u f v dvdud




 

 


     , (32)  

where fδ (δ) is the pdf of the process mean shift δ. Note that EAATS quantifies the average 

statistical performance of the VSI EWMA 𝑋̅ chart with estimated process parameters based on 

a preferred continuous range of mean shift and its density function. The difference between 

zero-state and steady-state EAATS is that the ATS formula in Equation (32) is obtained 

through Equation (22) or (23) for zero state or steady state, respectively. For the case of known 

process parameters, EATS is employed. The computation of EATS is as follows: 

    max

min

EATS ATS ATSE f d



    . (33)  

Similarly, for the zero-state EATS, Equation (7) for ATS is employed in Equation (33); while 

Equation (11) for ATS is used in Equation (33), for the calculation of steady-state EATS. Since 

it is often difficult to identify the actual shape of  fδ (δ), Castagliola, Celano, and Psarakis [30], 

Celano et al. [31], and Wu, Shamsuzzaman, and Pan [32] adopted the uniform distribution,      

U (δmin, δmax) to model the unknown shift sizes. Accordingly, we model the unknown shift size 

in Equations (32) and (33) by means of a uniform distribution with pdf,  fδ(δ) = 1 / (δmax – δmin). 

 The proposed optimization model of the VSI EWMA 𝑋̅ chart with estimated process 

parameters by minimizing EAATS1 is represented as follows: 

  
1 2

1 min max
, ,

Minimize EAATS ,
 K  K

  


  , (34)  

subject to  

(i) EAATS0 = AATS0 = 𝜏 and (35) 

(ii) AASI0 = h, (36) 

where τ is the desired in-control EAATS (EAATS0) value and h is the desired in-control AASI 

value. Similarly, as in Section 5.1, we assume that EAATS0 = AATS0 = 𝜏 = 370.40 and AASI0 

= h = 1. Using the above optimization model (34) – (36), the steps for obtaining the optimal (λ, 

K1, K2) combination of the VSI EWMA 𝑋̅ chart with estimated process parameters are 

illustrated as follows: 

Step 1: Specify m, n, h, h1, h2, δmin, δmax and τ.    
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Steps 2 and 3:  Similar to Steps 2 and 3 for the optimization model in (29) – (31), but replace 

constraints (30) and (31) with constraints (35) and (36), respectively. Also, 

AATS1 is replaced by EAATS1. 

For the VSI EWMA 𝑋̅ chart with known process parameters, a similar optimization model to 

that in (34) – (36) is employed; however, the EATS and ASI are used instead of the EAATS 

and AASI.  

To facilitate practitioners in a quick implementation of the proposed chart, the optimal 

chart’s parameters of the VSI EWMA 𝑋̅ chart with estimated process parameters (m ∈ {25, 50, 

100, 1000, 2000}) by minimizing the zero-state EAATS1, are provided in Tables 5 and 6. The 

desired shift interval [δmin, δmax] = [0.1, 2.0] is considered in Tables 5 and 6. The last column 

in both tables shows the entries associated with the chart with known process parameters (m = 

+∞). The optimal chart’s parameters (λ, K1, K2) with their corresponding minimum zero-state 

EAATS1 value for different combinations of m and (h1, h2) are shown in the first and second 

rows, respectively, for each combination. By using the particular optimal chart’s parameters 

(λ, K1, K2) presented in Tables 5 and 6, the zero-state (AATS1, ASDTS1, SDATS1) values are 

also computed for different shift sizes, δ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. For illustration, let 

us consider m = 100 and (h1, h2) = (1.5, 0.1), where the optimal chart’s parameters obtained are 

(λ, K1, K2) = (0.067, 0.917, 2.710) (see Table 6). These optimal chart’s parameters give zero-

state EAATS1 = 5.81. With the same optimal chart’s parameters, the zero-state (AATS1, 

ASDTS1, SDATS1) = (1.39, 0.99, 0.14) are obtained for δ = 1.0 (see Table 6).  

 From Tables 5 and 6, we observe that the difference between the zero-state EAATS1 and 

EATS1 decreases as m increases for every (h1, h2) combination. For example, if (h1, h2) = (1.5, 

0.5) and m = 50, the minimum zero-state EAATS1 obtained using the optimal chart’s 

parameters (λ, K1, K2) = (0.065, 0.723, 2.757) is 9.17 (see Table 5). This zero-state EAATS1 

decreases to 5.54 and 5.46 when m is 1000 and 2000, respectively. From this example, the 

zero-state EAATS1 decreases and approaches the zero-state EATS1 (= 5.38) as m increases. A 

similar trend appears for the zero-state (AATS1, ASDTS1, SDATS1) values across Tables 5 

and 6. Furthermore, we notice that the global chart’s parameters recorded in Tables 5 and 6 

give zero-state (AATS1, ASDTS1, SDATS1) values that are close to those displayed in Tables 

3 and 4. For instance, when (h1, h2) = (1.7, 0.3), m = 1000, and δ = 0.2, the zero-state (AATS1, 

ASDTS1, SDATS1) = (20.97, 16.34, 2.85) are obtained with the global chart’s parameters (λ, 

K1, K2) = (0.064, 0.625, 2.597) (see Table 5); while the zero-state (AATS1, ASDTS1, SDATS1) 

= (20.78, 15.83, 2.73) are obtained with the optimal chart’s parameters (λ, K1, K2) = (0.058, 
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0.632, 2.569) specially designed for δopt = 0.2 (see Table 3). Accordingly, the chart’s 

parameters presented in Tables 5 and 6 can be considered as a robust alternative to those shown 

in Tables 3 and 4.      

 

6. A comparison between the zero-state and steady-state performances of the VSI EWMA 𝑿̅ chart with known and estimated process parameters 

 In this section, we compare the run-length performances of the VSI EWMA 𝑋̅ chart 

with known and estimated process parameters, for zero-state and steady-state cases. Table 7 

presents the (AATS, ASDTS, SDATS) values of the VSI EWMA 𝑋̅ chart with estimated 

process parameters, for the zero-state and steady-state cases when (h1, h2)  {(1.7, 0.3), (1.9, 

0.1)}. The values of the performance measures shown in the first row of each cell represent the 

zero-state case; while those (boldfaced entries) shown in the second row of each cell represent 

the steady-state case. The formulae shown in Sections 3.1 and 3.2 are used to compute the zero-

state and steady-state run lengths of the known-parameter and estimated-parameter cases, 

respectively. Note that the zero-state and steady-state (AATS, ASDTS, SDATS) performances 

of the VSI EWMA 𝑋̅ chart with estimated (m  {25, 50, 100, 1000, 2000}) process parameters 

are displayed in columns two to six; while the zero-state and steady-state (ATS, SDTS) 

performances of the VSI EWMA 𝑋̅ chart with known (m = + ∞) process parameters are listed 

in the last column. 

For a straight-forward and fair comparison, the same control chart’s parameters (λ, K1, 

K2) for (h1, h2) = (1.7, 0.3) and (1.9, 0.1), where δopt = 0.8 (see Tables 3 and 4, respectively), 

are used to compute the zero-state and steady-state (AATS, ASDTS, SDATS) values, when δ 

 {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. Specifically, when (h1, h2) = (1.7, 0.3), δopt = 0.8 and 

m = 25, the control chart’s parameters (λ, K1, K2) = (0.359, 0.694, 2.988) are obtained from 

Table 3. These control chart’s parameters (λ, K1, K2) = (0.359, 0.694, 2.988) are used to 

compute the zero-state (AATS1, ASDTS1, SDATS1)  {(116.38, 286.00, 184.86), (3.16, 3.82, 

1.95)} and steady-state (AATS1, ASDTS1, SDATS1)  {(115.53, 285.81, 184.57), (3.21, 4.02, 

2.15)} when δ  {0.2, 0.6} (see Table 7). A similar approach is applied for the computation 

of (ATS, SDTS) of the known-process-parameter case. 

 The results in Table 7 reveal that the difference between the zero-state and steady-state 

(AATS, ASDTS, SDATS) is not obvious. For small shifts (δ < 0.4), the steady-state (AATS, 

ASDTS, SDATS) values are generally lower than their corresponding zero-state counterparts. 

On the contrary, for large shifts (δ ≥ 0.6), the steady-state (AATS, ASDTS, SDATS) values 
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are generally higher than their corresponding zero-state counterparts. However, these 

differences are very small and negligible. The same results are obtained for the cases with 

known process parameters. Similar results are also found in the EWMA 𝑋̅ and VSI EWMA 𝑋̅ 

charts with known process parameters proposed by Lucas and Saccucci [37], and Saccucci, 

Amin, and Lucas [6], respectively. Therefore, from a practical point of view, the difference 

between the zero-state and steady-state (AATS, ASDTS, SDATS) values is insignificant and 

either of these (AATS, ASDTS, SDATS) values suffice to represent the performance of the 

VSI EWMA 𝑋̅ chart with estimated process parameters. A similar conclusion for the EWMA 𝑋̅ chart can also be found in Lucas and Saccucci [37]. Since the VSI EWMA 𝑋̅ chart is an 

extension of the EWMA 𝑋̅ chart, it is expected that similar results and conclusions will be 

obtained.  

