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Abstract
In this article, we question the relevance of uniform random models for algorithms that use expressions
as inputs. Using a general framework to describe expressions, we prove that if there is a subexpression
that is absorbing for a given operator, then, after repeatedly applying the induced simplification to
a uniform random expression of size n, we obtain an equivalent expression of constant expected size.
This proves that uniform random expressions lack expressivity, as soon as there is an absorbing
pattern. For instance, (a + b)? is absorbing for the union for regular expressions on {a, b}, hence
random regular expressions can be drastically reduced using the induced simplification.
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1 Introduction

Although the classical paradigm to analyze the efficiency of an algorithm is to study its worst
case complexity, in many situations it is not a relevant way to describe what is observed
in practice, when one actually implements and tests the algorithm. This is typically the
case when worst case instances are very unlikely, and when the algorithm behaves well on
most inputs. A natural way to deal with this issue is to set a probability distribution on the
inputs of size n, for each n, and to study the average running time of the algorithm when the
inputs are randomly chosen following the prescribed distribution.1 The textbook example
is QuickSort algorithm with a simple choice of pivot, which runs in O(n logn) expected
time and O(n2) in the worst case. But the average case analysis raises the question of the
input distribution, which is usually a difficult one. The result on QuickSort holds when
the input is a permutation taken uniformly at random, but are real-life arrays uniformly
shuffled? Probably not, whatever “real-life” means. For QuickSort, one can randomize the
choice of the pivot to ensure the O(n logn) expected running time, which is equivalent to
uniformly shuffling the input. This is probably not a good idea in practice though, since
we lose the property that some input can be often partially sorted: popular programming
languages as Python or Java now use the recent TimSort algorithm that takes advantage of
the presortedness of the input.

1 There are other relevant theoretical alternatives, as the smoothed analysis of algorithms, but we will
only consider average case analysis in this article.
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51:2 Uniform Random Expressions Lack Expressivity

Still, if one wants to test the efficiency of an implementation of an algorithm, or to compare
two tools, and if there are not sufficiently many benchmarks available, doing the analysis on
random inputs sounds reasonable. In addition, using the uniform distribution has several
advantages: it ensures a lot of diversity on the generated input (as they are all equally likely)
and there are several very generic methods to perform the random generation efficiently: the
two main ones being the recursive method [20] and Boltzmann samplers [7]; both directly
translate a combinatorial description of the inputs into a uniform random generator. And
also, beyond the experiments, the theoretical average case analysis of the algorithm can be
done using techniques from discrete probabilities or from analytic combinatorics.

In this article we focus on algorithms whose inputs are formulas, encoded by expressions.
Informally, an expression is a tree, whose internal nodes are labelled with operators, and
whose leaves are labelled with variables or constants. Such trees are very natural ways to
represent formulas in many different contexts; several examples are given in Fig. 1. Observe
that the equivalent reverse polish notation of the expression can be obtained by a simple
tree traversal.

∨

∧ ¬

x2x1 ¬

x3

(x1 ∧ ¬x3) ∨ ¬x2

?

•

b +

a ε

(b · (a + ε))?
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� #

∨ ¬

a b c

�(a ∨ b)⇒ #¬c

exp
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1 x
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Figure 1 Four expression trees and their associated formulas. From left to right: a logical formula,
a regular expression, an LTL formula and a function.

We define the set of expressions by the finite sets of operators of any given degree: for
regular expressions on an alphabet {a, b}, we consider that there are three kinds of leaves
{a, b, ε}, one unary internal node {?} for the Kleene star and two binary internal nodes
{•,+} for the concatenation and the union. We define the size of an expression as its number
of nodes (including leaves). For the set of regular expressions LR, we have the following
formal inductive description:

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR

+
+
/\

LR LR

. (1)

Observe that if we consider plane trees (where the children of a node are ordered, as when they
are drawn on a plan), Eq. (1) is an unambiguous description of the expressions in LR. It is,
of course, not an unambiguous description of the associated languages, since a given language
admits several representations using expressions. It is clear that the other expressions of
Fig. 1 also have a specification that is similar to Eq. (1). Efficient methods were developed
in the field of analytic combinatorics to deal with that kind of combinatorial inductive
descriptions. In a nutshell, we first associate the formal power series L(z) :=

∑
n≥0 `nz

n,
where `n is the number of expressions of size n. Eq. (1) translates into an equation on L(z):

