
HAL Id: hal-03146100
https://hal.science/hal-03146100v2

Submitted on 13 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards optomechanical parametric instabilities
prediction in ground-based gravitational wave detectors

David E Cohen, Annalisa Allocca, Gilles Bogaert, Paola Puppo, Thibaut
Jacqmin, Virgo Collaboration

To cite this version:
David E Cohen, Annalisa Allocca, Gilles Bogaert, Paola Puppo, Thibaut Jacqmin, et al.. Towards op-
tomechanical parametric instabilities prediction in ground-based gravitational wave detectors. Applied
optics, 2021, 60 (27), pp.8540-8549. �10.1364/AO.437695�. �hal-03146100v2�

https://hal.science/hal-03146100v2
https://hal.archives-ouvertes.fr


Towards optomechanical parametric instabilities prediction in ground-based
gravitational wave detectors

David E. Cohen,1 Annalisa Allocca,2 Gilles Bogaert,3 Paola Puppo,4 and Thibaut Jacqmin5, ∗

(Virgo Collaboration)
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Increasing the laser power is essential to improve the sensitivity of interferometric gravitational
wave detectors. However, optomechanical parametric instabilities can set a limit to that power. It is
of major importance to understand and characterize the many parameters and effects that influence
these instabilities. Here, we model with a high degree of precision the optical and mechanical modes
that are involved in these parametric instabilities, such that our model can become predictive. As
an example, we perform simulations for the Advanced Virgo interferometer (O3 configuration). In
particular we compute mechanical modes losses by combining both on-site measurements and finite
element analysis with unprecedented level of detail and accuracy. We also study the influence on
optical modes and parametric gains of mirror finite size effects, and mirror deformations due to
thermal absorption. We show that these effects play an important role if transverse optical modes
of order higher than four are involved in the instability process.

I. INTRODUCTION

In 2015, the LIGO-Virgo collaboration [1–4] detected
for the first time gravitational waves preceding a binary
black hole coalescence [5], thus pioneering gravitational-
wave astronomy. Today many other gravitational waves
have been detected [6, 7]. These detections have pro-
vided confirmation on the expected rate of binary black
hole (BBH) mergers [8], a better understanding of BBHs
population [8, 9], a better limit to the mass of the gravi-
ton [10], a first direct evidence of a link between bi-
nary neutron star (BNS) mergers and short gamma-ray
bursts [11], a higher precision in constraining the Hubble
constant [12], and a better understanding of BNS merg-
ers [11]. Since the first detections, improvements per-
formed on ground based detectors yielded better detector
sensitivities. Gravitational wave sources that are weaker
or located further away can now be detected. Among
the many improvements, increasing the light intensity
in the interferometer arm cavities reduces the impact of
the laser quantum phase noise, which is limiting the sen-
sitivity in the high-frequency range. However, a laser
power increase can trigger a nonlinear optomechanical
effect [13, 14], known as optomechanical parametric in-
stability (OPI). This effect can jeopardize the interfer-
ometer stable operation.

During the Observing Run 1 (O1), LIGO experienced
an OPI for the first time [15]: after a few seconds, the
interferometer went out of lock, thus preventing further
data acquisition. In this letter, we present the models
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FIG. 1. O3 Advanced Virgo’s configuration. NI and NE are
respectively the input and end-mirror of the North-arm, and
WI and WE are respectively the input and end-mirror of the
West-arm. PR is the Power Recycling mirror, BS the inter-
ferometer beam splitter.

that we used to compute the OPI gains for a power recy-
cled gravitational wave detector. Compared to previous
work [17], we provide a precise description of optical
and mechanical modes, together with a study of the im-
pact of losses and the thermal deformation of the mirrors.
This will allow to perform parametric instabilities predic-
tions, which is of major importance for future designs of
ground-based detectors. These simulations are done for
the power recycled Advanced Virgo interferometer (O3
configuration), and can be extended to any other config-
uration.

