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Abstract

We theoretically investigate the role of solutal free convection on the diffusion of a buoyant solute at the

microfluidic scales, ' 5–500 µm. We first consider a horizontal microfluidic slit, one half of which initially

filled with a binary solution (solute and solvent), and the other half with pure solvent. The buoyant forces

generate a gravity current that couples to the diffusion of the solute. We perform numerical resolutions of

the 2D model describing the transport of the solute in the slit. This study allows us to highlight different

regimes as a function of a single parameter, the Rayleigh number Ra which compares gravity-induced

advection to solute diffusion. We then derive asymptotic analytical solutions to quantify the width of the

mixing zone as a function of time in each regime and establish a diagram that makes it possible to identify

the range of Ra and times for which buoyancy does not impact diffusion. In a second step, we present

numerical resolutions of the same model but for a 3D microfluidic channel with a square cross-section. We

observe the same regimes as in the 2D case, and focus on the dispersion regime at long time scales. We then

derive the expression of the 1D dispersion coefficient for a channel with a rectangular section, and analyse

the role of the transverse flow in the particular case of a square section. Finally, we show that the impact

of this transverse flow on the solute transport can be neglected for most of the microfluidic experimental

configurations.
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I. INTRODUCTION

Microfluidics refers to a wide range of technological tools for manipulating liquids in microfab-

ricated networks of channels with cross-sectional dimensions ranging from a few microns to a few

hundred microns. Applications of this technology are numerous and diverse, from high through-

put miniaturized bioassays to fundamental studies in physical-chemistry, see Refs. [1–3] for some

reviews. The small scales of microfluidic technologies allow to study numerous processes while
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FIG. 1. (a) Schematic diagram of the diffusion experiment in a microfluidic channel of height H and

width L. The red arrows represent the gravity current UB induced by the difference in density. The color

code indicates the concentration of the solute. (b) Width of the mixing zone W vs. time T . The dashed line

is the case for which buoyancy does not affect the spreading of the solute.

controlling finely all transport phenomena (mass, momentum, energy) [4]. In particular, the role of

buoyancy has been mentioned by Squires and Quake’s in their review on the physics of fluids at the

nanoliter scale and quantified using scaling arguments as explained below [5]. In this reference,

the authors considered the situation illustrated in Fig. 1(a): a microfluidic channel of height H,

one half of which is initially filled with a binary solution, solvent and solute at concentration Φi,

the other half only by the solvent. With no difference in density, solute and solvent interdiffuse,

and the width of the mixing zone evolves as W ∼
√

DT where D is the diffusion coefficient of the

mixture and T the time. Now assuming that the density evolves linearly with the concentration in

solute, i.e.:

ρ = ρ0(1+βΦ) , (1)
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where ρ0 is the density of the solvent, buoyancy induces a gravitational current, the solution flow-

ing under the solvent for β > 0, see Fig. 1(a). The magnitude of the gravity current UB can be

estimated from a balance between buoyant forces ∼ ρ0βΦig and viscous forces ∼ ρ0νUB/H2,

leading to the velocity scale:

UB ∼
βΦigH2

ν
, (2)

where ν is the kinematic viscosity of the mixture [5]. Note that such a flow exists whatever the

height H of the channel as the density gradient is orthogonal to the gravity field g. The impact of

this flow on the solute transport can be determined using the Rayleigh number:

Ra =
βΦigH3

νD
∼ UBH

D
, (3)

comparing advection to diffusion. Ra is similar to the Péclet number describing mass transport in

forced convection problems, but with the important difference that the solute in the present case

is not passive, since the solute itself is the source of the flow [5]. Furthermore, a balance between

viscous forces ∼ ρ0νUB/H2 and inertial forces ∼ ρ0U2
B/H leads to the definition of the Grashof

number, similarly to the Reynolds number for forced convection:

Gr =
βΦigH3

ν2 =
Ra
Sc

, (4)

where Sc = ν/D is the Schmidt number. As Sc ≥ 102 for most liquid mixtures, one has thus

Gr� Ra and viscous dissipation a priori dominates inertia within the gravity current in most

microfluidic applications [5].

Many groups have reported gravity-driven currents in microfluidic experiments for which den-

sity gradients are imposed either using membranes [6] or transverse mixing between coflowing

miscible liquids [7, 8]. In a different context, many groups also reported such flows when density

gradients are induced by the evaporation of a liquid mixture in a confined geometry (H = 100–

1000 µm) such as sessile drops [9–11], confined drops [12–15], or micro-capillaries [16, 17].

The impact of buoyancy on the solute transport is not always mentioned in such works, and most

groups consider that solutal free convection plays little role at the microfluidic scales although

experimental configurations with density gradients are ubiquitous in applications.

To illustrate this point, let us consider interdiffusion between an aqueous NaCl solution at

a concentration of 1 M and pure water. For such a mixture, D ' 1.6× 10−9 m2/s, the dif-

ference in density is ' 38 kg/m3 leading to βΦi ' 3.8× 10−2, and the kinematic viscosity is
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ν ' 10−6 m2/s [17]. For a microfluidic channel of height H = 20 µm, one finds Ra ' 1.9, but

due to the scaling Ra ∝ H3, the Rayleigh number increases to Ra ' 230 for H = 100 µm, and

even up to Ra' 2.9×104 for H = 500 µm. This numerical application illustrates the importance

of going beyond the scaling laws presented above to quantitatively predict the range of Rayleigh

numbers for which free convection plays only a minor role in a microfluidic configuration. Further-

more, although these buoyancy-induced flows could have little impact on the solute concentration

gradients that generate them, they still do exist, and are able to effectively disperse less mobile

species in the fluid mixture, such as macromolecules or colloids [8]. These buoyancy-driven flows

may also have an influence in protein crystallization experiments [18–21], for evaluating colloidal

diffusio-phoresis induced by solute gradients [6], or even in the context of biological systems for

the motility of microorganisms [22]. It is therefore necessary to quantify these flows as a function

of the density gradients that generate them for predicting their possible role on other species in the

case of complex fluid mixtures.

In the present work, we study in depth the configuration presented in Fig. 1 in a microfluidic

context, i.e. height H in the ' 5–500 µm range. This experimental configuration has been im-

plemented many times in microfluidic devices, either using valves or sliding walls for instance,

for various applications such as protein crystallization or biochemical assays [23, 24]. Our main

goal is to quantitatively delineate the range of Rayleigh numbers for which mixing is impacted by

buoyancy in such a configuration, and to predict the laws W vs. T . Configurations similar to that

shown in Fig. 1 have been studied for chemical or civil engineering applications and environmental

issues that involve length scales H ranging typically from 0.1 to 100 m. In such cases, commonly

referred to in the literature as the ”lock-exchange” problem, molecular diffusion is negligible and

inertial effects are often significant [25–29]. Special mention should be made however of the work

of Szulczewski and Juanes [30], who studied a situation very similar to that shown in Fig. 1(a)

including also molecular diffusion, but for a 2D porous layer in the context of geological CO2

sequestration. Surprisingly, we are not aware of any work that has studied the microfluidic case

where diffusion cannot be neglected, which also motivated this work. Since our work is related to

microfluidic applications, we have explored Rayleigh numbers up to Ra = 105. These high values

are at the limit of most microfluidic dimensions, but can easily be obtained as soon as H reaches

the millimeter scale, even for dilute solutions. For example, in the numerical application given

previously, water and salty water at 1 M, Ra = 105 for H ' 750 µm. As we subsequently consider

liquid mixtures only, the smallest Schmidt number we explored is Sc = 102. Such small values can
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be observed in the case of the diffusion of small molecules in a low-viscosity solvent, e.g. water

in acetone [31].

The present paper is organized as follows. In Sec. II, we present the set of equations modeling

the transport of the solute in the configuration shown in Fig. 1, as well as details about the nu-

merical resolutions. In Sec. III, we study the case of a 2D slit for the sake of simplicity, i.e. two

infinite and parallel plates separated by a thickness H. The numerical data show a rich temporal

succession of different regimes of solute spreading, that can be captured using analytical asymp-

totic solutions, and the analogy with the case of a 2D porous layer [30] is discussed. We finally

address in Sec. IV the case of a 3D microfluidic channel for which transverse flows also exist. We

finally conclude our work in Sec. V and insist on its possible implications.

II. MODEL AND NUMERICAL RESOLUTION

A. Model and dimensionless variables

We consider the situation described in Fig. 1(a): a straight microfluidic channel of infinite

length and rectangular cross-section initially filled with a solution at concentration Φi for Z > 0

and by pure solvent for Z < 0. For the sake of simplicity, we consider that the kinematic viscosity

ν and the interdiffusion coefficient D are constant, and that the density of the solution evolves

linearly with the volume fraction in solute, Eq. (1). Because of this linearity, the problem described

here can trivially also apply to the interdiffusion between two solutions of different concentrations.