L(z) = zφ(L(z)), with φ(X) = 3 +X + 2X2. (2)

Then we see L(z) as a function from C to C, which is analytic at 0, and use its functional
equation Eq. (2) to derive a lot of information on `n, typically asymptotic equivalents.
When considering the uniform distribution, one can easily go further and introduce formal
parameters in the specification (for instance, the number of unary operators), which can also
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be interpreted in the analytic world, and directly obtain statistics of interest (for instance, the
asymptotic equivalent of the expected number of unary operators). Combinatorial structures
whose generating series satisfy an implicit functional equation L(z) = zφ(L(z)) are called
simple varieties of trees (there are some analytic conditions on φ, which are always satisfied
in the sequel), and we refer the reader to the textbook on analytic combinatorics [9, VII.3.]
for further information. For the remainder of this introduction, the reader has just to keep
in mind that the technical framework used to deal with uniform random expressions is well
established.

As can be expected at this point of the discussion, there are a lot of results in the literature
on simple varieties of trees and on specific random expressions. They exhibit some kind of
“universal” behavior: for instance, the number of such trees always grows in `n ∼ αβnn−3/2,
for some computable constants α and β [16]. Their expected height is asymptotically
equivalent to γ

√
n, for some computable γ [8]. In [10], the authors proved that if a uniform

random expression is compressed by identifying common subexpressions (changing the tree
into a directed acyclic graph), the expected size of the result is asymptotically equivalent
to δn√

logn
. It was also established [11] that computing the derivative of a random function,

defined by a tree as in Fig. 1, costs Θ(n3/2) in expected time and space. Concerning regular
expressions, the second author studied a standard construction that builds an ε-free non-
deterministic automaton recognizing the same language [18]: he proved that there is an
expected linear number of transitions in the resulting automaton, although it is Θ(n2) in
the worst case. This result was subsequently refined and adapted to various other similar
constructions by Moreira, Reis and their co-authors (see [2] for a survey). A lot of efforts were
also made for Boolean formulas, in slightly different settings: we consider the set Fk of the 22k

Boolean formulas on k variables. For a suitable set of logical operators, for instance {∨,∧},
and for any n ≥ 1, we consider the probability pn(f) that a random Boolean expression
represents the Boolean function f ∈ Fk; then we let n tend to infinity, and it can be proved
that pn(f) has a limit p(f), and that p is a probability distribution on Fk. So the distribution
is different, and more theoretical than what is usually used for testing implementations.
But, since it relies on uniform random expressions, that kind of distributions has a lot of
similarities with uniform random expressions (see [12] for a survey). While investigating this
distribution on Boolean formulas, its lack of complexity was discovered: with high probability
the formulas obtained are very simple [13, 14]. In fact, there is an older result in Nguyên
Thê PhD’s dissertation [17, Ch 4.4], where he considered and/or Boolean expressions whose
leaves are either true, false or a literal; he studied the impact of inductively applying 8
different reduction rules, such as true ∨ φ→ true, on uniform random expressions of size
n, and proved that the expected size of the simplified expression tends to a constant as
n tends to infinity. This was a very negative result for uniformly chosen random Boolean
expressions (with {∨,∧} operators and {true, false, x} leaves), as most of them can be
drastically simplified using simple rules.

In this article, we aim at extending Nguyên Thê’s result to much more general families of
expressions, proving its universality in the context of simple varieties of trees. Informally,
our main result is the following:

I Theorem. Consider a simple variety of expressions, where there is a tree pattern P that
is an absorbing element for one of the operators ~. We consider the simplification algorithm
that consists in inductively changing a ~-node by P whenever one of its children can be
simplified into P. Then the expected size of the simplification of a uniform random expression
of size n tends to a constant as n tends to infinity.

MFCS 2019
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Figure 2 Experimental study of the size of a random uniform regular expression after applying
the simplification rules E + P  P and P + E  P.

As an example, the tree pattern P corresponding to (a+ b)? is absorbing for the union + of
regular expressions: for any regular expression E, one can simplify E + P or P + E into P
without changing the described language. Hence, applying this simple simplification rule to
a very large random regular expression results in an expression of constant expected size.
Also, the tree pattern associated with x1 ∨ ¬x1 is absorbing for ∨, since it evaluates to true:
random Boolean expressions are also drastically simplified using this transformation rule.
It is the same for LTL formulas, and for functions: if there is the constant 0 (or a way to
produce it with a tree pattern) and the multiplication, then the same phenomenon occurs. In
fact, for most natural notions of expressions, there are absorbing patterns for some operators,
and uniform random expressions lack expressivity, since they can be simplified into much
smaller equivalent expressions with high probability. This is a universal and negative result
on uniform random expressions, which is worth knowing when designing empirical tests.
Indeed, comparing two tools on uniform random expressions probably consists in simply
comparing their efficiency for simplifying the input (preprocessing step). It also questions
the relevance of further theoretical studies on that kind of models. The consequences are
discussed in details in Section 4.

