
HAL Id: hal-03145943
https://hal.science/hal-03145943

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Degeneracy of Random Expressions Specified by
Systems of Combinatorial Equations

Florent Koechlin, Cyril Nicaud, Pablo Rotondo

To cite this version:
Florent Koechlin, Cyril Nicaud, Pablo Rotondo. On the Degeneracy of Random Expressions Specified
by Systems of Combinatorial Equations. International Conference on Developments in Language
Theory (DLT 2020), May 2020, Tampa, United States. pp.164-177, �10.1007/978-3-030-48516-0_13�.
�hal-03145943�

https://hal.science/hal-03145943
https://hal.archives-ouvertes.fr


On the Degeneracy of Random Expressions
Specified by Systems of Combinatorial Equations

Florent Koechlin1, Cyril Nicaud1 and Pablo Rotondo2

1 LIGM, Univ Gustave Eiffel, CNRS, ENPC, firstname.name@u-pem.fr
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Abstract. We consider general expressions, which are trees whose nodes
are labeled with operators, that represent syntactic descriptions of for-
mulas. We assume that there is an operator that has an absorbing pattern
and prove that if we use this property to simplify a uniform random ex-
pression with n nodes, then the expected size of the result is bounded
by a constant. In our framework, expressions are defined using a combi-
natorial system, which describes how they are built: one can ensure, for
instance, that there are no two consecutive stars in regular expressions.
This generalizes a former result where only one equation was allowed,
confirming the lack of expressivity of uniform random expressions.

1 Introduction

This article is the sequel of the work started in [10], where we investigate the lack
of expressivity of uniform random expressions. In our setting, we use the natural
encoding of expressions as trees, which is a convenient way to manipulate them
both in theory and in practice. In particular, it allows us to treat many different
kinds of expressions at a general level (see Fig. 1 below): regular expressions,
arithmetic expressions, boolean formulas, LTL formulas, and so on.
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Fig. 1. Four expression trees and their associated formulas. From left to right: a logical
formula, a regular expression, an LTL formula and a function.

For this representation, some problems are solved using a simple traversal of
the tree: for instance, testing whether the language of a regular expression con-
tains the empty word, or formally differentiating a function. Sometimes however,
the tree is not the best way to encode the object it represents in the computer,



and we transform it into an equivalent adequate structure; in the context of
formal languages, a regular expression (encoded using a tree) is typically trans-
formed into an automaton, using one of the many known algorithms such as the
Thompson construction or the Glushkov automaton.

In our setting, we assume that one wants to estimate the efficiency of an al-
gorithm, or a tool, whose inputs are expressions. The classical theoretical frame-
work consists in analyzing the worst case complexity, but there is often some
discrepancy between this measure of efficiency and what is observed in practice.
A practical approach consists in using benchmarks to test the tool on real data.
But in many contexts, having access to good benchmarks is quite difficult. An
alternative to these two solutions is to consider the average complexity of the
algorithm, which is sometimes amenable to a mathematical analysis, and which
can be studied experimentally, provided we have a random generator at hand.
Going that way, we have to choose a probability distribution on size-n inputs,
which can be difficult: we would like to study a “realistic” probability distribu-
tion that is also mathematically tractable. When no specific random model is
available, it is classical to consider the uniform distribution, where all size-n in-
puts are equally likely. In many frameworks, such as sorting algorithms, studying
the uniform distribution yields useful insights on the behavior of the algorithm.

Following this idea, several works have been undertaken on uniform random
expressions, in various contexts. Some are done at a general level: the expected
height of a uniform random expression [12] always grows in Θ(

√
n), if we identify

common subexpressions then the expected size of the resulting acyclic graph [7]
is in Θ( n√

logn
), . . . There are also more specific results on the expected size of

the automaton built from a uniform random regular expression, using various
algorithms [14, 4]. In another setting, the expected cost of the computation of
the derivative of a random function was proved to be in Θ(n3/2), both in time
and space [8]. There are also a lot of results on random boolean formulas, but
the framework is a bit different (for a more detailed account on this topic, we
refer the interested reader to Gardy’s survey [9]).