In sec. II, a short introduction to the model used to
compute the parametric gains is given. In sec. III, we
report on a detailed finite element analysis (FEA) of the

mailto:Corresponding author: thibaut.jacqmin@sorbonne-universite.fr


2

mirrors, to compute precise mechanical modes frequen-
cies and amplitudes, and estimate quality factors. An
original method is then used to combine these FEA sim-
ulations with ring-down measurements performed on a
subset of modes, in order to obtain accurate quality fac-
tors for all the modes. In section IV, different models
for optical modes are compared: the analytical solution
of the paraxial equation for purely spherical infinite size
mirrors, as implemented in [17], and a brute force nu-
merical simulation which includes finite size effects and
arbitrary mirror surface shapes. In section V, we study
the influence on optical modes of a thermal effect related
to a local temperature increase of the mirror surface due
to light absorption. Finally in section VI, we provide an
example of parametric gains that are obtained in the Ad-
vanced Virgo O3 configuration, including optical losses
and mechanical losses calculated with an unprecedented
level of precision, and we investigate for the first time
the effect of the mirror thermal deformation due to laser
absorption.

II. OPTOMECHANICAL PARAMETRIC
INSTABILITY

In an optomechanical cavity like one arm of a gravi-
tational wave detector, photons from the optical zeroth
order mode can be coherently scattered to a higher order
transverse optical mode if a mechanical mode that sets
a mirror surface into motion has its frequency ωm/2π
equal to the frequency difference between the two optical
modes (modulo the cavity free spectral range). This phe-
nomenon can remove energy from the mechanical mode
by annihilating phonons, and scattering photons from the
zero order mode to the higher order transverse mode,
thus damping the mirror motion [16]. Conversely, this
phenomenon can add energy to the mechanical mode
with the reverse process, thus exciting the mechanical
motion. In that case, an instability can prevent the in-
terferometer stable operation [5, 13]. This instability has
a threshold: it starts to grow as soon as the resonant ex-
citation of the mechanical mode by the radiation pressure
force overcomes mechanical losses.

In the following, we use the approach developed by
Evans et al. [17] to simulate this effect. In this frame-
work, the whole interaction between the three implied
modes (two optical modes and a mechanical mode) is
seen as a classical feedback system. This modular ap-
proach is well suited, since it can be adapted to many
different interferometer configurations with the same an-
alytical formulas. The parametric gain of the mechanical
mode m is given by

Rm =
8πQmP

Mω2
mcλ

∞∑
n=0

<[Gn]B2
m,n (1)

where Qm is the quality factor of the mechanical mode m
and ωm its frequency, P the arm-cavity optical power, λ

the optical wavelength, M the mirror mass, c the velocity
of light, Gn is related to the scattered field optical gain
of the nth optical mode and encapsulates the interferom-
eter configuration. Finally, Bm,n is the spatial overlap
integral between the three involved modes. A mechani-
cal mode is amplified if Rm > 0 and damped if Rm < 0.
It becomes unstable if Rm > 1.

FIG. 2. Geometry used for the FEA, including the ears, the
anchors and the magnets attached on the mirror rear face.
The suspension wires are just for sketching but not included in
the simulation as they do not influence the modal frequencies

III. MECHANICAL SIMULATION

A. The spatial overlap parameter

The spatial overlap integral B2
n,m is defined [18] as

B2
m,n =

M

Meff

(∫
E00(~r)En(~r)µm

⊥ (~r)d~r⊥
)2∫

|E00|2d~r⊥
∫
|En|2d~r⊥

, (2)

where M is the mirror mass and meff the effective mass of
the mechanical mode. The integral is performed over the
test mass surface (coating side). E00(~r) stands for the op-
tical carrier amplitude and En(~r) for a transverse optical
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Advanced Virgo FEA parameters

IM Coatinga

Ta2O5 High index

layer overall thickness(tIMH ) 2080 nm

SiO2 Low index

layer overall thickness(tIML ) 727 nm

Loss angle (φCIM) 1.1 · 10−4f0.05

EM Coatinga

Ta2O5 High index

layer overall thickness (tEM
H ) 3766 nm

SiO2 Low index

layer overall thickness (tEM
L ) 2109 nm

Loss angle (φCEM) 2.2 · 10−4f0.01

TM Suprasil

Young modulus 72.251 GPa

Poisson ratio 0.16649

Density 2201 kg.m-3

Loss angle (φSuprasil) 7.6 · 10−12f0.11

Ear and anchors HCB [19]