To conclude this introduction, we would like to mention that our result is not always
easy to observe experimentally. We implemented uniform random samplers for regular
expressions, and computed (experimentally) the expected size when using the fact that
(a+ b)? is absorbing for +. The results are depicted on Fig. 2. It is not clear that the curve
converges to some constant, as stated by our theorem. In fact, if we compute the value
of the limit (we used SageMath software for the computations) we obtain a bit more than
3 624 217, a huge constant. This value can be considerably reduced if we introduce several
more rewriting rules (see Section 4 for the details).

2 Definitions and settings

2.1 Combinatorial constructions and analytic combinatorics
In this article, the proofs rely on mathematical techniques developed in the framework of
analytic combinatorics [9]. In this section, we recall the basic tools of this theory that will be
used in the sequel (more advanced results will be introduced when needed). A combinatorial
class is a set C equipped with a notion of size | · | (a mapping from C to Z≥0) such that for
any n ∈ Z≥0 there are finitely many elements of C of size n. Let Cn = {C ∈ C : |C| = n}
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and let cn = |Cn| be its cardinality. The ordinary generating series (OGS for short) of
the combinatorial class C is the formal power series C(z) :=

∑
C∈C z

|C| =
∑
≥0 cnz

n. Let
[zn]C(z) := cn denote the n-th coefficient of C(z).

LetA and B be two combinatorial classes, and let A(z) andB(z) be their OGS, respectively.
If A and B are disjoint, then the OGS of their union is simply A(z) +B(z). Moreover, if we
define the size of a pair (α, β) in A× B as the sum of the sizes of α and β, then A× B is a
combinatorial class with OGS A(z)B(z), as a simple computation shows. There are many
other set constructions on combinatorial classes that directly translate on OGS, but we will
not need them in the sequel (see [9, Part A]).

Let us take an example that will be used throughout this article, the combinatorial set
LR of regular expressions on the alphabet {a, b}. Its elements are plane rooted trees, whose
nodes (internal and leaves) are labelled: leaves are labelled with a, b or ε, unary nodes are
labelled with ?, and binary nodes with • or +. Rooted means that there is a root (contrary to
the graph-theory notion of tree), and plane means that the order of the children matters:

+
/\
a b

and
+
/\
b a

are different elements of LR. Encoding trees as tuples (for instance (•, left, right)
for a tree of root • and left and right children left and right), we have the identity:

LR = {a, b, ε} ∪ {?} × LR ∪ {•,+} × LR × LR, (3)

which we rewrite as in Eq. (1) for readability: LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR

+
+
/\

LR LR

. From
this we directly obtain the following functional equation for the associated OGS LR(z):

LR(z) = 3z + zLR(z) + 2zLR(z)2 = zφ(LR(z)), with φ(y) = 3 + y + 2y2.

Going further, one can also encode statistics on the elements of a combinatorial class into
generating series. Let ξ be a mapping from a combinatorial class C to Z≥0. We are interested
in the double sequence cn,k that counts the number of elements C ∈ Cn such that ξ(C) = k.
The associated bivariate generating series (BGS for short) is by definition:2

C(z, u) :=
∑
C∈C

z|C|uξ(C) =
∑
n,k≥0

cn,kz
nuk.

When the statistics ξ is additive, which means that it is defined on pairs by ξ((α, β)) =
ξ(α) + ξ(β), then we also have a generic dictionary to translate combinatorial constructions
into BGS directly (see [9, Ch III]). This is for instance the case if ξ is the number of a-leaves
in a regular expression. Moreover, formal differentiation with respect to u allows us to
compute the expected value of ξ for the uniform distribution: by definition, the expectation
of ξ for objects of size n is En[ξ] = 1

|Cn|
∑
C∈Cn

ξ(C). But observe that

d

du
C(z, u) = d

du

∑
C∈C

z|C|uξ(C) =
∑
n≥0

(∑
C∈Cn

ξ(C)uξ(C)−1

)
zn.