 

7. A real-life application 

 A real dataset collected from a hard-bake process is used to illustrate the implementation 

of the optimal VSI EWMA 𝑋̅ chart with estimated process parameters. These data are taken 

from Montgomery [38]. The hard-bake process is one of the important steps in the 

photolithography process. Photolithography is a crucial microfabrication process in 

semiconductor manufacturing. Optical radiation is applied in photolithography to image the 

mask on a silicon wafer with a light sensitive polymer called a photoresist. A proper control of 

the flow width of the photoresist in the hard-bake process is vitally viewed. This is because a 

very small variation in the thickness of photoresist will result in discolouration of the 

photoresist film. Therefore, the quality characteristic, Y of interest is the flow width 

measurement (in microns) for this process.  

The Phase-I data consist of m = 25 samples, each having n = 5 wafers. By using the 𝑋̅ and 

R charts, Montgomery [38] showed that these Phase-I data are statistically in-control. Then, 

the estimates 𝜇̂0 = 1.50561 and 𝜎̂0 = 0.13943 are calculated from Equations (14) and (15), 

respectively. These estimates will be used for Phase-II process monitoring.  

In this example, for the Phase-II process monitoring, we decide to implement the VSI 

EWMA 𝑋̅ chart with estimated process parameters by considering the sampling intervals (in 

hours) of h1 = 1.7 and h2 = 0.3, the zero-state AATS0 = 370.40, as well as δopt = 0.8. The optimal 

chart’s parameters for zero-state AATS0 = 370.40, (h1, h2) = (1.7, 0.3), m = 25, n = 5 and δopt 

= 0.8, are ( , K1, K2) = (0.359, 0.694, 2.988) (see Table 3). With these optimal chart’s 
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parameters, the control limits and warning limits of the VSI EWMA 𝑋̅ chart with estimated 

process parameters are computed by using Equations (3) and (4), respectively, which give 

2

0.359
UCL / LCL 2.988 1.39757

2 2 0.359
 = K  =  = 




  
 

,  (37) 

and 

1

0.359
UWL / LWL 0.694 0.32460

2 2 0.359
 = K  =  = 




  
 

.  (38) 

 In Phase-II process monitoring, 20 additional samples, each having n = 5 wafers are 

collected. The summary statistics of these Phase-II data are provided in Table 8. The VSI 

EWMA 𝑋̅ chart with estimated process parameters for monitoring the flow width 

measurements is plotted in Figure 3. From Figure 3, we observe that the first sample (i = 1), 

with the control statistic Z1  = – 0.03368 falls in the safe region. Hence, the next sample (i = 2) 

is collected after a long sampling interval, h1 = 1.7 hours. This process continues until the 

fourth sample, where Z4 = – 0.40717. This Z4 value falls in the warning region; thus, the next 

sample (i = 5) is taken after a short sampling interval, h2 = 0.3 hours. The procedure for deciding 

the next sampling interval, continues until the control statistic, Zi falls beyond the control limits 

(  1.39757), indicating an out-of-control situation.  

From Figure 3, the VSI EWMA 𝑋̅ chart with estimated process parameters detects the first 

out-of-control signal at the 15th sample after 16.8 hours. Also, the chart shows an upward trend 

from the 12th sample (corresponding to the total elapsed time of 14.5 hours) onwards (see Table 

8 and Figure 3).  These two situations confirm the occurrence of special causes in the process. 

Hence, an immediate investigation is needed to identify and eliminate the assignable cause(s).   

 

8. Conclusions 

 In this paper, a Markov chain approach is adopted to derive the theoretical formulae for the 

performance measures, i.e. AATS, ASDTS, SDATS, AASI, and EAATS, of the VSI EWMA 𝑋̅ chart with estimated process parameters under both the zero and steady states. Using these 

theoretical formulae, one can investigate the run-length properties of the VSI EWMA 𝑋̅ chart 

with estimated process parameters in detail. Also, the optimization algorithms can easily be 

developed by using these theoretical formulae. For optimal implementations, the AATS1 and 

EAATS1 values of the proposed chart are minimized, for deterministic and unknown shift sizes, 

respectively. Tables of optimal chart’s parameters (λ, K1, K2) corresponding to predefined (h1, 

h2) combinations, are provided to facilitate practitioners in quickly implementing the proposed 
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chart. The SDATS, which considers practitioner-to-practitioner variability, provides more 

useful information than the AATS. Therefore, in this paper, the SDATS is employed to identify 

the necessary number of Phase-I samples for the VSI EWMA 𝑋̅ chart with estimated process 

parameters.  

 This paper clearly shows that the Phase-II performance of the VSI EWMA 𝑋̅ chart is 

significantly affected by the estimation of process parameters in Phase-I. A large number of 

Phase-I samples are needed for the VSI EWMA 𝑋̅ chart with estimated process parameters to 

achieve a similar performance to the chart with known process parameters. In practice, taking 

a large number of Phase-I samples during process start-up is impractical. In order to alleviate 

this problem, the approach proposed by Epprecht, Loureiro, and Chakraborti [18] is 

recommended to be applied together with the optimal design algorithms proposed in this paper 

(see Section 5). Consequently, the false alarm rate can be maintained at a desirable level and a 

quick detection of an out-of-control situation can be attained.   

 Since the process parameters are rarely known in practice, control charts with estimated 

process parameters are receiving growing attention in the context of SPC. We believe that the 

proposed theoretical and optimization methods warrant a further research in developing new 

adaptive-type EWMA charts with estimated process parameters. Also, the results in this paper 

are based on the assumptions of a normal underlying process distribution and the independence 

of the observations. Thus, future investigations can be conducted when these assumptions are 

violated.   
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Appendix: Derivation of the transitions probability ,
ˆ

kR   in Equation (17), for the VSI 

EWMA 𝑿̅ chart with estimated process parameters 

The transition probability from transient state k to transient state γ is given as 

  , 1
ˆ  Pr  is in state  is in state k i iR Z Z k   ,  (A.1)  

which is equivalent to 

  , 1
ˆ Prk i i kR H d Z H d Z   H         .  (A.2)  

By substituting Zi in Equation (1) into Equation (A.2) and replacing Wi in Equation (1) with  

ˆ
i

W , followed by some rearrangements, we obtain 

 
   

,

1 1ˆ ˆPr k k

k i

H d H H d H
R W
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

 
 

      
   

 
.  (A.3) 

Then, by substituting ˆ
i

W  in Equation (16) into Equation (A.3) and with some rearrangements, 

we get 
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0 0
, 0 0
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.  (A.4) 

Since i
Y ~  2

0 0 0,N n   , Equation (A.4) is simplified to 
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,  (A.5) 

where V and U are defined in Equations (18) and (19), respectively. 
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Table 1. Zero-state AATSs, ASDTSs and SDATSs of the VSI EWMA 𝑋̅ chart, together with the chart’s parameters (λ, K1, K2) corresponding to 
the case of known process parameters when zero-state ATS0 = 370.40, ASI0 = 1, n = 5, and m{25, 50, 100, 1000, 2000, +∞ }. 

  m = 25 m = 50 m = 100 m = 1000 m = 2000 m = +∞ 
  (AATS0, ASDTS0, SDATS0) (AATS0, ASDTS0, SDATS0) (AATS0, ASDTS0, SDATS0) (AATS0, ASDTS0, SDATS0) (AATS0, ASDTS0, SDATS0) (ATS0, SDTS0) 
δ (λ, K1, K2) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (ATS1, SDTS1) 
 (h1, h2) = (1.5, 0.5) 

0.2 (0.048, 0.614, 2.484) (190.18, 301.48, 170.63) (224.31, 289.61, 137.11) (261.53, 298.14, 112.00) (348.89, 344.70, 37.50) (359.57, 353.02, 24.12) (370.40, 362.38) 
  (45.53, 108.60, 72.46) (31.95, 53.05, 33.87) (26.34, 26.47, 13.92) (23.19, 15.68, 2.73) (23.05, 15.33, 1.89) (22.89, 14.98) 

0.4 (0.135, 0.660, 2.779) (239.38, 392.92, 222.23) (267.50, 347.85, 160.04) (297.69, 339.38, 119.29) (359.26, 360.08, 36.68) (365.40, 364.21, 24.96) (370.40, 367.69) 
  (8.66, 12.02, 7.59)   (7.68, 6.28, 2.89) (7.33, 5.18, 1.71) (7.08, 4.51, 0.48) (7.07, 4.47, 0.34) (7.05, 4.44) 

0.6 (0.242, 0.660, 2.897) (282.29, 473.75, 269.86) (300.43, 392.00, 179.29) (322.16, 367.30, 126.53) (364.52, 367.32, 38.52) (368.31, 369.01, 26.83) (370.40, 369.39) 
  (3.53, 3.07, 1.48) (3.35, 2.50, 0.87) (3.27, 2.30, 0.57) (3.22, 2.14, 0.17) (3.21, 2.13, 0.12) (3.21, 2.12) 

0.8 (0.346, 0.657, 2.946) (314.43, 533.49, 305.15) (323.37, 422.60, 192.98) (338.13, 385.80, 132.18) (367.84, 371.63, 40.09) (370.36, 371.93, 28.13) (370.40, 369.94) 
  (1.83, 1.52, 0.60) (1.77, 1.36, 0.39)   (1.75, 1.29, 0.26) (1.73, 1.23, 0.08) (1.73, 1.23, 0.06) (1.72, 1.23) 

1.0 (0.466, 0.668, 2.974) (343.15, 585.64, 335.71) (342.43, 447.93, 204.36) (350.38, 400.20, 136.95) (369.39, 373.86, 41.31) (370.97, 373.12, 29.07) (370.40, 370.31) 
  (1.05, 0.93, 0.32) (1.03, 0.86, 0.21)   (1.01, 0.83, 0.15) (1.00, 0.80, 0.05) (1.00, 0.80, 0.03) (1.00, 0.80) 