Assuming an isothermia of the system and the Boussinesq approximation, the equations gov-

erning the solute transport and the velocity field U are:

ρ0

(
∂U
∂T

+U.∇U
)
= ρ0ν∆U−∇P+(ρ(Φ)−ρ0)g, (5)

∇.U = 0, (6)
∂Φ

∂T
+U.∇Φ = D∆Φ, (7)

where P is the pressure deviation from the hydrostatic pressure field for Φ = 0. Boundary con-

ditions at the solid walls are the no-slip and the impermeability conditions, U = 0 for the ve-

locity field and n.∇Φ = 0 for the concentration field. We also impose U(Z → ±∞) = 0 and

∂ZΦ(Z→±∞) = 0 resulting in no pressure-driven flow along the channel (i.e. the gravity current

is the only flow). Initial conditions are given by U = 0, Φ = Φi for Z > 0 and Φ = 0 for Z < 0.
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To get more insights into the mechanisms of solute transport, we define the following dimen-

sionless variables:

x = X/H, y = Y/H, z = Z/H, t = DT/H2, γ = L/H , (8)

u = (H/D)U, p = H2/(ρ0νD)P, ϕ = Φ/Φi . (9)

With such definitions, the model given by Eqs. (5-7) reads now:

1
Sc

(
∂u
∂ t

+u.∇u
)
= ∆u−∇p−Raϕex , (10)

∇.u = 0 , (11)
∂ϕ

∂ t
+u.∇ϕ = ∆ϕ , (12)

where ex is the unit vector along x. With these variables, the initial conditions are:

u(x,y,z, t = 0) = 0 and ϕ(x,y,z, t = 0) = H (z) , (13)

where H (z) is the Heaviside function. Boundary conditions are given by:

u = 0 and n.∇ϕ = 0 (14)

on the solid walls, and:

u(z→±∞) = 0 and ∂zϕ(z→±∞) = 0 . (15)

To estimate the role of buoyancy on the solute spreading, we first define the cross-section

averaged concentration profile by:

ϕ0(z, t) =< ϕ >=
1
γ

∫
γ/2

−γ/2

∫ 1

0
ϕ(x,y,z, t)dxdy , (16)

and the extent of the mixing zone by:

w(t) =

√
1
2

∫
∞

−∞

z2 ∂ϕ0

∂ z
dz . (17)

In the case of a neutrally-buoyant solute, Ra = 0 and the model described above admits the fol-

lowing simple solution [32]:

u = 0 , (18)

ϕ(x,y,z, t) = ϕ0(z, t) =
1
2

[
1+Erf

(
z

2
√

t

)]
. (19)

In this case, the width of the interdiffusion zone is given by w =
√

t, i.e. W =
√

DT with real

units. This is the classical square-root spreading of the solute due to molecular diffusion. For

Ra > 0, any deviation from this simple law is a priori a signature of buoyancy-induced dispersion,

see Fig. 1(b).
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B. Numerical resolution

Eqs. (10-14) have been solved numerically for two distinct geometries: the 2D case of a mi-

crofluidic slit (γ → ∞) and the 3D case of a rectangular micro-channel with a square cross-section

(γ = 1). In both cases, the boundary conditions Eq. (15) at z→±∞ have been moved to z = ±λ

where λ is a finite distance such that λ � w.

The 2D numerical simulations have been performed with the commercial software Comsol

Multiphysics based on finite elements (Galerkin method). Time discretization is based on implicit

Backward Differentiation Formulas, with an adaptive time stepping. Spatial discretization was

achieved by a structured mesh of Lagrangian elements, linear for the pressure and quadratic for

the other variables. The mesh convergence has been thoroughly tested by successive refinements.

Computations were made on a workstation with 32 Intel Xeon 2.10 GHz processors and 250 GB

of RAM.

The 3D simulations required the use of in-house made software [33, 34], specifically opti-

mized for the simulation of free convection in cavities on parallel architectures and based on a

multidomain spectral method. Chebyshev collocation is used for spatial discretization of the three

dimensions of space. The pressure-flow coupling is ensured by a projection method that forces the

velocity divergence-free condition. Time integration is performed through a second order temporal

scheme combining a Backward Differentiation (BDF2) scheme for the linear terms with an Adams

Bashforth extrapolation for the convective terms. Domain decomposition along the z-horizontal

direction is carried out by the Schur complement method for parallelization purposes. Each spa-

tial domain is a cube of size 1 in dimensionless units. The spatial resolution in the z-direction has

been increased at the first moments of the simulation in order to capture the stiff concentration

gradient and the mesh convergence has been checked by observing the decay of the Chebyshev

spectral coefficients. Computations were made in a HPC facility, using from 40 to 360 Intel Xeon

2.30 GHz processors.

For both 2D and 3D geometries, simulations have been divided into several time intervals in

order to adapt the simulation parameters to the temporal evolution of the flow. For each new time

interval, the length 2λ of the spatial domain was extended to take into account the increase of the

mixing zone.
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III. THE CASE OF A SLIT

In this section, we study the case of a microfluidic slit, and the different fields in Eqs. (10–12)

now depend only on the two variables x and z. We performed numerical simulations for a fixed

Schmidt number Sc = 105, and three different Rayleigh numbers Ra = 103, 104, and 105, over a

wide range of time scales, from t = 10−7 to t ' 106. To test the role of the Schmidt number, we

also performed numerical resolutions for the same Rayleigh numbers, Sc = 102, 103, 104 and 105,

and time scales ranging from t = 10−7 to t ' 5×10−3 as Sc only plays a role at early time scales,

see below.

A. The case Ra = 105 and Sc = 105

We begin with the case Ra = 105 and Sc = 105. Figure 2(a) displays several 2D concentration

maps ϕ(x,z, t) at the times shown in Fig. 2(b), see also movie M1 corresponding to these data in the

ESI. These data evidence a combination of solute spreading by diffusion and buoyancy-induced

advection.

Figure 2(b) displays w(t) computed from the numerical resolution for the case Ra = 105 and

Sc = 105, along with the diffusion law w =
√

t. These data clearly show that the mixing zone

evolves according to the diffusion law expected without buoyancy at small time scales t � 10−5,

but also at long time scales t � 104. For intermediate times, the width of the mixing zone is

significantly larger, evidencing the role of the buoyancy-driven advection. The w vs. t behavior

can be rationalized using different regimes, each with a given power law w∼ tδ shown in Fig. 2(b).

These regimes are presented below in detail, along with self-similar asymptotic solutions for the

concentration profiles ϕ0(z, t) and the corresponding spreading laws w vs. t.

B. Early diffusion regime

We first analyse the transport of solute at short time scales. Figure 3(a) displays the height-

averaged concentration profile ϕ0(z, t) [Eq. (16)] for time scales t ≤ 1.6× 10−6 evidencing the

spreading of the solute. As shown in Fig. 3(b), all the profiles collapse on a single curve when

plotted against the reduced variable z/
√

t. This curve is correctly described by Eq. (19) demon-

strating that the transport of the solute is dominated by diffusion for these early time scales, i.e.

negligible effect of the flow on the solute transport. As a result, the width of the mixing zone com-
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FIG. 2. For Ra = 105 and Sc = 105: (a) concentration fields ϕ(x,z, t) at the times indicated by the corre-

sponding symbols in (b), the z-scale is different in each image. (b) Width of the mixing zone w(t). The

magenta dashed line is given by Eq. (27) and corresponds to early advection with w∼ t. The yellow dashed

line is given by Eq. (29) and corresponds to late advection with w∼√t. The green dashed line is computed

from the numerical resolution of Eq. (31) and includes both the 1D dispersion regime w ∼ t1/4 and late

diffusion w ∼√t. The blue dashed line is the diffusion law w =
√

t. See also movie M1 corresponding to

these data in the ESI.

puted from the 2D data using Eq. (17) is correctly fitted by w =
√

t for t ≤ 1.6×10−6 as shown in

Fig. 2(b).

However, a flow exists as u = 0 does not satisfy the Navier-Stokes equation Eq. (10), because

of the non zero z-component of the pressure gradient due to buoyancy. Figure 4(a) indeed displays

the flow driven by this difference of density for t ' 1.3×10−6. This gravity current corresponds

to a recirculating flow developed within the slit on a length scale ∼ 1. Figure 4(b) showing the

maximal value of the component uz in the plane z = 0 in this early regime, evidences that the

velocity steadily increases up to reaching a plateau value of ' 103 for time scales t ≥ 0.7×10−6

for Sc = 105. This plot also shows the same data corresponding to several Schmidt numbers,

Sc = 102, 103, 104 and 105. After a transient, the velocity reaches the same plateau value for all

Schmidt numbers, except for Sc = 102 for which the plateau is not reached.

