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Abstract 

Dynamical systems tools offer a complementary approach to detailed 

biophysical seizure modeling, with high potential for clinical applications. This review 

describes the theoretical framework, allowing theorizing certain properties of seizures 

and their classifications according to their dynamics properties at onset and offset. We 

describe various modeling approaches spanning different scales, from single neurons 

to large-scale networks. We try to offer a large accessible overview through non-

exhaustive examples of recent important works. 

Introduction 

Epilepsies are defined by the occurrence of spontaneous and recurrent seizures 

[1]. Seizures are characterized by electrophysiological (field potential) signatures, 

which can be different from one patient to the next, and even within a given patient [2]. 

Given such variability, it is important to rely on a taxonomy of seizures, not only for 

mechanistic studies (different seizures may be associated to different underlying 

mechanisms, hence to different pharmacotherapy), but also for diagnostic purposes 

(in particular for presurgical evaluation in the case of drug-resistant epilepsies). One 

approach to characterize seizure types is to analyze their dynamical properties [2–4]. 



For this, dynamical systems theory is essential [3,5,6] . In this journal, Stefanescu, and 

colleagues [5] show the importance and the basis of the methods used for 

computational modeling of seizures. Building on this work, we propose here to highlight 

some recent works in this field. Numerous approaches emerged, from 

phenomenological aspects of dynamics to detailed biophysical models, from the 

subcellular scale to the large scale of whole brain regions [7–12]. We discuss the 

interest of each of these different approaches to show how all contribute to a better 

understanding of the mechanisms underlying seizures.  

Computational modeling of seizures. 

Brain activity constantly changes from one moment to the next. A key factor 

(among many) determining the temporal evolution of a neuron’s activity is the 

excitability of the neuronal membrane. Thus, the vast majority of models use this 

variable, from the cell level, to the behavior of neural networks, to brain's global activity. 

At any level of analysis, the type of study that can be carried out from a dynamical 

system point of view depends upon the number of dimensions of the model (i.e., 

number of variables). In order to maintain a manageable dimensionality, a model often 

needs to be reduced before moving to the next level of analysis, as shown 

schematically in Fig 1.  



 

Figure 1. Simplistic diagram of modeling at different scales. Details models at a 
given scale have a high number of dimensions (i.e., number of variables) and can be 
reduced. From the reduced model, it is possible to build a correspondence to the next 
larger scales by building a network.  

 

The core of a model is what constitutes the sources of the electrophysiological 

activity (the readout of the model; here seizures). Some models include other variables 

that interact with electrophysiological activity, such as metabolic activity, variations in 

ion or oxygen concentration, or the interaction with glial cells.  

Another approach consists of modeling the signal itself (i.e. the readout), which 

can be recorded by different methods such as the electroencephalography (EEG), 

magnetoencephalography (MEG), and functional magnetic resonance imagery (fMRI). 

Since, in these cases, it is the measurement that is modeled and not the source, it 

becomes difficult to obtain insight in terms of biological mechanisms. The mapping 

between source and sensor signals is one the most problematic factors, when 

interpreting human brain imaging signals. The Virtual Brain (TVB) simulator closes this 

gap to some degree [13,14], even though principled model non-identifiability cannot be 

overcome by definition. However, this approach has the advantage to remain as close 

as possible to the clinical data.  



It is however possible to establish a link between the source and the signal [15], 

which requires keeping track of the temporal evolution of certain variables. This is the 

reason why a large majority of models used in computational neuroscience are based 

on systems of differential equations. In a first-order differential system, the state of a 

variable at a time t is calculated based on its variation with respect to time t-∆t. The 

rate of amplitude changes over time will determine the time scale. Each equation 

composing the system can vary according to its own time scale. This is an important 

consideration in epilepsy because spontaneous seizures occur on a much slower scale 

(hour, day, month) than that of the electrophysiological signature of a seizure itself 

(seconds). Thus, to model epilepsy, a so-called rapid system is needed, which can 

switch from the “normal” state to a seizure state, as well as a slower system driving the 

transition between these states. It is possible to construct a slow-fast system [16,17], 

which includes both time scales, and in which an external input  can be used to drive 

the transition between states. Such models can produce the different states, or in other 

words, dynamical regimes. These different dynamical regimes can correspond to 

different attractors. In small dimension systems, these attractors become simple, such 

as fixed-points or limit-cycles. This is one of the advantages provided by the reduced 

dimensional phenomenological models described in the next section. 