Hence, if we extract the n-th coefficient3 in z, and set u = 1, we have cn times the expectation.
We thus get the following formula to compute the expectation for the uniform distribution:

En[ξ] =
[zn] dduC(z, u)

∣∣∣
u=1

[zn]C(z, 1) . (4)

2 Observe that C(z, 1) = C(z).
3 Recall that it is exactly what the operator [zn] does.

MFCS 2019
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Higher moments are obtained similarly, by differentiating several times with respect to u.
Let us continue our example on regular expressions over a binary alphabet by studying

the statistics ξ associated with the number of unary operators ? in an expression. The
technique consists in marking the ?-nodes (we use a circle, symbolically) and in changing the
marks into the formal variable u when translating the combinatorial specification:

LR = a+ b+ ε+
©?
|
LR

+
•
/\

LR LR

+
+
/\

LR LR

−→ LR(z, u) = 3z + zuLR(z, u) + 2zLR(z, u)2.

After differentiating with respect to u and setting u = 1 we get:

d

du
LR(z, u)

∣∣∣
u=1

= zLR(z)
1− z − 4zLR(z) . (5)

At this point, the values of interests are hidden as coefficients of formal power series, and
we need to extract or estimate them. This is where we use complex analysis: when their
radius of convergence at 0 is not zero, the formal power series are seen as functions from C
to C. Using theorems developed in the field, this proves very useful to obtain an asymptotic
equivalent of the n-th coefficient. We will not state formally the theorems here, because there
are some analytic conditions on the series that must be satisfied and that are a bit too long
for this extended abstract (we refer to the textbook [9] for all the details). What is needed
to know is the following: since we are doing combinatorics, the coefficients in our series C(z)
are non-negative reals. Hence, Pringsheim’s theorem applies and yields that, if finite, the
radius of convergence ρ of C(z) is a singularity. If there are no other singularity of modulus
ρ then, together with other analytic conditions, the behavior of the function C(z) as z → ρ

determines the asymptotic equivalent of [zn]C(z) as n → ∞. For instance, the Transfer
Theorem [9, Ch VI.3] states that, under analytic conditions, if C(z) ∼z→ρ λ(1− z/ρ)−α with
α /∈ {0,−1,−2, . . .}, then [zn]C(z) ∼ λρ−nnα−1/Γ(α), where Γ is Euler’s gamma-function,
the generalization of factorial.

Back to our example, as a polynomial equation of degree two, Eq. (2) can be solved
in LR(z). Only one of the two solutions is combinatorially meaningful (the other one has
negative coefficients). The result is amenable to the Transfer Theorem, with ρR = 2

√
6−1

23 and
an exponent −α = −1/2 near ρR, yielding [zn]LR(z) ∼ λρ−nR n−3/2, for some computable
λ > 0. Similarly, we can estimate the expected number of ?-nodes using Eq. (4) and applying
the Transfer Theorem to Eq. (5). This routine exercise yields that the expected number of
?-nodes is asymptotically equivalent to γn, for some computable positive constant γ.

Observe that the latter result has a direct consequence on the algorithm applying the
simplification pattern (T ?)?  T ?: since it cannot remove more nodes than there are stars
in the expression, the expected size after simplification is in Θ(n). In fact, we can easily be
more precise using our tools, as stated in the following proposition.

I Proposition 1. Consider the algorithm that simplifies consecutive stars in a regular expres-
sion. For the uniform distribution on LR, the expected size after reduction is asymptotically
equivalent to κn, with κ = 4

529 (126 +
√

6) ≈ 0.97.

Hence, this simplification rule is not powerful enough to demonstrate the lack of expressivity.

2.2 Combinatorial expressions: simple varieties of trees
As announced above, our combinatorial model for expressions is the notion of simple varieties
of trees [9, VII.3]. We consider expressions as a combinatorial class of L defined in terms of
a sequence of sets of labels A = (Ai)i∈Z≥0 indexed by their arity (or degree): f ∈ Ai has
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arity i and labels nodes with i children. For instance, the set of regular expressions over
the alphabet {a, b}, can be described in this formalism using A0 = {ε, a, b}, A1 = {?}, and
A2 = {+, •}, the other Ai’s being empty for i ≥ 3.