Young’s modulus 72.9 GPa

Poisson ratio 0.17

Density 2201 kg.m-3

Thickness 60 nm

Loss angle (φHCB) 0.1

IM and EM properties

Mass 42 kg

Thickness 200 mm

Diameter 350 mm

Flats 50 mm

TABLE I. Mechanical parameters used in the FEAa

a For the FEA the multi-layer coating of the IM was replaced by
one layer having the total thickness corresponding to the sum
of the thicknesses of the high reflective and low reflective
materials. The mechanical parameters used are the average
values of this layer [20]

mode amplitude labeled by the index n. As the interfer-
ometer is sensitive to the test mass displacement along
the optical axis, only the vertical displacement µm

⊥ (~r) is
considered, where m is the mechanical mode index. The
effective mass is related to the strain energy ρe through
the equation 1

2Meffω
2
m =

∫
ρe~r⊥, and effectively obtained

with the formula

Meff = M < µ(~r)2 >= M
1

V

∫
µ(~r)2d~r, (3)

where µ(~r) stands for the test mass displacement.
The mechanical modes were computed by means of fi-

nite element analysis (FEA) developed for the actual in-
put test mass (IM) of Advanced Virgo arm cavities [21].
We have used the program Ansys®WorkbenchTM. The
IM model includes the high-reflectivity (HR) coating of
the front face, the flats and the bevels. Moreover the

ears and the anchors attached by silicate bonding tech-
nique are included (see figure 2). In the FEA, the multi-
layer optical coating is modelled as a solid 3D element
having the total thickness corresponding to the sum of
the thicknesses of the high reflective and low reflective
materials and mechanical parameters averaged over the
thicknesses of the layers. Instead of 3D shell elements, we
have used 3D solid elements also for very thin materials,
though more CPU time consuming, because they provide
the shear deformations and energies, which are useful for
getting the mechanical losses associated to the modes.

B. FEA simulations results

The flats, the ears and also the anchors play an impor-
tant role. In particular, since they break the cylindrical
symmetry, they lift degeneracies and increase the num-
ber of distinct mode frequencies. In this paper we will
discuss the results up to 70 kHz.

-8 10-3

-6 10-3

-4 10-3

-2 10-3

0

2 10-3

4 10-3

6 10-3

8 10-3

5 103 1 104 1.5 104 2 104 2.5 104 3 104 3.5 104 4 104 4.5 104

 ∆ν/ν

Frequency (Hz)

FIG. 3. Relative differences of measured frequencies with
respect to frequencies obtained with the FEA vs the FEA
frequencies. The standard deviation is 0.15 ·%

To estimate the accuracy of the model, we have used a
set of frequencies (νMeas) measured on the North arm IM
up to 40kHz of an IM. Fig. 3 shows relative differences
(νMeas − νFEA)/νFEA, versus the frequency of the FEA
νFEA. The standard deviation is 0.15%. v

We have estimated the quality factors of the mechan-
ical modes of the IM taking into account several kinds
of losses: losses of the fused silica substrate, anchors and
supports of the magnets (loss angle φFS); coating losses
(loss angle φIMcoating); losses of bonding layers used to
attach the ears, the anchors and the magnets (loss angle
φBonding). The bonding layers, have a thickness of 60 nm,
and are modeled as 3D solid elements. Coating losses of
the IM and EM were recently measured [20]. Note that
all the parameters used are given in table I. Each loss
contributor is related to the energy fraction stored in the
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FIG. 4. Loss angles obtained from the FEA of the Input
TM. The computation ha been performed up to 70 kHz.
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FIG. 5. Quality factors of the mechanical modes up to 70
kHz

lossy part and to the material loss angle, through the
relationships

φBonding · Etot = φHCB · Ebonds

φIMcoating · Etot = φCIM · ECIM

φFS · Etot = φSuprasil · EFS.

(4)

The overall loss angle for the IM is obtained by summing
up all contributors: φIM = φBonding + φIMcoating + φFS.
The mechanical quality factor of the IM modes then
writes Qm = 1/φIM.