1.5 (0.785, 0.661, 2.999) (399.28, 680.10, 389.07) (377.46, 493.06, 223.92) (371.87, 425.33, 145.36) (373.02, 378.46, 43.12) (373.25, 376.21, 30.38) (370.40, 370.86) 
  (0.27, 0.41, 0.11) (0.26, 0.39, 0.07) (0.26, 0.38, 0.05) (0.25, 0.37, 0.02) (0.25, 0.37, 0.01) (0.25, 0.37) 

2.0 (0.949, 0.668, 3.001) (419.56, 710.12, 404.80) (389.00, 506.73, 229.10) (378.26, 432.35, 147.28) (373.53, 379.14, 43.34) (373.37, 376.47, 30.53) (370.40, 370.96) 
  (0.04, 0.16, 0.03) (0.04, 0.15, 0.02) (0.04, 0.14, 0.01) (0.04, 0.14, 0.00) (0.04, 0.14, 0.00) (0.04, 0.14) 
 (h1, h2) = (1.3, 0.1) 

0.2 (0.041, 1.030, 2.428) (182.41, 295.19,167.79) (217.02, 285.61, 136.59) (255.17, 295.58, 112.93) (346.83, 345.24, 38.61) (358.36, 354.23, 24.68) (370.40, 365.10) 
  (41.03, 104.74, 69.99) (27.80, 50.61, 32.42) (22.42, 24.49, 12.79) (19.48, 14.48, 2.40) (19.35, 14.17, 1.66) (19.21, 13.87) 

0.4 (0.153, 1.099, 2.809) (246.35, 412.91, 235.19) (273.04, 359.30, 166.42) (302.09, 347.02, 122.56) (360.68, 363.29, 37.56) (366.39, 366.92, 25.72) (370.40, 369.38) 
  (6.84, 12.22, 7.78) (5.81, 5.84, 2.65) (5.47, 4.72, 1.49) (5.22, 4.07, 0.40) (5.21, 4.04, 0.28) (5.19, 4.01) 

0.6 (0.274, 1.127, 2.916) (292.56, 499.18, 286.29) (307.81, 405.18, 186.71) (327.46, 375.37, 130.30) (365.96, 369.87, 39.61) (369.33, 371.05, 27.68) (370.40, 370.31) 
  (2.38, 2.71, 1.26) (2.22, 2.17, 0.69) (2.15, 1.99, 0.44) (2.10, 1.87, 0.13) (2.09, 1.86, 0.09) (2.09, 1.85) 

0.8 (0.398, 1.139, 2.960) (327.49, 563.15, 324.00) (331.96, 436.95, 200.96) (343.66, 393.89, 136.13) (368.55, 373.13, 41.18) (370.63, 372.90, 28.95) (370.40, 370.42) 
  (1.06, 1.29, 0.45) (1.01, 1.16, 0.28) (0.99, 1.11, 0.19) (0.97, 1.07, 0.06) (0.97, 1.07, 0.04) (0.97, 1.07) 

1.0 (0.522, 1.156, 2.981) (354.94, 611.97, 352.44) (349.79, 460.33, 211.46) (354.89, 406.94, 140.56) (369.96, 374.98, 42.26) (371.22, 373.82, 29.76) (370.40, 370.27) 
  (0.50, 0.74, 0.20) (0.48, 0.70, 0.13) (0.47, 0.68, 0.09) (0.46, 0.66, 0.03) (0.46, 0.66, 0.02) (0.46, 0.66) 

1.5 (0.781, 1.148, 2.998) (398.86, 684.70, 393.27) (376.81, 494.73, 226.26) (371.17, 425.77, 146.84) (372.39, 377.98, 43.55) (372.63, 375.67, 30.68) (370.40, 370.83) 
  (0.08, 0.20, 0.04) (0.07, 0.19, 0.02) (0.07, 0.19, 0.02) (0.07, 0.18, 0.00) (0.07, 0.18, 0.00) (0.07, 0.18) 

2.0 (0.948, 1.159, 3.000) (420.18, 716.50, 410.07) (389.06, 509.32, 231.90) (378.10, 433.40, 148.99) (373.23, 378.96, 43.82) (373.06, 376.23, 30.87) (370.40, 370.93) 
  (0.01, 0.05, 0.01) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04) 
 (h1, h2) = (1.9, 0.1) 

0.2 (0.058, 0.632, 2.547) (191.20, 320.79, 183.66) (225.34, 302.49, 144.86) (262.78, 308.17, 116.85) (349.46, 351.27, 38.43) (359.75, 359.10, 24.93) (370.40, 368.29) 
  (41.16, 114.93, 76.67) (26.71, 54.66, 34.83) (20.80, 26.36, 13.69) (17.53, 15.21, 2.43) (17.40, 14.88, 1.68) (17.25, 14.56) 

0.4 (0.151, 0.664, 2.804) (243.82, 417.26, 239.76) (270.70, 360.91, 169.21) (300.24, 347.77, 124.68) (360.24, 363.90, 38.24) (366.11, 367.61, 26.17) (370.40, 369.97) 
  (5.81, 11.44, 7.22) (4.90, 5.44, 2.29) (4.61, 4.52, 1.27) (4.40, 4.01, 0.35) (4.39, 3.98, 0.24) (4.37, 3.96) 

0.6 (0.273, 0.660, 2.918) (292.39, 510.36, 295.70) (307.32, 409.80, 191.51) (327.14, 377.84, 133.38) (366.37, 371.12, 40.52) (369.83, 372.28, 28.31) (370.40, 371.25) 
  (1.87, 2.46, 1.03) (1.73, 2.04, 0.56) (1.68, 1.91, 0.36) (1.64, 1.82, 0.11) (1.64, 1.81, 0.07) (1.63, 1.81) 

0.8 (0.390, 0.662, 2.960) (326.85, 574.32, 333.70) (331.21, 441.25, 205.76) (343.25, 396.12, 139.17) (369.12, 374.40, 42.05) (371.29, 374.17, 29.55) (370.40, 371.13) 
  (0.79, 1.16, 0.34) (0.75, 1.07, 0.21) (0.73, 1.04, 0.14) (0.72, 1.01, 0.04) (0.72, 1.01, 0.03) (0.72, 1.00) 

1.0 (0.500, 0.666, 2.980) (352.60, 620.92, 361.10) (347.98, 463.31, 215.78) (353.86, 408.38, 143.35) (370.45, 376.07, 43.06) (371.84, 374.96, 30.31) (370.40, 371.09) 
  (0.36, 0.65, 0.14) (0.35, 0.61, 0.09) (0.34, 0.60, 0.06) (0.34, 0.59, 0.02) (0.34, 0.59, 0.01) ( 0.34,  0.59) 

1.5 (0.779, 0.662, 2.998) (400.83, 701.88, 407.00) (377.22, 500.54, 231.97) (371.03, 428.10, 149.97) (371.91, 378.00, 44.35) (372.13, 375.58, 31.24) (370.40, 371.17) 
  (0.06, 0.16, 0.03) (0.06, 0.15, 0.02) (0.06, 0.15, 0.01) (0.06, 0.14, 0.00) (0.06, 0.14, 0.00) (0.06, 0.14) 

2.0 (0.950, 0.664, 3.001) (424.28, 737.87, 426.42) (390.95, 517.18, 238.67) (379.11, 437.07, 152.67) (373.60, 379.81, 44.76) (373.39, 376.94, 31.52) (370.40, 371.19) 
  (0.01, 0.04, 0.01) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03) 
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Table 2. Zero-state AATSs, ASDTSs, and SDATSs of the VSI EWMA 𝑋̅ chart with 
estimated process parameters, and the minimum number of Phase-I samples, m to obtain 
a zero-state SDATS of not exceeding 10% of the corresponding zero-state ATS value, 
when zero-state ATS0 = 370.40, ASI0 = 1, and n = 5. 
 

