Orphée Collin 
email: orphee.collin@normalesup.org
  
Francis Comets 
email: comets@lpsm.paris
  
Rate of escape of conditioned Brownian motion

Keywords: Brownian motion, Bessel process, conditioning, transience, Wiener moustache, regeneration, upper-class and lower-class, random difference equation, autoregressive process AMS 2020 subject classifications: 60K35, 60J60, 60J65, 60G17

We study the norm of the two-dimensional Brownian motion conditioned to stay outside the unit disk at all times. By conditioning the process is changed from barely recurrent to slightly transient. We obtain sharp results on the rate of escape to infinity of the process of future minima:

(i) we find an integral test on the function g so that the future minima process drops beyond the barrier exp{ln t × g(ln ln t)} at arbitrary large times;

(ii) we show that the future minima process exceeds K √ t × ln ln ln t at arbitrary large times with probability 0 [resp., 1] if K is larger [resp., smaller] than some positive constant. For this, we introduce a renewal structure attached to record times and values. Additional results are given for the long time behavior of the norm.

Introduction

This paper is devoted to the planar Brownian motion conditioned to stay outside the unit ball B(0, 1) at all times. Besides its own appeal from its fundamental character, this process has attracted a keen interest as being the elementary brick of the two-dimensional Brownian random interlacement recently introduced in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]. By rotational symmetry, the norm R of the conditioned Brownian motion itself follows a stochastic differential equation in [1, ∞),

dR(t) = 1 R(t) ln R(t) + 1 2R(t) dt + dB(t) (1) 
with B a standard Brownian motion in R, and we can -and we will -restrict the study of the conditioned process to that of R itself since the angle obeys a diffusion subordinated to it. The two-dimensional Brownian motion is critically recurrent, but conditioning it outside the unit ball turns it into (delicately) transient. A natural question is the rate at which R(t) tends to ∞ as t → ∞, this is the object of the present paper. A measure of the reluctance of R to tend to infinity is given by the future minima process

M (t) = inf{R(s); s ≥ t} (2) 
which is non-decreasing to ∞ a.s. The corresponding model in the discrete case, the twodimensional simple random walk conditioned to avoid the origin at all times, has motivated many recent papers. Estimates on the future minimum distance to the origin have been obtained in [START_REF] Popov | Transience of conditioned walks on the plane: encounters and speed of escape[END_REF], we will use them as benchmarks. It is also shown that two independent conditioned walkers meet infinitely often although they are transient. The range of the walk, i.e. the set of visited sites, is studied in [START_REF] Gantert | On the range of a two-dimensional conditioned simple random walk[END_REF]: if a finite A ⊂ Z 2 \ {0} is "big enough and well distributed in space", then the proportion of visited sites is approximately uniformly distributed on [0, 1]. In [START_REF] Popov | Conditioned two-dimensional simple random walk: Green's function and harmonic measure[END_REF] the explicit formula for the Green function is obtained, and a survey is given in Chapter 4 of [START_REF] Popov | Two-dimensional Random Walk: From Path Counting to Random Interlacements[END_REF].

For dimensions d ≥ 3, the random interlacement model has been introduced in [START_REF] Sznitman | Vacant set of random interlacements and percolation[END_REF] to describe the local picture of the visited set by a random walk at large times on a large ddimensional torus, and similarly in [START_REF] Sznitman | On scaling limits and Brownian interlacements[END_REF], the Brownian random interlacement to describe the Wiener sausage around the Brownian motion on a d-dimensional torus. For dimension d = 2, the random interlacement model is the local limit of the visited set by the random walk around a point which has not been visited so far [START_REF] Comets | Two-dimensional random interlacements and late points for random walks[END_REF], and analogously, the Brownian random interlacement is the local limit of the Wiener sausage on the two-dimensional torus around a point which is outside the sausage [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]. Formally, the two-dimensional Brownian random interlacement is defined as a Poisson process of bi-infinite paths, which are rescaled instances of the so-called "Wiener moustache". The Wiener moustache is obtained by gluing two instances (for positive and negative times, see Figure 1 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]) of planar Brownian motion conditioned to stay outside the unit ball, which are independent except that they share the same starting point (see Lemma 3.9 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]). Hence, the process we consider in this paper is the building brick of Brownian random interlacement in the plane. We also recall that the complement of the sausage around the interlacement has an interesting phase transition, changing from a.s. unbounded to a.s. bounded as the Poisson intensity is increased, see Th. 2.13 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF] and [START_REF] Comets | The vacant set of two-dimensional critical random interlacement is infinite[END_REF] for the discrete case.

With a slight abuse of terminology, we say f (t) ≤ g(t) i.o. (infinitely often) if the set {t ≥ 0 : f (t) ≤ g(t)} is unbounded, and f (t) ≤ g(t) ev. (eventually) if the set {t ≥ 0 :

f (t) ≤ g(t)} is a neighborhood of ∞ in R + .
We now give a short overview of some of our results on the rate of escape of R to infinity. They are consequences of the results in section 2.1.

Theorem 1.1. For g : R + → R + non-increasing such that (ln t)g(ln ln t) is non-decreasing,

P M (t) ≤ e (ln t)g(ln ln t) i.o. = 0 1 according to ∞ g(u)du < ∞ = ∞ .
This result with an integral condition has a flavor of Kolmogorov's test (see, e.g., sect. 4.12 in [START_REF] Itô | Diffusion processes and their sample paths[END_REF]).

Theorem 1.2. The limit

K * = lim sup t→∞ M (t) √
t ln ln ln t is a.s. constant, and 0 < K * < ∞.

Though we do not know the actual value of K * we can see that both theorems are much finer than the corresponding Theorem 1.2 of [START_REF] Popov | Transience of conditioned walks on the plane: encounters and speed of escape[END_REF]. These two theorems together yield a precise version of the observation from [START_REF] Popov | Conditioned two-dimensional simple random walk: Green's function and harmonic measure[END_REF] that the pathwise divergence of R to infinity occurs in a highly irregular way. The future minima process has been considered earlier, e.g. [START_REF] Khoshnevisan | On the future infima of some transient processes[END_REF] and [START_REF] Khoshnevisan | On a problem of Erdös and Taylor[END_REF] for Bessel processes and for random walks, and [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF] for positive self-similar Markov processes. Let us recall the similar result for transient Bessel processes. Denote by BES d the d-dimensional Bessel process, i.e. the solution of the stochastic differential equation

dX(t) = d -1 2X(t) dt + dB(t) , (3) 
that is the norm of the standard Brownian motion in R d when d integer : then, by Th. 4.1 in [START_REF] Khoshnevisan | On the future infima of some transient processes[END_REF],

for d > 2, lim sup t→∞ min{BES d (s); s ≥ t} √ 2t ln ln t = 1. (4) 
An important (and beautiful) finding of our work is a renewal structure in Section 3 which allows sharp estimates. To illustrate that, let's mention that we will find a sequence of relevant random variables S n > 0 solving a random difference equation

S n = α n S n-1 + β n , n ≥ 1, (5) 
where the sequence (α n , β n ) n is i.i.d. with positive coefficients, α n < 1 and β n with logarithmic tails, P(β 1 > t) ∼ c/ ln t for large t. Although autoregressive processes AR(1) of the type (5) are usually addressed with exponential or power-law tail for β n [START_REF] Buraczewski | Stochastic models with power-law tails[END_REF], the case of logarithmic tail has been also considered, see [START_REF] Kellerer | Ergodic behaviour of affine recursions I: Criteria for recurrence and transience[END_REF], [START_REF] Zeevi | Recurrence Properties of Autoregressive Processes with Super-Heavy-Tailed Innovations[END_REF], [START_REF] Babillot | The random difference equation X n = A n X n-1 + B n in the critical case[END_REF], and also both papers [START_REF] Alsmeyer | Null recurrence and transience of random difference equations in the contractive case[END_REF] and [START_REF] Zerner | Recurrence and transience of contractive autoregressive processes and related Markov chains[END_REF] for a recent account. Interestingly, our model is critical in the perspective of the Markov chain S n , in the sense that the actual value of the constant c is precisely the transition from recurrence to transience for the chain.