 

Phenomenological models of seizure 

The phenomenological approach, reducing the models to a minimum number of 

variables and parameters, allows an exhaustive study of the dynamics. The Epileptor 

is one such model [3]. It was constructed to reproduce the most common 

electrophysiological signature of seizures found in patients and experimental models 

[3,18,19]. Interestingly, the Epileptor model also includes in its dynamical regime status 



epilepticus and depolarization block [18,19]. Using the same approach and a minimal 

generic model, it is possible to generate sixteen possible seizure types in terms of 

dynamics, or dynamotypes [2,4]. Each of these classes differs from the others 

according to the type of transition between the healthy state and the seizure state. In 

terms of dynamical systems theory, this corresponds to the types of bifurcation at the 

onset and the offset of the seizure [3,19]. Each bifurcation can be displayed on a map 

of brain dynamics [2,4]. Thus, this theoretical approach not only leads to a taxonomy 

of clinically observed seizures [2], but also offers a theoretical framework to explain the 

coexistence of healthy and pathological regimes, and how it is possible to navigate the 

map brain dynamics, explaining why individual patients can display several 

dynamotypes [18]. This type of model, called phenomenological, precisely presents 

the interest of describing only the observed phenomenon, independently of the 

associated biophysical underpinnings. Although it does not inform directly on the 

underlying biological mechanisms, it provides a theoretical framework and predictions 

in terms of dynamics, to which more detailed biophysical models can refer, from the 

single neuron to the large-scale brain model scales.  In the next subsections, we will 

detail some approaches of interest for modeling electrophysiological seizures, across 

scales from the lowest (i.e., single neuron), to the highest (i.e., whole brain). 

 

Models at the single neuron level 

Single neuron-scale models are very diverse and can include very different 

levels of detail. Some models are highly detailed, taking into account sub-cellular 

organelles such as mitochondria [9] or the detailed morphology of the dendritic and 

axonal tree [20,21]. In the latter case, it is necessary to divide the geometry of the 

neuron into different compartments. As a function of the objectives of the model, it is 



possible to reduce the general dynamics to that of a single compartment. We then 

speak of a point neuron model (see Fig. 1).  

Many approaches are possible for this type of modeling [22]. We will see how 

these approaches can be extended to model of the seizures in particular. A first 

approach was that of Cressman and colleagues [23], who proposed a model at the 

single neuron scale. It is based on the formalism developed by Hodgkin and Huxley 

[24]. It can be made more complex by adding the equations describing the variations 

in ionic concentrations and the interaction with glial cells, which dynamically play the 

role of slow variables. This model has the advantage of being detailed from a 

biophysical point of view. It presents a large number of differential equations limiting 

the possibility to fully study its dynamics, which requires using a reduced model [23]. 

The reduced model reproduces only a few bifurcation types at the onset and offset of 

a seizure, but not the most commonly observed in clinical and experimental data 

(SN/homoclinic). Such an approach has been extended [23,25], resulting in a unified 

framework for spike, seizure, and spreading depression [10]. In this framework, it is 

possible to study specific biophysical interactions; for example the relationship 

between oxygenation and electrophysiological activities [11]. At this scale, the link can 

be made with in vitro experiments [26].   

Following the same general strategy, a different reduced model has been 

proposed [8]. It offers a unified framework for spiking, burst, seizure, status epilepticus, 

and depolarization block. It describes the excitability of the membrane and the 

interaction with the environment (bath/glial cell) through changes in ionic 

concentrations with only four differential equations. Compared with the previous one, 

this model is less detailed biophysically, but as it is dimensionally reduced, it allows a 



direct correspondence to phenomenological models. The underlying dynamics 

corresponds to what is observed in the signals recorded experimentally.  

A third approach has been proposed by Chizhov and colleagues [27], which also 

takes into account the dynamic constraints described by phenomenological models. 

The model can reproduce the different dynamics of seizures in high potassium 

conditions. The electrophysiological activities described in this model are not only 

associated with variations in ionic concentrations but also with synaptic activity. 

Although it is at the scale of a single neuron, the model considers the effects of the 

network through synaptic inputs. The network models are discussed in the next 

subsection. 

 

Models at the network level 

Network models describe many cells interacting with each other. If the synaptic 

activity is often preponderant in these models, some show that all the other interactions 

(ephaptic, ionic diffusion, etc.) can be sufficient for the genesis and the propagation of 

seizures [28,29]. Ephaptic interactions may for instance synchronize atin potential 

propagation in tightly packed fiber bundles [30]. Slow oscillations can emerge from 

non-synaptic interactions, enabling the transitions towards seizure-like states 

[28,29,31]. But most studies done at the network scale take into account the 

interconnection between neurons through models of synapses [32–38]. In particular, 

such models can account for the genesis of generalized seizures with spike-and-wave 

EEG patterns, with mechanisms that critically depend on the balance between 

GABAergic and glutamate conductances [36,37], as well as cortico-thalamic 

interactions [36]. 