 𝛿 

(m, AATS0, ASDTS0, SDATS0) (m, AATS0, ASDTS0, SDATS0) (m, AATS0, ASDTS0, SDATS0) 
(m, AATS1, ASDTS1, SDATS1) (m, AATS1, ASDTS1, SDATS1) (m, AATS1, ASDTS1, SDATS1) 

 (h1, h2) = (1.5,0.5) (h1, h2) = (1.7,0.3) (h1, h2) = (1.3,0.1) 
0.2 (1100, 350.37, 345.71, 35.30) (1100, 350.61, 348.66, 36.08) (1100, 348.78, 346.70, 36.38) 

 (1400, 23.10, 15.47, 2.28) (1500, 20.22, 14.73, 2.02) (1600, 19.38, 14.24, 1.87) 
0.4 (1000, 359.55, 360.37, 36.72) (1100, 360.79, 362.61, 35.53) (1100, 361.68, 363.89, 35.64) 

 (480, 7.11, 4.58, 0.70) (530, 5.77, 4.18, 0.57) (620, 5.24, 4.11, 0.52) 
0.6 (1100, 365.64, 368.05, 36.69) (1200, 366.68, 369.76, 36.02) (1200, 367.06, 370.23, 36.03) 

 (300, 3.23, 2.18, 0.32) (350, 2.44, 1.94, 0.24) (400, 2.11, 1.89, 0.21) 
0.8 (1200, 368.48, 371.51, 36.48) (1300, 369.12, 372.54, 35.81) (1300, 369.49, 373.00, 36.02) 

 (230, 1.73, 1.25, 0.17) (260, 1.23, 1.08, 0.12) (350, 0.97, 1.08, 0.10) 
1.0 (1300, 370.35, 373.75, 36.18) (1300, 370.44, 374.34, 36.87) (1300, 370.53, 374.43, 37.00) 

 (210, 1.01, 0.81, 0.10) (240, 0.67, 0.66, 0.07) (320, 0.46, 0.66, 0.05) 
1.5 (1400, 372.57, 376.58, 36.30) (1400, 372.60, 376.88, 36.89) (1400, 372.52, 376.66, 36.73) 

 (210, 0.25, 0.38, 0.03) (200, 0.16, 0.24, 0.02) (130, 0.07, 0.19, 0.01) 
2.0 (1400, 373.14, 377.30, 36.52) (1500, 373.21, 377.37, 35.84)   (1400, 373.13, 377.40, 36.96) 

 (80, 0.04, 0.14, 0.00) (190, 0.02, 0.09, 0.00) (40, 0.01, 0.04, 0.00) 
 (h1, h2) = (1.5, 0.1) (h1, h2) = (1.9, 0.1) (h1, h2) = (4.0, 0.1) 
0.2 (1100, 348.67, 347.89, 36.50) (1100, 351.58, 352.92, 36.29) (1100, 352.22, 355.84, 36.62) 

 (1600, 18.44, 14.25, 1.81) (1900, 17.41, 14.90, 1.72) (2000, 16.65, 16.30, 1.65) 
0.4 (1100, 361.93, 364.71, 36.14) (1100, 361.08, 364.33, 36.26) (1100, 361.23, 365.95, 36.52) 

 (630, 4.76, 3.99, 0.47) (630, 4.41, 4.03, 0.44) (690, 4.08, 4.78, 0.40) 
0.6 (1200, 367.94, 371.64, 36.89) (1200, 367.27, 371.23, 36.83) (1300, 368.15, 373.25, 36.4) 

 (450, 1.85, 1.85, 0.18) (430, 1.64, 1.83, 0.16) (510, 1.44, 2.20, 0.14) 
0.8 (1300, 369.78, 373.60, 36.47) (1300, 369.58, 373.74, 36.72) (1400, 369.81, 374.82, 35.74) 

 (350, 0.83, 1.02, 0.08) (360, 0.72, 1.01, 0.07) (360, 0.62, 1.20, 0.06) 
1.0 (1400, 370.00, 373.85, 35.87) (1400, 370.91, 375.09, 36.26) (1400, 370.76, 376.03, 36.64) 

 (340, 0.39, 0.61, 0.04) (320, 0.34, 0.59, 0.03) (310, 0.29, 0.69, 0.03) 
1.5 (1500, 373.13, 377.21, 35.95) (1500, 372.64, 376.98, 36.19) (1500, 372.83, 378.22, 36.71) 

 (90, 0.06, 0.16, 0.01) (160, 0.06, 0.14, 0.01) (110, 0.05, 0.15, 0.01) 
2.0 (1500, 373.69, 377.89, 36.17) (1500, 373.20, 377.63, 36.42) (1500, 373.41, 378.87, 36.94) 

 (30, 0.01, 0.04, 0.00) (30, 0.01, 0.04, 0.00) (40, 0.01, 0.03, 0.00) 
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Table 3. Optimal chart’s parameters (λ, K1, K2) and their corresponding zero-state (AATS1, ASDTS1, SDATS1) values of the VSI EWMA 𝑋̅ chart 
with estimated process parameters when n = 5, zero-state AATS0 = 370.40, AASI0 = 1, and (h1, h2)  {(1.5, 0.5), (1.7, 0.3), (1.3, 0.1)}. 

 m = 25 m = 50 m = 100 m = 1000 m = 2000 m = +∞ 
 (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) 

δopt (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (ATS1, SDTS1) 
(h1, h2) = (1.5, 0.5) 

0.2 (0.020, 0.814, 2.505) (0.039, 0.751, 2.632) (0.040, 0.696, 2.569) (0.045, 0.601, 2.489) (0.058, 0.621, 2.556) (0.048, 0.614, 2.484) 
 (70.43, 215.32, 148.80) (40.55, 81.37, 54.17) (30.14, 30.42, 16.79) (23.56, 15.64, 2.74) (23.44, 16.34, 2.04) (22.89, 14.98) 
0.4 (0.136, 0.757, 2.915) (0.131, 0.691, 2.887) (0.151, 0.674, 2.876) (0.155, 0.634, 2.825) (0.165, 0.625, 2.832) (0.135, 0.660, 2.779) 
 (10.08, 16.31, 10.65) (8.39, 6.88, 3.28) (7.76, 5.72, 1.95) (7.11, 4.72, 0.51) (7.10, 4.80, 0.37) (7.05, 4.44) 
0.6 (0.169, 0.743, 2.941) (0.235, 0.684, 2.957) (0.243, 0.658, 2.944) (0.242, 0.642, 2.902) (0.258, 0.653, 2.909) (0.242, 0.660, 2.897) 
 (3.92, 2.90, 1.41) (3.53, 2.60, 0.92) (3.38, 2.36, 0.60) (3.23, 2.15, 0.17) (3.22, 2.19, 0.12) (3.21, 2.12) 
0.8 (0.341, 0.692, 2.990) (0.324, 0.682, 2.979) (0.349, 0.674, 2.975) (0.344, 0.620, 2.954) (0.339, 0.621, 2.950) (0.346, 0.657, 2.946) 
 (1.91, 1.57, 0.63) (1.84, 1.37, 0.39) (1.78, 1.31, 0.27) (1.72, 1.22, 0.08) (1.72, 1.21, 0.06) (1.72, 1.23) 
1.0 (0.467, 0.696, 2.991) (0.462, 0.663, 2.997) (0.470, 0.661, 2.991) (0.459, 0.676, 2.974) (0.459, 0.657, 2.972) (0.466, 0.668, 2.974) 
 (1.07, 0.95, 0.33) (1.05, 0.87, 0.22) (1.03, 0.84, 0.15) (1.00, 0.80, 0.04) (1.00, 0.80, 0.03) (1.00, 0.80) 
1.5 (0.781, 0.698, 2.973) (0.791, 0.657, 2.994) (0.784, 0.658, 2.998) (0.784, 0.658, 2.997) (0.784, 0.658, 2.997) (0.785, 0.661, 2.999) 
 (0.26, 0.40, 0.11) (0.26, 0.39, 0.07) (0.26, 0.38, 0.05) (0.25, 0.37, 0.02) (0.25, 0.37, 0.01) (0.25, 0.37) 
2.0 (0.953, 0.691, 2.962) (0.953, 0.666, 2.987) (0.953, 0.661, 2.995) (0.951, 0.656, 2.998) (0.951, 0.656, 2.998) (0.949, 0.668, 3.001) 

 (0.04, 0.15, 0.02) (0.04, 0.15, 0.02) (0.04, 0.14, 0.01) (0.04, 0.14, 0.00) (0.04, 0.14, 0.00) (0.04, 0.14) 
(h1, h2) = (1.7, 0.3) 

0.2 (0.024, 0.832, 2.545) (0.037, 0.744, 2.613) (0.044, 0.690, 2.600) (0.058, 0.632, 2.569) (0.057, 0.627, 2.552) (0.049, 0.606, 2.493) 
 (67.84, 220.84, 151.98) (37.20, 80.88, 53.95) (26.74, 30.01, 16.50) (20.78, 15.83, 2.73) (20.46, 15.28, 1.85) (20.03, 14.30) 
0.4 (0.111, 0.758, 2.887) (0.137, 0.716, 2.891) (0.139, 0.666, 2.864) (0.142, 0.662, 2.801) (0.142, 0.663, 2.795) (0.142, 0.662, 2.791) 
 (8.36, 14.09, 9.25) (6.88, 6.24, 2.91) (6.26, 4.88, 1.58) (5.78, 4.15, 0.42) (5.75, 4.11, 0.29) (5.72, 4.07) 
0.6 (0.234, 0.727, 2.966) (0.244, 0.677, 2.959) (0.284, 0.661, 2.960) (0.253, 0.655, 2.910) (0.251, 0.663, 2.906) (0.264, 0.659, 2.912) 
 (2.94, 2.82, 1.33) (2.70, 2.27, 0.75) (2.57, 2.15, 0.51)  (2.44, 1.90, 0.14) (2.43, 1.89, 0.10) (2.43, 1.91) 
0.8 (0.359, 0.694, 2.988) (0.401, 0.679, 2.994) (0.370, 0.665, 2.979) (0.363, 0.648, 2.954) (0.357, 0.646, 2.950) (0.362, 0.666, 2.951) 
 (1.37, 1.33, 0.49) (1.31, 1.23, 0.33) (1.27, 1.13, 0.21) (1.23, 1.07, 0.06) (1.23, 1.06, 0.04) (1.22, 1.06) 
1.0 (0.472, 0.697, 2.988) (0.462, 0.680, 2.997) (0.478, 0.663, 2.992) (0.477, 0.672, 2.977) (0.476, 0.667, 2.975) (0.477, 0.660, 2.976) 
 (0.73, 0.76, 0.24) (0.70, 0.70, 0.15) (0.69, 0.68, 0.11) (0.67, 0.65, 0.03) (0.67, 0.65, 0.02) (0.67, 0.65) 
1.5 (0.781, 0.690, 2.971) (0.801, 0.682, 2.993) (0.786, 0.672, 2.998) (0.784, 0.671, 2.997) (0.783, 0.664, 2.997) (0.784, 0.661, 2.999) 
 (0.16, 0.26, 0.07) (0.16, 0.26, 0.05) (0.16, 0.25, 0.03) (0.15, 0.24, 0.01) (0.15, 0.24, 0.01) (0.15, 0.24) 
2.0 (0.954, 0.695, 2.959) (0.952, 0.660, 2.987) (0.950, 0.663, 2.995) (0.950, 0.668, 2.999) (0.942, 0.656, 2.998) (0.948, 0.668, 3.001) 
 (0.02, 0.09, 0.01) (0.02, 0.09, 0.01) (0.02, 0.09, 0.01) (0.02, 0.09, 0.00) (0.02, 0.09, 0.00) (0.02, 0.09) 