The paper is organized as follows. We give the main results in the next section. The regeneration structure is defined in Section 3 , together with the basic estimates, and ending with Remark 3.8 on the above random difference equation. In the next section we prove some results showing that R somewhat behaves at large times like the two-dimensional Bessel process. In Sections 5 and 6 we prove the two above theorems.

Main results

We first collect a few properties of the involved processes.

We start with some notations. Consider W a two-dimensional standard Brownian motion and denote by P x the law of W starting at x, W a Brownian motion conditioned to stay outside the unit ball, and denote by P x its law starting at x, and R = | W | its Euclidean norm with P r the corresponding law (r = |x|). In this paper we are mainly interested in P = P 1 . The construction of the process starting from R(0) > 1 is standard from taboo process theory, and the one starting from R(0) = 1 is given in definition 2.2 of [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF].

For a closed subset B of the state space of a process Y , we denote the entrance time τ (Y ; B) = inf{t ≥ 0 : Y (t) ∈ B}, and write for short τ (Y ; r) = τ (Y ; ∂B(0, r)) and also τ (r) = τ (R; r) when Y = R. The function h(x) = ln |x| is harmonic in R 2 \ {0}, positive on R 2 \ B(0, 1) and vanishes on the unit circle. Then, the law P x of the planar Brownian motion W conditioned outside B(0, 1) is given by Doob's h-transform of P x . By definition, for

A ⊂ C(R + , R) which is F τ (r 1 ) -measurable (1 < |x| = r < r 1 ) P r (R ∈ A) = P x (|W | ∈ A τ (W, r 1 ) < τ (W, 1)) (6) = P x (|W | ∈ A, τ (W, r 1 ) < τ (W, 1)) × ln r 1 ln |x| recalling that P x (τ (W, r 1 ) < τ (W, 1)) = ln |x| ln r 1 since ln |x| is harmonic in R 2 \{0}
. Another remarkable property is Remark 3.8 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF] : For all x / ∈ B(1), ρ > 0, we have

P x τ ( W ; B(y, ρ)) < ∞ → 1 2 as |y| → ∞ .
The scale function for the process R -that is, the unique (up to affine transformation) real function such that S(R(t)) is a local martingale -is S(r) = -1 ln r . Then, for 1 < a < r < b, 

We refer to section 2.1 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF] for more details on the many interesting properties of W and R.

Results for the future minimum

With L(t) = ln(t ∨ 1) and ln(•) the natural logarithm, define ln 1 (t) = L(t), and for k ≥ 2, ln k (t) = L(ln k-1 (t)) so that ln k (t) = (ln • . . . • ln)(t) for t large.

Theorem 2.1. For g : R + → R + non-increasing such that (ln t)g(ln 2 t) is non-decreasing, we have:

∞ g(u)du < ∞ =⇒ a.s., M (t) ≥ e (ln t)g(ln 2 t) eventually, (8) 
and ∞ g(u)du = ∞ =⇒ a.s., M (t) ≤ e (ln t)g(ln 2 t) infinitely often.

(Note that the second assumption is quite natural in view of the monotonicity of M (t).) Theorem 1.1 is a direct consequence of the above theorem. This result with an integral condition is reminiscent of Kolmogorov's test (see, e.g., sect. 4.12 in [START_REF] Itô | Diffusion processes and their sample paths[END_REF]), but the process M here is not Markov.

These estimates are stronger than the corresponding ones in Th. 1.2 of [START_REF] Popov | Transience of conditioned walks on the plane: encounters and speed of escape[END_REF]. So are the following ones: Theorem 2.2. There exist 0 < K < K < ∞ such that, almost surely,

M (t) ≤ K t ln 3 t eventually, (10) 
and M (t) ≥ K t ln 3 t infinitely often.

Theorem 1.2 is essentially a reformulation of Theorem 2.2, it will be proved below Remark 6.2.

We recall the similar result (4) for transient Bessel processes: a.s. for all a < √ 2 < b, the future minima process min{BES d (s); s ≥ t} is eventually smaller than b √ t ln 2 t and infinitely often larger than a √ t ln 2 t. Finally we mention that, for d > 2, min{BES d (s); s ≥ t} ≤ ε √ 2t ln 2 t i.o., a.s. for all ε > 0. (See [START_REF] Khoshnevisan | On the future infima of some transient processes[END_REF], P.349).

Long time behavior of R(t)

At large times the process R behaves like BES 2 . We emphasize that this is for the marginal law, but not for the future minimum. We formulate here precise statements of these facts.

It is well known that the random variable t -1/2 BES 2 (t) converges to the Rayleigh distribution dν(x) = xe -x 2 /2 1 (0,∞) (x)dx [START_REF] Gradinaru | Existence and asymptotic behaviour of some timeinhomogeneous diffusions[END_REF] as t → ∞. Similarly for R, we have

Theorem 2.3. Let Z ∼ ν. As t → ∞, R(t) √ t law -→ Z .
Theorem 2.4 (Pointwise ergodic theorem). For all bounded continuous function f on (0, ∞),

as t → ∞, 1 t e t -1 0 f R(u) √ 1 + u 1 1 + u du -→ R f dν a.s. (13) 
We will prove Theorems 2.3 and 2.4 in section 4.

Regenerative structure

We fix a parameter r > 1. We construct a regenerative structure associated with the process R starting from R(0) = 1.

Renewal times

We define a random sequence (H n , A n , T n ) n≥0 by H 0 , T 0 = 0, A 0 = 1, then

   H 1 = inf{t > T 0 : R(t) = r} A 1 = inf{R(t); t ≥ H 1 } T 1 = inf{t ≥ H 1 : R(t) = A 1 } and for n ≥ 1,    H n+1 = inf{t > T n : R(t) = rA n } A n+1 = inf{R(t); t ≥ H n+1 } T n+1 = inf{t ≥ H n+1 : R(t) = A n+1 } (14) 
Since R is a continuous function with lim t→∞ R(t) = ∞ a.s., we see by induction that T n < ∞ a.s. with T n < T n+1 and lim n→∞ T n = ∞ a.s. The T n are not stopping times, but they are called renewal times for the following reasons.

Proposition 3.1. Let G 1 = σ T 1 , (R(t)1{t < T 1 }; t ≥ 0) . Then, R(T 1 + A 2 1 t) A 1 ; t ≥ 0 has same law as R and is independent of G 1 .
This proposition is the building brick of the Theorem 3.2. [Renewal structure] The sequence

R(T n + A 2 n t) A n ; t ∈ 0, T n+1 -T n A 2 n n≥0
is independent and identically distributed with the law of (R(t); t ∈ [0, T 1 ]).

In particular, since R(T n+1 ) = A n+1 , the sequence

T n+1 -T n A 2 n , A n+1 A n n≥0
is i.i.d. and distributed as (T 1 , A 1 ). Therefore (T n , A n ) can be written using i.i.d.r.v.'s, which will be used repeatedly all through.

Proof. Proposition 3.1. Recall that P r denotes the law of the process R with R(0) = r.

Observe that H 1 is a stopping time, and denote by F H 1 the sigma-field of events that occur before time H 1 . By the strong Markov property, under P 1 , (R(t + H 1 )) t≥0 is independent of F H 1 and has the law P r .

Moreover, by Theorem 2.4 in [START_REF] Williams | Path decomposition and continuity of local time for one-dimensional diffusions[END_REF] (see also the proof of Lemma 3.9 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]), conditionally on

T 1 , (R(t); t ∈ [H 1 , T 1 ]
) and A 1 = a, (R(T 1 + t); t ≥ 0) has the same law as R starting from a and conditioned to R(t) ≥ a, ∀t ≥ 0. By Brownian scaling, the latter law is equal to that of aR(•/a 2 ) under P 1 ; see also Remark 2.5 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]. Since

G 1 = σ(F H 1 ; (R(t); t ∈ [H 1 , T 1 ]
)) up to null events, we obtain the desired statement.