Fig. 4 shows the frequency dependence of the FS sub-
strate loss and the effect of adding the optical coating
and the bonding layers. The influence of the bonding
term φBonding is strongly mode shape dependent through
the deformation of the ear and anchor bulks and it is
not negligible. In fact, its contribution to Qm is domi-
nant. For this reason, from a set of Q measurements it
is possible to infer the value of φHCB by using the energy
fractions calculated with the FEA.

Fig. 5 shows the Qm of the IM mass computed by
fitting the loss angle φHCB by using the first set of 5
modes of the IM of the north arm and supposing that
it is does not vary with the frequency. At frequencies
higher than 10 kHz, the bondings have a strong damping
effect, though they have a negligible effect on the ther-
mal noise of the IM. This is a very important result for
the parametric gains computation and consequently for
identification of the unstable modes.

IV. TRANSVERSE OPTICAL MODES IN ARM
CAVITIES

Hermite-Gauss modes (HGM) are solutions of the
paraxial wave equation for infinite-sized spherical mir-
rors. This mode basis was used in [17] to compute the
parametric gain for the LIGO interferometer. It is fast
to implement as the mode shapes are provided by ana-
lytical formulas. However, it restricts the mirror model
to a purely spherical shape of infinite size. In particu-
lar, it does not include the effects of the deviations from
the spherical shape due to fabrication imperfections or
thermal effects. Finally, it does not take account for fi-
nite size effects such as diffraction losses, which must be
estimated separately.

We have computed another set of optical modes that
are obtained from a numerical resolution of the paraxial
equation with finite-sized mirrors [22]. This mode basis
will be referred to as ‘finite-sized mirror modes (FSMM)’.
Contrary to HGM, FSMM are obtained directly with
diffraction losses. Moreover, mirror shapes can be chosen
arbitrary, which enables one to introduce any deforma-
tion of the mirrors due to thermal effects or fabrication
imperfections. Note, that in this work, we did not in-
clude fabrication imperfections, which effects will be the
subject of future work.

In the following, we analyze the differences in Gouy
phase (or frequency), diffraction loss, and mode shape,
and between the HGM and FSMM basis set.

A. Gouy phases

The Gouy phases of arm cavity modes set the optical
resonant frequencies, and, thus, the OPI resonance con-
dition ωm = δω, where δω is the difference in frequency
between the zero order mode and the higher order trans-
verse optical mode. In the case of HGM, the Gouy phase
of the mode of linear index n is given by

φGn
= On φG (5)

where On the order of HGM(n), and φG is the Gouy
phase of the lowest order mode HGM(1) (usually referred
to as TEM00 in the literature) given by

φG = arccos (−√g1 g2). (6)
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FIG. 6. Difference between HGM’s and FSMM’s Gouy phase,
expressed in units of free spectral range on the left vertical
axis, and in units of cavity linewidth on the right vertical
axis. The vertical red dashed lines highlight the mode orders,
which appear above the upper horizontal axis. The horizontal
lower axis shows the optical mode index (modes are sorted by
increasing energies). The green horizontal line has a vertical
coordinate of 0.5 on the right axis.

Here, g1 < 0 and g2 < 0 are the g parameters of the in-
terferometer arm cavities. For the Advanced Virgo arm
cavities, φG ' 2.74 rad. and can be tuned by small vari-
ations of the mirror radii of curvature. Fig. 6 shows the
difference between HGM’s and FSMM’s Gouy phases, ex-
pressed in units of free spectral range on the left vertical
axis and in units of cavity linewidth on the vertical right
axis. Note that the Gouy phases have been wrapped
within an interval of length π, which allows to fold all
the modes within a single free spectral range. The green
line splits the graph into two regions: in the above re-
gion, the deviation is more than half a cavity linewidth,
and we expect the model choice to have an impact on the
OPI gain, whereas in the bottom part the impact should
be negligible. Thus, the critical order is 7.