In [10], we questioned the model of uniform random expressions. Let us illus-
trate the main result of [10] on an example, regular expressions on the alphabet
{a, b}. The set LR of regular expressions is inductively defined by

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
. (?)

The formula above is an equation on trees, where the size of a tree is its number
of nodes. In particular a, b and ε represent trees of size 1, reduced to a leaf,
labeled accordingly. As one can see from the specification (?), leaves have labels
in {a, b, ε}, unary nodes are labeled by ? and binary nodes by either the concate-
nation • or the union +. Observe that the regular expression P corresponding to
(a+ b)? denotes the regular language {a, b}? of all possible words. This language
is absorbing for the union operation on regular languages. So if we start with a
regular expression R (a tree), identify every occurrence of the pattern P (a sub-
tree), then rewrite the tree (bottom-up) by using inductively the simplifications

2



+

+ ?

ab +

c d

(b+ (c+ d)) + a?

+

+ ?

a

b

+

c

d

((b+ c) + d) + a?

+

+ +

db c ?

a

(b+ c) + (d+ a?)

Fig. 2. Three regular expression trees whose denoted languages are equal because of
the associativity of the union.

+
/\
X P
→ P and

+
/\
P X
→ P, this results in a simplified tree σ(R) that denotes the

same regular language. Of course, other simplifications could be considered, but
we focus on this particular one. The theorem we proved in [10] implies that if one
takes uniformly at random a regular expression of size n and applies this simpli-
fication algorithm, then the expected size of the resulting equivalent expression
tends to a constant! It means that the uniform distribution on regular expres-
sions produces a degenerated distribution on regular languages. More generally,
we proved that: For every class of expressions that admits a specification similar
to Eq. (?) and such that there is an absorbing pattern for some of the operations,
the expected size of the simplification of a uniform random expression of size n
tends to a constant as n tends to infinity.3 This negative result is quite general,
as most examples of expressions have an absorbing pattern: for instance x ∧ ¬x
is always false, and therefore absorbing for ∧.

The statement of the main theorem of [10] is general, as it can be used to
discard the uniform distribution for expressions defined inductively as in Eq. (?).
However it is limited to that kind of simple specifications. And if we take a closer
look at the regular expressions from LR, we observe that nothing prevents, for
instance, useless sequences of nested stars as in (((a + bb)?)?)?. It is natural to
wonder whether the result of [10] still holds when we forbid two consecutive stars
in the specification. We could also use the associativity of the union to prevent
different representations of the same language, as depicted in Fig. 2, or many
other properties, to try to reduce the redundancy at the combinatorial level.

This is the question we investigate in this article: does the degeneracy phe-
nomenon of [10] still hold for more advanced combinatorial specifications? More
precisely, we now consider specifications made using a system of (inductive)
combinatorial equations, instead of only one as in Eq. (?). For instance, we can
forbid consecutive stars using the combinatorial system:LR =

?
|
S

+ S,

S = a+ b+ ε+
+
/\

LR LR
+

•
/\

LR LR
.

(??)

3 The idea behind our work comes from a very specific analysis of and/or formulas
established in Nguyên Thê PhD’s dissertation [13, Ch 4.4].
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The associativity of the union (Fig. 2) can be taken into account by preventing
the right child of any +-node from being also labeled by +. Clearly, systems
cannot be used for forbidding intricated patterns, but they still greatly enrich
the families of expressions we can deal with. Moreover that kind of systems,
which has strong similarities with context-free grammars, is amenable to analytic
techniques as we will see in the sequel; this was for instance used by Lee and
Shallit to estimate the number of regular languages in [11].