However, an essential question arises at this scale. Network models are 

constructed from individual models of interconnected neurons. It is not obvious that 

because we assemble these bricks that the result of the network obtained is a relevant 

model of biological networks. One solution is to keep only the emerging behaviors of 

the network, which displayed dynamics comparable to that observed experimentally. 

Still, it does not imply that the causes of these emergences are the same. In the case 

of seizures, transitions to the ictal state do not take place uniformly in the network. 

Modeling at this scale makes it possible to observe the collective effects and the 

propagation of the seizure [12,33,39]. The reverse approach, imposing the 

phenomenological constraint from the upper scale to build a network with a biophysical 

description, was implemented by Naze and colleagues [40]. Even if the number of 

biophysical interactions described remains limited, they show how dynamical system 

theory makes it possible to build a biophysical model on a smaller scale from a 

framework derived from macroscopic observations. 

 The construction of networks involves large-dimensional models, which makes 

it impossible to apply directly the dynamics analysis used in small-dimensional 

systems. To overcome this problem, one can consider global measures or reduce the 

description of the network's activity to a reduced number of variables. Considering the 

network as a whole, aim to study the activity on larger scales, which is discussed in 

the next section. 

 

From mean-field to large scale models 

Mean-Field models describe the activity of a large group of neurons using 

average values of their activity, such as the mean membrane potential or, more often, 



the firing rate of the population. Some studies have derived these descriptors of the 

activity from single neuron models [41,42]. Another method is to consider that a neuron 

can represent the mean activity of a population of neurons. It can be used in neural-

field (including space representation) or neural mass model to describe seizures  

[33,43,44]. One of the historical models at this scale has been developed by Wilson 

and Cowan [45] and has been used to study focal epilepsy through bifurcation analysis 

[44,46]. These approaches permit a comprehension of the phenomena observable at 

a global activity scale [44,47]. The reduction of networks to mean-field models 

necessarily leads to the loss of information on certain internal dynamics and collective 

effects, to describe only certain global aspects. This may be sufficient to characterize 

seizures. Reducing the number of variables facilitates a bifurcation analysis. This 

reduction allows the comparison with phenomenological models. 

At such scale of analysis, results are relevant to recordings obtained in humans, 

using scalp or intracerebral EEGs. In particular, it is possible to consider and study 

interactions between regions, like thalomo-cortical interactions [48]. It also allows 

studying particular properties of networks in a phenomenological way [49,50]. At this 

scale, the temporal dissection exists, and the variation of a parameter or slow variables 

enables the transitions to the ictal state and its return to a “healthy” regime [48,51]. As 

such models are at the scale of a large region, it is possible to connect them to create 

a large scale network describing the whole brain [52,53]. 

A whole brain approach using the phenomenological model described 

previously has been developed [54]. At this level, such models can have important 

clinical applications. One example is the prediction of the size of the epileptogenic zone 

in pharmaco-resistant epilepsies [55–59]. Another possible outcome of such modeling 

approach is the control of seizure through stimulation [60,61]. These computational 



neuroscience methods have developed very rapidly in recent years; they hold great 

promises in terms of translation to the clinic. 

 

Discussion 

Computational models applied to epilepsy already have a long history [6]. 

Recent progress in seizure modeling has brought a new understanding of this complex 

phenomenon. At the level of biophysical interactions, such as variations in ionic 

concentrations [8,10,23], it is possible to create direct correspondences with 

experimentally measurable physical quantities. It is possible to make predictions and 

design intervention strategies targeting known biophysical pathways. In terms of 

collective network dynamics, computational modeling shows how the complexity leads 

to the emergence of a rich repertoire of behaviors, including seizures [44]. At this 

mesoscopic scale, reduced models have been proposed, bringing a description of the 

relation between electrophysiological activities and recorded signals such as EEG [62]. 

Networks of mesoscopic models permit the study of the seizure propagations, building 

the bridge with macroscopic scales and clinical observations.  

Thus, the phenomena associated with seizures can be described at different 

scales. A global understanding of this phenomenon requires this pluralist approach in 

terms of scale. The complexity of the brain does not allow us to establish a simple 

relationship between the different scales. However, it seems that fundamental invariant 

properties are needed such as at least two distinct time scales, one representing the 

rapid electrophysiological activity or the variations of measured signals, and a second, 

slower, at the origin of the transitions between the ictal and non-ictal states, which can 

be linked to a very wide variety of phenomena depending on the scales. This temporal 



dissection is included in the phenomenological model, which also opens the way for 

classification according to the characteristics of the onset and the offset of the seizures 

through the different types of bifurcations found in the biophysical models at different 

scales. This is consistent with clinical observations where the onset is an important 

criterion [63]. This offers a direct link between theoretical computational studies and 

clinical practice through new approaches that have been born in recent years, such as 

the virtual epileptic patient [7], and tends to contribute to develop seizure forecasting 

methods and presurgical evaluation [64].  
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