(h1, h2) = (1.3, 0.1) 
0.2 (0.031, 1.345, 2.632) (0.033, 1.236, 2.585) (0.041, 1.158, 2.579) (0.040, 1.051, 2.442) (0.049, 1.067, 2.500) (0.041, 1.030, 2.428) 
 (68.45, 224.12, 153.80) (37.20, 80.39, 53.71) (27.89, 30.63, 16.95) (20.12, 14.79, 2.47) (19.62, 14.86, 1.78) (19.21, 13.87) 
0.4 (0.101, 1.313, 2.875) (0.118, 1.205, 2.867) (0.152, 1.168, 2.874) (0.135, 1.127, 2.787) (0.135, 1.110, 2.781) (0.153, 1.099, 2.809) 
 (8.22, 13.89, 9.11) (6.54, 5.90, 2.69) (5.84, 4.99, 1.62) (5.35, 4.01, 0.39) (5.32, 3.97, 0.27) (5.19, 4.01) 
0.6 (0.257, 1.232, 2.973) (0.289, 1.165, 2.974) (0.265, 1.149, 2.947) (0.273, 1.129, 2.919) (0.266, 1.115, 2.913) (0.274, 1.127, 2.916) 
 (2.69, 2.93, 1.39) (2.38, 2.34, 0.78) (2.26, 2.04, 0.46) (2.10, 1.87, 0.13) (2.09, 1.85, 0.09) (2.09, 1.85) 
0.8 (0.378, 1.206, 2.987) (0.390, 1.168, 2.988) (0.422, 1.150, 2.986) (0.397, 1.145, 2.961) (0.398, 1.148, 2.960) (0.398, 1.139, 2.960) 
 (1.15, 1.34, 0.47) (1.06, 1.19, 0.29) (1.01, 1.14, 0.20) (0.97, 1.07, 0.06) (0.97, 1.07, 0.04) (0.97, 1.07) 
1.0 (0.507, 1.201, 2.986) (0.514, 1.180, 2.993) (0.524, 1.152, 2.994) (0.518, 1.139, 2.981) (0.518, 1.137, 2.980) (0.522, 1.156, 2.981) 
 (0.54, 0.78, 0.21) (0.50, 0.72, 0.14) (0.47, 0.68, 0.09) (0.46, 0.66, 0.03) (0.46, 0.66, 0.02) (0.46, 0.66) 
1.5 (0.772, 1.157, 2.974) (0.779, 1.151, 2.993) (0.785, 1.156, 2.997) (0.780, 1.156, 2.996) (0.780, 1.155, 2.996) (0.781, 1.148, 2.998) 
 (0.08, 0.20, 0.04) (0.07, 0.19, 0.02) (0.07, 0.19, 0.02) (0.07, 0.18, 0.00) (0.07, 0.18, 0.00) (0.07, 0.18) 
2.0 (0.951, 1.171, 2.962) (0.951, 1.161, 2.982) (0.959, 1.134, 2.994) (0.948, 1.142, 2.998) (0.948, 1.142, 2.998) (0.948, 1.159, 3.000) 

 (0.01, 0.04, 0.01) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04) 
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Table 4. Optimal chart’s parameters (λ, K1, K2) and their corresponding zero-state (AATS1, ASDTS1, SDATS1) values of the VSI EWMA 𝑋̅ chart 
with estimated process parameters when n = 5, zero-state AATS0 = 370.40, AASI0 = 1, and (h1, h2)  {(1.5, 0.1), (1.9, 0.1), (4.0, 0.1)}. 

 m = 25 m = 50 m = 100 m = 1000 m = 2000 m = +∞ 
 (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) 

δopt (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (AATS1, ASDTS1, SDATS1) (ATS1, SDTS1) 
(h1, h2) = (1.5, 0.1) 

0.2 (0.019, 1.083, 2.472) (0.033, 1.016, 2.578) (0.041, 0.940, 2.578) (0.061, 0.862, 2.583) (0.059, 0.860, 2.562) (0.043, 0.844, 2.441) 
 (66.75, 218.04, 150.34) (35.56, 80.28, 53.60) (24.75, 29.27, 16.01) (18.85, 15.69, 2.67) (18.49, 15.07, 1.80) (18.28, 13.88) 
0.4 (0.117, 1.010, 2.895) (0.139, 0.950, 2.891) (0.140, 0.931, 2.862) (0.160, 0.890, 2.829) (0.163, 0.884, 2.827) (0.156, 0.877, 2.815) 
 (7.37, 14.19, 9.30) (5.89, 5.94, 2.70) (5.29, 4.62, 1.41) (4.77, 4.00, 0.38) (4.75, 3.99, 0.27) (4.71, 3.90) 
0.6 (0.243, 1.000, 2.966) (0.313, 0.945, 2.979) (0.268, 0.929, 2.949) (0.273, 0.913, 2.915) (0.272, 0.922, 2.912) (0.300, 0.892, 2.931) 
 (2.37, 2.66, 1.19) (2.11, 2.29, 0.74) (1.98, 1.96, 0.41) (1.89, 1.84, 0.12) (1.88, 1.83, 0.08) (1.83, 1.83) 
0.8 (0.378, 0.963, 2.985) (0.389, 0.937, 2.988) (0.408, 0.911, 2.987) (0.382, 0.904, 2.960) (0.379, 0.900, 2.958) (0.395, 0.900, 2.962) 
 (0.98, 1.25, 0.41) (0.90, 1.12, 0.25) (0.85, 1.06, 0.17) (0.83, 1.01, 0.05) (0.82, 1.01, 0.03) (0.82, 1.01) 
1.0 (0.501, 0.955, 2.984) (0.509, 0.943, 2.993) (0.567, 0.919, 2.998) (0.511, 0.904, 2.983) (0.509, 0.894, 2.981) (0.502, 0.918, 2.980) 
 (0.45, 0.71, 0.18) (0.42, 0.66, 0.11) (0.40, 0.64, 0.08) (0.39, 0.61, 0.02) (0.39, 0.60, 0.02) (0.39, 0.60) 
1.5 (0.773, 0.937, 2.974) (0.779, 0.925, 2.988) (0.780, 0.898, 2.999) (0.777, 0.906, 2.998) (0.777, 0.906, 2.998) (0.780, 0.906, 3.000) 
 (0.07, 0.18, 0.03) (0.06, 0.17, 0.02) (0.06, 0.16, 0.01) (0.06, 0.16, 0.00) (0.06, 0.16, 0.00) (0.06, 0.16) 
2.0 (0.951, 0.924, 2.962) (0.954, 0.931, 2.981) (0.952, 0.913, 2.996) (0.949, 0.901, 3.000) (0.949, 0.901, 3.000) (0.947, 0.912, 3.002) 

 (0.01, 0.04, 0.01) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.04, 0.00) (0.01, 0.03) 
(h1, h2) = (1.9, 0.1) 

0.2 (0.024, 0.826, 2.532) (0.037, 0.744, 2.608) (0.044, 0.679, 2.598) (0.059, 0.635, 2.575) (0.059, 0.626, 2.564) (0.058, 0.632, 2.547) 
 (65.22, 223.73, 153.63) (33.99, 81.25, 54.04) (23.50, 29.38, 15.86) (17.80, 15.45, 2.50) (17.54, 15.02, 1.71) (17.25, 14.56) 
0.4 (0.116, 0.774, 2.886) (0.134, 0.714, 2.886) (0.144, 0.687, 2.858) (0.151, 0.660, 2.813) (0.151, 0.664, 2.808) (0.151, 0.664, 2.804) 
 (6.83, 13.86, 9.02) (5.36, 5.70, 2.43) (4.94, 4.71, 1.35) (4.42, 4.02, 0.35) (4.40, 3.99, 0.24) (4.37, 3.96) 
0.6 (0.245, 0.719, 2.965) (0.263, 0.686, 2.963) (0.330, 0.661, 2.972) (0.273, 0.648, 2.922) (0.273, 0.644, 2.919) (0.273, 0.660, 2.918) 
 (2.07, 2.58, 1.08) (1.85, 2.12, 0.59) (1.76, 2.04, 0.42) (1.64, 1.82, 0.11) (1.64, 1.81, 0.07) (1.63, 1.81) 
0.8 (0.374, 0.695, 2.986) (0.385, 0.662, 2.993) (0.388, 0.666, 2.983) (0.391, 0.655, 2.961) (0.391, 0.653, 2.960) (0.390, 0.662, 2.960) 
 (0.83, 1.20, 0.35) (0.77, 1.08, 0.21) (0.75, 1.04, 0.14) (0.72, 1.01, 0.04) (0.72, 1.01, 0.03) (0.72, 1.00) 
1.0 (0.491, 0.706, 2.985) (0.497, 0.672, 2.998) (0.499, 0.671, 2.993) (0.501, 0.653, 2.980) (0.500, 0.662, 2.979) (0.500, 0.666, 2.980) 
 (0.38, 0.67, 0.15) (0.35, 0.62, 0.09) (0.35, 0.60, 0.06) (0.34, 0.59, 0.02) (0.34, 0.59, 0.01) (0.34, 0.59) 
1.5 (0.773, 0.697, 2.968) (0.777, 0.682, 2.993) (0.781, 0.672, 2.998) (0.779, 0.672, 2.997) (0.780, 0.663, 2.997) (0.779, 0.662, 2.998) 
 (0.06, 0.16, 0.03) (0.06, 0.15, 0.02) (0.06, 0.15, 0.01) (0.06, 0.14, 0.00) (0.06, 0.14, 0.00) (0.06, 0.14) 
2.0 (0.951, 0.683, 2.956) (0.954, 0.671, 2.986) (0.951, 0.658, 2.995) (0.948, 0.659, 2.999) (0.948, 0.659, 2.999) (0.950, 0.664, 3.001) 
 (0.01, 0.04, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03) 