Our contributions can be described as follows. We consider expressions de-
fined by systems of combinatorial equations (instead of just one equation), and
establish a similar degeneracy result: if there is an absorbing pattern, then the
expected reduced size of a uniform random expression of size n is upper bounded
by a constant as n tends to infinity.4 Hence, even if we use the system to remove
redundancy from the specification (e.g., by forbidding consecutive stars), uni-
form random expressions still lack expressivity. Technically, we once again rely
on the framework of analytic combinatorics for our proofs. However, the gener-
alization to systems induces two main difficulties. First, we are not dealing with
the well-known varieties of simple trees anymore [6, VII.3], so we have to rely
on much more advanced techniques of analytic combinatorics; this is sketched in
Section 5. Second, some work is required on the specification itself, to identify
suitable hypotheses for our theorem; for instance, it is easy from the specification
to prevent the absorbing pattern from appearing as a subtree at all, in which
case our statement does not hold anymore, since there are no simplifications
taking place.

Due to the lack of space, the analytic proofs are only sketched or omitted
in this extended abstract: we chose to focus on the discussion on combinatorial
systems (Section 3) and on the presentation of our framework (Section 4).

2 Basic Definitions

For a given positive integer n, [n] = {1, . . . , n} denotes the set of the first n
positive integers. If E is a finite set, |E| denotes its cardinality.

A combinatorial class is a set C equipped with a size function | · | from C to
N (the size of C ∈ C is |C|) such that for any n ∈ N, the set Cn of size-n elements
of C is finite. Let Cn = |Cn|, the generating series C(z) of C is the formal power
series defined by

C(z) =
∑
C∈C

z|C| =
∑
n≥0

Cnz
n.

Generating series are tools of choice to study combinatorial objects. When their
radius of convergence is not zero, they can be viewed as analytic function from
C to C, and very useful theorems have been developed in the field of analytic
combinatorics [6] to, for instance, easily obtain an asymptotic equivalent to Cn.
We rely on that kind of techniques in Section 5 to prove our main theorem.

4 The result holds for natural yet technical conditions on the system.
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If C(z) =
∑
n≥0 Cnz

n is a formal power series, let [zn]C(z) denote its n-th
coefficient Cn. Let ξ be a parameter on the combinatorial class C, that is, a
mapping from C to N. Typically, ξ stands for some statistic on the objects of C:
the number of cycles in a permutation, the number of leaves in a tree, . . . We
define the bivariate generating series C(z, u) associated with C and ξ by:

C(z, u) =
∑
C∈C

z|C|uξ(C) =
∑
k,n≥0

Cn,kz
nuk,

where Cn,k is the number of size-n elements C of C such that ξ(C) = k. In partic-
ular, C(z) = C(z, 1). Bivariate generating series are useful to obtain information
on ξ, such as its expectation or higher moments. Indeed, if En[ξ] denotes the
expectation of ξ for the uniform distribution on Cn, i.e. where all the elements
of size n are equally likely, a direct computation yields:

En[ξ] =
[zn]∂uC(z, u)

∣∣
u=1

[zn]C(z)
, (1)

where ∂uC(z, u)
∣∣
u=1

consists in first differentiating C(z, u) with respect to u,
and then setting u = 1. Hence, if we have an expression for C(z, u) we can
estimate En[ξ] if we can estimate the coefficients of the series in Eq. (1).

In the sequel, the combinatorial objects we study are trees, and we will
have methods to compute the generating series directly from their specifications.
Then, powerful theorems from analytic combinatorics will be used to estimate
the expectation, using Eq. (1). So we delay the automatic construction and the
analytic treatment to their respective sections.

3 Combinatorial Systems of Trees

3.1 Definition of combinatorial expressions and of systems

In the sequel the only combinatorial objects we consider are plane trees. These
are trees embedded in the plane, which means that the order of the children

matters: the two trees
•
/\
◦ •

and
•
/\
• ◦

are different. Every node is labeled by an

element in a set of symbols and the size of a tree is its number of nodes.

More formally, let S be a finite set, whose elements are operator symbols,
and let a be a mapping from S to N. The value a(s) is called the arity5 of the
operator s. An expression over S is a plane tree where each node of arity i is
labeled by an element s ∈ S such that a(s) = i (leaves’ symbols have arity 0).

Example 1. In Fig. 1, the first tree is an expression over S = {∧,∨,¬, x1, x2, x3}
with a(∧) = a(∨) = 2, a(¬) = 1 and a(x1) = a(x2) = a(x3) = 0.