As the transients depend on Sc and thus on the Grashof number Gr, see Eq. (4), these results
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t ≤ 1.6×10−6 (7 curves, Ra = 105 and Sc = 105). (b) Same data plotted against the reduced variable z/
√

t,

the dashed line is given by Eq. (19).

suggest the existence of an inertial regime corresponding to the development of the recirculating

gravity current through the slit. To better highlight this regime, Fig. 4(c) displays the maximal

z-component of the velocity field at z = 0 vs. time t for several Rayleigh numbers Ra = 103,

104, 105 and several Schmidt numbers Sc = 102, 103, 104 and 105. All the transients collapse

on a single curve when times are scaled by 1/Sc and velocities by Ra. This result is recovered

from the Navier-Stokes equation Eq. (10) assuming that the non-linear inertial term u.∇u does

not play any role. The start-up of the flow therefore corresponds simply to the diffusion of the

momentum through the slit, expected to take place on a time scaling as ∼ 1/Sc. By estimating

the time it takes for the maximal velocity uz to reach 90% of its plateau value, the duration of the

inertial regime is t ' 0.0571/Sc, see the vertical dashed line in Fig. 4(c). The smallest Schmidt

number investigated, Sc = 102, is an exception. In this case, the steady plateau is not observed

because inertia is still significant after the end of the diffusion regime, i.e. when advection starts

affecting the solute transport. Turning to real units, the duration of the inertial regime is given

by ' 0.0571H2/ν , and lasts only a few tens of milliseconds even for H = 500 µm and low-

viscosity solvents ν = 5×10−7 m2/s. This numerical application shows that such a regime cannot

be observed in most microfluidic experiments, as expected, and that only the Rayleigh number,

related to the competition between gravity-induced advection and diffusion, governs the transport

of the solute.

We now turn to the part of the diffusive regime characterized by a steady gravity current, i.e.
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(O). The horizontal dashed line is estimated using Eq. (22) and given by ' 0.0106, the vertical dashed line

is Sc t = 0.0571.

after the end of the inertial transient, see the plateau in Fig. 4(b). For the time scales of this regime,

neither diffusion nor advection have significantly widened or distorted the concentration field, and

it remains close to the initial condition Eq. (13), as evidenced by Fig. 4(a) for the case Ra = 105.

The velocity field after the inertial transient is therefore expected to be the solution of the steady

Stokes equation:

0 = ∆u−∇p−RaH (z)ex , (20)

where ∇.u = 0 and H (z) is the Heaviside function. These equations can be solved analytically,

see Appendix A, leading to the two following expressions for the components ux in the plane

x = 1/2 and uz in the plane z = 0:

up
x (x = 1/2,z) =

2Ra
π

∫
∞

0

sinh2 ( k
4

)[
k−2sinh

( k
2

)]
sin(kz)

k3[k+ sinh(k)]
dk , (21)

up
z (x,z = 0) =−Ra

π

∫
∞

0

(x−1)sinh(kx)+ xsinh(k− kx)
k2[k+ sinh(k)]

dk . (22)

These two expressions correctly approximate the velocity profiles in the plateau regime, see the

black lines in Figs. 5(a) and 5(b) for the case Ra = 105 and Sc = 105. The maximal velocities are
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about max[up
z (x,z = 0)]' 0.0106Ra [at x' 0.81, the plateau value in Fig. 4(c)], and max[up

x (x =

1/2,z)]' 0.0065Ra (at z'−0.23).
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FIG. 5. (a) ux(x = 1/2,z) vs. z and (b) uz(x,z = 0) vs. x for time scales ranging from t = 1.6×10−6 to 10−4

(10 curves, Ra = 105 and Sc = 105). The thin black lines are given by Eq. (21) in (a) and by Eq. (22) in (b).

C. Early advection

The initial diffusion regime described in Sec. III B ceases when the effect of advection on the

the solute transport becomes non negligible. This transition time corresponds to the departure from

the diffusion law w =
√

t at t ' 1×10−5 for the case Ra = 105 and Sc = 105, see Fig. 2(b). A typ-

ical concentration field in this new regime is shown in Fig. 6(a) and has two main characteristics,

which can be considered as a definition of the early advection regime:

a. The 2D deformation of the concentration field, obviously due to advection, is much

larger than the diffusive spreading. For this reason, we can neglect diffusion against advection and

approximate the concentration field by an Heaviside function:

ϕ(x,z, t) = H [z− z f (x, t)] , (23)

where z f (x, t) is the position of a front separating two regions, one where ϕ ' 0 and the other one

where ϕ ' 1. In this advection regime, the front motion along z during a small time interval dt

reads:

dz f (x, t) = uz(x,z f (t), t)dt . (24)
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The magenta dashed lines are the deformations estimated by Eq. (25). (c) Average concentration profiles

against z/(Ra t) for time scales ranging from t ' 2×10−5 to 1.3×10−4 (9 curves), the dashed line is given

by Eq. (26). Inset: same profiles against z.

b. The 2D deformation due to advection is much lower than 1, i.e. than the channel height.

The concentration field is thus very close to the initial one, and the velocity field is still given

by Eqs. (21) and (22) corresponding to the plateau observed in Fig. 4(b). We deduce from these

assumptions and Eq. (24) that the front profile can be approximated by:

z f (x, t)' up
z (x,z = 0) t , (25)

where up
z (x,z = 0) is the steady velocity field given by Eq. (22). Eq. (25) is consistent with the

concentration field obtained from numerical simulations, as shown in Fig. 6(a).

Eqs. (22), (23) and (25) allow the estimation of the height-averaged concentration profile in

this regime:

ϕ0(z, t) =
∫ 1

0
H [z−up

z (x,z = 0) t]dx . (26)

One can easily show that the above relation is a self-similar function of the variable z/(Ra t).

Figure 6(c) compares the theoretical relation Eq. (26) with the numerical simulations, evidencing

a reasonably good collapse of the data on the theoretical master curve. Furthermore, the width of

the mixing zone w(t) defined by Eq. (17) can be estimated using Eq. (26), leading to:

w' 0.00538Ra t . (27)

This behavior is plotted in Fig. 2(b) and correctly fits the data obtained from the numerical resolu-

tion of the 2D model from t = 1.3×10−5 to 2×10−4.
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At later time, significant discrepancies are observed between the theoretical formula Eq. (25)

and the numerical simulation, see for instance Fig. 6(b) for a comparison at t = 6.3×10−4. Indeed,

the deformation of the concentration field is of the order of 1 for such time scales and Eq. (22) can

no longer be used for the estimation of the velocity field. It marks the end of the early advection

regime.

D. Late advection

At later time scales, solute spreading by diffusion still remains negligible as compared to solute

advection, but the 2D deformation of the concentration fields is now much larger than 1, see for

instance Fig. 7(a) showing a snapshot at t = 1.6×10−2. These data along with the flow field shown
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FIG. 7. (a) Concentration field ϕ , and components (b) uz, (c) ux at t = 1.6×10−2 for Ra= 105 and Sc= 105.

The magenta dashed line is given by the solution of Eq. (28) in the case of a slit. (c) Average concentration

profiles ϕ0(z, t) vs. ξ = z/
√

D̃t for time scales ranging from t ' 0.003 to 0.02 (9 curves), the dashed line is

ψ(ξ ) solution of Eq. (28). Inset: same profiles against z.

in Figs. 7(b) and 7(c), evidence the reciprocal exchange of the solution and the solvent separated by

a diffuse pseudo-interface. For fully negligible diffusion, this regime commonly referred to as the

viscous lock-exchange problem has been widely studied in the literature. In such a configuration,

many groups predicted that the extent of the spreading of the two fluids scales as w∼
√

D̃t where D̃

is an effective diffusion coefficient. The square-root behavior arises from the competition between

buoyant forces (∼ ρ0βΦigH/W ) and viscous forces (∼ ρ0νẆ/H2), leading to the dimensionless
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scaling law w2 ∼ Ra t [28]. The effective diffusion coefficient D̃ therefore only depends on Ra

and the geometry, and it has been calculated in various cases: porous medium, circular tube, but

also rectangular channel and slit [27–30]. The main idea of these works is to compute the shape

ψ(z, t) of the pseudo-interface separating the two fluids, assuming large deformations and thus a

quasi-parallel flow along the z-axis (lubrication approximation). With such approximations, one

can show that ψ(z, t) admits a self-similar shape ψ(ξ ) with ξ = z/
√

D̃t, solution of:

−ξ
dψ

dξ
= 2

d
dξ

(
f (ψ)

dψ

dξ

)
, (28)

with f (ψ) = ψ3(1−ψ)3 and D̃ = Ra/3 for the case of a slit [27]. Equation (28) is solved nu-

merically following the method detailed by Martin et al. in Ref. [27]. Figures 7(a–c) show this

solution for the corresponding time t = 1.6×10−2 superimposed with both the concentration field

and the velocity field. These data show a reasonable agreement, confirming the negligible impact

of diffusion on the solute transport.