(h1, h2) = (4.0, 0.1) 
0.2 (0.023, 0.338, 2.527) (0.034, 0.326, 2.580) (0.043, 0.301, 2.592) (0.053, 0.273, 2.550) (0.052, 0.273, 2.532) (0.063, 0.267, 2.578) 
 (63.63, 226.89, 155.14) (33.26, 81.43, 53.46) (22.74, 30.20, 15.34) (16.89, 16.45, 2.28) (16.66, 16.07, 1.55) (16.50, 15.99) 
0.4 (0.113, 0.331, 2.880) (0.138, 0.306, 2.893) (0.149, 0.291, 2.866) (0.157, 0.293, 2.813) (0.158, 0.292, 2.809) (0.157, 0.283, 2.804) 
 (6.16, 13.79, 8.64) (4.81, 6.21, 2.29) (4.43, 5.32, 1.27) (4.09, 4.78, 0.34) (4.07, 4.75, 0.24) (4.04, 4.72) 
0.6 (0.243, 0.304, 2.966) (0.260, 0.302, 2.954) (0.268, 0.276, 2.964) (0.268, 0.268, 2.928) (0.267, 0.277, 2.925) (0.317, 0.289, 2.945) 
 (1.77, 2.85, 0.95) (1.64, 2.51, 0.53) (1.49, 2.26, 0.32) (1.42, 2.16, 0.09) (1.42, 2.16, 0.07) (1.43, 2.18) 
0.8 (0.362, 0.302, 2.977) (0.372, 0.320, 2.973) (0.371, 0.282, 2.988) (0.374, 0.272, 2.966) (0.374, 0.271, 2.964) (0.374, 0.279, 2.964) 
 (0.72, 1.41, 0.30) (0.68, 1.33, 0.19) (0.64, 1.23, 0.12) (0.62, 1.20, 0.04) (0.61, 1.20, 0.03) (0.61, 1.20) 
1.0 (0.475, 0.316, 2.977) (0.476, 0.273, 3.005) (0.480, 0.292, 3.000) (0.480, 0.286, 2.985) (0.476, 0.283, 2.983) (0.479, 0.290, 2.985) 
 (0.33, 0.78, 0.12) (0.30, 0.71, 0.08) (0.30, 0.70, 0.05) (0.29, 0.68, 0.02) (0.29, 0.68, 0.01) (0.29, 0.68) 
1.5 (0.777, 0.311, 2.960) (0.779, 0.290, 3.000) (0.780, 0.292, 3.005) (0.780, 0.287, 3.004) (0.776, 0.293, 3.004) (0.777, 0.291, 3.006) 
 (0.06, 0.17, 0.02) (0.06, 0.16, 0.02) (0.05, 0.15, 0.01) (0.05, 0.15, 0.00) (0.05, 0.15, 0.00) (0.05, 0.15) 
2.0 (0.952, 0.269, 2.971) (0.954, 0.271, 2.994) (0.954, 0.289, 3.002) (0.949, 0.287, 3.006) (0.949, 0.293, 3.006) (0.946, 0.291, 3.008) 

 (0.01, 0.04, 0.01) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03, 0.00) (0.01, 0.03) 
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Table 5. Optimal VSI EWMA 𝑋̅ chart’s parameters (λ, K1, K2), zero-state EAATS1s and the zero-state (AATS1, ASDTS1, SDATS1) values 
corresponding to the specific shift sizes δ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}, when zero-state EAATS0 = 370.40, AASI0 = 1, n = 5, m ∈ {25, 50, 
100, 1000, 2000, +∞} and (h1, h2) ∈ {(1.5, 0.5), (1.7, 0.3), (1.3, 0.1)}. 

 

 m = 25 m = 50 m = 100 m = 1000 m = 2000 m = +∞ 
 (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) 
 EAATS1 EAATS1 EAATS1 EAATS1 EAATS1 EATS1 
δ (AATS1, ASDTS1, SDATS1)      (AATS1, ASDTS1, SDATS1)      (AATS1, ASDTS1, SDATS1)      (AATS1, ASDTS1, SDATS1)     (AATS1, ASDTS1, SDATS1) (ATS1, SDTS1) 
 (h1, h2) = (1.5, 0.5) 
 (0.062, 0.791, 2.795) (0.065, 0.723, 2.757) (0.063, 0.683, 2.697) (0.068, 0.638, 2.613) (0.068, 0.636, 2.603) (0.068, 0.629, 2.593) 
 12.80 9.17 7.18 5.54 5.46 5.38 

0.2 (74.54, 233.45, 158.62) (42.53, 88.15, 57.63) (30.78, 35.26, 19.27) (24.17, 17.90, 3.17) (23.82, 17.34, 2.17) (23.46, 16.79) 
0.4 (10.59, 12.28, 8.14) (9.17, 5.75, 2.70) (8.59, 4.76, 1.59) (7.74, 4.08, 0.43) (7.69, 4.04, 0.30) (7.64, 4.01) 
0.6 (5.31, 2.77, 1.38) (4.86, 2.36, 0.85) (4.67, 2.17, 0.56) (4.23, 1.98, 0.16) (4.21, 1.97, 0.11) (4.19, 1.96) 
0.8 (3.42, 1.58, 0.68) (3.15, 1.42, 0.44) (3.04, 1.34, 0.30) (2.74, 1.25, 0.09) (2.73, 1.24, 0.06) (2.71, 1.24) 
1.0 (2.42, 1.10, 0.43) (2.21, 1.00, 0.28) (2.14, 0.95, 0.19) (1.92, 0.88, 0.05) (1.91, 0.88, 0.04) (1.90, 0.87) 
1.5 (1.20, 0.57, 0.19) (1.10, 0.50, 0.12) (1.07, 0.47, 0.08) (0.95, 0.42, 0.02) (0.95, 0.42, 0.02) (0.94, 0.42) 
2.0 (0.69, 0.30, 0.10) (0.65, 0.26, 0.06) (0.63, 0.24, 0.04) (0.58, 0.20, 0.01) (0.57, 0.20, 0.01) (0.57, 0.19) 

 (h1, h2) = (1.7, 0.3) 
 (0.065, 0.801, 2.795) (0.066, 0.717, 2.757) (0.061, 0.684, 2.688) (0.064, 0.625, 2.597) (0.064, 0.643, 2.586) (0.065, 0.638, 2.581) 
 12.00 8.31 6.30 4.71 4.64 4.56 

0.2 (72.06, 236.67, 160.92) (39.21, 88.03, 57.79) (27.26, 33.37, 18.38) (20.97, 16.34, 2.85) (20.67, 15.85, 1.94) (20.39, 15.45) 
0.4 (9.05, 11.97, 7.83) (7.73, 5.40, 2.35) (7.28, 4.54, 1.37) (6.55, 3.94, 0.37) (6.51, 3.91, 0.26) (6.44, 3.88) 
0.6 (4.39, 2.68, 1.19) (4.00, 2.32, 0.73) (3.88, 2.17, 0.49) (3.51, 2.00, 0.14) (3.49, 1.99, 0.10) (3.45, 1.98) 
0.8 (2.76, 1.58, 0.59) (2.51, 1.44, 0.38) (2.45, 1.38, 0.26) (2.20, 1.30, 0.07) (2.19, 1.29, 0.05) (2.16, 1.28) 
1.0 (1.88, 1.13, 0.37) (1.70, 1.04, 0.24) (1.66, 1.01, 0.17) (1.48, 0.94, 0.05) (1.47, 0.93, 0.03) (1.45, 0.93) 
1.5 (0.81, 0.59, 0.16) (0.73, 0.51, 0.10) (0.72, 0.48, 0.06) (0.64, 0.42, 0.02) (0.64, 0.42, 0.01) (0.62, 0.41) 
2.0 (0.41, 0.24, 0.06) (0.39, 0.20, 0.04) (0.39, 0.19, 0.03) (0.36, 0.15, 0.01) (0.36, 0.15, 0.00) (0.35, 0.15) 