B. Diffraction losses

Diffraction losses stem from the finite size of the cav-
ity mirrors. They are a key parameter to compute the
parametric gain, since they contribute to the optical
linewidth (together with material absorption losses, scat-
tering losses, and mirror transmittance). Since low-order
modes have most of the energy concentrated at the center
of the mirror, their diffraction losses are small, whereas
high-order modes spread over a larger surface and show
higher diffraction losses. Thus, in general, high-order
modes are less likely to contribute to a PI. However,
note that counter-intuitively, a loss increase can some-
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FIG. 7. Diffraction losses obtained for FSMM (cross) and
estimated for HGM (circles). The vertical red dashed lines
underline the mode orders, which appear in the upper hori-
zontal axis. The horizontal lower axis shows the optical mode
index (modes are sorted by increasing energies). The green
line shows the input mirror transmittance.

times lead to a higher parametric gain, as explained in
more details in section VI B.

Diffraction losses for HGM are estimated, like in [17],
by evaluating the ratio between the total light flux within
the coating radius of a mirror and the total flux incident
on the mirror. Figure 7 shows diffraction losses for both
sets of modes. It shows that with this rough estima-
tion method, besides the HGM(1), all HGM have their
diffraction losses underestimated. However, note that the
total losses (input mirror transmittance plus diffraction
losses) of low-order modes are dominated by the input
mirror transmittance (green line on Fig. 7). Thus, the
total losses obtained with the two methods start to differ
by more than 10% around mode order 5.

C. Mode amplitudes

Optical mode amplitudes are used to compute the
three mode spatial overlap coefficient Bmn of Eq. 1.
Thus, they also directly affect the OPI gain. In order
to compare the mode amplitudes of FSMM and HGM,
we decompose the vectors of one basis set onto the other
by using the decomposition coefficient cij of any FSMM
(index i) with any HGM (index j):

cij =

∫∫
S
dxdy u∗i (x, y)vj(x, y), (7)

where i and j are modes integer indices, ui (resp. vj) are
the FSMM (resp. HGM) mode amplitudes, and S is the
mirror coating surface. Note that the transverse profile
of a FSMM is constrained on a disk (mirror coating),
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whereas for HGM the transverse profile is distributed
over the whole plane, such that a linear superposition
of FSMM will never exactly match a HGM, and a true
transformation matrix between the two basis set cannot
rigorously be obtained [23]. In Fig. 8(a), we represent
|cij | for i = 2, and j ∈ {1, 2, ..., 36}. We find that
FSMM(2) is a linear combination of the two order one
HGM which are the HGM(2) and the HGM(3). We find
that this is true for orders below 7. Conversely, as shown
in Fig. 8(b), the higher order FSMM(36) mode (shown in
the inset of Fig. 8(b)) cannot be decomposed on a single
order of HGM. In the presented case, it is a mixture of
order 7, 9, 11, and many other higher odd orders that
are not shown on the figure.

D. Conclusion

This study shows that, in the absence of mirror de-
formation, the HGM basis does not deviate significantly
from the FSMM basis for modes of order lower than 6.
For order 6 and higher, the more resource consuming
FSMM basis should lead to significantly different results
for OPI gains. In section VI, we compare the OPI gains
obtained for the Advanced Virgo O3 configuration, with
HGM and FSMM basis set.

-15 -10 -5 0 5 10 15

Position (cm)

10-8

10-7

10-6

10-5

A
m

pl
itu

de
 (

m
)

(a)

0 10 20 30 40 50 60 70

FSMM index

0

0.005

0.01

0.015

F
re

qu
en

cy
 d

iff
er

en
ce

 (
F

S
R

 u
ni

t)

(b)

0

1

2

3

4

5

6

F
re

qu
en

cy
 d

iff
er

en
ce

 (
lin

ew
id

th
 u

ni
t)

01 2 3 4 5 6 7 8 9 10 11

FIG. 9. (a) Input mirror profiles with (dashed red line) and
without thermal effect (blue solid line). (b) Frequency differ-
ence between FSMM modes with and without thermal effect,
expressed in unit of FSR on the left axis, and in units of
linewidth on the right axis. The green horizontal line is at
vertical position 0.5 on the right axis.
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V. THERMAL EFFECTS

The laser energy is partially absorbed both by coatings
and in the bulk of mirrors. This causes a temperature
gradient, which originates two effects. First, a gradient
of refractive index in the bulk of input mirrors modifies
the mode matching condition, but affects neither the cav-
ity linewidth nor the mode frequencies. Second, a defor-
mation of the mirror surface, which modifies the mode
shapes and frequencies. In this part, we evaluate the
impact on this second effect on the properties of cavity
modes by comparing FSMM obtained for purely spheri-
cal mirrors with FSMM obtained for thermally deformed
mirrors.