5 We do not use the term degree, because if the tree is viewed as a graph, the degree
of a node is its arity plus one (except for the root).
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An incomplete expression over S is an expression where (possibly) some
leaves are labeled with a new symbol 2 of arity 0. Informally, such a tree repre-
sents part of an expression, where the 2-nodes need to be completed by being
substituted by an expression. An incomplete expression with no 2-leaf is called a
complete expression, or just an expression. If T is an incomplete expression over
S, its arity a(T ) is its number of 2-leaves. It is consistent with the definition
of the arity of a symbol, by viewing a symbol s of arity a(s) as an incomplete

expression made of a root labeled by s with a(s) 2-children: ∧ is viewed as
∧
/\

2 2
.

Let T2(S) and T (S) be the set of incomplete and complete expressions over S.
If T is an incomplete expression over S of arity t, and T1, . . . , Tt are ex-

pressions over S, we denote by T [T1, . . . , Tt] the expression obtained by sub-
stituting the i-th 2-leaf in depth-first order by Ti, for i ∈ [t]. This notation
is generalized to sets of expressions: if T1, . . . , Tt are sets of expressions then
T [T1, . . . , Tt] = {T [T1, . . . , Tt] : T1 ∈ T1, . . . , Tt ∈ Tt}.

A rule of dimension m ≥ 1 over S is an incomplete expression T ∈ T2(S)
where each 2-node is replaced by an integer of [m]. Alternatively, a rule can be
seen as a tupleM = (T, i1, . . . , it), where T is an incomplete expression of arity
t and i1, . . . , it are the values placed in its 2-leaves in depth-first order. The
arity a(M) of a ruleM is the arity of its incomplete expression, and ind(M) =
(i1, . . . , it) is the tuple of integer values obtained by a depth-first traversal of
M. A combinatorial system of trees E = {E1, . . . , Em} of dimension m over S is
a system of m set equations of complete trees in T (S): each Ei is a non-empty
finite set of rules over S, and the system in variables L1, . . . , Lm is:

L1 =
⋃

(T,i1,...,it)∈E1

T [Li1 , . . . ,Lit ]

...

Lm =
⋃

(T,i1,...,it)∈Em

T [Li1 , . . . ,Lit ].

(2)

Example 2. To specify the system given in Eq. (??) using our formalism, we

have m = 2. Its tuples representation is: E1 =
{(

?
|
2
, 2
)
, (2, 2)

}
, and E2 ={( •

/\
2 2

, 1, 1
)
,
(

+
/\

2 2
, 1, 1

)
, (a), (b), (ε)

}
, and its equivalent tree representation is

E1 =
{?
|
2

}
, and E2 =

{ •
/\
1 1
,

+
/\
1 1
, a, b, ε

}
, which corresponds to Eq. (??) with LR =

L1 and S = L2. In practice, we prefer descriptions as in Eq. (??), which are easier
to read, but they are all equivalent.

3.2 Generating series

If the system is not ambiguous, that is, if L1, . . . ,Lm is the6 solution of the
system and every tree in every Li can be uniquely built from the specification,

6 In all generalities, there can be several solutions to a system, but the conditions we
will add prevent this from happening.
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then the system can be directly translated into a system of equations on the
generating series. This is a direct application of the symbolic method in analytic
combinatorics [6, Part A] and we get the system

L1(z) =
∑

(T,i1,...,ia(T ))∈E1

z|T |−a(T )Li1(z) · · ·Lia(T )
(z)

...

Lm(z) =
∑

(T,i1,...,ia(T ))∈Em

z|T |−a(T )Li1(z) · · ·Lia(T )
(z).

(3)

where Li(z) is the generating series of Li. If the system is ambiguous, the Li(z)’s
still have a meaning: each expression of Li accounts for the number of ways it
can be derived from the system. When the system is unambiguous, there is only
one way to derive each expression, and Li(z) is the generating series of Li.