To better describe this regime, Fig. 7(d) displays the average profiles ϕ0(z, t) obtained from the

2D model at Ra = 105 and Sc = 105 for time scales ranging from t ' 0.003 to 0.02. This plot

shows that all the data almost collapse on a single curve when plotted against ξ = z/
√

D̃t, which

is correctly described by ψ(ξ ) solution of Eq. (28). In this regime, one can again compute the

width of the mixing zone defined by Eq. (17) using ψ(ξ ), leading to:

w' 0.04879
√

Ra t . (29)

This square-root spreading is plotted in Fig. 2(b) and accounts well for the numerical data w(t)

obtained for Ra = 105 and time scales ranging from t ' 10−3 to ' 10−1.

E. 1D dispersion and late diffusion

For time scales t ≥ O(1), diffusion almost homogenizes the solute over the height of the slit,

and the transport of the solute cannot be described by only advection, as revealed by Fig. 8(a)

showing the concentration field at t = 2.5. In this regime, the transport is fully controlled by

the coupling between solute diffusion along the channel height and buoyancy-driven advection

along the channel main axis. This regime has already been described in the literature since the

pioneering work of Chatwin and Erdogan, who studied the Taylor-Aris dispersion of a buoyant

solute in a pressure-driven flow [35], see also [36–40] and the review of Young and Jones on shear
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regime plotted against η given by Eq. (34), t ranges from t = 1 to 2.5× 102 (10 curves). The dashed line

is Eq. (33). Inset: same profiles against z. (e) Rescaled concentration profiles ϕ0(z, t) in the late diffusion

regime, t = 104 up to 1.6×105 (10 curves). The dashed line is Eq. (19). Inset: same profiles against z.

dispersion [41]. In this regime, the extent w of the concentration gradient along z is large (w� 1),

the buoyancy-driven flow is quasi-parallel [ux� uz, see Figs. 8(b) and 8(c)], and the variations of

the concentration along x are small [see the isoconcentration lines in Fig. 8(a)]. One can therefore

use the lubrication approximation to show that the density gradient along z drives a flow following:

uz(x,z, t) =−
Ra
12

∂ϕ0

∂ z
x(2x−1)(x−1) , (30)

see Appendix B. This flow adds a contribution to the dispersion which scales as ∼ u2
z , as for the

classical Taylor-Aris dispersion in a Poiseuille flow. More rigorously, one can demonstrate that

the average concentration ϕ0(z, t) obeys the 1D dispersion equation:

∂ϕ0

∂ t
=

∂

∂ z

(
Deff

∂ϕ0

∂ z

)
, (31)

with:

Deff = 1+
1
α

(
Ra

∂ϕ0

∂ z

)2

, (32)

and α = 362880, see Appendix B. The non-linearity of the dispersive term comes from the cou-

pling between the concentration gradient and the flow, unlike the case of the Taylor-Aris disper-

sion: strong gradient increases the magnitude of the gravity current which in turn increases the
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dispersion of the solute. We will return in detail to the derivation of these equations in the next

section when we tackle the 3D case of a microfluidic channel with a rectangular cross-section.

Equation (31) can be made free of any parameter by defining t? = (α/Ra2)t and z? =

(
√

α/Ra)z. It is then solved numerically with the initial condition ϕ0(z, t = 0) =H (z) to compute

the solution for any Rayleigh number and α value. Figure 2(b) shows that the width of the mixing

zone w(t) defined by Eq. (17) and computed from the numerical resolution of Eq. (31), perfectly

matches the data obtained from the full 2D model for time scales t ≥ 0.1. The component uz at

z = 0 computed from the 2D model is also very well-approximated by Eq. (30) using the solution

of the 1D dispersion model (data not shown).

Equation (31) along with the initial condition ϕ0(z, t = 0) =H (z) has been studied by Maclean

and Alboussière [39] who provided asymptotic approximations of the solution. When buoyancy

dominates the transport of the solute, i.e. Deff� 1, Eq. (31) admits the self-similar solution:

ϕ0 =
1
2
+

η

2

√
1√
3π
− η2

12
+

1
π

arcsin
( √

πη

2×31/4

)
, (33)

with η given by:

η =
α1/4
√

Ra
z

t1/4 . (34)

Eq. (33) is valid for η2≤ 12/(π
√

3) [39]. Figure 8(d) displays this asymptotic self-similar solution

for Ra = 105 along with the data computed from the 2D model, evidencing a very good agreement.

In this regime, one can compute the width of the mixing zone leading to:

w'
√

Ra
2π

(
3t
α

)1/4

, (35)

thus following w∼ t1/4 as shown in Fig. 2(b).

At later times, the density gradient continuously decreases as the solute is continuously dis-

persed along the channel, and diffusion dominates again the transport of the solute, i.e. Deff ' 1.

In this late diffusion regime, we once again find a classical diffusion problem where solutal free

convection no longer plays a role, and the concentration profiles are then given by Eq. (19). This

is illustrated by Fig. 8(e) showing Eq. (19) superimposed with the average concentration profiles

computed from the 2D model at long time scales. In this late regime, the width of the mixing zone

is again given by w =
√

t as shown in Fig. 2(b), despite the buoyancy-driven flow along the slit

still given by Eq. (30). As explained in Introduction, even if this flow has no effect on the solute

gradient that generates it, it still exists and may have an effect on less mobile species in the case

of complex liquid mixtures.
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I- early diffusion w'√t ūz(z = 0, t)' 0.00690Ra tI→II ' 34550/Ra2

II- early advection w' 0.00538Ra t ūz(z = 0, t)' 0.00690Ra tII→III ' 82/Ra

III- late advection w' 0.04879
√

Ra t ūz(z = 0, t)' 0.03138
√

Ra
t tIII→IV ' 0.04

IV- 1D dispersion w'
√

Ra
2π

(3t
α

)1/4
ūz(z = 0, t)'

√
Ra

192
√

π

(
α

3t

)1/4 tIV→V ' 3
(2π)2α

Ra2

V- late diffusion w'√t ūz(z = 0, t)' 1
384
√

π

Ra√
t

TABLE I. Transport regimes and transition times for a slit, α = 362880.

F. Dispersion diagram

In the previous paragraphs, we identified a sequence of regimes of transport of the solute, which

are summarized in Table I. For each regime, one can compute the typical longitudinal velocity at

z = 0 defined by:

ūz(z = 0, t) =−2
∫ 1/2

0
uz(x,z = 0, t)dx, (36)

using in particular Eq. (22) for Regimes I and II, Ref. [27] for Regime III, and Eq. (30) along

with Eq. (33) [resp. Eq. (19)] for Regime IV (resp. Regime V). Results are displayed in the third

column of Table I.

The transition times between these regimes are estimated by matching the different spreading

laws w vs. t leading to the values provided in Table I. These definitions lead to different scaling

laws with Ra which are also reported in Fig. 2. These transition times allow us to construct the

diagram presented in Fig. 9(a) in the plane Ra vs. t. The vertical dashed-dotted lines in Fig. 9(a)

corresponding to the extent of the inertial regime show that the early advection regime II is also

coupled for large Ra and small Sc to the momentum diffusion across the slit, see Sec. III B and in

particular Fig. 4(b).

This diagram also shows that the effect of buoyancy vanishes for Ra . 103. To illustrate this

point, Fig. 9(b) reports the spreading laws w vs. t computed from the numerical resolution of the

full 2D model for several Rayleigh numbers Ra = 105, 104, 103 and Sc = 105. These data clearly

reveal that buoyancy has little effect on the transport of the solute at all time scales for Ra = 103.

More quantitatively, the ratio w/
√

t reaches a maximum of only ' 1.24 at t ' 0.1 for Ra = 103.

This result answers the question initially asked in Introduction as it allows to assess a numerical

value to Ra corresponding to negligible buoyancy in a microfluidic slit at all time scales, at least

regarding the active solute that generates the gravity current.
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FIG. 9. (a) Diagram of the different regimes in the plane Ra vs. t. The transition times t vs. Ra are given in

Table I. The vertical dotted lines correspond to the extent of the inertial regime t ' 0.0571/Sc for Sc = 103

and Sc = 105, see Sec. III B. (b) Width of the mixing zone w(t) for Sc = 105 and Ra = 105 (red), 104

(blue), 103 (magenta). The black dashed line is the purely diffusive spreading w =
√

t. The symbols are the

transition times given in Table I for Ra = 105 and Ra = 104.