Proof. Theorem 3.2. By induction, Proposition 3.1 implies that for all n, the process R(Tn+A

2 n t) An ; t ≥ 0 is independent of G n = σ T n , (R(t); t < T n ) with the law of R. Then, the claim follows.
As a direct consequence we have discovered a simple representation of crucial times and points of the process.

Corollary 3.3. Define A n+1 = A n+1 A n , T n+1 = T n+1 -T n A 2 n , n ≥ 0.
Then, (A n , T n ) n≥1 is an i.i.d. sequence with the same law as (A 1 , T 1 ), and we have the representation

T n = T 1 + A 2 1 T 2 + . . . + (A 1 . . . A n-1 ) 2 T n A n = A 1 . . . A n , n ≥ 1. ( 15 
)

Description of a cycle

Recall r > 1 is fixed. We will shorten the notations: (H, A, T ) = (H 1 , A 1 , T 1 ). Recall that R starts from R(0) = 1, hits r at H for the first time, and reaches its future minimum A ∈ (1, r) at time T . We also introduce its maximum B > r on the time interval [H, T ], as well as their logarithms U, V : [START_REF] Comets | Two-dimensional random interlacements and late points for random walks[END_REF] with b → ∞), but we can even compute the joint law of U and V . For 1 < a -h < a < r < b, we have by the strong Markov property

A = r U = min{R(t); t ≥ H} B = r V = max{R(t); t ∈ [H, T ]} see figure 1. It was shown in [9] that U is uniform on [0,1] (see
P A ∈ [a-h, a), B > b = P A ∈ [a-h, a), B > b, τ (b) < τ (a) + P A ∈ [a-h, a), B > b, τ (b) > τ (a) = P r τ (b) < τ (a) × P b min{R(t); t ≥ 0} ∈ [a -h, a) + o(h) = ln(r/a) ln b ln(b/a) ln r × 1 a ln b h + o(h) R(t) 0 1 H T t A r B Figure 1: First cycle: A = r U , B = r V using (2.16
) in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF] and that, for R started at b, min{R(t); t ≥ 0} has density (a ln b) -1 on (1, b). Hence (A, B) has a density given by the negative of the b-derivative of the dominant term as h 0, i.e.,

p A,B (a, b) = 1 ab ln r ln(r/a) ln 2 (b/a) , 1 < a < r < b.
By changing variables, it follows that (U, V ) has density

p U,V (u, v) = 1 -u (v -u) 2 1{0 < u < 1 < v} (16) 
We recover that U is uniform on (0,1) and that V has density

p V (v) = -ln 1 -1/v -1/v , v > 1.
It follows that for v ≥ 1,

P(V > v) = ∞ n=1 1 n(n + 1)v n , (17) 
and then

P(V > v) ∼ 1/(2v) as v → ∞.
We also need information on the cycle length T . For any s ≥ 1 we consider the hitting time by R starting at s of its absolute minimum, and denote by µ s a r.v. with the same law: (ii) For u ∈ (0, 1), the conditional law of T given U ≥ u is equal to the law of an independent sum H + r 2u µ (r 1-u ) .

µ s ∼ P s arg min{R(t); t ≥ 0} ∈ • Recall that, under P, R(0) = 1.
Proof. (i) directly follows from the strong Markov property for the Markov process R and the stopping time H.

For (ii), we recall Remark 2.5 in [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]: for c > 1, denoting by R c the diffusion R conditioned to stay outside (1, c] and started at c, we have

R c (•) = cR(•/c 2 )
in law.

(Alternatively, this follows from R being the norm of conditioned Brownian motion ( 6) and from Brownian scaling.) Hence, for s ∈ R, again from the strong Markov property,

E 1 [e isT U ≥ u] = E 1 [e is(T -H+H) U ≥ u] = E 1 [e isH ] × E r [e is(T -H) U ≥ u] = E 1 [e isH ] × E r [e is×arg min{R(t);t≥0} min{R(t); t ≥ 0} ≥ r u ] = E 1 [e isH ] × E[e isr 2u µ (r 1-u ) ]
which proves the result.

Tail estimates for T

We need some estimates of the upper and lower tails of T , that we derive in this section. But first we state elementary comparisons of R and Bessel processes, see [START_REF] Babillot | The random difference equation X n = A n X n-1 + B n in the critical case[END_REF], that will be used all through the paper.

Proposition 3.5. (i) There exists a coupling of the processes R and BES 2 starting at 1 such that ∀t ≥ 0, R(t) ≥ BES 2 (t) .

(ii) For δ > 0 there exists a coupling of the processes R and BES 2+δ starting at 1 such that

for σ = sup{t ≥ 0; R(t) ≤ e 2/δ }, ∀s ≥ 0, R(σ + s) ≤ BES 2+δ (σ + s) -BES 2+δ (σ) + e 2/δ .
Proof. It is well known [START_REF] Cherny | On the strong and weak solutions of stochastic differential equations governing Bessel processes[END_REF] that the stochastic differential equation (3) has a strong solution, so we can couple the processes R and BES 2 , BES 2+δ by driving equations ( 1) and (3) by the same Brownian motion B. Then, with x + = max{x, 0} for x real, we have for all t > 0 and all realization of B,

d BES 2 (t) -R(t) + = 1 {BES 2 (t)≥R(t)} 1 2BES 2 (t) - 1 2R(t) - 1 R(t) ln R(t) dt ≤ 0
which implies (i) by integration. Similarly for (ii) we write the differential

d R(t) -BES 2+δ (t) + = 1 {BES 2+δ (t)≤R(t)} 1 2R(t) + 1 R(t) ln R(t) - 1 + δ 2BES 2+δ (t) dt ≤ 0 for t ≥ σ.
Integrating on t ∈ [σ, σ + s] we obtain (ii).

We are now ready to start with the upper tail of T .

Proposition 3.6. As t → ∞,

P(T ≥ t) ∼ ln r ln t . ( 18 
)
More precisely, there exists constants t 0 and C such that for all t ≥ t 0 ,

1 - ln 3 t + C ln t ln r ln t ≤ P[T ≥ t] ≤ 1 + ln 3 t + C ln t ln r ln t . ( 19 
)
Proof. We first obtain two preliminary estimates.

Upper bound: for 0 < ε < 1,

P(T ≥ t) = P T ≥ t, V ≥ ln t 2(1+ε) ln r +P T ≥ t, V < ln t 2(1+ε) ln r ≤ P V ≥ ln t 2(1 + ε) ln r + P R(s) ≤ t 1 2(1+ε) , s ∈ [0, t] ≤ (1 + ε) ln r ln t + 1 5 2(1 + ε) ln r ln t 2 + C 0 exp -C 1 t ε/(1+ε) (20) 
for t ≥ t 1 with t 1 > 0 not depending on ε ∈ (0, 1). Indeed, to obtain the first term we have used [START_REF] Khoshnevisan | On a problem of Erdös and Taylor[END_REF] in the form of P(V ≥ v) ≤ (1/2v) + (1/5v 2 ) for large v. In order to obtain the second one, we first bound R(•) ≥ BES 2 (•), with BES 2 started at 0 using Proposition 3.5, and finally that there exist positive C 0 , C 1 such that

∀t > 0, ∀ρ > 0, P BES 2 (s) ≤ ρ, s ∈ [0, t] ≤ C 0 exp -C 1 t ρ 2 , (21) 
see e.g. exercise 1 p.106 in [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF].