3.3 Designing practical combinatorial systems of trees

Systems of trees such as Eq. (2) are not always well-founded. Sometimes they
are, but still contain unnecessary equations. It is not the topic of this article to
fully characterize when a system is correct, but we nonetheless need sufficient
conditions to ensure that our results hold: in this section, we just present exam-
ples to underline some bad properties that might happen. For a more detailed
account on combinatorial systems, the reader is referred to [1, 8, 16].

Ambiguity. As mentioned above, the system can be ambiguous, in which case the
combinatorial system cannot directly be translated into a system of generating
series. This is a case for instance for the following systemL1 = a+

?
|
L1

+
?
|
L2

L2 =
?
|
L1

+ a+ b+ ε,

as the expression
?
|
a

can be produced in two ways for the component L1.

Empty components. Some specifications produce empty Li’s. For instance, con-

sider the system
{
L1 =

•
/\
L1 L2

; L2 = a+ b+ ε+L1

}
: its only solution is L1 = ∅

and L2 = {a, b, ε}.

Cyclic unit-dependency. The unit-dependency graph G2(E) of a system E is the
directed graph of vertex set [m], with an edge i→ j whenever (2, j) ∈ Ei. Such
a rule is called a unit rule. It means that Li directly depends on Lj . For instance
LR directly depends on S in Eq. (??). We can work with systems having unit
dependencies, provided the unit-dependency graph is acyclic. If it is not, then the
equations forming a cycle are useless or badly defined for our purposes. Consider
for instance the system and its unit-dependency graph depicted in Fig. 3.

7



{
L1 = L2 +

?
|
L1

L2 = a+ b+ ε+ L1

1 2

Fig. 3. The unit-dependency graph is not acyclic, and there are infinitely many ways
to derive a from L2: L2 → a, L2 → L1 → L2 → a. . .

Not strongly connected. The dependency graph G(E) of the system E is the di-
rected graph of vertex set [m], with an edge i → j whenever there is a rule
M ∈ Ei such that j ∈ ind(M): Li depends on Lj in the specification. Some
parts of the system may be unreachable from other parts, which may bring up
difficulties. A sufficient condition to prevent this from happening is to ask for the
dependency graph to be strongly connected; it is not necessary, but this assump-
tion will also be useful in the proof our main theorem. See Section 6 for a more
detailed discussion on non-strongly connected systems. In Fig. 4 is depicted a
system and its associated graph.


L1 =

?
|
L2

+
?
|
L3

L2 = a+ b+ ε+
•
/\
L4 L4

L3 =
+
/\
L4 L1

+
+
/\
L4 L2

L4 = L1 + L2 + L3

1 2

3 4

Fig. 4. A system and its associated dependency graph, which is strongly connected.

4 Settings, working hypothesis and simplifications

4.1 Framework

In this section, we describe our framework: we specify the kind of systems we
are going to work with, and the settings for describing syntactic simplifications.

Let E be a combinatorial system of trees over S of dimension m of solution
(L1, . . . ,Lm). A set of expressions L over S is defined by E if there exists a
non-empty subset I of [m] such that L = ∪i∈ILi.

From now on we assume that we are using a system E of dimension m over S
and that S contains an operator~ of arity at least 2. We furthermore assume that
there is a complete expression P, such that when interpreted, every expression of
root ~ having P as a child is equivalent to P: the interpretation of P is absorbing
for the operator associated with ~. The expression P is the absorbing pattern
and ~ is the absorbing operator.

Example 3. Our main example is L defined by the system of Eq. (??) with L =
LR, the regular expressions with no two consecutive stars. As regular expressions,
they are interpreted as regular languages. Since the language (a+b)? is absorbing

8



for the union, we set the associated expression as the absorbing pattern P and
the operator symbol + as the absorbing operator.

The simplification of a complete expression T is the complete expression σ(T )
obtained by applying bottom-up the rewritting rule, where a is the arity of ~:

~

C1
. . . Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

More formally, the simplification σ(T,P,~) of T , or just σ(T ) when the
context is clear, is inductively defined by: σ(T ) = T if T has size 1 and

σ((⊕, C1, . . . , Cd)) =

{
P if ⊕ = ~ and ∃i, σ(Ci) = P,

(⊕, σ(C1), . . . , σ(Cd)) otherwise.