 (h1, h2) = (1.3, 0.1) 
 (0.071, 1.302, 2.820) (0.073, 1.232, 2.779) (0.066, 1.179, 2.705) (0.064, 1.071, 2.597) (0.063, 1.059, 2.582) (0.066, 1.066, 2.586) 
 12.05 8.32 6.26 4.55 4.48 4.40 

0.2 (73.39, 237.60, 161.17) (40.25, 90.48, 59.05) (27.41, 35.28, 19.38) (20.16, 16.44, 2.88) (19.80, 15.83, 1.95) (19.64, 15.60) 
0.4 (8.52, 12.34, 8.08) (7.14, 5.33, 2.32) (6.71, 4.37, 1.30) (6.02, 3.73,0.34) (6.01, 3.70, 0.24) (5.91, 3.68) 
0.6 (4.06, 2.49, 1.08) (3.67, 2.14, 0.65) (3.60, 2.00, 0.43) (3.29, 1.84, 0.12) (3.29, 1.84, 0.09) (3.22, 1.82) 
0.8 (2.60, 1.42, 0.51) (2.37, 1.29, 0.33) (2.35, 1.24, 0.22) (2.15, 1.17, 0.07) (2.15, 1.17, 0.05) (2.09, 1.16) 
1.0 (1.85, 0.98, 0.32) (1.68, 0.92, 0.21) (1.67, 0.90, 0.15)   (1.52, 0.87, 0.04) (1.52, 0.87, 0.03) (1.47, 0.87) 
1.5 (0.90, 0.68, 0.19) (0.77, 0.66, 0.13) (0.77, 0.65, 0.09) (0.65, 0.63, 0.03) (0.65, 0.63, 0.02) (0.62, 0.62) 
2.0 (0.35, 0.49, 0.11) (0.27, 0.41, 0.06) (0.26, 0.41, 0.04) (0.21, 0.34, 0.01) (0.21, 0.34, 0.01) (0.20, 0.32) 
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Table 6. Optimal VSI EWMA 𝑋̅ chart’s parameters (λ, K1, K2), zero-state EAATS1s and the zero-state (AATS1, ASDTS1, SDATS1) values 
corresponding to the specific shift sizes δ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}, when zero-state EAATS0 = 370.40, AASI0 = 1, n = 5, m ∈ {25, 50, 
100, 1000, 2000, +∞} and (h1, h2) ∈ {(1.5, 0.1), (1.9, 0.1), (4.0, 0.1)}. 

 

 m = 25 m = 50 m = 100 m = 1000 m = 2000 m = +∞ 
 (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) (λ, K1, K2) 
 EAATS1 EAATS1 EAATS1 EAATS1 EAATS1 EATS1 
δ (AATS1, ASDTS1, SDATS1)       (AATS1, ASDTS1, SDATS1)     (AATS1, ASDTS1, SDATS1)      (AATS1, ASDTS1, SDATS1)   (AATS1, ASDTS1, SDATS1) (ATS1, SDTS1) 
 (h1, h2) = (1.5, 0.1) 
 (0.067, 1.078, 2.800) (0.064, 0.990, 2.746) (0.067, 0.917, 2.710) (0.062, 0.869, 2.588) (0.062, 0.862, 2.577) (0.062, 0.861, 2.566) 
 11.67 7.91 5.81 4.21 4.14 4.07 

0.2 (71.19, 237.96, 161.73) (37.37, 87.82, 57.75) (25.61, 34.27, 18.91) (18.89, 15.78, 2.69) (18.61, 15.30, 1.84) (18.32, 14.85) 
0.4 (8.10, 11.93, 7.75) (6.90, 5.19, 2.12) (6.14, 4.33, 1.20) (5.68, 3.80, 0.32) (5.64, 3.77, 0.22) (5.61, 3.75) 
0.6 (3.88, 2.55, 1.04) (3.59, 2.23, 0.64) (3.24, 2.05, 0.40) (3.06, 1.93, 0.12) (3.04, 1.92, 0.08) (3.02, 1.91) 
0.8 (2.46, 1.50, 0.50) (2.30, 1.39, 0.33) (2.05, 1.31, 0.22) (1.94, 1.26, 0.06) (1.93, 1.26, 0.05) (1.91, 1.26) 
1.0 (1.71, 1.08, 0.32)   (1.59, 1.03, 0.22) (1.39, 0.99, 0.14) (1.31, 0.97, 0.04) (1.30, 0.96, 0.03) (1.29, 0.96) 
1.5 (0.71, 0.73, 0.18) (0.63, 0.69, 0.12) (0.51, 0.62, 0.07) (0.46, 0.59, 0.02) (0.46, 0.58, 0.01) (0.45, 0.58) 
2.0 (0.24, 0.39, 0.07) (0.20, 0.33, 0.04) (0.16, 0.26, 0.02) (0.15, 0.23, 0.01) (0.15, 0.22, 0.00) (0.15, 0.22) 

 (h1, h2) = (1.9, 0.1) 
 (0.067, 0.785, 2.792) (0.067, 0.734, 2.756) (0.059, 0.675, 2.680) (0.060, 0.623, 2.580) (0.060, 0.619, 2.569) (0.060, 0.624, 2.558) 
 11.22 7.46 5.42 3.88 3.81 3.74 

0.2 (69.50, 239.65, 163.03) (35.94, 88.16, 57.99) (23.74, 31.96, 17.50) (17.83, 15.51, 2.52) (17.57, 15.08, 1.72) (17.30, 14.67) 
0.4 (7.56, 11.81, 7.54) (6.30, 5.32, 2.01)   (5.97, 4.60, 1.16) (5.36, 4.08, 0.31) (5.32, 4.06, 0.22) (5.29, 4.03) 
0.6 (3.52, 2.73, 1.00) (3.14, 2.41, 0.61) (3.08, 2.29, 0.41)   (2.77, 2.15, 0.12) (2.75, 2.14, 0.08) (2.73, 2.13) 
0.8 (2.12, 1.67, 0.50)   (1.88, 1.55, 0.32) (1.87, 1.51, 0.22) (1.65, 1.43, 0.06)   (1.64, 1.42, 0.04) (1.63, 1.42) 
1.0 (1.37, 1.23, 0.32) (1.19, 1.14, 0.20) (1.18, 1.12, 0.14) (1.02, 1.05, 0.04) (1.02, 1.05, 0.03) (1.01, 1.05) 
1.5 (0.44, 0.64, 0.12) (0.37, 0.55, 0.07) (0.37, 0.54, 0.05) (0.31, 0.47, 0.01)   (0.31, 0.46, 0.01) (0.30, 0.46) 
2.0 (0.15, 0.22, 0.03)   (0.14, 0.17, 0.02)   (0.14, 0.17, 0.01) (0.13, 0.13, 0.00) (0.13, 0.13, 0.00) (0.13, 0.13) 

 (h1, h2) = (4.0, 0.1) 
 (0.051, 0.335, 2.737) (0.052, 0.318, 2.705) (0.050, 0.301, 2.628) (0.056, 0.259, 2.566) (0.056, 0.261, 2.554) (0.057, 0.270, 2.548) 
 10.57 6.93 5.06 3.51 3.45 3.38 

0.2 (65.44, 238.78, 162.79) (32.90, 84.88, 55.81) (22.83, 31.29, 16.15) (16.90, 16.53, 2.33) (16.66, 16.16, 1.59) (16.43, 15.82) 
0.4 (7.44, 12.16, 7.07) (6.22, 6.75, 1.99) (5.93, 6.21, 1.23) (4.99, 5.34, 0.32) (4.95, 5.31, 0.22) (4.90, 5.27) 
0.6 (3.24, 3.85, 1.09) (2.85, 3.41, 0.66) (2.76, 3.30, 0.44) (2.31, 2.93, 0.12) (2.30, 2.92, 0.08) (2.27, 2.89) 
0.8 (1.70, 2.33, 0.51) (1.49, 2.11, 0.31) (1.45, 2.06, 0.21) (1.20, 1.82, 0.06) (1.19, 1.81, 0.04) (1.17, 1.80) 
1.0 (0.94, 1.52, 0.27) (0.82, 1.36, 0.16) (0.80, 1.33, 0.11) (0.66, 1.15, 0.03) (0.65, 1.15, 0.02)   (0.64, 1.14) 
1.5 (0.28, 0.46, 0.05) (0.26, 0.39, 0.03) (0.25, 0.38, 0.02) (0.22, 0.30, 0.01) (0.22, 0.30, 0.00) (0.21, 0.30) 
2.0 (0.15, 0.10, 0.02) (0.15, 0.08, 0.01) (0.14, 0.08, 0.01) (0.13, 0.06, 0.00) (0.13, 0.06, 0.00) (0.12, 0.06) 
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Table 7. (AATS, ASDTS, SDATS) values of the VSI EWMA 𝑋̅ chart with estimated process parameters, for zero-state and steady-state (boldfaced 
entries) cases when (h1, h2)  {(1.7, 0.3), (1.9, 0.1)}. 

 m = 25 m = 50 m = 100 m = 1000 m = 2000 m = +∞ 
δ (AATS, ASDTS, SDATS) (AATS, ASDTS, SDATS) (AATS, ASDTS, SDATS) (AATS, ASDTS, SDATS) (AATS, ASDTS, SDATS) (ATS, SDTS) 