Lower bound: for 0 < ε < 1/2,

P(T ≥ t) ≥ P T -H ≥ t, V ≥ ln t 2(1 -ε) ln r = P V > ln t 2(1 -ε) ln r -P T -H ≤ t, V ≥ ln t 2(1 -ε) ln r ≥ P V > ln t 2(1 -ε) ln r -P r τ (R, t 1 2(1-ε) ) ≤ t ≥ (1 -ε) ln r ln t -C 2 exp -C 3 t ε/(1-ε) (22) 
for t ≥ t 2 , with t 2 > 0 not depending on ε ∈ (0, 1 2 ). In [START_REF] Popov | Transience of conditioned walks on the plane: encounters and speed of escape[END_REF] we have used [START_REF] Khoshnevisan | On a problem of Erdös and Taylor[END_REF] for the first term, and we give details for the second one: for |x| = r > 1 by (6), we get for all t > 1,

P r τ (R, t 1 2(1-ε) ) ≤ t = P x τ (|W |, t 1 2(1-ε) ) ≤ t τ (|W |, t 1 2(1-ε) ) < τ (|W |, 1) ≤ P x τ (|W |, t 1 2(1-ε) ) ≤ t × ln t 2(1 -ε) ln r ≤ C 2 exp -C 3 t ε/(1-ε)
for some constant C 2 , C 3 > 0 by the moderate deviation principle for Brownian motion.

For both the upper and lower bounds, we now choose

ε = ε t = ln 3 t + C 4 ln t with a constant C 4 . Provided the constant C 4 is large enough, the terms C 0 exp -C 1 t εt/(1+εt)
and C 2 exp(-C 3 t εt/(1-εt) ) are dominated by (ln t) -2 . We then get ( 19) from ( 20) and ( 22), taking any C > C 4 + 4 ln r 5 . Finally, ( 18) is a direct consequence of [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF]. The proof is complete.

We also need to control the lower tail of T . Proposition 3.7. (i) For all ε ∈ (0, r -1), there exists t 0 > 0 such that for t ≤ t 0 ,

P[T ≤ t] ≤ exp - (r -1 -ε) 2 2t . ( 23 
)
(ii) For all ε > 0, there exists t 1 > 0 such that for t ≤ t 1 , and all u ∈ [0, 1),

P T ≤ t|U ≥ u ≥ exp - (r -1 + ε) 2 2t . (24) 
Proof. (i) Setting a = 1 + ε/2 ∈ (1, r) and using the strong Markov property for the hitting time of a by R, we obtain

P(T ≤ t) ≤ P 1 (τ (r) -τ (a) ≤ t) = P a (τ (r) ≤ t) (6) = P (a,0) (τ (|W |, r) ≤ t τ (|W |; r) < τ (|W |, 1)) ≤ P (a,0) (τ (|W |, r) ≤ t) × ln r ln a .
Recalling large deviation results for Brownian motion in small time, e.g. section 6.8 of Ch. 5 in [START_REF] Azencott | Grandes déviations et applications École d'été de Probabilités de Saint-Flour[END_REF],

lim t→0 t ln P (a,0) (τ (|W |, r) ≤ t) = - (r -a) 2 2 , (25) 
we see that the above upper bound implies (i).

(ii) Let t ≤ 1. By Proposition 3.4-(ii), and by comparing R and BES 2 from Proposition 3.5 (i), we obtain

P(T ≤ t|U ≥ u) ≥ P(H ≤ t -t 2 ) × P(r 2u µ (r 1-u ) ≤ t 2 ) ≥ P(BES 2 (t -t 2 ) ≥ r) × P µ (r 1-u ) ≤ t 2 r 2u = P (1,0) |W (t -t 2 )| ≥ r × P r 1-u arg min{R(s); s ≥ 0} ≤ θ , (26) 
with θ = t 2 r 2u . We estimate the first term using again large deviation for Brownian motion in small time [START_REF] Azencott | Grandes déviations et applications École d'été de Probabilités de Saint-Flour[END_REF]: for |x| < r,

lim t→0 t ln P x (|W |(t) ≥ r) = - (r -|x|) 2 2 . ( 27 
)
To estimate the second term in [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF], note that R(θ) ≥ r 1-u + √ θ and R(s) ≥ r 1-u for all s ≥ θ implies that, P r 1-u -a.s., R achieves its minimum before time θ. Hence, by Markov property and ( 7),

P r 1-u arg min{R(s); s ≥ 0} ≤ θ ≥ P r 1-u R(θ) ≥ r 1-u + √ θ × 1 - ln r 1-u ln(r 1-u + √ θ) ≥ P B(θ) ≥ √ θ × 1 - ln r 1-u ln(r 1-u + √ θ)
≥ P (B(1) ≥ 1)× t 2r ln r for small t, arguing on the second line that R dominates Brownian motion by comparing the drift. Combined with ( 26) and [START_REF] Sznitman | Vacant set of random interlacements and percolation[END_REF], this completes the proof of (ii).

Tail estimate for U

Recall Hoeffding's inequality [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], or Th. 2.8 in [START_REF] Boucheron | Concentration inequalities. A nonasymptotic theory of independence[END_REF]: for b < 1, c > 1 and i ≥ 1,

P [2(U 1 +. . .+U i ) ≥ c.i] ≤ exp - i 2 (c -1) 2 , (28) 
and

P [2(U 1 +. . .+U i ) ≤ b.i] ≤ exp - i 2 (1 -b) 2 . ( 29 
)
Remark 3.8 (The random difference equation ( 5)). Introduce the sequence

S n = T n A 2 n
which is key in Section 6. In view of (15), we see that it solves the recursion

S n+1 = α n+1 S n + β n+1
Moreover, we easily check the equality t 0 e -s/2 dB(e s -1) = e t -1

0 1 √ 1 + u dB(u)
in the Gaussian space generated by B. Adding up terms, we see that X solves the stochastic differential equation [START_REF] Zeevi | Recurrence Properties of Autoregressive Processes with Super-Heavy-Tailed Innovations[END_REF]. Denote by b t , resp. b ∞ the drift coefficient and its limit, given for x ∈ (0, ∞) by

b t (x) = 1 2x - x 2 + 1 x(ln x + t/2) , b ∞ (x) = 1 2x - x 2 ,
and by X (∞) the homogeneous diffusion

dX (∞) (t) = 1 2X (∞) (t) - X (∞) (t) 2 dt + dβ(t) . (32) 
Following the approach of Takeyama [START_REF] Takeyama | Asymptotic properties of asymptotically homogeneous diffusion processes on a compact manifold[END_REF], we state the following Lemma 4.1. The diffusion X(t) = e -t/2 R(e t -1) is asymptotically homogeneous with homogeneous limit X (∞) , i.e, for all continuous f with compact support in (0, ∞) and all t > 0,

E f (X(t + s))|X(s) = x -→ E x f (X (∞) (t)) as s → ∞
uniformly on compact subsets of (0, ∞).

Proof. It is easier to consider X(t) = X(t) -e -t/2 which takes values in the fixed interval (0, ∞), and X (s) (t) = X(s + t). Then, the coefficients of the diffusion X (s) converge to those of X (∞) , uniformly on compact subsets of (0, ∞), and the corresponding martingale problems have a unique solution. Thus, Theorem 11.1.4 in [START_REF] Stroock | Multidimensional diffusion processes[END_REF] yields the desired result.

The process X (∞) is the transform X (∞) (t) = X (∞,2) (t) = e -t/2 BES 2 (e t -1) of BES 2 by the rescaling and deterministic time-change [START_REF] Williams | Path decomposition and continuity of local time for one-dimensional diffusions[END_REF]. It is recurrent and ergodic on (0, ∞) with the Rayleigh law as invariant probability measure,

dν(x) = xe -x 2 /2 1 (0,∞) (x)dx A first consequence is that R marginally behaves like BES 2 . Corollary 4.2 (Convergence in law). Let Z ∼ ν. As t → ∞, R(t) √ t law -→ Z .
Proof. Denote by P s,t , P (∞) s,t (0 ≤ s ≤ t) the Markov semi-groups associated to X and X (∞) ,

(P s,t f )(x) = E f (X(t))|X(s) = x , (P (∞) s,t f )(x) = E f (X (∞) (t))|X (∞) (s) = x , so that P (∞) s,t = P (∞)
0,t-s . For a bounded continuous f : (0, ∞) → R we write P 0,t+s f (x)-f dν = P 0,s (P s,s+t f )(x) -f dν

=P 0,s P s,s+t f -P (∞) s,s+t f (x) + P 0,s P (∞) s,s+t f -f dν (x) ,
where both terms vanish as s, t → ∞, which is our claim. Indeed, by convergence of X (∞) to equilibrium, P

s,s+t f -f dν = P (∞) 0,t f -f dν → 0 uniformly on compact subsets of (0, ∞) as t → ∞ and Lemma 4.1 implies that P s,s+t f -P (∞) s,s+t f → 0 uniformly on compact as s → ∞: thus, we only need to prove tightness, i.e. that for all positive x,

inf P 0,s (1 [ε,1/ε] )(x); s ≥ 1 → 1 as ε → 0 . ( 33 
)
But this follows from the next two bounds

• R ≥ BES 2 (see Proposition 3.5 (i)) which implies that X ≥ X (∞) ,
• sup s≥1 EX(s) 2 ≤ sup s≥1 s -1 ER(s) 2 < ∞ that we explain now.