A complete expression T is fully reducible when σ(T ) = P.
We also need some conditions on the system E . Some of them come from

the discussion of Section 3.3, others are needed for the techniques from analytic
combinatorics used in our proofs. A system E satisfies the hypothesis (H) when:

(H1) The graph G(E) is strongly connected and G2(E) is acyclic.
(H2) The system is aperiodic: there exists N such that for all n ≥ N , there

is at least one expression of size n in every coordinate of the solution
(L1, . . . ,Lm) of the system.

(H3) For some j, there is a rule T ∈ Ej of root ~, having at least two children
T ′ and T ′′ such that: there is a way to produce a fully reducible expression
from T ′ and a(T ′′) ≥ 1.

(H4) The system is not linear : there is a rule of arity at least 2.
(H5) The system is non-ambiguous: each complete expression can be built in

at most one way.

Conditions (H1) and (H5) were already discussed in Section 3.3. Condition (H4)
prevents the system from generating only lists (trees whose internal nodes have

arity 1), or more generally families that grow linearly (for instance L =
+
/\
L a

+ b),

which are degenerated. Without Condition (H3) the system could be designed
in a way that prevents simplifications (in which case our result does not hold,
of course). Finally, Condition (H2) is necessary to keep the analysis manageable
(together with the strong connectivity of G(E) of Condition (H1)).

4.2 Proper systems and system iteration

A combinatorial system of trees E is proper when it contains no unit rules and
when the 2-leaves of all its rules have depth one (they are children of a root).
In this section we establish the following preparatory proposition:

Proposition 1. If L is defined by a system E that satisfies (H), then there exists
a proper system E ′ that satisfies (H) such that L is defined by E ′.

9



Proposition 1 will be important in the sequel, as proper systems are easier to
deal with for the analytic analysis. One key tool to prove Proposition 1 is the
notion of system iteration, which consists in substituting simultaneously every
integer-leaf i in each rule by all the rules of Ei. For instance, if we iterate once

our recurring system {L1 =
?
|
L2

+ L2; L2 = a+ b+ ε+
+
/\
L1 L1

+
•
/\
L1 L1

}, we get7



L1 =
?
|
a

+
?
|
b

+
?
|
ε

+

?
|
+
/\
L1 L1

+

?
|
•
/\
L1 L1

+ a+ b+ ε+
+
/\
L1 L1

+
•
/\
L1 L1

L2 = a+ b+ ε+
+
/\
L2 L2

+

+
/ \
? L2

|
L2

+

+
/ \
L2 ?
|
L2

+

+
/ \
? ?
| |
L2 L2

+
•
/\
L2 L2

+

•
/ \
? L2

|
L2

+

•
/ \
L2 ?
|
L2

+

•
/ \
? ?
| |
L2 L2

.

Formally, if we iterate E = {E1, . . . , Em} once, then for all i ∈ [m] we have

Li =
⋃

(T,i1,...,it)∈E1

T

 ⋃
(T1,j1)∈Ei1

T1[Lj1,1 , . . . ,Lj1,t1 ], . . . ,
⋃

(Tt,jt)∈Eit

Tt[Ljt,1 , . . . ,Ljt,tt ]


where j1 = (j1,1, . . . , j1,t1), . . . , jt = (jt,1, . . . , jt,tt).
Let E2 denote the system obtained after iterating E once; it is called the system
of order 2 (from E). More generally Et is the system of order t obtained by
iterating t− 1 times the system E . From the definition we directly get:

Lemma 1. If L is defined by a system E, it is also defined by all its iterates Et.
Moreover, if E satisfies (H), every Et also satisfies (H), except that G(Et) may
not be strongly connected.