To avoid trivially uninteresting cases, we define combinatorial expressions as follows:
I Definition 2. A set of combinatorial expressions of labels A = (Ai)i∈Z≥0 is a combinatorial
set of rooted plane trees whose nodes of arity i are labelled with elements of a finite set Ai,
under the additional conditions that A0 6= ∅ and that there exists i ≥ 2 such that Ai 6= ∅. Its
characteristic series is the formal power series φ(y) =

∑
i≥0 φiz

i, where φi = |Ai|.
Note that there can be infinitely many non-empty Ai and that a label can be in several Ai’s:
we can have the union label in Ai for any i ≥ 2, to take its associativity into account.

If L is a set of combinatorial expressions of characteristic series φ(y), then we have the
fundamental formal equation for its OGS L(z):

L(z) = z φ(L(z)) . (6)

In our running example, rational expressions, φ is a quadratic polynomial and Eq. (6)
can be solved explicitly. But usually this is not the case. Fortunately, we can still work
out the asymptotic equivalents directly from the functional equation Eq. (6), using implicit
functions. Several conditions, gathered under the name of Smooth inverse-function schema
for trees [9, Definition VII.3], need to be checked in order to apply this fundamental result:
I Definition 3 (Smooth inverse-function schema for trees [9]). A function L(z) satisfying
the functional equation L(z) = zφ(L(z)) is said to belong to the smooth inverse-function
schema if L(z) is analytic at z = 0, φ(y) is analytic at y = 0, φ(0) 6= 0, the coefficients
of φ are non-negative, φ is not linear, and finally there exists a solution τ of the equation
φ(τ)− τφ′(τ) = 0, with 0 < τ < ρφ where ρφ is the radius of convergence of φ.

Let us check this definition when L is a set of combinatorial expressions of characteristic
series φ(y). The fact that φ(y) is analytic at 0 means that there are not too many operators
of arity i (typically, not super-exponential in i), which is indeed the case for all the examples
of Fig. 1. The other conditions are satisfied by definition, except the last one. The solution
τ always exists, but we have to ensure that it is smaller than the radius of convergence of φ.
The following elementary observation is quite useful:
I Remark 4. If φ is a polynomial, i.e. only finitely many Ai’s are non-empty, then a set of
expressions of characteristic series φ belongs to the smooth inverse-function schema.
Consider a variation on regular expressions L′R, where A0 = {ε, a, b}, A1 = {?}, A2 = {+, •},
and Ai = {+} for any i ≥ 3. Its characteristic series is φ(y) = 3+y+2y2 + y3

1−y = 1
1−y +y2 +2.

Its radius of convergence is ρφ = 1, and the positive solution of φ(τ) − τφ′(τ) = 0 is√
5−1
2 ≈ 0.618. Then the characteristic series belong to the smooth inverse-function schema.
The following theorem is a key property in analytic combinatorics for the functions

belonging to the smooth inverse-function schema. It is stated when φ(y) is aperiodic, i.e.
when φ(y) = ψ(yd) implies d = 1. This is not a real restriction as shown in [9, Ex. VI.17],
and this implies that L(z) is also aperiodic and then has a unique dominant singularity.
I Theorem 5 (see [5, 9, 16]). Let L(z) that belongs to the smooth inverse-function schema
with L(z) = zφ(L(z)). Assume that φ(y) is aperiodic, then L(z) has a unique dominant
singularity ρL = τ/φ(τ). Moreover, there exist two analytic functions g(z) and h(z) analytic
at z = ρL, such that, around z = ρL we have:

L(z) = g(z)− h(z)
√

1− z/ρL, with h(ρL) 6= 0. (7)

Moreover, we have [zn]L(z) ∼ CL
ρ−n

L

n3/2 , for some computable positive constant CL.

MFCS 2019
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3 Main results

3.1 Simplification using an absorbing pattern: main result
Let L be a set of combinatorial expressions of sets of labels (Ai)i≥0. Let P be an element of
L and let ~ be an element of Aa for some a ≥ 2. If L ∈ L, the simplification of L following
the absorbing pattern P for ~ is the element S ∈ L obtained by applying bottom-up the
following rewriting rule:

~

C1 . . . Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

More formally, the simplification s(L,P,~) of L following the absorbing pattern P for ~
is inductively defined by: s(L,P,~) = L if L has size 1, s(L,P,~) = P if the root of L is ~
and at least one of its children C is such that s(C,P,~) = P, and

s(L,P,~) = (⊕, s(C1,P,~), . . . , s(Cd,P,~)), otherwise for L = (⊕, C1, . . . , Cd).