First recall from [9] that 1 ln R is a martingale, and so, for all r > 1,

E r 1 ln R(t) = 1 ln r . (34) 
By Itô's formula,

d(R 2 ) = 2 1 + 1 ln R(t) dt + 2R(t)dB(t) . (35) 
Thus, for all r > 1,

E r [R(t) 2 ] = r 2 + 2t 1 + 1 ln r .
We now consider the process starting from R(0) = 1. Integrating (35), we get

E 1 R(t) 2 1 τ (r)<t = 2E 1 t 0 1 τ (r)<s 1 + 1 ln R(s) ds + t 0 1 τ (r)<s R(s)dB(s) Markov = 2 t 0 E 1 1 τ (r)<s E r 1 + 1 ln R(•) •=s-τ (r) ds + 0 = 2 1 + 1 ln r E 1 t -τ (r)
+ by (34). Finally we obtain that

ER(t) 2 = E R(t) 2 1 τ (r)<t + E R(t) 2 1 τ (r)<t ≤ r 2 + 2t 1 + 1 ln r
for all r > 1. The corollary is proved.

Corollary 4.3 (Pointwise ergodic theorem).

For all bounded continuous f on (0, ∞), as t → ∞,

1 t t 0 f (X(s))ds -→ R f dν a.s., or, equivalently, 1 t e t -1 0 f R(u) √ 1 + u 1 1 + u du -→ R f dν a.s.
Proof. It is easy to check that, w.l.o.g., we can assume that f : (0, ∞) → R is non-decreasing. By the comparison principles of Proposition 3.5, we can couple the processes R, BES 2 , BES 2+δ (δ > 0) starting at 1 such, a.s., for all t ≥ ln(1 + σ) with

σ = sup{s > 0 : R(s) ≤ e 2/δ } < ∞,
we have

X (∞,2) (t) ≤ X(t) ≤ X (∞,2+δ) (t) -e -t/2 (BES 2+δ (σ) -e 2/δ ) .
By the pointwise ergodic theorem for X (∞,2) and X (∞,2+δ) and monotonicity of f , we derive ,2+δ) . As δ vanishes, the two extreme members coincide, ending the proof of the first statement. The second one follows by changing variables.

f dν ≤ lim inf t→∞ 1 t t 0 f (X(s))ds ≤ lim sup t→∞ 1 t t 0 f (X(s))ds ≤ f dν δ , where dν δ (x) = c δ x 1+δ/2 e -x 2 /2 1 (0,∞) (x)dx is the invariant law of X (∞

Proof of Theorem 2.1

Recall the representation (15) from Corollary 3.3,

T k = T 1 + A 2 1 T 2 + . . . + (A 1 . . . A k-1 ) 2 T k , A k = A 1 . . . A k
with (T k , A k ) k≥1 an i.i.d. sequence with the same law as (T 1 , A 1 ).

Fix r ± with 1 < r -< r < r + < ∞. By ( 28) and ( 29), with probability one there exists some finite random k 0 such that for all k ≥ k 0

r k/2 -≤ A 1 . . . A k = r U 1 +...+U k ≤ r k/2 + .
In what follows we will use the rough bounds max i=1,...,k

T i ≤ T k ≤ T k 0 + (k -k 0 ) max i=1,...,k r i-1 + T i . ( 36 
)
Lemma 5.1. There exists a constant c such that for all sequence (δ(k)) k tending to 0, we have

P k max i=1,...,k r i-1 + T i ≥ e k/δ(k) ≤ cδ(k) eventually.
Proof. Fix a with 1 < a < e. Letting v k = a k δ(k) and t k = kr k + v k , we note that e k δ(k) ≥ t k eventually since δ vanishes, and we have by independence

P[k max i=1,...,k r i-1 + T i < t k ] = Π i=1,...,k P[T i < r k-i+1 + v k ]
From Proposition 3.6 there exists c 1 > 0 such that for all t > 1

P(T 1 ≥ t) ≤ c 1 ln t and since v k → ∞ as k → ∞,
we have for all large enough k,

P[k max i=1,...,k r i-1 + T i < t k ] ≥ Π k i=1 1 - c 1 ln(r k-i+1 + v k ) = Π k i=1 1 - c 1 ln(r i + v k ) ≥ exp -2c 1 k i=1 1 i ln r + + ln v k ≥ exp - 2c 1 ln r + ln k ln r + + ln v k ln v k = exp - 2c 1 ln r + ln(1 + ln r + ln a δ(k)) ≥ 1 -cδ(k)
with c = 2c 1 / ln a for all large k, since δ vanishes at ∞. This ends the proof.

Proof. Theorem 2.1, claim [START_REF] Comets | The vacant set of two-dimensional critical random interlacement is infinite[END_REF]. Let

δ(t) = g(ln t), κ(i) = 2 i , i ≥ 1, K = {κ(i) : i ≥ 1}. Define, for x ≥ 2, x K = max{k ∈ K : k ≤ x} = 2 (ln x)/(ln 2) . Note that x ≥ x K ≥ x/2 . ( 37 
)
First, since g is non-increasing,

k∈K δ(k) = i≥1 δ(k(i)) = i≥1 g(ln k(i)) = i≥1 g(i ln 2) ≤ 1 ln 2 i≥1 i ln 2 (i-1) ln 2 g(t)dt = 1 ln 2 ∞ 0 g(t)dt < ∞ (38)
Fix a constant c 2 > 0 to be chosen later and c 3 = c -1 2 . Combining Borel-Cantelli's lemma and Lemma 5.1, we have a.s. k max i=1,...,k r i-1 + T i < e c 2 k/δ(k) for all k ∈ K large enough, and, in addition to (36), we have for large k ∈ K,

T k ≤ T k 0 + k -k 0 k e c 2 k/δ(k) ≤ e c 2 k/δ(k) ( 39 
)
since g is non-increasing. By integrability, g is vanishing at infinity, so the function

f (t) = c 3 (ln t) g(ln 2 t)
is such that f (t) ≤ ln t eventually, and also g(ln 2 t) ≤ g(ln f (t)) by monotonicity. Thus, for large k and t's,

k ≤ c 3 (ln t)δ(ln t) = f (t) implies that (40) k δ(k) = k g(ln k) ≤ f (t) g(ln f (t)) = c 3 (ln t)g(ln 2 t) g(ln f (t)) ≤ c 3 ln t.
Now, define random integers k(t) = max{k ∈ K; T k ≤ t}, and note from (39) that a.s., for large t we have k(t) ≥ max{k ∈ K; e c 2 k δ(k) ≤ t}. Then, a.s., for all large enough t,

M t ≥ M T k(t) = A k(t) ≥ r k(t) 2 - ≥ r 1 2 max{k∈K:e c 2 k δ(k) ≤t} - = r 1 2 max{k∈K: k δ(k) ≤c 3 ln t} - (using c 3 = c -1 2 ) ≥ r 1 2 max{k∈K:k≤f (t)} - (by (40)) = r 1 2 c 3 (ln t)δ(ln t) K - ≥ r c 3 4 (ln t)δ(ln t) - (by (37)) Taking c 3 = c -1
2 > 4/ ln r -, we conclude that a.s., M (t) ≥ e (ln t)g(ln 2 t) eventually, ending the proof of [START_REF] Comets | The vacant set of two-dimensional critical random interlacement is infinite[END_REF].