We can sketch the proof of Proposition 1 as follows: since G2(E) is acyclic,
we can remove all the unit rules by iterating the system sufficiently many times.
By Lemma 1, we have to be cautious, and find an order t so that Gt is strongly
connected: a study of the cycle lengths in G(E) ensures that such a t exists. So L
is defined by Et, which has no unit rules and which satisfies (H). To transform
Et into an equivalent proper system, we have to increase the dimension to cut
the rules as needed. It is better explained on an example:

L1 =
?
|
L3

+

•
/ \
? L2

|
L1

→

L1 =
?
|
L3

+
•
/ \
K L2

K =
?
|
L1

.

This construction can be systematized. It preserves (H) and introduces no unit
rules, which concludes the proof sketch.

7 Observe that the iterated system is not strongly connected anymore. It also yields
two ways of defining the set of expressions using only one equation: it is very specific
to this example, no such property holds in general.

10



5 Main result

Our main result establishes the degeneracy of uniform random expressions when
there is an absorbing pattern, in our framework:

Theorem 1. Let E be a combinatorial system of trees over S, of absorbing op-
erator ~ and of absorbing pattern P, that satisfies (H). If L is defined by E
then there exists a positive constant C such that, for the uniform distribution
on size-n expressions in L, the expected size of the simplification of a random
expression is smaller than C. Moreover, every moment of order t of this random
variable is bounded from above by a constant Ct.

The remainer of this section is devoted to the proof sketch of the first part
of Theorem 1: the expectation of the size after simplification. The moments are
handled similarly. Thanks to Proposition 1, we can assume that E is a proper
system. By Condition (H5), it is non-ambiguous so we can directly obtain a sys-
tem of equations for the associated generating series, as explained in Section 3.2.
From now on, for readability and succinctness, we use the vector notation (with
bold characters): L(z) denotes the vector (L1(z), . . . , Lm(z)), and we rewrite the
system of Eq. (3) in the more compact form

L(z) = z φ(z; L(z)), (4)

where φ = (φ1, . . . , φm) and φi(z; y) =
∑

(T,i1,...,ia(T ))∈Ei

z|T |−1−a(T )
∏a(T )
j=1 yij .

Under this form, and because E satisfies (H), we are in the setting of Drmota’s
celebrated Theorem for systems of equations (Theorem 2.33 in [5], refined in [3]),
which gives the asymptotics of the coefficients of the Li(z)’s. This is stated in
Proposition 2 below, where Jacy[φ](z; y) is the Jacobian matrix of the system,
which is the m×m matrix such that Jacy[φ](z; y)i,j = ∂yjφi(z; y).

Proposition 2. As E satisfies (H), the solution L(z) of the system of equa-
tions (4) is such that all its coordinates Lj(z) share the same dominant singular-
ity ρ ∈ (0, 1], and we have τj := Lj(ρ) <∞. The singularity ρ and τ = (τj)j ver-
ify the characteristic system {τ = ρ φ(ρ; τ),det(Idm×m − ρ Jacy[φ](ρ; τ)) = 0}.
Moreover, for every j, there exist two functions gj(z) and hj(z), analytic at
z = ρ, such that locally around z = ρ, with z 6∈ [ρ,+∞),

Lj(z) = gj(z)− hj(z)
√

1− z/ρ , with hj(ρ) 6= 0 .

Lastly, we have the asymptotics [zn]Lj(z) ∼ Cjρ−n/n3/2 for some positive Cj.

The next step is to introduce the bivariate generating series associated with the
size of the simplified expression L(z, u) = (L1(z, u); . . . , Lm(z, u)). We rely on
Eq (1) to estimate the expectation of this statistic for uniform random expres-
sions. Proposition 2 already gives an estimation of the denominator, so we focus
on proving that for all j ∈ [m], [zn]∂uLj(z, u) ≤ αρ−nn−3/2, for some positive α.