Of course, this simplification is purely syntactic, but the idea behind is that, when interpreted,
the pattern P represents an absorbing element for the operator ~, hence the name. For
instance, the pattern P = (a + b)? and operator ~ = + correspond to the fact that for
languages, P represents Σ?, which is absorbing for the union +.

Let σP,~(L) = |s(L,P,~)| denote the size of the simplification of L, or just σ(L) when
there is no ambiguity about the P and the ~ considered. Our main result concerns the
random variable σ when L is taken uniformly at random in Ln.

I Theorem 6. Let L be a set of combinatorial expressions whose OGS L(z) belongs to the
smooth inverse-function schema L(z) = φ(L(z)), with φ aperiodic. Let P ∈ L and let ~ be
an operator of arity at least 2 of L. Then the expected size of the simplification of a uniform
random expression of size n in L following the absorbing pattern P for ~ tends to a constant
as n tends to infinity: limn→∞ En[σ] = δ, for some positive δ. Furthermore, all moments of
σ also converge: for every i ∈ Z≥1, limn→∞ En[σi] = δi for some positive δi.

Observe that it is not because the expectation converges that the moments converge too.
Moreover, convergence of the moments has an implication in the analysis of algorithm, as
stated in the following corollary.

I Corollary 7. Let L be a set of expressions that satisfies the conditions of Theorem 6.
Consider a polynomial time algorithm working on elements of L. If we first simplify the
expression before running the algorithm, then the process takes O(1) expected time. The
simplification itself is done in linear expected time.

Hence, the automaton construction studied in [18] is useless in the uniform random
setting, since the output automaton has size polynomial in the input in the worst case. It is
thus of expected constant size if we first simplify the input, according to Corollary 7.

We fix L, φ, P and ~ for the remainder of Section 3, which is devoted to the proof of our
main theorem, i.e., Theorem 6. A discussion of its consequences can be found in Section 4.

3.2 Completely reducible expression trees
An expression tree L ∈ L is completely reducible when s(L,P,~) = P . We first study the set
R ⊂ L of all the completely reducible expression trees and denote by R(z) its OGS.
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Let p = |P| and let a be the arity of ~. An element of R is either P itself, or a tree of
root ~ such that at least one of its subexpression is completely reducible. Hence, translating
into OGS, we have the following equation for R(z):

R(z) = zp + z ((L(z))a − (L(z)−R(z))a) . (8)

We can also easily establish the following property:

I Lemma 8. The radii of convergence of R(z) and L(z) are equal. Moreover, there exists
NR ∈ Z≥0 such that for every n ≥ NR, [zn]R(z) > 0.

We need to be more precise, as a fine grain description of R(z) is an important ingredient
of our proof of Theorem 6. We use an advanced analytic result established4 by Drmota [5,
Th. 1 and Prop. 3]. His theorem provides a precise estimate of the solutions of strongly
connected systems of equations involving analytic functions around their (then) shared
dominant singularity.

I Proposition 9. The probability that a uniform random expression in Ln is completely
reducible tends to a strictly positive constant γ as n→∞. Furthermore, locally around z = ρ,
we have

R(z) = gR(z)− hR(z)
√

1− z

ρ
, (9)

where ρ is the radius of convergence of L(z) and R(z), and the functions gR(z) and hR(z)
are analytic around z = ρ, and hR(ρ) 6= 0.

Proof sketch. We define a complementary class G := L \ R of elements that do not reduce
(completely) to P. Let G(z) denote its OGS. We observe that from Eq. (8) we have{

R(z) = zp + z
(

(G(z) +R(z))a −G(z)a
)
,

G(z) = z φ
(
G(z) +R(z)

)
+ zG(z)a ,

(10)

where φ(x) = φ(x) − xa. We demonstrate, simultaneously, that R(z) and G(z) verify the
conclusions of the proposition by applying Drmota’s multidimensional version of Theorem 5
(see [5, Thm. 1 and Prop. 3]). Thus we consider the implicit system above, in the variables
z, R and G, and prove that it satisfies the conditions of Drmota’s Theorem. This will then
imply immediately our desired conclusions. We consider the corresponding algebraic system

[R,G] = F (z,R,G), where F (z,R,G) =
[
zp + z

(
(G+R)a −Ga

)
, z φ

(
G+R

)
+ zGa

]
.