The deformation profile is obtained by solving the lin-
ear thermoelastic equations [24]. Figure 9(a) shows the
purely spherical and thermally deformed profiles of an
Advanced Virgo input mirror, for an intracavity power
of 300 kW. We fitted the central part of the deformed
mirror to extract a radius of curvature. The results are
given in the following table:

No thermal effect With thermal effect

Input mirror 1424.6 m 1432.1 m

End mirror 1695 m 1702.3 m

However, note that the mirror is not spherical any-
more and the result of the fit is only valid in the cen-
ter. In order to evaluate the incidence of this effect on
the optical cavity parameters, we computed the FSMM
with and without thermal effect on the two cavity mir-
rors. Fig. 9(b) shows the frequency differences between
the two situations. We see that optical modes acquire a
significantly different Gouy phase even for very low mode
orders. We checked that losses and mode amplitudes are
affected only for orders higher than 7, such that the fre-
quency shift is the main effect. In section VI, we study
the impact of this phenomenon on OPI gains.

VI. PARAMETRIC GAIN COMPUTATION

A. Validation: comparison with the Finesse
software

The OPI gains of all mechanical modes within the [5.7,
70.7] kHz range were computed using Eq. (1) using both
the HGM and FSMM basis set. In order to validate this
method, we compared our results with the one obtained
with the Finesse software [25, 26]. The OPI gain ob-
tained with the Finesse software for one mechanical mode
and two arm cavity mirrors is shown in Fig. 10(a). In
Fig. 10(b), we plot the relative difference with the OPI
gain obtained with the Finesse software and with Eq. (1)
using FSMM and HGM. We observe a difference of a
few percent at maximum. Note that the slight asym-
metry between the blue and red curves stems from the
small parameter difference between the two arms cavi-
ties. This comparison has been performed with many
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FIG. 10. (a) Parametric gain obtained with the Finesse soft-
ware for one mechanical mode (12.552 kHz) on mirror NE
(blue) and WE (red). (b) Relative difference between (a) and
the parametric gain Rm obtained with Eq. (1) using FSMM
(solid lines) and HGM (dashed lines).

other mechanical modes and showed similar results. Note
that using Eq. (1) is much faster than using the Finesse
software, and that computing the results of the follow-
ing figures would not have been possible in a reasonable
amount of time. Therefore, in the following we use only
Eq. (1).

B. Effect of optical losses on the OPI gain

In this section we demonstrate a counter-intuitive ef-
fect of optical losses on the OPI gains. Intuitively, if
optical losses increase, the OPI gains get lower since the
optical linewidth also increases. Here we show that if the
OPI resonance condition is not exactly fulfilled, broad-
ening the optical mode response can increase the gain
such that counter intuitively, the gain variation does not
vary monotonously with the diffraction loss. This is best
shown on Fig.11(a), where the OPI gain of a mechani-
cal mode is plotted against optical diffraction losses of
the main optical contributor. In this example, the gain
first increases from around 0.04 below 102 ppm to 0.1
at 2 × 104 ppm, before decreasing at higher loss values,
as expected. This appears also in Fig. 11(b), where the
optical gain Gn of the main optical contributor to the
OPI gain of the mechanical mode of Fig. 11(a) is repre-
sented as a function of the mechanical mode frequency,
for two different values of diffraction losses. At low losses,
the two resonance peaks are well separated, such that
there is a minimum in between (black arrow). A loss in-
crease from 0 to 21540 ppm (red bullet at maximum of
Fig. 11(a)) broadens the peaks an lead to the red curve
which has no minimum anymore, and which shows higher
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FIG. 11. (a) Parametric gain Rm of a mechanical mode of
frequency 12.5551 kHz while varying artificially the diffraction
losses of optical modes. (b) Optical gain Gn of a FSMM high
order mode versus the mechanical mode frequency, which is
artificially varied around the resonance condition δω = ωm

(with δω = 12.5551 kHz). The blue line is for null diffraction
losses, and the red one is for 21540 ppm (red bullet at the
maximum of the curve in (a)). The arrow point the minimum
in between the two resonance on the blue curve, where the
gain increase is maximum. The gray shaded area highlights
a frequency at which Gn is higher when the diffraction loss is
higher.

values in a whole frequency region (gray shaded area on
Fig. 11(b)). Finally, if the losses were increased further,
the red curve would start lowering and the gray shaded
area would vanish.