The regimes of early diffusion and early advection are only visible for high Rayleigh numbers,

Ra ≥ 104, and small time scales, t < 10−3. For most microfluidic configurations investigating

molecular solutes, these regimes might be difficult to observe even in a thick slit, as t = 10−3 in the

above diagram does not exceed a few seconds for H = 500 µm and D≥ 10−10 m2/s. On the other

hand, both regimes of late advection and 1D dispersion should be easily observed as the transition

time between these two regimes tIII→IV is a few minutes for D ' 10−10 m2/s and H = 500 µm.

In the case of colloidal dispersions, the regimes of early diffusion and early advection might be

observable as much lower D values lead to much longer time scales. For instance, t = 10−3 is now

a few minutes for H = 500 µm and D = 10−12 m2/s corresponding to colloids of radius 100 nm

dispersed in water.

G. Analogy with the case of a 2D porous layer

Szulczewski and Juanes [30] studied in a different context (geological sequestration of CO2 in

an aquifer), a problem similar to the one described in Fig. 1, but considering a vertically confined

porous layer of thickness H. Their theoretical model is also based on Eq. (7) to describe the
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solute transport and Eq. (6) for the overall mass conservation, but the pore velocity field U follows

Darcy’s law given by:

U =− κ

ρ0νε
[∇P− (ρ(Φ)−ρ0)g] , (37)

where κ is the permeability of the permeable rock and ε its porosity (see Sec. II A for the other

notations). Notice that Navier-Stokes equations Eq. (5) turns to Stokes equations when inertia

is neglected, that does not reduce to Darcy’s law Eq. (37). Indeed, Stokes equations include the

diffusion of the momentum over the scale H of the microfluidic channel, that brings a fundamental

difference with Darcy’s law.

The characteritic velocity resulting from the Darcy’s law Eq. (37) reads

UD =
βΦigκ

νε
, (38)

and the corresponding Rayleigh number comparing diffusion and advection by the gravity current

is:

R̃a =
βΦigκH

νεD
∼ UDH

D
, (39)

thus highlighting a scaling law with the thickness different from the microfluidic case, R̃a ∝ H

vs. Ra ∝ H3. Interestingly, the range of Rayleigh numbers R̃a involved in the context of CO2

sequestration [30] still corresponds to the range of Ra studied in the present work.

Despite the differences between these two models, Szulczewski and Juanes also reported five

distinct transport regimes in the porous rock that have strong similarities to those reported in

Fig. 2(a) for a microfluidic slit, see their names in Table II. In particular, the concentration profiles

depend on the same self-similar variables in each regime, and the different transition times (dis-

played in the last column of Table I for our model) obey the same scaling laws with the Rayleigh

number. We believe that these similarities are related to the linearity of the Darcy and Stokes equa-

tions in both problems. Nevertheless, since the velocity fields are different in both configurations,

we expect possibly different prefactors for the scaling laws. To confirm this point, we estimate the

solute flux across the interface z = 0 defined by:

f (t) =−
∫ 1

0

[
ϕuz−

(
∂ϕ

∂ z

)]

x,z=0
dx , (40)

as Szulczewski and Juanes also computed this quantity in each regime [30]. f is estimated using

Eqs. (19) in Regimes I and V, Eq. (22) in Regime II, following Ref. [27] in Regime III, and using
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Microfluidic slit, this work 2D porous layer [30]

I- early diffusion f ' 1
2(πt)1/2 I- early diffusion f̃ ' 1

2(πt)1/2

II- early advection f ' 0.00345Ra II- S-slumping f̃ ' 0.186R̃a

III- late advection f ' 0.0157 Ra1/2

t1/2 III- straight-line slumping f̃ ' 0.125 R̃a
1/2

t1/2

IV- 1D dispersion f ' 0.00321 Ra1/2

t3/4 IV- Taylor slumping f̃ ' 0.0238 R̃a
1/2

t3/4

V- late diffusion f ' 1
2(πt)1/2 V- late diffusion f̃ ' 1

2(πt)1/2

TABLE II. Solute flux defined by Eq. (40) for a microfluidic slit and in a 2D porous layer [30].

Eq. (31) in Regime IV. As shown in Table II, f for the microfluidic slit and f̃ for the porous

layer show the same scaling laws with t and Ra (resp. R̃a). With the exception of the diffusion

Regimes I and V, the large differences between the numerical prefactors (up to two orders of

magnitude) confirm that both problems are fundamentally different. Relevant prefactors must be

considered in potential comparisons with experimental works.

IV. THE CASE OF A 3D MICROFLUIDIC CHANNEL

We now consider the case of a microfluidic channel with a square cross-section, i.e. γ = L/H =

1 in Fig. 1. Numerical simulations were performed for three Rayleigh numbers Ra = 103, 104, and

105 with a fixed Schmidt number Sc = 103.

A. Transport regimes in the 3D case

Movie M2 supplied in the ESI shows the concentration and velocity fields in the planes y = 0

and z = 0 obtained from the numerical resolution of the 3D model for Ra = 105 and Sc = 103.

This movie helps to identify the same succession of regimes as for the slit case. From the full

numerical data, we computed again the width of the mixing zone w(t) using Eqs. (16) and (17) for

three different Rayleigh numbers Ra = 103, 104 and 105 and the same Schmidt number Sc = 103,

see Fig. 10. The dispersion curves obtained from the 3D model follow the same trends as the 2D

ones shown in Fig. 2(b). These data lead to the same conclusion as for the slit case: buoyancy

hardly affects the solute transport at all time scales for Ra ≤ 103 (the maximal value of the ratio

w/
√

t is only ' 1.14 at t ' 0.1 for Ra = 103).

These observations evidence that the description of the regimes presented above applies again
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for Sc = 103 and Ra = 105 (red), 104 (blue), 103 (magenta). Asymptotic models for Ra = 105: the yellow

dashed line given by Eq. (41) corresponds to the regime of late advection; the green dashed line is computed

from the numerical resolution of Eqs. (31) and (32) with α ' 739872. The black dashed line indicates the

diffusion law w =
√

t.

for the 3D case. Thereafter, we will not re-describe the regimes of early diffusion and early

advection, in particular because they are short or even hardly observable in most microfluidic

experimental configurations. With respect to the late advection regime, the analysis reported in

Sec. III D can easily be adapted to the 3D case. The shape of the pseudo-interface separating the

solution and the solvent is computed using Eq. (28) with f (ψ) and D̃ corresponding to a channel

with a square cross-section, see Ref. [27] for details. We then calculated the width w(t) from the

theoretical profiles, leading to:

w' 0.04104
√

Ra t . (41)

This prediction fits well the data obtained from the 3D numerical simulation at Ra = 105 for time

scales ranging from t ' 3×10−3 to ' 3×10−2, see Fig. 10. The numerical prefactor in Eq. (41)

(0.04104) is 16% smaller than in Eq. (29) for the slit case (0.04879), due to the increased viscous

forces induced by the side walls in the 3D case.

At later time scales t ≥ O(1), Movie M2 evidences that diffusion almost homogenizes the

concentration over the cross-section of the channel. This is illustrated by Figs. 11(a) and 11(d)
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showing the concentration field in the planes y = 0 and z = 0 at t ' 4.7. Figure 11, displaying

also the components of the velocity field in the same planes and at the same time, evidences a

quasi-parallel flow along z (due to the large extent w of the longitudinal density gradient), and a

secondary transverse flow as revealed by the components ux and uy in the z = 0 plane.
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FIG. 11. 3D case, Ra = 105, Sc = 103, and t ' 4.7. (a) Concentration field ϕ(x,y = 0,z, t). (b) Velocity

field uz(x,y = 0,z, t) and (c) ux(x,y = 0,z, t). (d) ϕ(x,y,z = 0, t), (e) uz(x,y,z = 0, t), (f) ux(x,y,z = 0, t), and

(g) uy(x,y,z = 0, t). The black lines in (a) and (d) are isoconcentration lines.

All these results suggest, as for the 2D case of the slit, the existence of a dispersion regime

described by a 1D model, see Eq. (31). However, the 3D case deserves particular attention because

(i) to our knowledge, the expression Eq. (32) of the dispersion coefficient cannot be found in the

literature for a rectangular channel. It has been already calculated for a circular tube [35] and a

slit [41], and we derive it for a rectangular cross-section below in Sec. IV B; (ii) As mentioned by

Chatwin and Ergogan [35] and evidenced in Fig. 11, a transverse flow exists in a 3D geometry,

which might hinder the validity of the 1D dispersion model. This issue is addressed below in

Sec. IV C.