Now we need to check that all the hypotheses of Drmota’s theorem are satisfied; this includes
studying the Jacobian matrix of the system, which is

J(z,R,G) =
(
za(G+R)a−1 za((G+R)a−1 −Ga−1)
zφ′(G+R) zφ′(G+R) + zaGa−1

)
.

Once done, we obtain Eq. (9).
From this formula and the Transfer Theorem, we conclude that [zn]R(z) satisfies an

asymptotic formula similar to the one of [zn]L(z) in Theorem 5, but with a different
multiplicative constant. This yields the existence of γ and thus concludes the proof. J

4 It turns out that Drmota’s theorem needs a little rectification, given in [1]. The theorem, among other
things, gives a way to localize the dominant singularity, which was proved wrong. Fortunately, we do
not need to rely on this to characterize the singularity in our case, so there is no issue for us, as we do
not use the incorrect part of this result.

MFCS 2019
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I Remark 10. If we had several reduction rules with the same pattern, rather than just one,
the conclusions from Proposition 9 remain true. For instance, for regular expressions, we
could add the reduction rule P?  P in addition to the fact that P is absorbing for +.

For this we introduce an auxiliary series A(x) =
∑
i≥1 aix

i where ai is the number
of operations of arity i having P as an absorbing element. The system in the proof of
Proposition 9 rewritesR(z) = zp + z

(
A(G(z) +R(z))−A(G(z))

)
,

G(z) = z φ
(
G(z) +R(z)

)
+ zA(G(z)) ,

(11)

with φ(x) = φ(x)−A(x). The limit probability γ of Proposition 9 admits an elegant formula

γ = A′(τL)−A′(τL − τR)
φ′(τL)−A′(τL − τR) , where τL = L(ρ) and τR = R(ρ).

3.3 Estimating the expectation and the moments
Following the method explained in Section 2.1, we use bivariate generating series to keep
track of the size of the reduced expression. We therefore define L(z, u) and R(z, u) by (recall
that σ(L) is the size of the simplification of L):

L(z, u) =
∑
L∈L

z|L|uσ(L) and R(z, u) =
∑
R∈R

z|R|uσ(R).

Of course, since all elements of R simplify to P, we have R(z, u) = upR(z), with p = |P|.
As in Section 2.1, we want to mark the expressions so that the number of marks is equal

to the size of the simplified expression. For this, we put one mark on the nodes that are not
simplified, and p marks on the root of a subtree that simplifies to P, to take into account
the size of P once reduced. We just have to reformulate the combinatorial specification
and to enrich it with marks. As an example, let us consider regular expressions LR, with
P = (a+ b)? and ~ = +. We mark an element L ∈ LR the following way (we denote by RR
the completely reducible regular expressions):

If L ∈ RR then we add p marks at the root.
If the root of L is not +, then we mark its children inductively (if any), and mark the
root of L.
If the root of L is + and its children are all not in RR, then we mark its children
inductively, and mark the root of L.

©?

�

+

b?

+

a b

�

b b

◦◦◦◦

simplifies to P:
just add four
marks ◦

This expression has size 9 after simplificiation.



F. Koechlin, C. Nicaud, and P. Rotondo 51:11

This way of rewriting the decomposition of LR is unambiguous except for P which is in
RR and which can also be built by the standard induction, so we have to remove it once in
the specification. This yields, where L◦R and R◦R respectively denote the marked versions of
LR and RR, and where G◦R := L◦R \ R◦R:

L◦R = (RR − P)◦◦◦◦+ a + b + ε +
©?
|
L◦

R

+
�
/\

L◦
R L

◦
R

+
⊕
/\

G◦
R G

◦
R

.

From this we get LR(z, u) = (R(z)− z4)u4 + 3zu+ uzLR(z, u) + zuLR(z, u)2 + zuGR(z, u)2.

This construction generalizes easily, and we get the following lemma.

I Lemma 11. We have the following equation for the BGS L(z, u) where z counts the size
of an expression and u the size of its simplification:

L(z, u) = (R(z)− zp)up + zu
(
φ(L(z, u)) + (L(z, u)−R(z, u))a

)
, (12)

where φ(x) = φ(x)− xa and where a is the arity of ~.

At this point, we want to apply Eq. (4) to compute the expectation of σ. Hence, we
differentiate with respect to u, set u = 1 and re-arrange the expression, obtaining

d

du
L(z, u)

∣∣∣
u=1

=
N
(
z, L(z), R(z)

)
D
(
z, L(z), R(z), φ′(L(z))

) , where N and D are polynomials. (13)

From this, and using an adaptation of another result of Drmota [6, Lemma 2.26] to handle
quotients, we get the following lemma.