We now turn to the proof of claim (9) of Theorem 2.1. We start with a lemma: Lemma 5.2. Let (n k ) k≥0 be a non-decreasing sequence of integers and (t k ) k≥0 be a sequence with t k > 1. Then,

k≥0 n k+1 -n k ln t k+1 = ∞ =⇒ a.s., T n k ≥ t k infinitely often.
Proof. The events

E k = {max i=n k +1,...,n k+1 T i ≥ t k+1 }, k ≥ 0 are independent with E k ⊂ {T n k+1 ≥ t k+1 }.
Hence the conclusion holds as soon as these events occurs infinitely often a.s. By the second Borel-Cantelli lemma, it suffices to show that the assumption implies k≥0 P(E k ) = ∞. We use Proposition 3.6 and independence. The case when t k does not tend to infinity is easily considered, so we assume from now on that k is large enough so that P(T ≥ t k+1 ) ≥ c/ ln t k+1 for some fixed constant c ∈ (0, ln r). Then, we can bound

P(E k ) = 1 -P(T ≤ t k+1 ) n k+1 -n k ≥ 1 -1 - c ln t k+1 n k+1 -n k ≥ 1 -exp - c(n k+1 -n k ) ln t k+1
which is the general term of a divergent series.

Proof. Theorem 2.1, claim [START_REF] Comets | Two-dimensional Brownian random interlacement[END_REF]. Let us consider

t k = e e k , n k = f (t k ) , f (t) = c 3 (ln t)g(ln 2 t)
with c 3 > 0 to be fixed later. Note that f is non-decreasing by assumption. We have

k≥0 n k+1 -n k ln t k+1 = k≥0 f (t k+1 ) -f (t k ) ln(t k+1 ) = k≥0 f (t k+1 ) -f (t k ) ln(t k+1 ) + c 4 = c 3 k≥0 g(k + 1) - 1 e g(k) + c 4
with a constant c 4 which is finite since t k is increasing fast and the truncation error is bounded.

As in (38), k≥0 g(k) ≥ ∞ 0 g(t)dt = ∞, and

n k=0 g(k + 1) - 1 e g(k) = g(n + 1) - 1 e g(0) + 1 - 1 e n k=1 g (k) 
.

Therefore k≥0 n k+1 -n k ln t k+1 = ∞. From Lemma 5.2 we obtain that a.s., T n k ≥ t k i.o., which shows that M t k ≤ M Tn k = A n k ≤ r n k + ≤ r f (t k ) +
.

Taking c 3 < 1/ ln r + , we obtain the desired claim.

6 Proof of Theorem 2.2

We study the sequence

S n = T n A 2 n = n i=1 T i A 2 i-1 A 2 n = n i=1 T i r 2(U i +•••+Un) ,
which can be written in the form

S m = S n r 2(U n+1 +•••+Um) + S m n+1 , (41) 
where, for 1

≤ n < m, S m n+1 = m i=n+1 T i r 2(U i +•••+Um) .
The point is that, in (41), S n and S m n+1 are independent, with S m n+1 equal to S m-n in law. We study the convergence/divergence of the series n≥1 P[S n ≤ t n ], with t n of the form

t n = β ln 2 n ∧ 1 (42) 
for some β > 0.

6.1 Proof of [START_REF] Fristedt | The tail σ-field of one-dimensional diffusions. Stochastic analysis[END_REF].

Let (i (n) ) i≥1 be a sequence of integers such that 1 ≤ i (n) ≤ n and (c

(n) i ) i=i (n) +1,.
..,n,n≥1 be a doubly-indexed sequence of real parameters with c (n) i > 1, to be fixed later on.

Upper bound:

From (41) we have

P[S n ≤ t n ] ≤ P T 1 r 2(U 1 +•••+Un) ≤ t n , S n 2 ≤ t n ≤ P T 1 r 2(U 1 +•••+Un) ≤ t n , S n 2 ≤ t n , 2(U 1 + • • • + U n ) ≤ c (n) n .n + P[2(U 1 + • • • + U n ) > c (n) n .n] ≤ P[T 1 ≤ t n r c (n) n .n , S n 2 ≤ t n ] + P[2(U 1 + • • • + U n ) > c (n) n .n] ≤ P[T ≤ t n r c (n) n .n ] × P[S n-1 ≤ t n ] + P[2(U 1 + • • • + U n ) > c (n) n .n].
Iterating the estimate,

P[S n-1 ≤ t n ] ≤ P[T ≤ t n r c (n) n-1 .(n-1) ] × P[S n-2 ≤ t n ] + P[2(U 1 + • • • + U n-1 ) > c (n) n-1 .(n-1)],
and so on down to i (n) + 1, we obtain

P[S n ≤ t n ] ≤   n i=i (n) +1 P[T ≤ t n r c (n) i .i ]   × P[S i (n) ≤ t n ] + n i=i (n) +1 n j=i+1 P[T ≤ t n r c (n) j .j ] × P[2(U 1 +. . .+U i ) > c (n) i .i]. (43) 
Choice of i (n) and the c

(n) i Let i (n) = ln 2 n and for i (n) + 1 ≤ i ≤ n, c (n) 
i = 1 + 8 i (ln i + ln 2 n). (44) 
By (42), we have for i (n) + 1 ≤ i ≤ n and large n,

ln P[T ≤ t n r c (n) i .i ] ≤ ln P[T ≤ r c (n) i .i ] ≤ -P[T ≥ r c (n) i .i ] ≤ - 1 c (n) i .i + ε n,i,1
(by [START_REF] Pardo | On the future infimum of positive self-similar Markov processes[END_REF])

≤ - 1 i + ε n,i,2
(by (44)), with error terms

ε n,i,1 = ln 2 c (n) i .i ln r + C c (n) i .i 2 ln r , ε n,i,2 = ε n,i,1 + 8 i 3 (ln i + ln 2 n) .
One can check that sup n n i=i (n) +1 ε n,i,2 < ∞, so for some positive constant D, for n large and i (n) ≤ i ≤ n,

n j=i+1 P[T ≤ t n r c (n) j .j ] ≤ exp - n j=i+1 1 j + n j=i+1 ε n,j,2 ≤ D exp -ln n i ≤ D i n . (45) 
Combining this with (28), we get for n large and i

(n) + 1 ≤ i ≤ n, n j=i+1 P[T ≤ t n r c (n) j .j ] × P[2(U 1 +. . .+U i ) > c (n) i .i] ≤ D i n exp(-4(ln i + ln 2 n)) = D i 3 n(ln n) 4 .
Thus, the series a n , with

a n = n i=i (n) +1 n j=i+1 P[T ≤ t n r c (n) j .j ] × P[2(U 1 +. . .+U i ) > c (n) i .i],
is convergent.

Choice of t n

To conclude, we need to take care of the first term in the right-hand side of (43). Recall t n from (42) (we will assume n large so that ln 2 n ≥ β), and fix an integer i 1 ≥ 1. For 1 ≤ i ≤ i 1 , applying [START_REF] Rogers | Coupling and the tail σ-field of a one-dimensional diffusion[END_REF] we get as n → ∞, for any ∈ (0, r -1),

P[T ≤ t n r 2i ] ≤ exp - (r -1 -) 2 2βr 2i ln 2 n ,
and then, for n large,

P[S i (n) ≤ t n ] ≤ P[T i ≤ t n r 2i , i = 1, . . . , i 1 ] = i 1 i=1 P[T ≤ t n r 2i ] ≤ exp - i 1 i=1 (r -1 -) 2 2βr 2i ln 2 n ≤ exp - (r -1 -) 2 2β 1 r 2 1 -1 r 2 i 1 1 -1 r 2 ln 2 n ≤ (ln n) - (r-1-) 2 2β(r 2 -1) 1-( 1 r 2 ) i 1 
.