B. 1D dispersion regime in the 3D case

The fact that w� 1 calls for the ”Taylor-like” approach leading to the 1D dispersion equation

Eq. (31), see Appendix B for the slit case. In such a theoretical approach [41], transverse variations
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in concentration are assumed to be small:

ϕ(x,y,z, t) = ϕ0(z, t)+ϕ1(x,y,z, t) , (42)

with ϕ0 given by Eq. (16) and ϕ1� ϕ0. Averaging the transport equation Eq. (12) over the cross-

section of the channel leads to:

∂ϕ0

∂ t
+

∂ < uzϕ1 >

∂ z
=

∂ 2ϕ0

∂ z2 , (43)

similarly to Eq. (B2) for the case of a slit. Subtracting this relation to Eq. (12) gives:

∂ϕ1

∂ t
+uz

∂ϕ0

∂ z
+u.∇ϕ1−

∂ < uzϕ1 >

∂ z
=

∂ 2ϕ1

∂x2 +
∂ 2ϕ1

∂y2 +
∂ 2ϕ1

∂ z2 , (44)

as Eq. (B3). For t� 1 and w� 1, Eq. (44) yields at leading order:

uz
∂ϕ0

∂ z
+uy

∂ϕ1

∂y
+ux

∂ϕ1

∂x
' ∂ 2ϕ1

∂x2 +
∂ 2ϕ1

∂y2 . (45)

In the 2D case of a slit, uy = 0 and the continuity equation Eq. (11) imposes ux ∼ uz/w� uz. The

term ux∂xϕ1 in the above relation is thus negligible, and the derivation of the dispersion equation

Eq. (31) is straightforward, see Appendix B. In the 3D case nevertheless, the continuity equation

does not make it possible to relate the scales of uy and ux to uz, as there can exist (possibly large)

secondary transverse flows verifying ∂xux +∂yuy = 0. It is therefore a priori not possible to derive

the dispersion equation Eq. (31) unless one neglects the terms ux∂xϕ1 and uy∂yϕ1 in Eq. (44). This

point had been mentioned by Chatwin and Erdogan who studied the classical Taylor-Aris problem

of the dispersion of a buoyant solute flowing in a circular tube [35]. They even showed that the

lateral mixing of the solute due to these secondary transverse flows could lead to a decrease of the

overall solute dispersion in a pressure-driven flow for some range of the Rayleigh number, see also

Refs. [36, 37].

The data shown in Fig. 11 along with Movie M2 in the ESI evidence that the maximal mag-

nitude of these secondary flows is about ux ' uy ' 1 for Ra = 105, and we will assume as a first

step that they do not significantly affect the transport of the solute. This assumption allows us to

neglect the terms uy∂yϕ1 and ux∂xϕ1 in Eq. (44) as compared to the diffusive terms ∂ 2
x ϕ1 and ∂ 2

y ϕ1,

leading to:

uz
∂ϕ0

∂ z
' ∂ 2ϕ1

∂x2 +
∂ 2ϕ1

∂y2 , (46)

similarly to Eq. (B4) for the slit.
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To compute the longitudinal flow uz, we first assume that it is described by the lubrication

approximation because the extent of the mixing zone is large (w� 1):

∂ 2uz

∂x2 +
∂ 2uz

∂y2 =
∂ p`
∂ z

, (47)

0 =
∂ p`
∂y

, (48)

0 =
∂ p`
∂x

+Raϕ0 , (49)

where p` is the pressure field associated to this longitudinal flow. After integrating Eqs. (48)

and (49) and inserting the resulting pressure field in Eq. (47), one finds:

∂ 2uz

∂x2 +
∂ 2uz

∂y2 = Ra
∂ϕ0

∂ z

(
1
2
− x
)
, (50)

the term 1/2 ensuring that < uz >= 0.

From Eqs. (46) and (50), it is therefore possible to calculate both uz and ϕ1, and finally to com-

pute the dispersion term < uzϕ1 > in Eq. (43) leading ultimately to the same dispersion equation

Eq. (31) but with a different α value for Deff in Eq. (32). Appendix C reports solutions of Eqs. (46)

and (50) using Fourier series for a rectangular channel of arbitrary aspect ratio γ , see Eqs. (C2)

and (C3). These calculations allow us to compute the numerical values of α as a function of γ , see

Fig. 15 in Appendix C. For a square cross-section, α ' 739872, and α tends towards the value

derived for the slit α = 362880 for infinitely thin channel, unlike the Taylor-Aris coefficient in a

rectangular channel [42, 43].

Figures 12(a) and 12(b) shows both the component uz and ϕ1 in the plane z = 0 calculated

using Eqs. (C2) and (C3) and the 1D dispersion model Eq. (31) at t ' 4.7. These data well

match the numerical data reported in Fig. 11(d) and (e) at the same time, see also the compar-

isons along the line y = z = 0 shown in Figs. 12(c) and (d). Consequently, the section-averaged

concentration profiles ϕ0(z, t) are correctly predicted by the 1D model (data not shown). These

profiles make it possible to compute the width of the mixing zone w(t) [Eq. (17)] plotted in

Fig. 10 along with the data obtained from the 3D numerical simulation for Ra = 105. The

1D dispersion approach accounts well for the spreading of the solute for t ≥ 0.1. Moreover,

Eq. (35) giving the w ∼ t1/4 behavior, allows us to compare the 2D and 3D configurations in this

regime. Eq. (35) indeed indicates that the ratio w2D(t)/w3D(t) between the 2D and the 3D cases is

(α2D/α3D)
1/4 ' (362880/739872)1/4 ' 0.84 ≤ 1, again due to the side walls increasing viscous

forces in the 3D case.

25



-0.5 0 0.5

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

-15

-10

-5

0

5

10

15

0 0.5 1
-20

0

20

0 0.5 1
-0.05

0

0.05

(a) (b) (c)

(d)

x

y y x

ϕ
1
(x
,0
,0
)

u
z
(x
,0
,0
)

FIG. 12. (a) uz(x,y,z = 0) and (b) ϕ1(x,y,z = 0) calculated using Eqs. (C2) and (C3) at t ' 4.7, see the

corresponding numerical data shown in Fig. 11(d) and (e). The longitudinal density gradient is calculated

by the numerical resolution of the dispersion equation Eq. (31). (c) and (d) show the comparisons along

the line y = z = 0 between the numerical data reported in Fig. 11(d) and (e) (squares) and the theoretical

profiles given by Eqs. (C2) and (C3) (black lines).

C. Transverse flows and validity range of the 1D dispersion equation

The comparisons shown in Sec. IV B evidence the validity of the 1D dispersion equation to

describe the overall solute transport at least for Ra . 105, although the transverse flow is not

considered in the 1D model. In the following, we derive the expression of the transverse flow with

the assumption that it does not significantly affect the concentration field. Then, we determine the

critical Rayleigh number for which this hypothesis no longer holds.

Our calculations make it possible to compute the transverse variations in concentration ϕ1, see

Fig. 12(b). These variations evidence density gradients along y due to the presence of the lateral

walls which impact the longitudinal flow, and thus the solute distribution. These density gradients

are responsible for a secondary flow because they cause a pressure gradient along y. We compute

this flow assuming that it is locally invariant along z because of the large extent of the mixing zone

(w� 1) and solenoidal, i.e. ∂yuy +∂xux = 0, to ensure the global mass conservation. This flow is

thus solution of:

0 =
∂ pt

∂ z
, (51)

∂ 2uy

∂x2 +
∂ 2uy

∂y2 =
∂ pt

∂y
, (52)

∂ 2ux

∂x2 +
∂ 2ux

∂y2 =
∂ pt

∂x
+Raϕ1 , (53)
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where pt is the pressure field associated to this 2D solenoidal flow. As in the work of Chatwin and

Erdogan [35], the global flow is therefore assumed to be the superposition of the longitudinal flow

described by Eqs. (47-49) with the secondary transverse flow determined by Eqs. (51-53).
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FIG. 13. Components ux (a) and uy (b) scaled by 10−8
(

Ra ∂ϕ0
∂ z

)2
computed from the resolution of the

biharmonic equation Eq (D2). (c) Corresponding transverse flow field in the plane x-y. This solenoidal flow

field results from the density gradients given by ϕ1, see Eq. (D2).

An analytical approximation of the solution of Eqs. (51-53) is computed in Appendix D for a

rectangular cross-section of arbitrary aspect ratio γ using a method described by Shankar et al.

[44, 45]. Figure 13 shows the theoretical prediction of this secondary transverse flow for γ = 1.