(h1, h2) = (1.7, 0.3) 
0.0 (370.40, 654.68, 381.65) (370.40, 494.22, 231.16) (370.40, 426.34, 149.88) (370.40, 375.29,  41.33) (370.40, 372.57, 28.71) (370.40, 369.96) 

 (368.27, 654.64, 381.53) (368.68, 494.19, 231.08) (367.83, 426.32, 149.82) (368.66, 375.29,  41.29) (368.28, 372.57, 28.68) (367.92, 369.95) 

0.2 (116.38, 286.00, 184.86) (90.57, 155.70, 89.69) (69.40, 94.11, 45.28) (54.96, 56.24, 9.91) (53.33, 53.66, 6.76) (53.31, 52.81) 
 (115.53, 285.81, 184.57) (89.96, 155.71, 89.69) (68.79, 94.16, 45.37) (54.37, 56.26, 9.97) (52.72, 53.68, 6.79) ( 52.71,  52.82) 

0.4 (13.36, 30.47, 19.60) (11.43, 15.75, 8.02) (9.31, 10.24, 3.83)      (8.17, 7.68, 0.93) (7.99, 7.42, 0.63) (8.04, 7.43) 
 (13.25, 30.59, 19.76) (11.32, 15.85, 8.17) (9.18, 10.34, 3.96)    (8.03, 7.74, 0.97) (7.85, 7.48, 0.67) (7.90, 7.49) 

0.6 (3.16, 3.82, 1.95) (3.00, 3.07, 1.14) (2.74, 2.50, 0.64) (2.59, 2.22, 0.18) (2.56, 2.19, 0.12) (2.57, 2.19) 
 (3.21, 4.02, 2.15) (3.02, 3.23, 1.27) (2.76, 2.68, 0.75) (2.60, 2.39, 0.21) (2.58, 2.35, 0.15)     (2.58, 2.36) 

0.8 (1.37, 1.33, 0.49) (1.31, 1.23, 0.33) (1.27, 1.13, 0.21) (1.23, 1.07, 0.06) (1.23, 1.06, 0.04) (1.22, 1.06) 
 (1.47, 1.62, 0.67) (1.37, 1.49, 0.43) (1.33, 1.40, 0.29) (1.29, 1.34, 0.09) (1.29, 1.34, 0.06) (1.29, 1.33) 

1.0 (0.75, 0.73, 0.21) (0.71, 0.68, 0.15) (0.71, 0.65, 0.10) (0.69, 0.63, 0.03)   (0.69, 0.63, 0.02) (0.69, 0.63) 
 (0.85, 1.10, 0.35) (0.78, 1.03, 0.23) (0.78, 1.02, 0.16) (0.76, 1.00, 0.05) (0.76, 1.00, 0.04) (0.76, 0.99) 

1.5 (0.25, 0.24, 0.06) (0.23, 0.23, 0.04) (0.24, 0.23, 0.03) (0.24, 0.22, 0.01) (0.24, 0.22, 0.01) (0.24, 0.22) 
 (0.29, 0.77, 0.12) (0.25, 0.76, 0.07) (0.27, 0.76, 0.06) (0.26, 0.75, 0.02) (0.26, 0.75, 0.01)   (0.26, 0.75) 

2.0 (0.09, 0.14, 0.03) (0.07, 0.13, 0.02) (0.08, 0.14, 0.02) (0.08, 0.13, 0.01) (0.08, 0.14, 0.00) (0.08, 0.13) 
 (0.11, 0.71, 0.06) (0.09, 0.70, 0.03) (0.10, 0.70, 0.03) (0.10, 0.70, 0.01) (0.10, 0.70, 0.01) (0.10, 0.70) 

(h1, h2) = (1.9, 0.1) 
0.0 (370.40, 662.31, 387.97) (370.40, 499.72, 236.36) (370.40, 429.95, 152.88) (370.40, 375.38, 42.19)   (370.40, 373.87, 29.53) (370.40, 371.66) 

 (368.16, 662.26, 387.83) (368.82, 499.69, 236.27) (369.07, 429.93, 152.81) (368.15, 375.37, 42.15) (369.09, 373.87, 29.50) (369.22, 371.66) 
0.2 (115.46, 289.90, 187.94) (84.50, 151.75, 88.97) (68.76, 95.39, 46.52) (55.46, 57.69, 10.41)   (54.83, 56.08, 7.22) (53.96, 54.27) 

 (114.63, 289.71, 187.65) (83.86, 151.75, 88.96) (68.16, 95.44, 46.60) (54.89, 57.70, 10.45) (54.25, 56.09, 7.25) (53.39, 54.28)   
0.4 (11.80, 30.27, 19.67)   (8.89, 13.40, 6.97) (7.81, 9.52, 3.65) (6.92, 7.25, 0.90) (6.88, 7.15, 0.63) (6.81, 7.02) 

 (11.71, 30.37, 19.81) (8.80, 13.52, 7.13) (7.70, 9.63, 3.77) (6.81, 7.33, 0.94) (6.76, 7.22, 0.66) (6.69, 7.10) 
0.6 (2.25, 3.39, 1.67) (1.98, 2.49, 0.82) (1.87, 2.23, 0.50)    (1.78, 2.04, 0.14)   (1.77, 2.03, 0.10) (1.76, 2.02) 

 (2.33, 3.61, 1.86) (2.04, 2.72, 0.96)   (1.92, 2.46, 0.60) (1.82, 2.26, 0.17)   (1.81, 2.26, 0.12) (1.80, 2.24) 

0.8 (0.83, 1.20, 0.35) (0.77, 1.08, 0.21) (0.75, 1.04, 0.14) (0.72, 1.01, 0.04) (0.72, 1.01, 0.03) (0.72, 1.00) 
 (0.96, 1.57, 0.52) (0.88, 1.45, 0.32) (0.84, 1.42, 0.22) (0.81, 1.38, 0.07) (0.81, 1.38, 0.05) (0.81, 1.38) 

1.0 (0.40, 0.67, 0.14) (0.37, 0.62, 0.09)    (0.36, 0.61, 0.06) (0.35, 0.60, 0.02) (0.35, 0.59, 0.01) (0.35, 0.59) 
 (0.52, 1.17, 0.27) (0.47, 1.13, 0.17) (0.46, 1.11, 0.12) (0.44, 1.10, 0.04) (0.44, 1.10, 0.03) (0.44, 1.10) 

1.5 (0.09, 0.18, 0.03) (0.09, 0.17, 0.02) (0.09, 0.16, 0.01) (0.08, 0.16, 0.00) (0.08, 0.16, 0.00) (0.08, 0.16) 
 (0.14, 0.93, 0.08) (0.12, 0.92, 0.05) (0.12, 0.92, 0.03) (0.11, 0.92, 0.01) (0.11, 0.92, 0.01) (0.11, 0.92) 

2.0 (0.03, 0.05, 0.01) (0.03, 0.05, 0.01) (0.02, 0.05, 0.01) (0.02, 0.05, 0.00) (0.02, 0.05, 0.00) (0.02, 0.05) 
 (0.04, 0.90, 0.02) (0.04, 0.90, 0.01)    (0.03, 0.90, 0.01) (0.03, 0.90, 0.00) (0.03, 0.90, 0.00) (0.03, 0.90) 

Note: The boldfaced values denote the steady-state cases.
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Table 8. Summary statistics for the Phase-II data of the flow width measurements (in 
microns) for the hard-bake process. 
 

Sample number, i 
i

Y  ˆ
i

W  i
Z  Next sampling interval, h1 / h2 hours  

Total elapsed time 
(hours) 

1 1.49976 –0.09383 –0.03368 1.7 0.0 

2 1.51418 0.13744 0.02775 1.7 1.7 

3 1.53324 0.44312 0.17687 1.7 3.4 

4 1.41520 –1.44998 –0.40717 0.3 5.1 

5 1.50968 0.06527 –0.23757 1.7 5.4 

6 1.47240 –0.53262 –0.34349 0.3 7.1 

7 1.52920 0.37832 –0.08436 1.7 7.4 

8 1.53170 0.41842 0.09614 1.7 9.1 

9 1.57934 1.18246 0.48613 0.3 10.8 

10 1.42790 –1.24630 –0.13581 1.7 11.1 

11 1.48238 –0.37256 –0.22081 1.7 12.8 

12 1.49098 –0.23464 –0.22577 1.7 14.5 

13 1.61278 1.71876 0.47232 0.3 16.2 

14 1.65598 2.41159 1.16852 0.3 16.5 

15 1.64202 2.18771 1.53441 * 16.8 

16 1.67156 2.66146 1.93902   

17 1.62516 1.91731 1.93123   

18 1.69696 3.06882 2.33962   

19 1.63214 2.02925 2.22820   

20 1.77000 4.24022 2.95052   
Note: The boldfaced values denote the out-of-control cases. 
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List of figure captions 

 

FIG. 1 A graphical view of the VSI EWMA X  chart’s operation. 

FIG. 2 Interval between LCL and UCL divided into (2g + 1) subintervals with each having 

a width of 2d. 

FIG. 3 The VSI EWMA X  chart with estimated process parameters, for monitoring the 

Phase-II data of flow width measurements (in microns) for the hard-bake process. 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1 A graphical view of the VSI EWMA X  chart's operation. 
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FIG. 2 Interval between LCL and UCL divided into (2g + 1) subintervals with each having a 

width of 2d. 
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FIG. 3 The VSI EWMA X  chart with estimated process parameters, for monitoring the 

Phase-II data of flow width measurements (in microns) for the hard-bake process. 
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