Using (45) we will bound

  n i=i (n) +1 P[T ≤ t n r c (n) i .i ]   × P[S i (n) ≤ t n ] ≤ D i (n) n (ln n) - (r-1-) 2 2β(r 2 -1) (1-( 1 r 2 ) i 1 )
,

where i (n) = ln 2 n . As soon as β < (r-1) 2(r+1) , there exists some integer i 1 and some ∈ (0, r -1) such that (r -1 -

) 2 2β(r 2 -1) 1 - 1 r 2 i 1 > 1,
and combining (43) with n a n < ∞, we obtain

P(S n ≤ t n ) < ∞. i.e., n≥1 P[T n ≤ A 2 n t n ] < ∞.

Conclusion

Let β < (r-1) 2(r+1) . It follows from Borel-Cantelli's lemma that a.s., eventually Hence, we have proved [START_REF] Fristedt | The tail σ-field of one-dimensional diffusions. Stochastic analysis[END_REF] with any K > r 2(r+1) (r-1) .

T n ≥ βA 2 n ln 2 n . Now, for T n ≤ t ≤ T n+1 , if n is large enough, M t ≤ M T n+1 = A n+1 ≤ rA n ≤ r β -1 T n ln 2 n ≤ r β -1 t
6.2 Proof of [START_REF] Gantert | On the range of a two-dimensional conditioned simple random walk[END_REF] We start by proving that it suffices to show divergence of the series introduced above (42):

Lemma 6.1. Let β 0 = inf{β > 0 : n P(S n ≤ β ln 2 n ) = ∞}. Then lim inf n S n ln 2 n = β 0 a.s.
Proof. For all β < β 0 , we have n P(S n ≤ β ln 2 n ) < ∞ and the first Borel-Cantelli's lemma shows that lim inf n S n ln 2 n ≥ β 0 . To prove the reverse inequality we proceed by steps:

• First step: For any non-increasing sequence (t n ) n , n≥1 P[S n ≤ t n ] = ∞ =⇒ P(S n ≤ t n i.o.) ≥ 1 4
.

Indeed, for 1 ≤ n ≤ m,

P[S n ≤ t n , S m ≤ t m ] ≤ P[S n ≤ t n , S m n+1 ≤ t m ] = P[S n ≤ t n ] × P[S m n+1 ≤ t m ] = P[S n ≤ t n ] × P[S m-n ≤ t m ] ≤ P[S n ≤ t n ] × P[S m-n ≤ t m-n ], since t m ≤ t m-n . Now, for k ≥ 1, 1≤n<m≤k P[S n ≤ t n , S m ≤ t m ] ≤ 1≤n<m≤k P[S n ≤ t n ] × P[S m-n ≤ t m-n ] ≤ 1≤n,m≤k P[S n ≤ t n ] × P[S m ≤ t m ].
For all k large enough we have k n=1 P[S n ≤ t n ] ≥ 2, and then for all 1 ≤ n ≤ k, 1≤m≤k,m =n

P[S m ≤ t m ] ≥ 2 -P[S n ≤ t n ] ≥ P[S n ≤ t n ].
Therefore, 1≤n,m≤k

P[S n ≤ t n ] × P[S m ≤ t m ] ≤ 2 1≤n,m≤k,n =m P[S n ≤ t n ] × P[S m ≤ t m ] = 4 1≤n<m≤k P[S n ≤ t n ] × P[S m ≤ t m ]
Kochen-Stone's theorem [START_REF] Kochen | A note on the Borel-Cantelli lemma[END_REF] -a variant of Borel-Cantelli's lemma -yields

P[S n ≤ t n i.o.] ≥ lim sup k≥1 1≤n<m≤k P[S n ≤ t n ] × P[S m ≤ t m ] 1≤n<m≤k P[S n ≤ t n , S m ≤ t m ] ≥ 1 4 ,
which concludes this step.

• Second step: Let's introduce the σ-fields

A k = σ((A n , T n ); n ≥ k), k = 1, 2 . . . , T = k≥1 A k .
By Kolmogorov 0-1 law and independence of the sequence ((A n , T n ); n ≥ 1), every element A of the tail field T has P(A) ∈ {0, 1}. Fix β ≥ 0 and introduce the events

E = {lim inf n S n ln 2 n ≤ β}, E k = {lim inf n S n+k k+1 ln 2 n ≤ β},
and

Ω 0 = { lim n→∞ ln 2 n r 2(U 1 +...+Un) = 0}.
Note that E = E 0 and that P(Ω 0 ) = 1. Since, by definition,

S n+k+1 k+1 =
T k+1 r 2(U k+1 +...+U n+k+1 ) + S n+k+1 k+2 , we see that the two sets E k and E k+1 coincide on Ω 0 , for all k ≥ 0. Denoting the common intersection by

E = E Ω 0 = E k Ω 0 ,
we see that E belongs to T and then has probability equal to 0 or 1. The similar 0-1 law holds for E which is equal to E up to a negligible set.

• Final step: For any β > β 0 , the series n P(S n ≤ t n ) with t n = β/ ln 2 n is diverging. By the first step, the probability P[S n ≤ t n i.o.] ≥ 1/4, and by the second one is equal to 1. Thus lim inf n S n ln 2 n ≤ β a.s., for all such β's. The lemma is proved. Remark 6.2. We have followed the approach of the renewal structure to get the 0-1 law, with the advantage to keep the paper self-contained. A tempting alternative would be to show that the tail σ-field of R is trivial; we mention the illuminating survey [START_REF] Rogers | Coupling and the tail σ-field of a one-dimensional diffusion[END_REF] on the tail σ-field of a diffusion.

Anticipating on the proof of ( 11) we now give a short proof of Theorem 1.2.

Proof. It is not difficult to check the criteria of [START_REF] Fristedt | The tail σ-field of one-dimensional diffusions. Stochastic analysis[END_REF] or [START_REF] Rösler | The tail σ-field of time-homogeneous one-dimensional diffusion processes[END_REF] for triviality of the tail σ-field of one-dimensional diffusion (see Theorem 3 in [START_REF] Rogers | Coupling and the tail σ-field of a one-dimensional diffusion[END_REF]). Then, K * = lim sup t→∞ With this choice, the estimate (47) becomes

P[S n ≤ u n ] ≥ (1 -b) n × P[T ≤ t 1 |U ≥ b] n × P[T ≤ t 0 |U ≥ b] ln( t 1 t 0 ) b ln r +1 × ln(t 0 n u(r b -1) ) b ln r i=1 exp -ρ n u(r b -1) 1 r bi ≥ (1 -b) n × P[T ≤ t 1 |U ≥ b] n × P[T ≤ t 0 |U ≥ b] ln( t 1 t 0 ) b ln r +1 × exp -ρ n u(r b -1) 2
From this we derive the claim (46) by taking b small, u and t 1 large. This ends the proof of the lemma.