The vector velocity field shown in Fig. 13(c) simply corresponds to the solenoidal flow associated

to the density gradients revealed in Fig. 12(b). The predicted flow pattern compares well with

the numerical data reported in Fig. 11(f) and (g), and our calculations show in particular that the

maximal values of the components ux and uy are:

max(ux)'max(uy)' 14×10−8
(

Ra
∂ϕ0

∂ z

)2

. (54)

To go a step further into the comparison, Fig. 14 displays the maximal values of the compo-

nents ux, uy and uz in the transverse plane z = 0 vs. time t obtained from the 3D model for three

Rayleigh numbers, Ra = 103, 104, and 105. The theoretical prediction given by Eq. (C2) for the

longitudinal flow uz correctly fits the numerical data even at Ra = 105 for t ≥ 1. The theoretical

transverse components given by Eq. (54) accounts well for the data at Ra = 103 and Ra = 104

[with the gradient of ϕ0 at z = 0 computed from the numerical solution of Eq. (31)], but significant

discrepancies are observed for Ra = 105. For this Rayleigh number, ux ' uy ' 1 when entering the
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FIG. 14. Maximal value of the components uz (red), ux (blue) and uy (magenta) in the plane z = 0 computed

from the numerical 3D model at (a) Ra = 103, (b) 104, and (c) 105 (Sc = 103 for these three cases). The

black lines are the prediction given by Eq. (C2), and the dotted line the prediction given by Eq. (54). In

these theoretical predictions, the longitudinal density gradient ∂zϕ0 at z = 0 is calculated from the numerical

solution of the 1D dispersion Eq. (31).

1D dispersion regime (t ≥ 1), and advection by the secondary transverse flow is no more negligible

compared to the transverse diffusion. It is remarkable to see that the theoretical prediction given

by Eq. (54) makes it possible to predict this transition quantitatively. More precisely, the concen-

tration profiles in the dispersion regime are correctly described by the asymptotic approximation

Eq. (33) when buoyancy dominates, and one can thus compute the longitudinal gradient at z = 0

to write Eq. (54) as follows:

max(ux)'max(uy)' 2.2×10−5 Ra√
t
, (55)

for a square cross-section (α ' 739872). Therefore, the impact of transverse flows on the solute

transport is expected to be negligible for max(ux)'max(uy)≤ 1 leading to the criterion:

t ≥ 4.9×10−10 Ra2 , (56)

about t ≥ 4.9 for Ra = 105, in a remarkable agreement with the data of Fig. 14(c) showing a

discrepancy between the numerical solutions (ux,uy) and the predictions given by Eq. (54) for t ≤
10. Nevertheless, the transverse flow does not yet significantly change the longitudinal dispersion

even for Ra = 105 at t > 1 (see the good agreement between the 1D dispersion model and the

3D numerical simulation noted in Sec. IV B). However, our theoretical predictions suggest that a
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significant impact on the overall solute dispersion is expected for higher Rayleigh numbers. The

secondary transverse flow probably leads in this case to a decrease of the overall solute dispersion

because it contributes to mix the solute laterally, as also shown by Chatwin and Erdogan in a

different context, the Taylor-Aris dispersion of a buoyant solute in a pressure-driven flow [35–37].

In most microfluidic experimental configurations, these effects can a priori be neglected because

Ra≤ 105.

V. CONCLUSIONS

In the present work, we have studied in detail the impact of buoyancy on solute spreading in

two distinct microfluidic geometries: a 2D slit and a microchannel with a square cross-section,

in particular through analytical predictions fully validated by precise numerical resolutions of the

transport equations. One of the main results of our study is to show that for Ra≤ 103, solutal free

convection does not impact solute diffusion at all time scales. Beyond this result, our theoretical

predictions give also for larger Rayleigh numbers, the time scales (or density gradients) for which

buoyancy no longer impacts molecular diffusion, see the diagram in Fig. 9. Moreover, these same

theoretical predictions allow to estimate analytically the gravity currents, whatever their role on

solute transport. It is worth remembering that these flows may impact the transport of other species

dispersed in the flow, even though they do not affect the gradients of concentration of the active

species that generate them. As an example, for the experimental case mentioned in Introduction,

interdiffusion between water and a NaCl aqueous solution at 1 M in a microfluidic slit of height

H = 100 µm, free convection is not expected to impact the diffusive mixing because Ra ' 230.

Nevertheless, the typical longitudinal velocity defined by Eq. (36) is about ūz ' 25 µm/s in the

early regimes of diffusion and advection, and still ūz ' 5 µm/s for the time scale T = H2/D (see

Table I), and could significantly advect less mobile species dispersed in the solutions. The precise

control of transport conditions in microfluidic geometries thus possibly opens the way to flow

control induced by solute gradients.

For the 3D case of a rectangular cross-section channel, our work brings for the first time (to

our knowledge) estimates of the 1D dispersion coefficient describing the transport of the solute

at long time scales for any aspect ratio γ = L/H. Our work also highlights a subtle point related

to 3D geometries: the order of magnitude of the transverse flows cannot be determined from

the lubrication approximation alone. In the case studied here, these flows, induced by transverse
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density gradients, remain moderate up to Ra = 105, and the overall solute spreading is correctly

described by a 1D dispersion equation. However, our work predicts that these flows could play

a role at higher Rayleigh numbers for experimental situations outside the field of application of

microfluidics.

It could also be relevant to study more in details the case of shallow channels commonly en-

countered in microfluidic applications, and in particular to study more finely the transition between

a channel with a large aspect ratio, γ � 1, and the slit. Indeed, the case γ � 1 deserves more at-

tention because a new time scale appears, the diffusion time over the width of the channel ∼ γ2,

see Ref. [43] investigating this issue for the case of the Taylor-Aris dispersion.

Finally, we considered in our work the case of an ideal binary solution in the framework of the

Boussinesq approximation, see Eqs. (5–7). Microfluidic technologies allow a very fine control of

the transport conditions (especially mass and momentum), and thus to study interdiffusion in more

complex mixtures. It would then be useful to go beyond the model described by Eqs. (5–7) to in-

clude this complexity: change in viscosity and diffusion coefficient as a function of concentration,

role of the reference frame (volume velocity / mass velocity) [46, 47], other transport mecha-

nisms (e.g. diffusio-osmosis), etc. In this context, we hope that our work will make it possible to

disentangle the role played by solutal free convection from other transport phenomena.
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Appendix A: Buoyancy-driven flow at early stage for the case of a slit

After a transient corresponding to the diffusion of the momentum across the slit, the velocity

field is solution of the Stokes equation Eq. (20). Introducing the stream function ψ(x,z) defined

by:

ux =
∂ψ

∂ z
and uz =−

∂ψ

∂x
, (A1)
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Eq. (20) is equivalent to:

∆
2
ψ = Raδ (z) , (A2)

with δ (z) the Dirac function and ∆2 the biharmonic operator in 2D. The no-slip boundary condi-

tions impose:

∂ψ

∂ z
(x = 0 and 1,z) = 0 and

∂ψ

∂x
(x = 0 and 1,z) = 0 . (A3)

The flow is expected to vanish far from z = 0 and we impose ψ(x,z→±∞) = 0. Because dψ =

−uzdx+uxdz, integrating dψ over a contour along x = 0 or x = 1 starting from z→±∞ imposes:

ψ(x = 0 and 1,z) = 0 . (A4)

We define the Fourier transform of ψ(x,z) by:

ψ̃(x,k) =
1√
2π

∫
∞

−∞

dzψ(x,z)eikz . (A5)

Eq. (A2) turns to:

∂ 4ψ̃

∂x4 −2k2 ∂ 2ψ̃

∂x2 + k4
ψ̃ =

Ra√
2π

. (A6)

The solution of the ordinary differential equation is:

ψ̃(x,k) = Ra
k+ k(x−1)cosh(kx)− kxcosh(k− kx)+ sinh(k)− sinh(kx)− sinh(k− kx)√

2π k4(k+ sinh(k))
,(A7)

for the above boundary conditions. The stream function is then computed from the inverse Fourier

transform of ψ̃(x,k) and the velocity field is found using Eqs. (A1). These calculations lead in

particular to Eqs. (21) and (22) given in Sec. III C. Due to the symmetry of the equations along

the x = 1/2 plane, the maximum of ux occurs at x = 1/2 for all z values.