33.2 33.4 33.6 33.8 34 34.2 34.4

Frequency (kHz)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
m

Mechanical mode: 33.750 kHz

FIG. 12. Parametric gain Rm of the 33.750 kHz mechanical
mode (see inset) while artificially varying the mechanical fre-
quency, using the two different optical mode basis (red: HGM,
blue: FSMM). The dashed lines point the maxima of the two
curves, and emphasize the height and frequency change.

Arm lengths 2999.8 m

Transmittance NI 13770 ppm

Transmittance NE 4.4 ppm

Transmittance WI 13750 ppm

Transmittance WE 4.3 ppm

Transmittance PR 48400 ppm

Round trip loss 75 ppm

Distance from BS to NI 6.0167 m

Distance from BS to WI 5.7856 m

Distance from BS to PR 6.0513 m

Laser wavelength 1064 nm

Gouy phase of PR cavity 1.8 mrad

TABLE II. Advanced Virgo O3 optical parameters

C. Impact of optical mode basis set on OPI gain

In this paragraph, we study the impact of the model
used to compute the optical modes. We compare the OPI
gains obtained with the HGM and FSMM basis. As ex-
pected, we find that there is only a marginal difference
between the two models if optical modes of order below 5
are involved. In Fig. 12, we plot the gain of a mechanical
mode versus its frequency using the two optical mode ba-
sis set. This mode has been chosen for the main optical
contributor to the OPI gain is an order 6 optical mode.
There is a factor 3 between the two gain maxima and
the two peaks are shifted by around 100 Hz, which cor-
responds to the optical linewidth. This is in agreement
with the conclusions of Sec. IV.
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FIG. 13. (a) Parametric gain Rm versus radii of curvature of NE and WE, using FSMM without thermal effect, for an input
power of 50 W. The gray-shaded scale highlights the parametric gains lower than 1, while the colorful scale highlights the
instabilities (Rm > 1). The three unstable mechanical modes are labeled A, B, and C. Their frequencies are respectively
61.154 kHz, 61.160 kHz, and 66.784 kHz. (b) The mechanical mode shapes and associated transverse optical mode contributing
the most to the aforementioned instabilities. α contributes for 93 % of A and for 77 % of B, β contributes for 6 % of A and
for 15 % of B, γ contributes for 89 % of C, and δ for 10 % of C. (c) The red solid line is the number of unstable modes in the
radius of curvature range of (a), with respect to the optical input power (top) or intracavity power (bottom). They become
unstable from an optical input power of respectively 9 W (mode A), 26 W (mode B), and 27 W (mode C). The blue curve is
the ratio of the area free of instability SRm>1 to the total area Stot in Fig. 13 (a resp. b), versus the optical power. The figures
(d) resp. (e) resp. (f) are the same than (a) resp. (b) resp. (c), but taking into account the thermal effect. The five unstable
mechanical modes are labeled D, E, F, G, and C (same mode than without thermal effect). Their frequencies are respectively
66.888 kHz, 66.912 kHz, 61.216 kHz, 61.231 kHz, and 66.784 kHz. ε contributes for 84 % of D and 24 % of E, ζ contributes for
16 % of D and 76 % of E, η contributes for 100 % of F and G, and θ contributes for 97 % of C. They become unstable from
an optical input power of respectively 4.6 W (mode D), 35 W (mode E), 42 W (mode F), 51 W (mode G), and 57 W (mode
C). The green dashed lines show the input power reached in O3 (28 W), and the nominal power (50 W) corresponding to (a)
and (b).