Proof. Theorem 2.2, claim [START_REF] Gantert | On the range of a two-dimensional conditioned simple random walk[END_REF]. Similarly to the proof of (10), we let t n = β ln 2 n ∧1, (i (n) ) n≥1 be a sequence of integers, and (b

(n) i ) i=i (n) +1,...n,n≥1 be a doubly-indexed sequence with 0 < b (n) i < 1, given by b (n) i = 1 - 8 i (ln i + ln 2 n) , for i (n) + 1 ≤ i ≤ n, i (n) = α 0 ln 2 n
with α 0 large (take α 0 > 8 so that b

(n) i > 0 for n large). This time, we need an extra doubly-indexed, positive sequence (s

(n) i ) i=i (n) +1,...,n,n≥1 such that for n large n i=i (n) +1 s (n) i ≤ t n .
(Note that this implies s (n) i ≤ 1.) Similarly, using (41) we estimate

P[S n ≤ t n ] ≥ P T 1 r 2(U 1 +•••+Un) ≤ s (n) n , S n 2 ≤ t n -s (n) n ≥ P T 1 r 2(U 1 +•••+Un) ≤ s (n) n , S n 2 ≤ t n -s (n) n , 2(U 1 + • • • + U n ) ≥ b (n) n .n ≥ P T 1 ≤ s (n) n r b (n) n .n , S n 2 ≤ t n -s (n) n , 2(U 1 + • • • + U n ) ≥ b (n) n .n ≥ P T 1 ≤ s (n) n r b (n) n .n , S n 2 ≤ t n -s (n) n -P[2(U 1 + • • • + U n ) < b (n) n .n] ≥ P T ≤ s (n) n r b (n) n .n × P S n-1 ≤ t n -s (n) n -P[2(U 1 + • • • + U n ) < b (n) n .n].
We iterate the procedure,

P[S n-1 ≤ t n -s (n) n ] ≥ P T ≤ s (n) n-1 .r b (n) n-1 .(n-1) × P S n-2 ≤ t n -s (n) n -s (n) n-1 -P[2(U 1 + • • • + U n-1 ) < b (n) n-1 .(n -1)],
and so on down to i (n) . We obtain 19))

P[S n ≤ t n ] ≥   n i=i (n) +1 P T ≤ s (n) i r b (n) i .i   × P   S i (n) ≤ t n - n i=i (n) +1 s (n) i   - n i=i ( 
≤ D i n ,
for some positive constant D . As we did for the series n a n , cf. below (45) except for using (29) instead of (28), we easily see that the series n a n , with ∈ (1/2, 1) for all large n and i ∈ [i (n) + 1, n], and also that inf{s

(n) i r b (n) i .i ; i (n) ≤ i ≤ n} ≥ r α 0 2 ln 2 n
for large n,

which tends to ∞ as n → ∞. For i (n) + 1 ≤ i ≤ n and n large, in view of (49) we have (using -ln(1 -u) ≤ u + u 2 for small u > 0 and 1 1-u ≤ 1 + 2u for 0 < u < One can check that sup n n i=i (n)+1 ε n,i,4 < ∞, so for some positive constant D , for large n,

n i=i (n) +1 P[T ≤ s (n) i r b (n) i .i ] ≥ exp   - n i=i (n) +1 1 i + ε n,i,4   ≥ D i (n) n . (50) 
Finally, consider the term 

P   S i (n) ≤ t n - n i=i (n) +1 s (n) i   . Note that t n -n i=i (n) +1 s (n) i = β ln 2 n -n i=i (n) +1 1 i 3 ≥ β ln 2 n -1 2 i (n) 2 ,
M Tn = A n ≥ β -1 T n ln 2 ln T n ln r + .
Finally, for some (small) K > 0, with probability one, M t ≥ K √ t ln 3 t i.o. The proof of (11) is complete.

P

  r [τ (b) < τ (a)] = ln(r/a) × ln b ln(b/a) × ln r .

Proposition 3 . 4 .

 34 (i) We have T = H + (T -H) , where H and (T -H) are independent with T -H law = µ r .

×< 1 , 2

 12 P[2(U 1 +. . .+U i ) < b we have, for n large and i (n) + 1 ≤ i ≤ n : (j ln r) + C j 2 ln r (by (



  j r b (n) j .j ] × P[2(U 1 +. . .+U i ) < bObserve that, by taking α 0 > 16, we have b(n) i

  ln 2 n, and since we have T n ≥ βA 2

	n ln 2 n ≥ r -for n large enough, we have t ≥ r n 2 -, and n ≤ 2 ln t n 2 ln r -. Finally,
	M t ≤ r β -1 t ln 2	2 ln t ln r -	.

  = ε n,i,3 + 2 8 i 3 (ln i + ln 2 n).

						≤	ln s	ln r (n) i r b (n) i .i	+ ε n,i,2	(by (19))
						=	b	1 i .i + (n)	ln r i ln s (n)	+ ε n,i,2
						≤	b	1 (n) i .i	+ ε n,i,3
						≤	1 i	+ ε n,i,4 ,
	with error terms							
	ε n,i,1 = P T ≥ s	(n) i r b (n) i .i	2	, ε n,i,2 = ε n,i,1 +	1 ln r	×	ln 3 s b (n) (n) i r b (n) i .i + C ln r i .i + ln s (n) i 2	,
	ε n,i,3 = ε n,i,2 -2	b	ln s i .i (n)	(n) i ln r 2	, ε n,i,4

1 

2 )

-ln(1 -P[T ≥ s (n) i r b (n) i .i ]) ≤ P[T ≥ s (n) i r b (n) i .i ] + ε n,i,1

  which implies that for all β < β, t n -n i=i (n) +1 s Now, we are ready to conclude the proof: Fix α 0 > 16, and let β be associated to α 0 by Lemma 6.3. Then,P S i (n) ≤and for t n = (β/ ln 2 n) ∧ 1 with β > β , using (50), Using now (48) and n a n < ∞ we obtain n≥1 P[S n ≤ t n ] = ∞. By Lemma 6.1 we have a.s., .e., A n ≥ β -1 T n ln 2 n. Since, for all large n, βA 2 n ln 2 n ≤ r n + , we see that T n ≤ r n + , so n ≥ ln Tn ln r + , and also

	 	n i=i (n) +1	P[T ≤ s	(n) i r b (n) i .i ]	  × P	  S i (n) ≤ t n -	n i=i (n) +1	s	(n) i	  ≥ D	i (n) n	×	1 ln n	.
							T n ≤	βA 2 n ln 2 n	i.o.
			(n) i	≥ β ln 2 n for large n, and then	
			P	  S i (n) ≤ t n -	n i=i (n) +1	s	(n) i	  ≥ P S i (n) ≤	β ln 2 n	.
										β ln 2 n	≥	1 ln n	,

i

M (t) √t ln 3 t is a.s. constant. Then,[START_REF] Fristedt | The tail σ-field of one-dimensional diffusions. Stochastic analysis[END_REF] and[START_REF] Gantert | On the range of a two-dimensional conditioned simple random walk[END_REF] show that K * is positive and finite.
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(i.e., (5) above), with

The bi-dimensional sequence (α n , β n ), n ≥ 1, is i.i.d., and falls into the usual setup of random difference equation. In our case, the following quantities exist

and satisfy a < 0 (contractive case), 0 < b < ∞ (very heavy tail). Following [START_REF] Alsmeyer | Null recurrence and transience of random difference equations in the contractive case[END_REF] and [START_REF] Zerner | Recurrence and transience of contractive autoregressive processes and related Markov chains[END_REF], this prevents the Markov chain S n to be positive recurrent: though the contraction brings stability to the process, yet occasional large values of β n overcompensate this behavior so that positive recurrence fails to hold. In our case, we easily check from (18) that b = -a (= ln r) in which case the Markov chain S n is null recurrent, but in a critical manner: the chain is transient if b > -a and null recurrent if b ≤ -a.

Proofs for section 2.2

We consider the process R from (1) on a geometric scale,

and we observe that

is a standard Brownian motion by Paul Lévy's characterization. We claim that X solves the stochastic differential equation

Indeed,

with dJ(t) = -1 2 J(t)dt, and

dB(e t -1) .

To continue the proof of [START_REF] Gantert | On the range of a two-dimensional conditioned simple random walk[END_REF] we need an intermediate result.

Lemma 6.3. For all α 0 > 0, there exists β > 0 such that, for all n large enough,

Proof. Clearly, it suffices to prove that for v > 0, there exists u > 0 such that, for all large n we have,

Indeed, substituting v, n in (46) by α -1 0 , α 0 ln 2 n shows that any β > u/α 0 fulfills the statement of the lemma.

To show (46), we fix some b ∈ (0, 1) (b will be chosen small later on), and we note that:

) for all i = 1, . . . , n imply that

Then,

By Proposition 3.7, we can find t 0 > 0 and ρ > 0 such that, for t ≤ t 0 ,

Now, we fix some t 1 > t 0 , we will bound the factors in (47) as follows:

For