Appendix B: Derivation of the advection-dispersion equation for the case of a slit

We assume:

ϕ(x,z, t) = ϕ0(z, t)+ϕ1(x,z, t) , (B1)

with ϕ0 given by Eq. (16) and ϕ1� ϕ0. Averaging the transport equation Eq. (12) over the height

of the slit with the help of the continuity relation Eq. (11), leads to:

∂ϕ0

∂ t
+

∂ < uzϕ1 >

∂ z
=

∂ 2ϕ0

∂ z2 . (B2)
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Subtracting this relation to Eq. (12) yields:

∂ϕ1

∂ t
+uz

∂ϕ0

∂ z
+u.∇ϕ1−

∂ < uzϕ1 >

∂ z
=

∂ 2ϕ1

∂x2 +
∂ 2ϕ1

∂ z2 . (B3)

If we now assume that the scale w of the gradient along z verifies w� 1, the continuity equation

imposes ux ∼ uz/w, and Eq. (B3) reduces to:

uz
∂ϕ0

∂ z
' ∂ 2ϕ1

∂x2 , (B4)

provided that t � 1 and ϕ1 � ϕ0. Similarly, by neglecting the inertial term in Eq. (10) and

assuming again w� 1, one find Eq. (30) for the component uz, and ux given by the continuity

equation Eq. (11). Integration of Eq. (B4) along with the impermeability boundary condition and

< ϕ1 >= 0 gives:

ϕ1 =−
Ra

1440

(
∂ϕ0

∂ z

)2(
12x5−30x4 +20x3−1

)
. (B5)

Inserting Eq. (B5) into Eq. (B2) leads to the dispersion equation Eq. (31) with the dispersion

coefficient given by Eq. (32). Comparison of the solution of Eq. (31) with the data obtained from

the full 2D model shows that the 1D dispersion model is actually valid as soon as t ≥ 1.

Appendix C: Derivation of the advection-dispersion equation for the case of a microfluidic channel

with a rectangular cross-section

The solution of Eq. (50) is found by a Fourier sum noticing first that:
1
2
− x =

∞

∑
n=2,even

2
nπ

sin(nπx) for x ∈]0−1[ . (C1)

The Fourier series representing the solution of Eq. (50) along with the no-slip boundary conditions

at the solid walls is then:

uz = Ra
∂ϕ0

∂ z

∞

∑
n=2,even

2
(nπ)3

(
cosh(πny)

cosh(πnγ/2)
−1
)

sin(nπx) , (C2)

with γ = L/H, see Ref. [48] for a similar calculation of the pressure-driven velocity profile in a

rectangular channel. The Fourier series representing ϕ1 can now be found using Eq. (46) along

with the impermeability boundary conditions at the solid walls and the constraint < ϕ1 >= 0,

leading after calculations to:

ϕ1 =
8Ra
π6

(
∂ϕ0

∂ z

)2 ∞

∑
n=1,odd

∞

∑
p=2,even

cos(nπx)
p2(p2−n2)2

[
cosh(π py)

cosh(π pγ/2)

− p
n

tanh(π p
γ

2
)

cosh(πny)
sinh(πnγ/2)

+
p2−n2

n2

]
.(C3)
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The dispersion term < uzϕ1 > in Eq. (43) can now be evaluated leading finally to the dispersion

equation Eq. (31) with Deff given by Eq. (32). The numerical prefactor α is given by:

1
α

=
1

362880
− 64

γπ11

∞

∑
n=1,odd

∞

∑
p=2,even

∞

∑
q=2,even

1
n2 p2q2(p2−n2)2(q2−n2)

[
n2 (p tanh

(
πγ p

2

)
−q tanh

(
πγq

2

))

p2−q2

−np tanh
(

πγ p
2

)(
n−qcoth

(
πγn

2

)
tanh

(
πγq

2

))

n2−q2 +
(p2−n2) tanh

(
πγq

2

)

q
+

(p2−n2) tanh
(

πγ p
2

)

p

]
, (C4)

and therefore only depends on the aspect ratio γ of the channel.

Asymptotic approximations of α can be found for γ → 0:

1
α

=
γ4

17280
+O(γ6) . (C5)

For a wide slit, i.e. γ � 1, the terms tanh and coth in Eq. (C4) are close to ' 1, and one thus find:

1
α
' 1

362880
− 1

681432γ
, (C6)

where the factor ' 681432 is found by calculating numerically the sum in Eq. (C4). Figure 15

displays the values of α calculated using Eq. (C4) for several aspect ratios γ along with the asymp-

totic behaviors Eqs. (C5) and (C6). It should be noted that the approximation Eq. (C6) valid for

.
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FIG. 15. Prefactor α in Eq. (32) for a rectangular cross-section of aspect ratio γ . The dashed dotted line is

the asymptotic bahavior Eq. (C5) valid for γ→ 0. The magenta line is the approximation Eq. (C6) valid for

γ � 1. The dashed line is the value for a slit α = 362880. Inset: zoom on the γ range 1–4.

thin channels γ � 1 yields correct estimates of α within < 0.5% for γ ≥ 1.5. The value for a

square cross-section is α ' 739872.
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Appendix D: Derivation of the secondary transverse flow

We introduce the stream function ψ(x,y) defined by:

ux =
∂ψ

∂y
and uy =−

∂ψ

∂x
. (D1)

Eqs. (52) and (53) turn to the inhomogeneous biharmonic equation:

(
∂ 2

∂x2 +
∂

∂y2

)2

ψ = Ra
∂ϕ1

∂y
, (D2)

with ϕ1 given by Eq. (C3). The no-slip boundary conditions at the solid walls impose:

∂ψ

∂y
(x,y =±γ/2) =

∂ψ

∂x
(x = 0 and 1,y) = ψ(x,y =±γ/2) = ψ(x = 0 and 1,y) = 0 . (D3)

It can be seen that the same equations govern viscous flows induced by inhomogeneous tempera-

ture fields in a rectangular container, and we will use the method described in Refs. [44, 45] to esti-

mate the solution of Eq. (D2). In brief, the general solution of Eq. (D2) is written as ψ = ψin+ψin

with ψin any solution of the inhomogeneous equation (i.e. with the right-hand term), and ψho the

solution of the homogenous biharmonic equation, so that ψ fulfills the above boundary conditions.

ψin can be found simply by a Fourier series expansion following ϕ1, and ψho can be found using a

direct eigenfunction expansion, see below and Refs. [44, 45] for details.

For simplicity, we re-write ϕ1 as:

ϕ1 = Ra
(

∂ϕ0

∂ z

)2 ∞

∑
n=1,odd

∞

∑
p=2,even

hn,p(y)cos(nπx) , (D4)

with hn,p(y) given in Eq. (C3). An inhomogeneous solution ψin of Eq. (D2) can be easily found

using the following Fourier series:

ψin =

(
Ra

∂ϕ0

∂ z

)2 ∞

∑
n=1,odd

∞

∑
p=2,even

an,p(y)cos(nπx) , (D5)

with an,p(y) solutions of the following ordinary differential equations:

a(4)n,p(y)−2π
2n2a(2)n,p(y)+π

4n4an,p(y) = h(1)n,p(y) . (D6)

The solutions of these equations with the following boundary conditions:

a(1)n,p(±γ/2) = an,p(±γ/2) = 0 , (D7)
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lead to a Fourier series representing ψin. For the sake of clarity, the functions an,p(y) are not

written here. This Fourier series fullfills all the boundary conditions given by Eq. (D3) except

ψin(x = 0,y) =−ψin(x = 1,y) = κ(y) 6= 0.

The next step consists therefore in finding the solution ψho of the homogeneous biharmonic

equation with the boundary conditions given by Eq. (D3) but with ψho(x = 0,y) = −ψho(x =

1,y) = −κ(y). As the symmetry of the problem imposes that ψ is an odd function of y, we will

use the following odd eigunfunctions exp(±λnx)φn(y) with:

φn(y) = ycos(λny)− γ

2
cot
(

γλn

2

)
sin(λny) , (D8)

and λn the complex roots of the transcendental equation:

sin(λn) = λn , (D9)

which can be estimated by the Newton’s method. These eigenfunctions verify the boundary con-

ditions expected at y = ±γ/2. As ψ is a real and odd function of x with respect to x = 1/2, an

eigenfunction expansion for ψho(x,y) is:

ψho(x,y) =
(

Ra
∂ϕ0

∂ z

)2 ∞

∑
n=1

Re
[
bnφn(y)

(
e−λnx− e−λn(1−x)

)]
(D10)

where the complex numbers bn have to be determined from the boundary conditions at x = 0 and

x = 1. To get an approximate solution, we proceed as proposed by Shankar in Ref. [44]. First, the

sum in Eq. (D10) is truncated to the first N terms. Then, a least-squares procedure is used to find

the coefficients bn which yield the best expected boundary conditions at x = 0 for m equidistant

points over the interval y = [0− γ/2]. This procedure corresponding to the resolution of 2N linear

algebraic equations is performed using Mathematica. The coefficients bn are rapidly converging

and only a few eigenfunctions are needed to get an accurate estimate of ψho(x,y).

Figures 13(a) and 13(b) display the components uy and ux computed from the stream function

ψ = ψin +ψho calculated using the above procedure for γ = 1. Although the velocity field (ux,uy)

seem to suggest rotational symmetry for a square cross-section, this is not the case because of the

gravity along x, and the maximum values of the components ux and uy, although close, are not

strictly equal.
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