I Lemma 12. There exist two functions g̃(z) and h̃(z) that are analytic at z = ρ, such that
locally around z = ρ we have the expansion d

duL(z, u)
∣∣∣
u=1

= g̃(z)− h̃(z)
√

1− z/ρ.

We can now conclude the proof of the first part of Theorem 6: using the Transfer Theorem,
we obtain from Lemma 12 that, if h̃(ρ) > 0, then [zn] dduL(z, u)|u=1 ∼ h̃(ρ)

2
√
π
ρ−nn−3/2, so that,

by Theorem 5, En[σ] tends to the constant δ = h̃(ρ)
2CL
√
π
, since ρ = ρL. The other cases are

not possible, as h̃(ρ) < 0 yields a negative asymptotic equivalent and h̃(ρ) = 0 implies that
the expected size of the simplification tends to 0, but it is not possible as it is at least p > 0.
I Remark 13. Using a computer algebra software, we can deal symbolically with all the
formulas obtained in the article. When applied to regular expressions, we obtain that
δ ≈ 3, 624, 217.39, which is a prohibitively large number for most simulations, while the
proportion of completely reducible expressions tends to γ ≈ 0.0016336.

The proof for higher moments follows a similar principle as for the expectation; when
we differentiate several times on u Eq. (12) from Lemma 11, we get the same factor for
the highest order derivative, hence the same denominator D(z, L(z), R(z), φ′(L(z))) as in
Eq. (13). As the remaining terms also fulfill a local expansion like the one in Lemma 12, we
can conclude exactly as for the expectation.

4 Conclusion

We have seen in this paper that uniform random expressions have to be considered with
great care when using them to analyze the efficiency of algorithms or tools. As soon as there
is an absorbing pattern, everything becomes mostly trivial, even for polynomial algorithms
or constructions, as stated in Corollary 7.

MFCS 2019
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One could alter the specifications to try to obtain a different behavior. For instance, by
weighting some of the labels (trying to get less ? in random expressions). This can easily
be done directly on the specification, by adding several identical operators or even positive
weights on the operators. The random generation can still be done quite efficiently. However,
we have not changed the framework, and if we try to specify weighted regular expressions
with, for instance:

LR = 10× a+ 10× b+ ε+
?
|
LR

+ 20×
•
/\

LR LR

+ 15×
+
/\

LR LR

, (14)

we can still apply Theorem 6, we just get a larger limit for the expected size.
Another idea is to specify expressions using combinatorial systems. For instance, we can

prevent consecutive stars in regular expressions using the system:

LR = S + T ; S =
?
|
T

; T = a+ b+ ε+
•
/\

LR LR

+
+
/\

LR LR

.

This is not covered by our main theorem, but it is work in progress to prove that the same
result holds, using Drmota’s tools to handle systems of equations like this one.
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Figure 4 Experimental study of the size
of a random uniform regular expression after
applying a large set of simplification rules.

Yet a third idea is to completely change the distribution on the set of expressions. The
other natural probability on trees is the so-called BST-like distribution, obtained on regular
expressions as follows to generate an expression of size n: if n = 1 return a, b or ε; if n = 2
return a?, b? or ε?; otherwise, randomly choose an operator in {?, •,+} and if it is binary,
choose the size of its left child uniformly in {1, . . . , n− 2}. This distribution is not uniform,
but it is often used for testing tools. See [19] for a theoretical study using this distribution
on regular expressions. It is not clear if the conclusion of Theorem 6 still holds for these
distributions, but we believe that they are not interesting either: on Fig. 3, we experimentally
computed the ratio of expressions that can be simplified into (a + b)?, using a whole set
of simplification rules, and obtained that this ratio tends to 1 as n tends to infinity: the
situation is even worse than in the uniform case (see also [3, 4]).

If we apply this whole set of simplification rules to uniform random regular expressions,
we get the curve depicted in Fig. 4. Apparently, the expected size of the simplified expression
tends to a value around 75, which is large, but much smaller than the value 3,624,217 obtained
for just using the absorbing pattern.

The real conclusion is that natural distributions on trees seem to be useless when it
comes to obtaining good distributions on formulas. At this point, we have no idea on how to
produce a good distribution in the general framework, sufficiently simple to have efficient
random samplers and to be amenable to mathematical analysis.
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