D. OPI gain computation in the O3 configuration

The simulations have been performed for the Advanced
Virgo configuration corresponding to that of O3. The
parameters for such a configuration are shown in Ta-
ble II. Measured parameters have been included rather

than nominal values when they were available. Only the
optical input power has been set to the nominal value of
50 W, which is the maximum value that would have been
possibly used during O3 (the value effectively reached in
O3 being too small to trigger any instability in the range
of mechanical mode frequencies simulated in this work).
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The corresponding arm-cavity power is around 300 kW.
The parameters used are listed in table II.

To account for optical mode frequency uncertainties,
we present OPI data in two-dimensional plots (see for
instance Fig. 13(a) and (b)), where the end mirrors radii
of curvature NE and WE are scanned. The color code
indicates the gain value at each interferometer working
point. This choice is also related to the fact that the en-
visioned OPI mitigation technique relies on ring heaters
able to tune the end mirrors radii of curvatures [27]. In
the following, we show two sets of results. Each figure is
the result of the same OPI calculation but using a dif-
ferent set of optical modes. Fig. 13(a, b, c) shows the
results for FSMM, Fig. 13(d, e, f) for FSMM including
thermal effect due to coating absorption (see sec. V). NE
and WE are scanned over a five meters range, which is
within reach of the mirror ring heater system. In each
OPI plot, the color code is chosen such that the gray scale
is for gains lower than 1 (no instability), and the color
scale is for Rm > 1. The involved mechanical modes are
indicated in the inset, and main optical modes contribu-
tors are shown below each OPI plot. Note that the result
obtained with HGM are indistinguishable from that of
Fig. 13(a), such that we did not include the correspond-
ing figure. Indeed, only low order optical modes are in-
volved here, such that HGM and FSMM give the same
result. Fig. 13(b resp. d) shows the unstable mechanical
modes of Fig. 13(a resp. b) on the first line. The second
line shows the involved optical modes. In Fig. 13(c resp.
f), we plot the number of unstable modes in the range
of Fig. 13(a resp. b) versus the optical power for FSMM
without (resp. with) thermal effect. Modes that ring on
different mirrors are counted only once. The blue curves
represents the ratio of the area free of instability SRm>1

to the total area Stot in Fig. 13 (a resp. b), versus the
optical power. This ratio quantifies how difficult it is to
escape an unstable area within the accessible radii of cur-
vature range. The green vertical lines on Fig. 13(c and
f) point the nominal power of O3 (50 W) and the power
that was effectively reached (28 W).

These results show that an OPI involving mechanical
modes with frequencies below 70 kHz could have been
observed at the nominal power of O3, although it would
be easily escaped with end-mirrors ring heaters since
SRm>1/Stot ' 0.2 at 300 kW cavity power. It also shows
that, at the real power of O3, it was very unlikely to
observe an instability. Finally, it shows that the thermal

effect caused by coating absorption has an important im-
pact on the results at such high optical powers.

VII. CONCLUSION

In this letter, we have presented OPI gain simulations
in the Advanced Virgo configuration of O3. Compared to
previous work [17], we have used deeper physical mod-
eling, including a very detailed description of mechani-
cal modes and optical modes. The aim being that our
model becomes predictive. The mechanical mode sim-
ulation includes all the mirrors details, and we imple-
mented an original method to obtain precise quality fac-
tors value for all modes, by using the combination of FEA
and ringdown measurement that are performed on a sub-
set of modes. We have also provided a precise descrip-
tion of optical modes, by considering finite size effects.
Our method provides directly accurate diffraction losses.
Furthermore, we have shown that, counterintuitively, an
optical loss increase can lead to a parametric gain in-
crease. Our conclusion regarding optical modes is that
up to order 4 (included), analytical formulas for Hermite-
Gauss modes are sufficient to predict accurate OPI gains.
However, if higher-order optical modes are involved, mir-
rors finite size effects must be accounted for. Finally, we
have shown that the mirror deformation stemming from
the laser absorption in mirror coatings plays an impor-
tant role and must be included in the OPI simulation.
These simulations pave the way towards precise optome-
chanical instability predictions for the current and next
generations of gravitational-wave detectors.
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