For this purpose, let Rj be the set of fully reducible elements of Lj and let
Gj = Lj \Rj . Let R(z) and L(z) be the vectors of the generating series Rj and

11



Lj , respectively. Let also R(z, u) and G(z, u) be the vectors of their associated
bivariate generating series, where u accounts for the size of the simplified ex-
pression. Of course we have R(z, u) = upR(z), where p = |P| is the size of the
absorbing pattern. We also split the system φ into φ = φ+ A + B where: φ use
all the rules of φ whose root is not ~ and B gathers the rules of root ~ with a
constant fully reducible child; if necessary, we iterate the system to ensure that
B is not constant as a function of y. Using marking techniques (see [10] for a
detailed presentation on expression simplification) we finally obtain:8

L(z, u) = up (R(z)−P(z)) + zu
(
φ(zu; L(z, u)) + A(zu; G(z, u))

)
, (5)

where P(z) = (a1z
p, . . . , amz

p), with ai = 1 if P ∈ Li and 0 otherwise.
At this point, we can differentiate the whole equality with respect to u and

set u = 1. But we do not have much information on R(z) and G(z), so it is not
possible to conclude directly. Instead of working directly on R and G, which may
rise some technical difficulties, we exploit the fact that G,R ⊆ L and apply a
fixed point iteration: this results in a crucial bound for [zn]∂uL(z, u)

∣∣
u=1

purely
in terms of L(z), which is stated in the following proposition.

Proposition 3. For some C > 0, the following coordinate-wise bound holds:

[zn]
{
∂uL(z, u)

∣∣
u=1

}
≤ C · [zn]

{(
Idm×m − z · Jacy[φ+ A](z;L(z))

)−1 · L(z)
}
.

So we switch to the analysis of the right hand term in the inequality of Proposi-
tion 3. Despite its expression, it is easier to study its dominant singularities, and
we do so by examining the spectrum of the matrix J(z) = Jacy[φ+ A](z; L(z)).
This yields the following estimate, which concludes the whole proof:

Proposition 4. The function F : z 7→ (Id− z · J(z))
−1 ·L(z) has ρ = ρL, as its

dominant singularity. Further, around z = ρ there exist analytic functions g̃j , h̃j
such that Fj(z) = g̃j(z)− h̃j(z)

√
1− z/ρ with h̃j(ρ) 6= 0. Moreover, we have the

asymptotics [zn]Fj(z) ∼ Djρ
−nn−3/2, for some positive Dj.

6 Conclusion and discussion

To summarize our contributions in one sentence, we proved in this article that
even if we use systems to specify them, uniform random expressions lack expres-
sivity as they are drastically simplified as soon as there is an absorbing pattern.
This confirms and extends our previous result [10], which holds for much more
simple specifications only. It questions the relevance of uniform distributions in
this context, both for experiments and for theoretical analysis.

Roughly speaking, the intuition behind the surprising power of this simple
simplifications is that, on the one hand the absorbing pattern appears a linear

8 In fact this is the size of a less effective variation of the simplification algorithm,
which is ok for our proof as we are looking for an upper bound.
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number of times, while on the other, the shape of uniform trees facilitates the
pruning of huge chunks of the expression.

Mathematically speaking, Theorem 1 is not a generalization of the main
result of [10]: we proved that the expectation is bounded (and not that it tends
to a constant), and we only allowed finitely many rules. Obtaining that the
expectation tends to a constant is doable, but technically more difficult; we do
not think it is worth the effort, as our result already proves the degeneracy of
the distribution. Using infinitely many rules is probably possible, under some
analytic conditions, and there are other hypotheses that may be weakened: it
is not difficult for instance to ask that the dependency graph has one large
strongly connected component (all others having size one)9, periodicity is also
manageable, . . . All of these generalizations introduce technical difficulties in the
analysis, but we think that in most natural cases, unless we explicitly design the
specification to prevent the simplifications from happening sufficiently often,
the uniform distribution is degenerated when interpreting the expression: this
phenomenon can be considered as inherent in this framework.

In our opinion, instead of generalizing the kind of specification even more, the
natural continuation of this work is to investigate non-uniform distributions. The
first candidate that comes in mind is what is called BST-like distributions, where
the size of the children are distributed as in a binary search tree: that kind of
distribution is really used to test algorithms, and it is probably mathematically
tractable [15], even if it implies dealing with systems of differential equations.
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